高中化学 2.2.1共价键与分子的空间构型教案 鲁教版选修3
高中化学第2章化学键与分子间作用力第2节共价键与分子的空间型教学案鲁科版选修3
第2节共价键与分子的空间构型第1课时一些典型分子的空间构型[课标要求]1.认识共价分子结构的多样性和复杂性。
2.能根据有关理论判断简单分子或离子的构型。
3.结合实例说明“等电子原理”的应用。
1.CH4、NH3、H2O、H2S、NH+4、CCl4、CF4分子中中心原子均采用sp3杂化。
2.CH2===CH2、C6H6、BF3、CH2O分子中中心原子均采用sp2杂化。
3.CH≡CH、CO2、BeCl2、CS2分子中中心原子均采用sp1杂化。
4.正四面体形分子:CH4、CCl4、CF4;三角锥形分子:NH3、PH3;V形分子:H2O、H2S、SO2;平面三角形分子:BF3;平面形分子:C2H4、C6H6、CH2O;直线形分子:C2H2、CO2、BeCl2、CS2。
5.等电子体:化学通式相同(组成原子数相同),价电子数相等的微粒。
甲烷分子的空间构型1.轨道杂化和杂化轨道2.甲烷分子中碳原子的杂化类型3.杂化轨道形成的分子空间构型(杂化轨道全部用于形成σ键时)1.什么是成键电子对、孤电子对?其与中心原子的轨道数或价层电子对数有什么关系? 提示:分子或离子中,中心原子与其他原子以共价键结合的电子对为成键电子对,中心原子上不参与成键的电子对为孤电子对,两者之和等于中心原子的轨道数,也等于价层电子对数。
2.在你接触的原子或离子中,中心原子上最多的轨道数或价层电子对数是多少? 提示:最大轨道数为1(s 轨道)+3(p 轨道)=4。
1.杂化轨道类型的判断方法一:依据杂化轨道数=中心原子形成的σ键数+孤电子对数(1)公式:杂化轨道数n =12(中心原子的价电子数+配位原子的成键电子数±电荷数)。
[特别提醒] ①当中心原子与氧族元素原子成键时,氧族元素原子不提供电子。
②当为阴离子时,中心原子加上电荷数,为阳离子时,减去电荷数。
(2)根据n 值判断杂化类型n =2时,sp 1杂化,如BeCl 2,n =12(2+2)=2; n =3时,sp 2杂化,如NO -3,n =12(5+1)=3; n =4时,sp 3杂化,如NH +4,n =12(5+4-1)=4。
高中化学:2.1《共价键模型》教案(鲁科版选修3)
第一节共价键模型一、教学目标:1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。
2.知道共价键的主要类型δ键和π键。
3.说出δ键和π键的明显差别和一般规律。
4. 认识键能、键长、键角等键参数的概念;能用键参数――键能、键长、键角说明简单分子的某些性质5. 知道等电子原理,结合实例说明“等电子原理的应用”二、教学重点:理解σ键和π键的特征和性质键参数的概念三、教学难点:σ键和π键的特征键参数的概念和等电子原理四、教学方法启发,讲解,观察,练习五、教师具备课件六、教学过程第一课时【复习提问】什么是化学键?物质的所有原子间都存在化学键吗?【生】1.分子中相邻原子间强烈的相互作用,叫做化学键。
2.不是,像稀有气体之间没有化学键。
过电子得失达到稳定结构【过渡】举例说明:共价化合物和离子化合物,我们学过哪些物质分子是原子之间是通过共价键结合的?【提出问题】 回忆H 、Cl 原子的原子轨道,思考它们在形成分子时是通过什么方式结合的。
1.两个H 在形成H 2时,电子云如何重叠?2.在HCl 、Cl 2中电子云如何重叠?(三种分子都是通过共价键结合的)【学生活动】制作模型:以小组合作学习的形式,利用泡沫塑料、彩泥、牙签等材料制作s 轨道和p 轨道的模型。
根据制作的模型,以H 2、HCl 、Cl 2为例,研究它们在形成分子时原子轨道的重叠方式,即σ键和π键的形成过程。
通过学生的动手制作,感悟H 2、HCl 、Cl 2的成键特点,然后教师利用模型和图像进行分析。
【教师分析】利用动画描述σ键和π键的形成过程,体会σ键可以旋转而π键不能旋转。
1.σ键图像分析:①H 2分子里的“s—s σ键”氢原子形成氢分子的电子云描述 ②HCl 分子的s —pσ键的形成③C1一C1的p —pσ键的形成未成对电子的电子云互相靠拢电子云互相重叠形成的共价单键的电子云图像理论分析:1.σ键是两原子在成键时,电子云采取“头碰头”的方式重叠形成的共价键,这种重叠方式符合能量最低,最稳定;σ键是轴对称的,可以围绕成键的两原子核的连线旋转。
(新人教版)最新高中化学 第2章 化学键与分子间作用力 第2节 共价键与分子的空间型教学案 鲁科版选修3【经
第2节共价键与分子的空间构型第1课时一些典型分子的空间构型[课标要求]1.认识共价分子结构的多样性和复杂性。
2.能根据有关理论判断简单分子或离子的构型。
3.结合实例说明“等电子原理”的应用。
1.CH4、NH3、H2O、H2S、NH+4、CCl4、CF4分子中中心原子均采用sp3杂化。
2.CH2===CH2、C6H6、BF3、CH2O分子中中心原子均采用sp2杂化。
3.CH≡CH、CO2、BeCl2、CS2分子中中心原子均采用sp1杂化。
4.正四面体形分子:CH4、CCl4、CF4;三角锥形分子:NH3、PH3;V形分子:H2O、H2S、SO2;平面三角形分子:BF3;平面形分子:C2H4、C6H6、CH2O;直线形分子:C2H2、CO2、BeCl2、CS2。
5.等电子体:化学通式相同(组成原子数相同),价电子数相等的微粒。
甲烷分子的空间构型1.轨道杂化和杂化轨道2.甲烷分子中碳原子的杂化类型3.杂化轨道形成的分子空间构型(杂化轨道全部用于形成σ键时)1.什么是成键电子对、孤电子对?其与中心原子的轨道数或价层电子对数有什么关系? 提示:分子或离子中,中心原子与其他原子以共价键结合的电子对为成键电子对,中心原子上不参与成键的电子对为孤电子对,两者之和等于中心原子的轨道数,也等于价层电子对数。
2.在你接触的原子或离子中,中心原子上最多的轨道数或价层电子对数是多少? 提示:最大轨道数为1(s 轨道)+3(p 轨道)=4。
1.杂化轨道类型的判断方法一:依据杂化轨道数=中心原子形成的σ键数+孤电子对数(1)公式:杂化轨道数n =12(中心原子的价电子数+配位原子的成键电子数±电荷数)。
[特别提醒] ①当中心原子与氧族元素原子成键时,氧族元素原子不提供电子。
②当为阴离子时,中心原子加上电荷数,为阳离子时,减去电荷数。
(2)根据n 值判断杂化类型n =2时,sp 1杂化,如BeCl 2,n =12(2+2)=2; n =3时,sp 2杂化,如NO -3,n =12(5+1)=3; n =4时,sp 3杂化,如NH +4,n =12(5+4-1)=4。
2019-2020年高中化学 2.2.2共价键与分子的空间构型教案 鲁教版选修3
2019-2020年高中化学 2.2.2共价键与分子的空间构型教案鲁教版选修3【教学目标】1. 学会用杂化轨道原理解释常见分子的成键情况与空间构型;2. 了解等电子原理,结合实例说明“等电子原理的应用”3. 初步认识价层电子对互斥模型【教学重点】学会用杂化轨道原理解释常见分子的成键情况与空间构型【教学难点】学会用杂化轨道原理解释常见分子的成键情况与空间构型【教学方法】采用图表、比较、讨论、归纳、综合的方法进行教学【教学过程】【复习填空】【引入课题】通过化学必修课程的学习,你已知道苯分子的结构简式为从结构简式来看,苯分子好像具有双键,苯应当具有类似乙烯的化学性质,能使酸性KMn04溶液退色或使溴的四氯化碳溶液退色,但实验事实并非如此。
那么,苯为什么不能使酸性KMn04溶液或溴的四氯化碳溶液退色呢?苯分子中究竟存在着怎样的化学键呢?【板书】2. 苯分子的空间构型【阅读p-42-43】【探究内容】1. 苯分子中碳原子采用的那种杂化方式,碳碳间,碳氢间是如何成键的?2. 大π键是如何形成的?【阐述】根据杂化轨道理论,形成苯分子时每个碳原子中的原子轨道发生sp2杂化(如S、P x、P y),由此形成的三个SP2杂化轨道在同一平面上,这样,每个碳原子的两个SP2杂化轨道上的电子分别与邻近的两个碳原子的SP2杂化轨道上的电子配对形成σ键,于是六个碳原子组成一个正六边形的碳环;每个碳原子的另一个SP2杂化轨道上的电子分别与一个氢原子的1S电子配对形成σ键。
与此同时,每个碳原子还有一个与碳环平面垂直的未参加杂化的2P轨道(如2P X),它们均含有一个未成对电子。
这六个碳原子的2p轨道相互平行,它们以“肩并肩”的方式相互重叠,从而形成含有六个电子、属于六个原子的π键。
人们把这种在多原子间形成的多电子的π键称为大π键。
所以,在苯分子中,整个分子呈平面正六边形、六个碳碳键完全相同,键角皆为120°。
正是由于苯分子所具有的这种结构特征,使得它表现出特殊的稳定性,而不象乙烯那样容易被酸性高锰酸钾溶液氧化或溴的四氯化碳溶液褪色。
鲁科版高中化学选修三2.2《共价键与分子的空间构型》第1课时 省一等奖教案
第2节共价键与分子的空间构型第1课时一些典型分子的空间构型【教学目标】1. 理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型;2. 学会用杂化轨道原理解释常见分子的成键情况与空间构型过程与方法:【教学重点】理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型【教学难点】理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型【教学方法】采用图表、比较、讨论、归纳、综合的方法进行教学【教学过程】【课题引入】在宏观世界中,花朵、蝴蝶、冰晶等诸多物质展现出规则与和谐的美。
科学巨匠爱因斯坦曾感叹:“在宇宙的秩序与和谐面前,人类不能不在内心里发出由衷的赞叹,激起无限的好奇。
”实际上,宏观的秩序与和谐源于微观的规则与对称。
通常,不同的分子具有不同的空间构型。
例如,甲烷分子呈正四面体形、氨分子呈三角锥形、苯环呈正六边形。
那么,这些分子为什么具有不同的空间构型呢?【思考】美丽的鲜花、冰晶、蝴蝶与微观粒子的空间构型有关吗?【活动探究】你能身边的材料动手制作水分子、甲烷、氨气、氯气的球棍模型吗?【过渡】我们知道,共价键具有饱和性和方向性,所以原子以共价键所形成的分子具有一定的空间构型。
【板书】一、一些典型分子的空间构型(一)甲烷分子的形成及立体构型【联想质疑】研究证实,甲烷(CH4)分子中的四个C—H键的键角均为l09.5º,从而形成非常规则的正四面体构型。
原子之间若要形成共价键,它们的价电子中应当有未成对的电子。
碳原子的价电子排布为2s22p2,也就是说,它只有两个未成对的2p 电子,若碳原子与氢原子结合,则应形成CH2;即使碳原子的一个2s电子受外界条件影响跃迁到2p空轨道,使碳原子具有四个未成对电子,它与四个氢原子形成的分子也不应当具有规则的正四面体结构。
那么,甲烷分子的正四面体构型是怎样形成的呢?【过渡】为了解决这一矛盾,鲍林提出了杂化轨道理论,【阅读教材40页】【板书】1. 杂化原子轨道在外界条件影响下,原子内部能量相近的原子轨道重新组合的过程叫做原子轨道的杂化,组合后形成的一组新的原子轨道,叫做杂化原子轨道,简称杂化轨道。
鲁科版高中化学选修三2.2《共价键与分子的空间构型》第三课时教案
第2节共价键与分子的空间构型第3课时分子的空间构型和分子性质【教学目标】1. 使学生了解一些分子在对称性方面的特点,知道手性化学在现代化学领域医药的不对称合成领域中的重大意义。
2. 了解分子的极性;3. 能判断一些简单分子是极性分子还是非极性分子;4. 知道分子的极性与分子的立体构型密切相关;【教学重点】1. 了解一些分子在对特性方面的特点2. 能判断一些简单分子是极性分子还是非极性分子;【教学难点】1. 了解一些分子在对特性方面的特点2. 键的极性与分子极性的关系。
【教学方法】采用图表、比较、讨论、归纳、综合的方法进行教学【教学过程】【联想质疑】请你举出身边显示一定对称性的物体。
宏观物体具有对称性,构成它们的微观粒子也具有对称性吗?【板书】二、分子的空间构型与分子性质【阅读思考】1.分子的对称性(1)含义:对称性是指一个物体包含若干等同部分,这些部分相互对应且相称,它们经过不改变物体内任意两点间距离的操作能够复原,即操作前在物体中某地方有的部分,经操作后在原有的地方依旧存在相同的部分,也就是说无法区别操作前后的物体。
(2)对称轴:分子中的所有原子以某条轴线为对称,沿该轴线旋转1200或2400时,分子完全复原,我们称这根连线为对称轴。
(3)对称面:对于甲烷分子而言,相对于通过其中两个氢和碳所构成的平面,分子被分割成相同的两部分,我们称这个平面为对称面。
(4)联系:分子的许多性质如极性、旋光性及化学反应等都与分子的对称性有关。
2. 手性(1)手性和手性分子定义:如果一对分子,它们的组成和原子的排列方式完全相同,但如同左手和右手一样互为镜像,在三维空间里不能重叠,这对分子互称手性异构体。
有手性异构体的分子称为手性分子。
(2)手性碳原子:当四个不同的原子或基团连接在碳原子(如CHBrC1F)上时,形成的化合物存在手性异构体。
其中,连接四个不同的原子或基团的碳原子称为手性碳原子。
【讨论】1. 有人说“手性分子和镜像分子完全相同,能重叠”是吗?二者什么关系?分别用什么标记?2. 举例说明手性分子对生物体内进行的化学反应的影响?3. 构成手性碳原子的条件?【课堂练习】媒体展示【学生分组实验】在滴定管中加入四氯化碳,打开活塞,将用毛皮摩擦过的橡胶棒靠近液流,观察液流方向是否发生变化;再改用水做实验。
鲁科版高二化学选修3第2章第2节共价键和分子的空间构型第1课时共价键模型学案
鲁科版高中化学高二选修《物质结构与性质》第2章第2节共价键与分子的空间构型第1课时共价键模型学案核心素养1.认识共价键的形成和实质,了解共价键的特征,培养学生宏观辨识与微观探析的核心素养。
2.知道共价键的主要类型有σ键和π键,能利用电负性判断共价键的极性,培养学生证据推理与模型认知的核心素养。
3.能利用电负性判断共价键极性,培养学生科学探究与创新意识的核心素养。
【复习】(1)化学键的定义及基本分类(2)离子键、共价键的定义(3)离子化合物、共价化合物的定义(4)用电子式表示NaCl,H2的形成过程自主学习【探究1】以H2为例,探究共价键的形成及共价键的本质是什么?(1)核间距与能量的关系是怎样的?(2)为什么会出现这种变化?一、共价键的形成与本质1.概念:原子间通过形成的化学键。
2.共价键的形成电子在两原子核之间出现的,受到两个原子核的吸引,导致体系的,形成化学键。
3.共价键的本质高概率地出现在两个原子核间的与两个之间的。
【练习】1.下列物质只含共价键的是()A.Na2O2B.H2O C.NH4Cl D.NaOH2.下列事实中,能够证明HCl是共价化合物的是()A.HCl易溶于水B.液态的HCl不导电.C.HCl不易分解D.HCl溶于水能电离,呈酸性【思考】以H2,HCl,H2O为例,讨论共价键形成的条件是什么?4.共价键的形成条件(1)通常的元素原子形成的化学键;(2)成键原子一般有,用来相互配对成键(自旋相反);(3)成键原子的原子轨道在空间重叠使体系。
5.表示方法(1)电子式:在元素符号的周围用“·”(或“x”)原子最外层电子的式子。
如:H:H(2)结构式:是把电子式中共用电子改成短线,孤对电子省略,一对共用电子是,两对是(共价双键),三对共用电子是(共价叁键)【练一练】用结构式表示Cl2、HCl、H2O、CO2【探究2】利用以下所学知识分析一下N2的结构,解释氮气化学性质稳定的原因。
2024-2025年高中化学第2章第1节共价键模型教案鲁科版选修3
本节课的核心素养目标包括:提高学生的科学探究能力,培养学生的逻辑思维能力,提升学生的信息处理能力,培养学生的团队协作能力。通过本节课的学习,学生将能够运用观察、实验、分析等方法探究共价键的形成和类型;能够运用逻辑思维解释和预测化学反应的结果;能够运用信息处理能力,从各种信息源获取有用的化学知识;并能够在团队合作中,有效沟通、共享资源,共同解决问题。
教学方法/手段/资源:
-讲授法:通过讲解帮助学生理解共价键知识点。
-实践活动法:通过实践活动让学生掌握共价键知识。
-合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
作用与目的:
-帮助学生深入理解共价键知识点,掌握相关技能。
-通过实践活动,培养学生的动手能力和解决问题的能力。
-通过合作学习,培养学生的团队合作意识和沟通能力。
-视频:播放有关共价键形成过程的动画视频,帮助学生直观地理解共价键的形成;
-在线工具:利用在线化学仿真实验工具,让学生亲自操作,体验共价键的形成过程;
-网络资源:引导学生查阅相关网络资源,了解共价键知识在实际中的应用。
教学实施过程
1.课前自主探索
教师活动:
-发布预习任务:提供PPT、视频等预习资料,明确预习目标和要求。
重点难点及解决办法
重点:共价键的基本概念、形成原理和类型。
难点:共价键形成过程中的电子排布和能量变化,以及共价键类型之间的区别。
解决办法:
1.对于共价键的基本概念,可以通过生动的例子和实际案例来帮助学生理解。例如,可以用氯化氢分子和水分子的形成过程来解释共价键的概念。
2.对于共价键的形成原理和类型,可以通过动画演示和模型展示来帮助学生直观地理解。例如,可以利用计算机动画来展示电子排布和能量变化的过程,让学生更直观地理解共价键的形成。
化学:2..2..3《分子的空间构型与分子性质》教案(鲁科版选修3)
第2节共价键与分子空间构型第3课时分子地空间构型与分子性质【学习目标】1.使学生了解一些分子在对称性方面地特点.2.知道手性化学在现代化学领域医药地不对称合成领域中地重大意义【学习过程】一、分子地空间结构与分子性质1. 分子地对称性依据_________地旋转或借助______地反映能够复原地分子称为对称分子,分子所具有地这种性质称为对称性.分子地许多性质如____、_______及______________等都与分子地对称性有关.当四个不同地______或______连接在碳原子上时,这个碳原子是不对称原子,如同人地左手和右手.这种分子相似而不全同,不能重叠,我们称它们地表现为手性.具有手性地分子叫做_________分子.2. 极性键和非极性键:<1)极性键:不同种原子,电负性,共用电子对必然偏向电负性地原子一方,使该原子带部分负电荷<δ-),而另一原子带部分正电荷<δ+).这样,两个原子在成键后电荷分布不均匀,形成有极性地共价键.存在范围:气态氢化物、非金属氧化物、酸根、氢氧要、有机化合物.<2)非极性共价键:同种元素地原子两原子电负性,共用电子对不偏向任何一方,成键地原子不显电性,这样地共价键叫非极性键.简称非极性键.3. 分子地极性(1>极性分子:⑴定义:如H 2O ⑵特点:分子中有发生偏移地共用电子对,并且分子地形状不呈“空间对称”(2> 非极性分子(1> 定义:(2>特点:分子地形状呈“空间对称”其类型有:①没有共用电子对如②有共用电子,但全部都不发生偏移.如:③有偏移地共用电子,但分子形状是呈“空间对称”地.如:3. 常见分子地空间形状及对称性 三棱锥 角形 极 性 分A-B 型直线 空间不 正四面体 物质举例 非正四面体 正三角形 A-B-A 型直线 非 极 性 A-A 型直线 空间对形状 对称性【典题解悟】例 1. 经验规律<相似相溶原理):一般来说,由极性分子组成地溶质易溶于极性分子组成地溶剂,非极性分子组成地溶质易溶于非极性分子组成地溶剂.以下事实中可以用相似相溶原理说明地是<)A. HCl易溶于水B. I2可溶于水C. Cl2可溶于水D. NH3易溶于水解读:HCl、NH3是极性分子,I2、Cl2是非极性分子,H2O是极性溶剂.答案:AD例2.下列说法正确地是<).A.由极性键构成地分子全都是极性分子B.含有非极性键地分子不一定是非极性分子C.极性分子一定含有极性键,非极性键分子一定含有非极性键D.以极性键结合地双原子分子,一定是极性分子解读:以非极性键结合成地双原子分子都是非极性分子,以极性键结合成地双原子分子都是极性分子.以极性键结合成地多原子分子,可能是极性分子,也可能是非极性分子,这决定于分子中各键地空间排列.答案:B D【当堂检测】1.把下列液体分别装在酸式滴定管中,并使其以细流流下,当用带有静电地玻璃棒接近液体细流时,细流发生偏移地是<)A.CCl4 B. C2H5OH C. CS2 D. H2O2.下列元素原子与氢形成地分子中,共价键地极性最大地是<)A. I B. S C. F D. Cl3.下列说法中,正确地一组是<)①两种元素构成地共价化合物分子中地化学键都是极性键②两种非金属元素原子间形成地化学键都是极性键③含有极性键地化合物分子一定不含非极性键④只要是离子化合物,其熔点就比共价化合物地熔点高⑤离子化合物中可能含有共价键⑥分子晶体中地分子不含有离子键⑦分子晶体中地分子内一定有共价键⑧原子晶体中一定有非极性共价键A. ②⑤⑥⑦B. ①②③⑤⑥C. ②⑤⑥D. ②③⑤⑥⑦4.NH3、H2S等是极性分子,CO2、BF3、CCl4等是极性键构成地非极性分子.根据上述实例能推出AB n型分子是非极性分子地经验规律是<)A.分子中不能含有氢原子B.在AB n型分子中A原子没有孤对电子C.在AB n型分子中A地相对原子质量小于B地相对原子质量D.分子中每个键地键长应相等5.下列化合物中,化学键地类型和分子地极性<极性或非极性)皆相同地是<)A.CO2和SO2B.CH4和SiO2C.BF3和NH3D.HCl和HI6.使用微波炉加热,具有使受热物质均匀,表里一致、速度快、热效率高等优点.其工作原理是通电炉内地微波场以几亿地高频改变电场地方向,水分子因而能迅速摆动,产生热效应,这是因为<)A.水分子具有极性共价键B. 水分子中有共同电子对C.水由氢、氧两元素组成D.水分子是极性分子7. O2、CH4、BF3都是非极性分子,HF、H2O、NH3都是极性分子,由此推测AB n型分子是非极性分子地经验规律正确地是<)A. 所有原子在同一平面B. 分子中不含有氢原子C. 在AB n中A原子没有孤对电子D. A地相对原子质量小于B8. 化学工作者已经合成了一个新地分子,经测定它只含有H、N、B,其中H、N、B地物质地量之比为2:1:1,它地相对分子质量为80.4,且它是非极性分子.<1)试求该分子地分子式.<2)此分子有两种可能构型:甲和乙,在甲分子中H原子分别连在不同原子上,此结构与苯分子相似,而乙分子中B原子上没有连接H原子,分子中含有一个三元环.试画出甲、乙两分子地结构简式.<3)说明甲、乙两分子中化学键地类型.<4)说明甲、乙两分子为什么是非极性分子.9. 在HF、H2O、NH3、CS2、CH4、N2、BF3分子中:<1)以非极性键结合地非极性分子是;<2)以极性键结合地具有直线形结构地非极性分子是;<3)以极性键结合地具有正四面体形结构地非极性分子是;<4)以极性键结合地具有三角锥形结构地极性分子是;<5)以极性键结合地具有sp3杂化轨道结构地分子是;<6)以极性键结合地具有sp2杂化轨道结构地分子是.参考答案1.B D2.C3.C.4.C5.D6.D7.C8.解读:由题意可知该分子式地通式为<BNH2)n,相对分子质量为80.4,得n=3,即分子式为B3N3H6.该分子是非极性分子,具有抗磁性,由此得它地结构应该是对称地,从立体几何和化学地成键情况综合分析得下列两种结构:甲分子有一个六元环,而且有一个六中心六电子地π键,因而结构稳定,而乙分子中有一个三元环,张力太大,故结构不稳定.答案:<1)B3N3H6 、<2)<3)甲分子中地N和B原子都是SP2杂化,N-B键、N-H键、B-H键都σ键,而乙分子中地N原子是SP3杂化,B原子都是SP2杂化,B-B键、B-N键、N-H键都是σ键.<4)结构都是对称地.9.<1)N2 <2)CS2 <3)CH4 <4)NH3<5)NH3、H2O、CH4 <6)BF3申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
鲁科版高中化学选修三2.2《共价键与分子的空间构型》第2课时教案
第2节共价键与分子的空间构型第2课时一些典型分子的空间构型(2)【教学目标】1. 学会用杂化轨道原理解释常见分子的成键情况与空间构型;2. 了解等电子原理,结合实例说明“等电子原理的应用”3. 初步认识价层电子对互斥模型【教学重点】学会用杂化轨道原理解释常见分子的成键情况与空间构型【教学难点】学会用杂化轨道原理解释常见分子的成键情况与空间构型【教学方法】采用图表、比较、讨论、归纳、综合的方法进行教学【教学过程】【复习填空】【引入课题】通过化学必修课程的学习,你已知道苯分子的结构简式为从结构简式来看,苯分子好像具有双键,苯应当具有类似乙烯的化学性质,能使酸性KMn04溶液退色或使溴的四氯化碳溶液退色,但实验事实并非如此。
那么,苯为什么不能使酸性KMn04溶液或溴的四氯化碳溶液退色呢?苯分子中究竟存在着怎样的化学键呢?【板书】2. 苯分子的空间构型【阅读p-42-43】【探究内容】1. 苯分子中碳原子采用的那种杂化方式,碳碳间,碳氢间是如何成键的?2. 大π键是如何形成的?【阐述】根据杂化轨道理论,形成苯分子时每个碳原子中的原子轨道发生sp2杂化(如S、P x、P y),由此形成的三个SP2杂化轨道在同一平面上,这样,每个碳原子的两个SP2杂化轨道上的电子分别与邻近的两个碳原子的SP2杂化轨道上的电子配对形成σ键,于是六个碳原子组成一个正六边形的碳环;每个碳原子的另一个SP2杂化轨道上的电子分别与一个氢原子的1S电子配对形成σ键。
与此同时,每个碳原子还有一个与碳环平面垂直的未参加杂化的2P轨道(如2P X),它们均含有一个未成对电子。
这六个碳原子的2p轨道相互平行,它们以“肩并肩”的方式相互重叠,从而形成含有六个电子、属于六个原子的π键。
人们把这种在多原子间形成的多电子的π键称为大π键。
所以,在苯分子中,整个分子呈平面正六边形、六个碳碳键完全相同,键角皆为120°。
正是由于苯分子所具有的这种结构特征,使得它表现出特殊的稳定性,而不象乙烯那样容易被酸性高锰酸钾溶液氧化或溴的四氯化碳溶液褪色。
第2节共价键与分子的空间构型第3课时分子的空间构型与分子性质导学案鲁科版选修3
第3课时分子的空间构型与分子性质课前自主导学一、分子的对称性1. 手性异构体和手性分子和完全相同,但如同左手和右手一样互为镜像,在三维空间里不能的一对分子互称手性异构体。
有手性异构体的分子称为手性分子。
2 •手性碳原子当四个不同的原子或基团连接在同一碳原子上时,形成的化合物存在_________ 。
其中,连接四个不同的原子或基团的_____________ 称为手性碳原子。
3•手性分子的重要用途由于手性分子对生命及生理活动有其特殊的活性,化学工作者期望可以找到对癌症和一些目前的疑难杂症有治疗作用的手性药品;同时也期望早日实现“手性分子”的合成和分离的工业化;期望能制造出可以利用的“手性分子”作为高分子聚合物的单体,用以合成易降解的高分子化合物,减少环境污染。
二、分子的极性1. 极性分子与非极性分子(1) 极性分子:正电荷重心和负电荷重心__________ 的分子。
(2) 非极性分子:正电荷重心和负电荷重心______________ 的分子。
2 •非极性分子、极性分子的判断方法(1) 双原子分子分子的极性取决于成键原子之间的共价键是否有_________ ,以________ 结合的双原子分子是极性分子,以______ 结合的双原子分子是非极性分子。
(2) 以极性键结合的多原子分子(ABm型)分子的极性取决于分子的______ 。
若配位原子_________ 地分布在中心原子周围,整个分子的正、负电荷重心_________ ,则分子为非极性分子。
3•分子的极性对物质溶解性的影响一一相似相溶规则非极性分子构成的物质一般易溶于_______ 溶剂,极性分子构成的物质一般易溶于________ 溶剂。
思考交流如何理解NH与CH在水中的溶解度不同?课堂互动探究一、键的极性与分子极性之间的关系【问题导思】①由极性键形成的分子中,怎样判断正电荷的重心和负电荷的重心是否重合?②含极性键的分子一定是极性分子吗?温馨提醒分子的极性是分子中化学键的极性向量和。
优质课鲁科版高中化学选修三 2.2共价键与分子的空间构型(第1课时) (共27张PPT)
正四面体 键角:109.5°
原子之间若要形成共价键,它们的价电子中应当有未成对的电子。
2s
2p
激发
2s
2p
C的基态 CH2
激发态 CH4
甲烷分子的正四面体构型是怎样形成的呢?
解决 解决:一个 2s轨道与3个2p轨道重新组合 成4个一模一样的轨道,且空间分布均匀
碳原子轨道的杂化过程
2s
2p
激发
跃迁
知识支持
σ 三角锥形,键角107.3 °
σ
..
通过对 CH4 、 NH3 中心原子轨道杂化的分析,杂化轨 道数与成键电子对数、孤电子对数有何关系?
试分析 H2O的中心原子O原子的轨道杂化情况
中心原 中心原 子σ键 子孤电 数 子对数 中心原子 杂化类型 spx 杂化 轨道 数 杂化轨道 空间构型 正四面体
思考4:描述甲烷中共价键的形成过程:
σ
4
1s
+
H C
→σ
sp3
σ
σ
CH4
四个H原子分别以4个s轨道与C原子上的四个sp3杂化轨道 相互重叠后,形成了四个性质、能量和键角都完全相同 的 s-sp3 的σ键。从而使CH4分子具有正四面体构型
练习1: 描述CH3Cl分子中C原子的杂化方式, 杂化轨道的空间构型, 正四面体 分子的空间构型。 四面体
第2章
第2节
共价键与分子的空间构型
第一课时
复习回顾:
原子间通过 共用电子 形成的化学键叫共价键
共价键具有饱和性和方向性 所以原子间以共价键形成的 分子具有一定的空间构型
一些典型分子的空间构型
HCl
H2O,104.5°
NH3,107.3°
第2节共价键与分子的空间构型第1课时一些典型分子的空间构型导学案鲁科版选修3
第2节共价键与分子的空间构型第1课时一些典型分子的空间构型【学习目标】1. 理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型;2. 学会用杂化轨道原理解释常见分子的成键情况与空间构型【学习过程】一、一些典型分子的立体构型1. 杂化轨道理论(1) 理论的提出:甲烷的分子模型表明甲烷分子的空间构型______________________________ ,分子中的C— H键_______________ ,键角是_________________ 。
这说明:碳原子具有四个完全相同的轨道与四个氢原子的电子云重叠成键。
而碳原子的价电子构型是,包含一个 ______________________ 轨道和三个_________ 轨道,为了解释甲烷分子中碳原子有这四个相同的轨道,Pauli ng提出了______________________ 理论。
(2) 杂化的概念:在形成______________ 分子的过程中,中心原子的若干______________ 相近的原子轨道重新组合,形成一组新的、__________________________________ 的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。
2. 形成甲烷分子时,中心原子的____________ 和,,等四条原子轨道发生杂化,形成一组新的轨道,即四条杂化轨道,这些 _杂化轨道不同于s轨道,也不同于p轨道。
成键时,这四个完全相同的 ________________________________________________ 轨道分别与四个氢原子的电子云重叠成______________ 共价键。
3. 乙烯分子中碳原子用一个轨道和两个轨道进行sp2杂化,得到三个完全相同的杂化轨道。
形成乙烯分子时,两个碳原子各用_________________________ 的电子相互配对,形成一个(T键,每个碳原子的另外_____________________________ 分别与两个氢原子的 __________________ 的电子配对形成共价键;每个碳原子剩下的一个未参与杂化的 __________________ 的未成对电子相互配对形成一个键。
鲁教版化学选修三第二章《共价键与分子的立体构型
鲁教版化学选修三第二章共价键与分子的立体构型【教学目标】(1)知道一些常见简单分子的空间构型(如甲烷、二氯化铍分子、三氟化硼分子、乙炔、乙烯、苯等)。
(2)了解一些杂化轨道理论的基本思想,并能用杂化轨道知识解释二氯化铍分子、三氟化硼分子、甲烷、乙烯、乙炔、苯等分子中共价键的形成原因以及分子的空间构型。
(3)利用分子模型和多媒体辅助教学展现分子的立体结构,并动态演示sp、sp2、sp3型杂化轨道,帮助并加深对杂化轨道理论的理解。
(4)通过具体实例BeCl2、BF3、CH4等中心原子的杂化轨道和分子的空间构型,理解杂化轨道的空间排布与形成分子的立体构型的关系。
(5)利用气球模型来模拟杂化轨道的空间构型,体会模型法在建立和理解杂化轨道理论、研究分子空间构型的重要作用。
(6)通过对鲍林的介绍,学会赞赏科学家的杰出成就,培养崇尚科学的精神。
【学情分析】通过对本章第1节“共价键模型”学习,学生以轨道重叠为基础,从轨道重叠的视角重新认识共价键的概念和特征。
有了第1节的知识,学生理解发展了的价键理论——杂化轨道理论就有了可能。
但由于轨道重叠知识还未巩固,“杂化轨道理论”是从微观角度建构认识分子的空间构型,学生缺乏相关的经验与直观的认识,因而对部分学生而言,仍感到抽象,还有部分学生空间想像能力较差,给本节教学带来一定难度。
如何帮助学生建立“杂化轨道理论”是本节的重点和难点。
基于以上学情,教学中采用由简单到复杂、由个别到一般、再从一般到个别的思路,分别介绍sp、sp2、sp3杂化轨道的形成原理,进而分析乙烯、乙炔分子和苯分子的空间构型,逐渐实现单个中心杂化——两个中心杂化——多个中心杂化的阶梯式递进,使学生深刻地认识分子的空间构型,全面地了解共价键与分子空间构型的关系。
【重点难点】重点:杂化轨道概念的基本思想及常见类型。
难点:杂化思想的建立;甲烷、乙烯、乙炔等分子中碳原子杂化轨道成因分析。
【教学设计】【导入】[环节一] 创设情境碳原子的价电子为2s22p2,根据共价键饱和性,碳原子只有两个未成对电子,在共价键的形成过程中,一个碳原子最多只能与两个氢原子形成两个共价单键;再根据共价键的方向性,这两个p轨道上的未成对电子的夹角是90°,那么形成的共价键的键角应该是90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章化学键与分子间的作用力第二节共价键与分子的空间构
型第一课时
【教学目标】
1. 理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型;
2. 学会用杂化轨道原理解释常见分子的成键情况与空间构型过程与方法:
【教学重点】
理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型
【教学难点】
理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型
【教学方法】
采用图表、比较、讨论、归纳、综合的方法进行教学
【教学过程】
【课题引入】
在宏观世界中,花朵、蝴蝶、冰晶等诸多物质展现出规则与和谐的美。
科学巨匠爱因斯坦曾感叹:“在宇宙的秩序与和谐面前,人类不能不在内心里发出由衷的赞叹,激起无限的好奇。
”实际上,宏观的秩序与和谐源于微观的规则与对称。
通常,不同的分子具有不同的空间构型。
例如,甲烷分子呈正四面体形、氨分子呈三角锥形、苯环呈正六边形。
那么,这些分子为什么具有不同的空间构型呢?
【思考】
美丽的鲜花、冰晶、蝴蝶与微观粒子的空间构型有关吗?
【活动探究】
你能身边的材料动手制作水分子、甲烷、氨气、氯气的球棍模型吗?
【过渡】
我们知道,共价键具有饱和性和方向性,所以原子以共价键所形成的分子具有一定的空间构型。
【板书】
一、一些典型分子的空间构型
(一)甲烷分子的形成及立体构型
【联想质疑】
研究证实,甲烷(CH4)分子中的四个C—H键的键角均为l09.5º,从而形成非常规则的正四面体构型。
原子之间若要形成共价键,它们的价电子中应当有未成对的电子。
碳原子的价电子排布为2s22p2,也就是说,它只有两个未成对的2p电子,若碳原子与氢原子结合,则应形成CH2;即使碳原子的一个2s电子受外界条件影响跃迁到2p空轨道,使碳原子具有四个未成对电子,它与四个氢原子形成的分子也不应当具有规则的正四面体结构。
那么,甲烷分子的正四面体构型是怎样形成的呢?
【过渡】
为了解决这一矛盾,鲍林提出了杂化轨道理论,
【阅读教材40页】
【板书】
1. 杂化原子轨道
在外界条件影响下,原子内部能量相近的原子轨道重新组合的过程叫做原子轨道的杂化,组合后形成的一组新的原子轨道,叫做杂化原子轨道,简称杂化轨道。
【思考与交流】
甲烷分子的轨道是如何形成的呢?
形成甲烷分子时,中心原子的2s和2p x,2p y,2p z等四条原子轨道发生杂化,形成一组新的轨道,即四条sp3杂化轨道,这些sp3杂化轨道不同于s轨道,也不同于p轨道。
根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化外,还有sp2杂化和sp杂化,sp2杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p 轨道杂化形成的
【板书】
2. 常见的SP杂化过程
(1)sp3杂化
【阐述】
杂化轨道在角度分布上比单纯的S或P轨道在某一方向上更集中(比较图2-2-2中的S、P轨道和杂化后形成的sp
,杂化轨道),从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更牢固。
由于甲烷分子中碳原子的杂化轨道是由一个2s轨道和三个2p轨道重新组合而成的,故称这种杂化为sp3杂化形成的四个杂化轨道则称为sp3杂化轨道。
鲍林还根据精确计算得知每两个sp3杂化轨道的夹角为l09.5º。
由于这四个杂化轨道的能量相同,根据洪特规则,碳原子的价电子以自旋方向相同的方式分占各个轨道。
因此,当碳原子与氢原子成键时,碳原子中每个杂化轨道的一个未成对电子与一个氢原子的1s电子配对形成一个共价键,这样所形成的四个共价键是等同的,从而使甲烷分子具有正四面体构型,
【过渡】
s轨道与p轨道的杂化(简称sp型杂化)有多种情况
【板书】
(2)SP杂化:一个s轨道和一个P轨道杂化可形成两个sp杂化轨道,这种杂化称为sp1杂化
直线型(BeCl2)
【交流与讨论】
用杂化轨道理论分析乙炔分子的成键情况
(3)sp2杂化
平面正三角形(BF3)
【交流与讨论】
用杂化轨道理论分析乙烯分子的成键情况
【交流·研讨】
氮原子的价电子排布为2s22p3,,三个2p轨道中各有一个未成对电子,可分别与一个氢原子的ls电子形成一个盯键。
如果真是如此,那么三个2p轨道相互垂直,所形成的氨分子中N—H键间的键角应约为90º。
但是,实验测得氨分子中N—H键的键角为107.30º。
试解释其中的原因,并与同学们进行交流。
【阐述】
在形成氨分子时,氮原子的2s和2p原子轨道也发生了sp,杂化,生成四个sp3杂化轨道。
在所生成的四个Sp3杂化轨道中,有三个轨道各含有一个未成对电子,可分别与一个氢原子的1s电子形成一个σ键,另一个sp3杂化轨道中已有两个电子(孤对电子),不能再与
氢原子形成σ键了。
所以,一个氮原子只能与三个氢原子结合,形成氨分子。
【总结评价】
应用轨道杂化理论,探究分子的立体结构。
【板书设计】
一、一些典型分子的立体结构
(一)甲烷分子的形成及立体构型
1. 杂化原子轨道
2. 常见的SP杂化过程
(1)sp3杂化
(2)SP杂化
(3)sp2杂化。