存储器分类及周期
数字逻辑与计算机组成原理:第三章 存储器系统(1)
A3 0
字线
地0 A2 0 址
译
A1
0码 器
A0 0
15
读 / 写选通
… …
…
0,0 … 0,7
16×8矩阵
15,0 … 15,7
0
…
7 位线
读/写控制电路
D0
… D7
(2) 重合法(双译码方式)
0 A4
0,00
…
0 A3
阵
A2
译
0码
31,0
…
A1
器 X 31
0 A0
… …
或低表示存储的是1或0。 T5和T6是两个门控管,读写操作时,两管需导通。
六管存储单元
保持
字驱动线处于低电位时,T5、T6 截止, 切断了两根位线与触发器之间的 联系。
六管存储单元
单译码方式
读出时: 字线接通 1)位线1和位线2上加高电平; 2)若存储元原存0,A点为低电
平,B点为高电平,位线2无电 流,读出0。
3)若存储元原存1,A点为高电 平,B点为低电平,位线2有电
流,读出1。
静态 RAM 基本电路的 读 操作(双译码方式)
位线A1
A T1 ~ T4 B
位线2
T5
行地址选择
T6
行选
T5、T6 开
列选
T7、T8 开
T7
T8
读选择有效
列地址选择 写放大器
写放大器
VA
T6
读放
读放
DOUT
T8 DOUT
DIN
1.主存与CPU的连接
是由总线支持的; 总线包括数据总线、地址总线和控制总线; CPU通过使用MAR(存储器地址寄存器)和MDR(存储
常见存储器:RAM,SRAM,SSRAM、DRAM,SDRAM,DDRSDRAM、ROM,。。。
常见存储器:RAM,SRAM,SSRAM、DRAM,SDRAM,DDRSDRAM、ROM,。
1、什么是存储器 存储器单元实际上是时序逻辑电路的⼀种,是许多存储单元的集合,按单元号顺序排列。
每个单元由若⼲三进制位构成,以表⽰存储单元中存放的数值,这种结构和数组的结构⾮常相似,故在VHDL语⾔中,通常由数组描述存储器。
存储器(Memory)是计算机系统中的记忆设备,⽤来存放程序和数据信息。
计算机中全部信息,包括输⼊的原始数据、计算机程序、中间运⾏结果和最终运⾏结果都保存在存储器中。
它根据控制器指定的位置存⼊和取出信息。
有了存储器,计算机才有记忆功能,才能保证正常⼯作。
2、存储器的分类 构成存储器的存储介质主要采⽤半导体器件和磁性材料。
存储器中最⼩的存储单位就是⼀个双稳态半导体电路或⼀个CMOS晶体管或磁性材料的存储元,它可存储⼀个⼆进制代码。
由若⼲个存储元组成⼀个存储单元,然后再由许多存储单元组成⼀个存储器。
根据存储材料的性能及使⽤⽅法的不同,存储器有⼏种不同的分类⽅法: (1)按存储介质分类 半导体存储器:⽤半导体器件组成的存储器。
磁表⾯存储器:⽤磁性材料做成的存储器。
(2)按存储⽅式分类 随机存储器:任何存储单元的内容都能被随机存取,且存取时间和存储单元的物理位置⽆关。
顺序存储器:只能按某种顺序来存取,存取时间与存储单元的物理位置有关。
(3)按存储器的读写功能分类 只读存储器(ROM):存储的内容是固定不变的,它是只能读出⽽不能写⼊的半导体存储器,在制造ROM的时候,信息(数据或程序)就被存⼊并永久保存。
当电源关闭时,ROM仍然可以保存数据,不会丢失。
ROM⼀般⽤于存放计算机的基本程序和数据,如BIOS ROM。
其物理外形⼀般是双列直插式(DIP)的集成块。
随机读写存储器(RAM):既能读出⼜能写⼊的半导体存储器。
当电源关闭时,存于RAM中的数据会丢失。
我们通常购买或升级的内存条就是⽤作电脑的内存,内存条(SIMM)就是将RAM集成块集中在⼀起的⼀⼩块电路板,它插在计算机中的内存插槽上,以减少RAM集成块占⽤的空间。
存储器
AP AP+1 AK
Y译码 A0 A1 X 译 码
存储体 …
AP-1
存储器控 制逻辑
R/W CE RAM的基本组成框图
…
…
I/O 缓 冲 … … … …
D0 D1 DN-1
二、静态RAM的例子
典型的静态RAM芯片如: 2114(1k×4位)
6116 (2k×8位)
A12 A11~A8 A7 ~ A4 A3~A0 0000000000000至1111111111111 0000000000000至1111111111111 0000000000000至1111111111111 8k×16B 0000000000000至1111111111111
地址范围(空间) 0000H-1FFFH 2000H-3FFFH 4000H-5FFFH 6000H-7FFFH
单元数扩充:8K × 8 32K ×8
A0-A12 00 A13
Y0 A Y1 01 Y2 10 B 11 Y3 G
A14
C S1 CS2 A0-A12
C S1 CS2 A0-A12
C S1 CS2 A0-A12
C S1 CS2 A0-A12
C S1 CS2
D0-D7
OE
WE
3#
D0-D7
OE
WE
全译码的优点是每个芯片的地址范围 唯一确定,而且各片之间是连续的。 缺点是译码电路比较复杂
二、PROM(可编程的ROM)
三、EPROM(可擦除的 PROM) 四、EEPROM(电子式可清除的PROM)
5.4
存储器连接与扩充
一、存储器芯片选择
静态RAM在与微处理器接口时,一般不需要外围电路,连接比较简 单,故在智能仪器仪表、小型控制系统中,一般采用静态RAM。 动态RAM集成度高,但需要专门的刷新电路,因此与微处理器的接 口设计较为复杂,在需要较大存储器容量的计算机产品中广泛使用。 ROM中的内容掉电不易失,但不能随机写入,故一般用于存储系统 程序(监控程序)和无须在线修改的参数等。其中,掩膜ROM用于 大批量生产的微电子产品或计算机产品中,非批量使用时可用 PROM。在产品研制和小批量生产时,宜选用EPROM等芯片。 EEPROM多用于保存这样一些数据或参数:他们在系统工作过程中 被写入而又需要掉电保护。
存储器的层次结构及组成原理
存储器的层次结构及组成原理一、引言存储器是计算机中非常重要的组成部分,它用于存储和读取数据。
随着计算机技术的发展,存储器也在不断地升级和改进。
存储器的层次结构是指不同类型的存储器按照速度、容量和成本等方面的差异被组织成一种层次结构。
本文将介绍存储器的层次结构及其组成原理。
二、存储器的层次结构1. 存储器分类根据存取速度不同,可将存储器分为主存(RAM)、高速缓存(Cache)、二级缓存、三级缓存等多级缓存以及辅助存储器(ROM、磁盘等)。
2. 层次结构主要分为三个层次:CPU内部高速缓冲寄存器(L1 Cache)、CPU外部高速缓冲寄存器(L2 Cache)和主内存(RAM)。
3. 层次结构优点层次结构能够充分利用各种类型的硬件设备,使得计算机系统能够更加高效地运行。
在执行指令时,CPU首先从最快的L1 Cache中查找数据,如果没有找到,则会查找L2 Cache,最后才会查找主内存。
这样的层次结构设计可以大大提高CPU访问数据的速度,减少CPU等待的时间。
三、存储器的组成原理1. 静态随机存取存储器(SRAM)SRAM是一种使用静电场来存储数据的存储器。
它由多个存储单元组成,每个单元由一个触发器和两个传输门组成。
SRAM的读写速度非常快,但是它比较昂贵,并且需要更多的电源。
2. 动态随机访问存储器(DRAM)DRAM是一种使用电容来存储数据的存储器。
它由多个存储单元组成,每个单元由一个电容和一个开关组成。
DRAM比SRAM更便宜,但是读写速度相对较慢。
3. 双倍数据率SDRAM(DDR SDRAM)DDR SDRAM是一种高速内存技术,可以在每个时钟周期传输两次数据。
这使得DDR SDRAM比普通SDRAM更快。
4. 图形双倍数据率SDRAM(GDDR SDRAM)GDDR SDRAM是一种专门为图形处理器设计的高速内存技术。
它具有更高的频率和带宽,适用于处理大量图像和视频数据。
5. 闪存闪存是一种非易失性存储器,可以在断电时保存数据。
存储器的分类与特点
存储器的分类与特点在计算机科学领域中,存储器是一个关键的概念,它用于存储和获取数据。
存储器根据其特性和使用场景的不同可以被分为几种不同的类型。
本文将介绍存储器的分类以及各种类型存储器的特点。
一、主存储器主存储器是计算机系统中最重要的一种存储器,它用于存储正在执行的程序和数据。
主存储器又被分为两种类型:随机访问存储器(RAM)和只读存储器(ROM)。
1. 随机访问存储器(RAM)随机访问存储器是一种易失性存储器,其中的数据可以被随机地读取和写入。
RAM的特点是访问速度快,但当电源关闭时,其中的数据将会丢失。
它可以根据存储单元的物理结构进一步分为静态随机访问存储器(SRAM)和动态随机访问存储器(DRAM)。
- 静态随机访问存储器(SRAM):SRAM使用触发器来存储数据,保持数据的稳定性。
由于它不需要刷新电路,所以访问速度比DRAM更快。
然而,SRAM的成本较高,存储密度较低。
- 动态随机访问存储器(DRAM):DRAM使用电容来存储数据,需要周期性地刷新来重新存储数据。
尽管DRAM的速度相对较慢,但它更加节省空间和成本。
2. 只读存储器(ROM)只读存储器是一种非易失性存储器,其中的数据在加电之后仍然保持不变。
ROM的数据通常是由制造商在生产过程中编写好的,用户无法对其进行修改。
它可以分为光盘只读存储器(CD-ROM)和闪存只读存储器(ROM)两种类型。
- 光盘只读存储器(CD-ROM):CD-ROM使用激光技术来读取数据,它通常用于存储大量的音频和视频数据。
- 闪存只读存储器(ROM):ROM可以被多次擦写和编程,相较于传统的EPROM(可擦可编程只读存储器),其擦写操作更加方便。
二、辅助存储器辅助存储器是主存储器之外的一种存储器类型,用于存储和检索大容量的数据和程序。
辅助存储器也可以分为多种类型,例如硬盘驱动器、固态硬盘和闪存驱动器等。
1. 硬盘驱动器硬盘驱动器是计算机系统中最常见的辅助存储器设备。
存储器系统(6116)
存储器系统(6116)第4章存储器系统引⼊:电⼦计算机是20世纪⼈类最伟⼤的发明之⼀。
随着计算机的⼴泛应⽤,⼈类社会⽣活的各个⽅⾯都发⽣了巨⼤的变化。
特别是微型计算机技术和⽹络技术的⾼速发展,计算机逐渐⾛进了⼈们的家庭,正改变着⼈们的⽣活⽅式。
计算机逐渐成为⼈们⽣活和⼯作不可缺少的⼯具,掌握计算机的使⽤也成为⼈们必不可少的技能。
本章知识要点:1)存储器的分类和三层体系结构2)RAM、ROM芯⽚的结构、⼯作原理3)存储器的扩展⽅法4)⾼速缓冲存储器技术5)虚拟存储器技术6)存储保护4.1 存储器概述4.1.1 存储器的分类在计算机的组成结构中,有⼀个很重要的部分,就是存储器。
存储器是⼀种记忆部件,是⽤来存储程序和数据的,对于计算机来说,有了存储器,才有记忆功能,才能保证正常⼯作。
存储器的种类很多,常⽤的分类⽅法有以下⼏种。
⼀、按其⽤途分(1)内存储器内存储器⼜叫内存,是主存储器。
⽤来存储当前正在使⽤的或经常使⽤的程序和数据。
CPU可以对他直接访问,存取速度较快。
(2)外存储器外存储器⼜叫外存,是辅助存储器。
外存通常是磁性介质或光盘,像硬盘,软盘,磁带,CD等,能长期保存信息,并且不依赖于电来保存信息,但是由机械部件带动,速度与CPU相⽐就显得慢的多。
外存的特点是容量⼤,所存的信息既可以修改也可以保存。
存取速度较慢,要⽤专⽤的设备来管理。
计算机⼯作时,⼀般由内存ROM中的引导程序启动程序,再从外存中读取系统程序和应⽤程序,送到内存的RAM中,程序运⾏的中间结果放在RAM中,(内存不够是也可以放在外存中)程序的最终结果存⼊外部存储器。
⼆、按存储介质分(1)半导体存储器早期的半导体存储器,普遍采⽤典型的晶体管触发器和⼀些选择电路构成的存储单元。
现代半导体存储器多为⽤⼤规模集成电路⼯艺制成的⼀定容量的芯⽚,再由若⼲芯⽚组成⼤容量的存储器。
半导体存储器⼜分为双极型半导体存储器和MOS 型半导体存储器。
(2)磁表⾯存储器再⾦属或⾮⾦属基体的表⾯上,涂敷⼀层磁性材料作为记录介质,这层介质称为磁层。
存储器分类
内存的种类是非常多的,从能否写入的角度来分,就可以分为RAM(随机存取存储器)和ROM(只读存储器)这两大类。
每一类别里面有分别有许多种类的内存。
一、RAM(Random Access Memory,随机存取存储器)RAM的特点是:电脑开机时,操作系统和应用程序的所有正在运行的数据和程序都会放置其中,并且随时可以对存放在里面的数据进行修改和存取。
它的工作需要由持续的电力提供,一旦系统断电,存放在里面的所有数据和程序都会自动清空掉,并且再也无法恢复。
根据组成元件的不同,RAM内存又分为以下十八种:01.DRAM(Dynamic RAM,动态随机存取存储器):这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM 将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。
存取时间和放电时间一致,约为2~4ms。
因为成本比较便宜,通常都用作计算机内的主存储器。
02.SRAM(Static RAM,静态随机存取存储器)静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。
每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。
03.VRAM(Video RAM,视频内存)它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。
它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。
多用于高级显卡中的高档内存。
04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器)改良版的DRAM,大多数为72Pin或30Pin的模块。
传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。
而FRM DRAM 在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。
存储器
外存平均访问时间ms级: 硬盘 9~10ms 光盘 80~120ms 内存平均访问时间ns级: SRAM Cache1 ~ 5ns SDRAM内存 7~15ns EDO内存 60~80ns EPROM存储器 100~400ns
5.1.3 半导体存储器芯片的结构
地 址 寄 存 地 址 译 码
存储体
– – – – – – 8根地址线 A7~A0 1根数据输入线 DIN 1根数据输出线 DOUT 行地址选通 RAS* 列地址选通 CAS* 读写控制 WE*
NC DIN WE* RAS* A0 A2 A1 GND
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10 9
VSS CAS* DOUT A6 A3 A4 A5 A7
5.2.3 动态RAM
• DRAM的基本存储单元是单个场效应管及其极 间电容 • 每个基本存储单元存储二进制数一位 • 许多个基本存储单元形成行列存储矩阵 • 必须配备“读出再生放大电路”进行刷新 • 每次同时对一行的存储单元进行刷新
• DRAM一般采用“位结构”存储体: –每个存储单元存放一位 –需要8个存储芯片构成一个字节单元 –每个字节存储单元具有一个地址
一、DRAM一般结构
Ed T0 B 位线 C0 Y选择线 (列) T2 A 数据线
字线 X(行)选择线 C C1 T1
预充
特点:外部地址线是内部地址的一半
动态RAM的举例-Intel 2164
4.2 随机读写存储器(RAM)
二、DRAM芯片2164
• 存储容量为 64K×1 • 16个引脚:
Cache
CPU I/O接口
内存
外存
5.1 半导体存储器的分类
计算机组成原理4第四章存储器PPT课件精选全文
4.2
11
4.2
请问: 主机存储容量为4GB,按字节寻址,其地址线 位数应为多少位?数据线位数多少位? 按字寻址(16位为一个字),则地址线和数据线 各是多少根呢?
12
数据在主存中的存放
设存储字长为64位(8个字节),即一个存 取周期最多能够从主存读或写64位数据。
读写的数据有4种不同长度:
字节 半字 单字 双字
34
3. 动态 RAM 和静态 RAM 的比较
主存
DRAM
SRAM
存储原理
电容
触发器
集成度
高
低
芯片引脚
少
多
功耗
小
大
价格
低
高
速度
慢
快
刷新
有
无
4.2
缓存
35
内容回顾: 半导体存储芯片的基本结构 4.2
…… ……
地
译
存
读
数
址
码
储
写
据
线
驱
矩
电
线
动
阵
路
片选线
读/写控制线
地址线(单向) 数据线(双向) 芯片容量
D0
…… D 7
22
(2) 重合法(1K*1位重合法存储器芯片)
0 A4
0,00
…
0,31
0 A3
X 地
X0
32×32
… …
0址
矩阵
A2
译
0码
31,0
…
31,31
A1
器 X 31
0 A0
Y0 Y 地址译码器 Y31 A 9 0A 8 0A 7 0A 6 0A 5 0
计算机组成原理教案(第三章)
集中式
分散刷新方式
异步式刷新方式是前两种方式的结合
刷新周期为2ms
,完成128行的所有存储元刷新 = 15.5us
则需要 2000us / 128
标准的刷新方式两种
1、只用RAS信号的刷新
2、CAS在RAS之前的刷新
【例2】 说明1M×1位DRAM片子的刷新方法,刷新周期定为8ms
如果选择一个行地址进行刷新, 刷新地址为A0—A8,因此这 一行上的2048个存储元同时进行刷新,
交叉存储器要求其模块数必须大于或等于m,以保证启动某模块后 经mτ时间再次启动该模块时,它的上次存取操作已经完成。这样, 连续读取m 个字所需的时间为
t1=T+(m-1)τ
m=4的流水线方式存取示意图如下
而顺序方式存储器连续读取m个字所需时间为
t2=mT.
【例4】 设存储器容量为32字,字长64位,模块数m=4,分别用顺 序方式和交叉方式进行组织。存储周期T=200ns,数据总线宽度为 64位,总线传送周期τ=50ns。问顺序存储器和交叉存储器的带宽 各是多少? 顺序存储器和交叉存储器连续读出4个字所需的时间分别是: t2=mT=4×200ns=800ns=8×10-7s; t1=T+(m-1)=200ns+3×50ns=350ns=3.5×10-7s
地址译码器:单译码和双译码
3.SRAM存储器芯片实例
2114存储器芯片的逻辑结构方框图
由于读操作与写操作是分时进行的,读时不写,写时不读, 因此,输入三态门与输出三态门是互锁的,数据总线上的信 息不致于造成混乱。
4.存储器与CPU连接
(1)
工作原理
(2)
存储器速度与容量的解决
存储器芯片的容量是有限的,为了满足实际存储器的容量要求, 需要对存储器进行扩展。主要方法有:
存储系统结构(1)
图3.2 六管静态存储元电路工作过程演示
2. SRAM存储器的组成
图示3.3为SRAM存储器的结构框图。
其内部组成结构是: 存储体:存储单元的集合,通常用X选择线
(行线)和Y选择线(列线)的交叉来选择所需要的 单元。
地址译码器:将用二进制代码表示的地址转
换成输出端的高电位,用来驱动相应的读写电 路,以便选择所要访问的存储单元。地址译码 有两种方式。
分为主存储器、辅助存储器、高速缓冲存储器、 控制存储器等。
3.1.2 存储器的分级结构
为了解决对存储器要求容量大,速度快, 成本低三者之间的矛盾,目前通常采用多级 存储器体系结构,即使用高速缓冲存储器、 主存储器和外存储器。
名称
高速缓冲 存储器 主存储器
简称 Cache
主存
外存储器 外存
用途
特点
高速存取指令和数据
片选: 在地址选择时,首先要选片,只有当片 选信号有效时,此片所连的地址线才有效。
输出驱动电路: 为了扩展存储器的容量,常 需要将几个芯片的数据线并联使用;另外存储 器的读出数据或写入数据都放在双向的数据总 线上。这就用到三态输出缓冲器。
3. SRAM存储器芯片实例
在了解了SRAM的内部组成结构后,下 面我们通过实际中的存储器芯片来加以具体 说明。下图是2114存储器芯片(1K×4)的逻辑 结构方框图。
tCWL— 写命令开始到CAS
无效的时间
tDS— 写入数据建立时间 tDH— 写入数据保持时间
4. DRAM的刷新
动态MOS存储器采用“读出”方式进行 刷新。从上一次对整个存储器刷新结束到下 一次对整个存储器全部刷新一遍为止,这一 段时间间隔叫刷新周期。
常用的刷新方式有三种: 集中式 分散式 异步式
存储器入门介绍和选型(ROM SRAM DRAM Nor Nand Flash EEPROM MRAM FRAM)
易失性存储器 - DRAM
2 DRAM特点
由于每个存储位仅用一个晶体 管和小电容,因此集成度比较 高。就单个芯片的存储容量而 言,DRAM可以远远超过 SRAM;就相同容量的芯片而 言,DRAM的价格也大大低于 SRAM。这两个优点使DRAM 成为计算机内存的主要角色。 DRAM的行列地址分时复用控 制和需要刷新控制,使得它比 SRAM的接口要复杂一些。另 外,DRAM的存取速度一般比 SRAM要慢。
MRAM(Magnetic Random Access Memory)是一种 非易失性的磁性随机存储器。它拥有静态随机存储器(SRAM) 的高速读取写入能力;以及动态随机存储器(DRAM)的高集成 度,而且基本上可以无限次地重复写入。
非易失性存储器 – EEPROM
3 EEPROM选型
存储容量: 1Kb-1Mb
接口: IIC;SPI;Microwire
速率: IIC:400KHz,1MHz SPI:10MHz,20MHz Microwire:1MHz,2MHz
EEPROM
电压范围: 常用(FM)1.7-5.5V;1.7-3.6V Min:1.6,1.7,1.8,2.5,2.7,3V Max:2.5,3.6,5.5,6V
1.速度较慢 2.需要刷新来保持数据 3.需要MCU带外部存储控 制器
4.容量大,16Mb-4Gb 5.集成度高,单位容量价 格低
6.运行功耗低
非易失性存储器 - ROM
非易失性存储器主要是用来存放固定数据、固件程序等一 般不需要经常改动的数据。
早先ROM OTP EPROM EEPROM Flash
速率:800/667/533/400(Mhz) 容量:建议512M-2G
速率:2133/1866/1600/1333(Mhz) 容量:建议1G-4G
第五章 存储器
1.静态SRAM 构成
• 存储元由双稳态触发器构成。双稳态触发器有两个稳定 状态,可用来存储一位二进制信息。只要不掉电,其存 储的信息可以始终稳定地存在。
• 集成度较高,功耗比双极型的低 • 存取速度较动态RAM快。 • SRAM一般采用“字结构”存储矩阵:
读写存储器RAM
组成单元 速度 集成度
应用
SRAM 触发器 快 低 小容量系统
DRAM 极间电容 慢 NVRAM 带微型电池 慢
高 大容量系统 低 小容量非易失
第二节 随机存取存储器RAM
1、定义:在计算机正常工作状态下,存储器的信息既可以随 机读,又可以随机写。
2、性质:RAM中的信息具有易失性。 3、分类:
也可以接地址线高位,或接地址译码器的输出端。 ③ 读写控制信号并联接到控制总线中的读写控制线上。 ④ 数据线分高低部分分别与数据总线相应位连接。
33
2.存储容量的扩展 • 线选法译码电路:用高端地址线作为芯片片选控制线。
D7~D0 A12~A0
A12~A0
0 0000 0000 0000 D7~D0 A12~A0
A19~A0 M/IO 1
WR D7~D0
CE A19~A0 1M×1(0#)
CE A19~A0 1M×1(1#)
CE A19~A0 1M×1(2#)
WE I/O
WE I/O
WE I/O
D0
D1
D2
CE A19~A0 1M×1(7#) WE I/O
D7
31
例2、2114(1K×4位)扩展1K×8位存储器
存储周期
“非易失性存储器” ---即使停电,仍能保持 其内容,如:ROM, PROM,EPROM,E2PROM “易失性存储器” ---停电后,其内容要丢 失.如:RAM
三、主存储器的主要技术指标
主存储器的主要性能指标为 主存容量、存储器存取时间和存 储周期时间。
存储字:计算机可寻址的最小信息单位.
字长:一个存储字所包括的二进制位数。
读/写线路
Yi
(2)开关特性
静态存储器的片选、写允许、地址和 写入数据在时间配合上有一定要求。描 述这些配合要求的参数以及输出传输延 迟有很多种。了解这些参数对于正确使 用存储器是很重要的。下面介绍这些参 数。
①读周期的参数
根据地址和片选信号建立时间的先后不同,有两 种读数时间。若片选信号先建立,其输入输出波形 如图 4 . 5(a) 所示;若地址先建立,其输入输出波 形如图4.5(b)所示。和它相对应的参数有:
Vcc A7 A8 A9 D0 D1 D2 D3 WE
3.存储芯片
18
例.SRAM芯片2114(1K×4位)
2114(1K×4)
10 9
1
(1)外特性
A6 A5 A4 A3 A0 A1 A2 CS GND
地址端: A9~A0(入) 数据端: D3~D0(入/出) 片选CS = 0 选中芯片 控制端: = 1 未选中芯片
单管单元的优点:线路简单,单元占用面积小, 因此容量大,速度快。 单管单元的缺点:读出是破坏性的,故读出 后要立即对单元进行“重写”,以恢复原信 息;单元读出信号很小,要求有高灵敏度的 读出放大器。
下面以16KXl动态存储器为例介绍动态存储器c CAS Do A6 16 1
A3
A4 A5
A7 9 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
存储器分类及周期
存储器:
用来存放计算机中的所有信息:包括程序、原始数据、运算的中间结果及最终结果等。
只读存储器(ROM):
只读存储器在使用时,只能读出而不能写入,断电后ROM中的信息不会丢失。
因此一般用来存放一些固定程序,如监控程序、子程序、字库及数据表等。
ROM按存储信息的方法又可分为以下几种
1、掩膜ROM:
掩膜ROM也称固定ROM,它是由厂家编好程序写入ROM(称固化)供用户使用,用户不能更改内部程序,其特点是价格便宜。
2、可编程的只读存储器(PROM):
它的内容可由用户根据自已所编程序一次性写入,一旦写入,只能读出,而不能再进行更改,这类存储器现在也称为OTP (OnlyTImeProgrammable)。
3、可改写的只读存储器EPROM:
前两种ROM只能进行一次性写入,因而用户较少使用,目前较为流行的ROM芯片为EPROM。
因为它的内容可以通过紫外线照射而彻底擦除,擦除后又可重新写入新的程序。