人教版-数学-七年级上册-去括号 重难点突破
新人教版七年级数学上册《去括号》教案
第2课时去括号【知识与技能】能运用运算律探究去括号法则,并且利用去括号法则将整式化简.【过程与方法】经过类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.【情感态度】培养学生主动探究、合作交流的意识,严谨治学的学习态度.【教学重点】去括号法则,准确应用法则将整式化简.【教学难点】括号前面是“-”号去括号时,括号内各项变号容易产生错误.一、情境导入,初步认识利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要uh,那么它通过非冻土地段的时间为(u-0.5)h,于是,冻土地段的路程为100ukm,非冻土地段的路程为120(u-0.5)km,因此,这段铁路全长(单位:km)是100u+120(u-0.5)①冻土地段与非冻土地段相差100u-120(u-0.5)②上面的式子①、②都带有括号,它们应如何化简?思路点拨:教师引导、启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:100u+120(u-0.5)=100u+120u+120×(-0.5)=220u-60;100u-120(u-0.5)=100u-120u-120×(-0.5)=-20u+60.我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(u-0.5)=+120u-60 ③-120(u-0.5)=-120u+60 ④比较③、④两式,你能发现去括号时符号变化的规律吗?二、思考探究,获取新知【教学说明】上一栏目中问题,应鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示.【归纳结论】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3(括号没了,括号内的每一项都没有变号)-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)去括号规律要准确理解,去括号应对括号内的每一项的符号都予考虑,做到要变都变;要不变,则每一项都不变;另外,括号内原有几项去掉括号后仍有几项.三、典例精析,掌握新知例1 化简下列各式:(教材第66页例4)(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).【教学说明】讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.解答过程按课本,可由学生口述,教师板书.例2 两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h.(教材第67页例5)(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少千米?【教学说明】教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中的速度-水流速度.因此,甲船速度为(50+a )km/h ,乙船速度为(50-a )km/h ,2h 后,甲船行程为2(50+a )km ,乙船行程为2(50-a )km.两船从同一港口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.四、运用新知,深化理解1~2.教材第67页练习.3.一本书第一天看了x 页,第二天看的页数比第一天看的页数的2倍少25页,第三天看的比第一天看的一半多42页,已知三天刚好看完这本书.(1)用含x 的代数式表示这本书的页数;(2)当x=100,试计算这本书的页数.4.有这样一道计算题:计算(2x 3-3x 2y-2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y-y 3)的值,其中x=2012,y=1.甲同学错把x=2012看成x=-2012,但计算结果仍正确,请你说说这是怎么一回事?【教学说明】本课时的内容是有关于去括号的问题,教师先让学生独立完成,向学生强调去括号时应注意符号的变化.【答案】1.(1)12x-6 (2)-5+x (3)-5a+5 (4)5y+12.解:顺风飞行4小时的行程为4(a+20)千米;逆风飞行3小时的行程为3(a-20)千米;两个行程相差4(a+20)-3(a-20)=4a+80-3a+60=(a+140)千米.3.(1)x+(2x-25)+(21x+42)=27x+17; (2)将x=100代入原式得27×100+17=367.因为化简结果与x的取值无关,所以x=2012与x=-2012对计算结果没有影响,从而结果仍正确.五、师生互动,课堂小结学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算.法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号.1.布置作业:从教材习题2.2中选取.2.完成练习册中本课时的练习.去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.本课时教学时教师要通过对这个法则的不断强化,使学生牢牢记住变形时的符号变化.作者留言:非常感谢!您浏览到此文档。
5.2.2用去括号与去分母解一元一次方程 考点梳理(课件)人教版(2024)数学七年级上册
,得 7x=-9,系数化为 1,得 x=- .
思路点拨
根据整式之间的相等(互为相反数)的关系
构造出一元一次方程,再把得出的方程解出来即可得到答
案.
解题通法
解决本题的关键是抓住“相等”和“互为相
反数”两个关键性词语,进而根据题意正确列出方程.
■题型二
例 2
一元一次方程的错解问题
小明在对方程
+
;
(2)去括号,得 2x+2=1-x-3,移项,得 2x+x=1-3-2,
合并同类项,得3x=-4,系数化为 1,得 x=-
.
■考点二
利用去分母解一元一次方程
定义
依据
方程的两边同时乘各分母的
去分母 最小公倍数,将分母去掉的
等式的性质 2
过程叫作去分母
注意
事项
去分母时,如果分子是一个多项式,去掉分母后
续表
合并
把方程化为 ax=b
同类项 (a≠0)的形式
合并同类
项法则
(1)系数相加减;
(2)字母及其指
数不变
在方程 ax=b
(a≠0)的两边都
系数
除以未知数的系数 等式的
化为 1 a,得到方程的解 性质 2
为x= (a≠0)
(1)除数不为 0;
(2)不要把分子、
分母弄颠倒
归纳总结
(1)解一元一次方程的步骤不是固定不变的,有时可以
)-6,去括号,得 2x+4=3x-3-6,移项、合并同类项,得x=-13,系数化为 1,得 x=13.
变式衍生
小华在解方程 2x-k=5-x 时,把-x 看成+x
《去括号》 说课稿
《去括号》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《去括号》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析《去括号》是人教版七年级上册第一章《整式》中的重要内容。
在此之前,学生已经学习了整式的概念、单项式、多项式以及合并同类项等知识,为本节课的学习奠定了基础。
去括号法则是进行整式加减运算的基础,也是后续学习解方程、不等式等知识的重要工具,具有承上启下的作用。
教材通过实例引入去括号的问题,让学生在具体情境中体会去括号的必要性,然后通过观察、归纳总结出去括号的法则,并通过练习加以巩固。
二、学情分析七年级的学生已经具备了一定的数学基础知识和思维能力,但对于抽象的数学法则的理解和应用还存在一定的困难。
在学习去括号法则时,学生容易出现符号错误、漏乘等问题。
因此,在教学过程中,要注重引导学生通过具体实例进行观察、分析和总结,帮助学生理解和掌握去括号的法则。
三、教学目标1、知识与技能目标(1)学生能够理解去括号法则,并能熟练运用去括号法则进行整式的加减运算。
(2)培养学生观察、分析、归纳和概括的能力。
2、过程与方法目标(1)通过实例引入,让学生经历从实际问题中抽象出数学模型的过程,体会数学与生活的密切联系。
(2)通过小组合作学习,培养学生的合作交流能力和创新意识。
3、情感态度与价值观目标(1)让学生在学习过程中体验成功的喜悦,增强学习数学的信心。
(2)培养学生严谨的治学态度和实事求是的精神。
四、教学重难点1、教学重点去括号法则的理解和应用。
2、教学难点括号前是“”号时,去括号后各项符号的变化。
五、教法与学法1、教法(1)情境教学法:通过创设具体的情境,激发学生的学习兴趣,引导学生思考和探索。
(2)启发式教学法:在教学过程中,通过提问、引导等方式,启发学生的思维,让学生主动参与到学习中来。
(3)讲练结合法:通过讲解和练习相结合的方式,让学生及时巩固所学知识,提高应用能力。
人教版七年级数学上册2.2整式的加减去括号教学设计
总而言之,本章节的教学设计旨在让学生在掌握整式的加减去括号知识的基础上,提高解决问题的能力,培养良好的学习习惯和团队合作精神,同时激发学生对数学的兴趣和热爱。在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在数学学习中获得成就感。
1.学生对整式概念的理解程度,注意引导学生从具体实例中抽象出整式的定义,使学生在理解的基础上进行学习。
2.学生在去括号和整式加减运算过程中可能出现的错误,如符号错误、运算顺序混乱等,教师应适时纠正,帮助学生巩固运算规则。
3.针对学生个体差异,设计不同难度的练习题,使每个学生都能在原有基础上得到提高,激发学生的学习兴趣和自信心。
学生在小组内部分工合作,共同探讨问题解决方法。讨论过程中,教师巡视各小组,给予提示和指导,鼓励学生积极参与,充分发表自己的见解。
(四)课堂练习
在课堂练习环节,教师针对整式的加减去括号知识点,设计不同难度的练习题。从基本的去括号题目开始,逐步增加难度,让学生在课堂上即时巩固所学知识。
教师选取部分学生的作业进行点评,及时纠正错误,强调运算规则和符号变化。同时,鼓励学生之间相互检查,提高学生发现和解决问题的能力。
(五)总结归纳
在总结归纳环节,教师引导学生回顾本节课所学的整式加减去括号知识。首先,让学生用自己的话总结整式的定义、性质以及加减去括号法则。接着,教师对学生的总结进行点评和补充,确保学生对知识点的全面掌握。
最后,教师强调整式的加减去括号在实际问题中的应用,如购物、行程安排等,让学生认识到数学与生活的紧密联系,激发学生学习数学的兴趣和积极性。同时,鼓励学生在课后继续探索整式的相关知识,为下一节课的学习打下基础。
新课标七年级数学上册《整式加减-去括号法则》教学反思
新课标七年级数学上册《整式加减-去括号法则》教学反思1、新课标七年级数学上册《整式加减-去括号法则》教学反思去括号法则是第二章整式的重点和难点,同时它又是解方程的必要步骤,可见这节课的重要性。
在这节课的准备上,我依旧选择学生身边的事例作为教学出发,探索去括号前后符号之间的变化规律,这些规律的探索培养了学生归纳、概括的能力,使学生建立初步的符号感。
去括号法则的探索是从学生过去熟悉的运算律入手归纳出来的。
运用法则去括号时,开始学生确实容易搞混乱,因为刚探索出来的东西毕竟是新生事物,学生的认知水平不可能马上接受,所以必须经过练习,根据实践,经过练习学生还是能牢固掌握法则的。
以下是对整式加减——去括号法则这节课的.教学反思:一、本节课亮点。
充分的调动了学生的积极性。
在教学引入中,我设置了一个学生身边的事例。
如:小明原来有a元钱,妈妈给他b元,爸爸给他c 元,他现在有多少钱了?学生看见这些问题和自己息息相关,学起来就更有兴趣了。
二、存在的问题。
课堂内容没能很好掌握。
虽然课堂上同学们总结错误点总结的不错,但学生对去括号法则的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。
三、改进及补救的措施。
针对学生对知识的掌握浮于表面的现象,首先是在学生总结完后,让他们自己认真体会。
本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
2、小学一年级数学上册第七单元《11-20各数的认识》的教学反思11-20各数的认识是一年级数学上册第七单元的内容,《11-20各数的认识》在整个数的学习体系中具有比较重要的地位,它既是10以内数的认识和延续,又是100以内乃至更大的数的认识的基础,同时也为20以内的进位加法的学习打下算理基础。
在本节课教学中我从学生的认知规律和知识结构特点设计了一系列动手操作和练习的活动,让学生在玩中学、学中玩;使每个学生都能在学习过程中获得成功的体验,体会到数学学习是一件很快乐的事。
七年级数学去括号与添括号人教版知识精讲
七年级数学去括号与添括号人教版【本讲教育信息】一. 教学内容:去括号与添括号二. 教学目标和要求:掌握去括号与添括号法则,并能正确利用法则解决简单问题。
三. 教学重、难点:1. 重点:去括号与添括号法则2. 难点:括号前面是“-”号的情况下去括号和添括号四. 知识要点:1. 去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号一起去掉,括号里各项都不变符号。
(2)括号前是“-”号,把括号和它前面的“-”号一起去掉,括号里各项都改变符号。
2. 添括号法则:(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号。
(2)添括号后,括号前面是“-”号,括到括号里的各项都改变符号。
【典型例题】[例1] 先去括号,再合并同类项。
(1))3()34(5b a a b a +---+解:原式b a b a a b a 353345+=-+-+=(2))14(2)23()52(222-----+-a a a解:原式282352222+++---=a a a 132-=a[例2] 按要求,把多项式2332325b ab ab b a -+-添上括号。
(1)把后三项括到前面带有“-”号的括号里。
解:2332325b ab ab b a -+-)232(5233b ab ab b a +--= (2)把前两项括到前面带有“+”号的括号里,后两项括到前面带有“-”号的括号里。
解:2332325b ab ab b a -+-)23()25(233b ab ab b a +---+= (3)把四次项括到前面带有“+”号的括号里,把二次项括到前面带有“-”号的括号里。
解:2332325b ab ab b a -+- 2332235b ab ab b a --+=)22()35(233b ab ab b a +-+=[例3] 化简:x y x x y y x 5)]()3([)34(--+----解:原式x y x x y y x 5]3[34--++---=x y x y x 5)42(34----=x y x y x 54234-+--=y x +-=3[例4] 有理数a 、b 、c 在数轴上的位置如图所示,化简||6||||2||3c b a c b a a -+--+-解:由a 、b 、c 在数轴上的位置得,0,0,0,0<->-<+<c b a c b a a∴||6||||2||3c b a c b a a -+--+-)(6)()(23c b a c b a a ----++-=c b a c b a a 66223+-+-++-=b c 45-=[例5] 先化简,再求值。
七年级数学上册22整式的加减去括号法则重难点突破素材新人教版
去括号法则重难点突破1.去括号的法则突破建议:(1)掌握去括号的法则,关键是看括号外的因数是正数还是负数,是“+”号还是“-”号.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.理解去括号法则的依据是乘法分配律.同时要注意,去括号法则中有一个“都”字,即去括号后变与不变,是指括号里面的每一项,不仅指符号,而且指因数相乘.(2)掌握去括号法则,还有注意如下几点:一是去括号是将括号前的符号连同括号一起去掉,括号内原来有几项,去掉括号后仍然有几项;二是建议初学去括号法则时,应利用乘法分配律先将括号外的数字因数与括号内的每一项分别相乘,写成和的形式,再分步计算、化简,以免出错;三是若遇到多层括号时,要分清括号的层次,看清每层括号前的正、负因数,逐层去括号,可以由里到外也可以由外到里.例7 去括号:(1);(2).解析:本例两小题括号前分别可以看作“+1”与“-1”,根据去括号法则可知,(1)式去掉括号和“+”号后,括号内的各项符号都不改变;(2)式去掉括号和“-”号后,括号内的各项符号都要改变.答案如下:(1);(2).例8 先去括号,再合并同类项:(1);(2).解析:本题考查去括号和合并同类项法则.根据题意,首先应去掉括号,再合并同类项.注意第(2)题有两个括号前的数字因数是负数,要根据乘法分配律分别将数字因数与括号内的各项相乘,再去括号化简.(1);(2).2.去括号法则的简单应用突破建议:去括号法则的简单应用题主要涉及列式表示数量关系、去括号和合并同类项,有一定的综合性.解答这类试题时,首先要读懂题意,理清题目中的数量关系,并恰当地用含字母的式子表示,列式表示时需要用好括号,防止出现错误.然后利用去括号法则和合并同类项法则进行化简.最后需要根据题目要求,决定是否将其中所含字母的已知数值代入式子进行计算.例9 求多项式的值,其中;解析:本例是求多项式的值,涉及去括号与合并同类项,以及将所含字母的具体数值代入式子计算.去括号时,要注意括号前的数字因数是-3,利用乘法分配律去括号时不能漏项.答案是:原式.当时,原式.例10 三个植树队第一队植树棵,第二队植的树比第一队植树的2倍少10棵,第三队植的树比第一队植树的一半多21棵,三个队一共植树多少棵?解析:根据题意,首先用含的式子分别表示出第二队、第三队植树的棵数,然后再列出三个队共植树的棵数,最后对列出的式子进行化简.答案如下:由题意知,第二队植树棵,第三队植树棵,所以三个队一共植树(棵).。
解一元一次方程-去括号与去分母(教案)-2020年秋人教版七年级数学上册
一、教学内容
本节课选自2020年秋人教版七年级数学上册第三章《一元一次方程》的3.4节“解一元一次方程-去括号与去分母”。教学内容主要包括以下两个方面:
1.去括号法则:在解一元一次方程过程中,当方程中存在括号时,运用去括号法则将方程简化。具体内容包括:
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程-去括号与去分母》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平均分配或解决比例问题的情况?”(例如:分糖果给小朋友)。这个问题与我们将要学习的内容密切相关。通过这个问题方程来解决问题。
(3)将实际问题抽象成一元一次方程:学生在面对实际问题时,可能难以将其转化为数学语言,即一元一次方程。
举例:在解决上述提到的实际问题“某数加上其一半等于12”时,学生可能不知道如何将“一半”表示为数学式子$\frac{1}{2}x$。
在教学过程中,教师应针对这些重点和难点内容,通过讲解、示范、练习和反馈等方式,帮助学生理解和掌握核心知识,确保学生能够透彻理解并灵活运用所学知识。
3.培养学生的数学建模能力:通过解决实际生活中的问题,引导学生运用一元一次方程建立数学模型,培养学生将现实问题转化为数学问题的能力,激发学生的创新意识和实践能力。
本节课将紧扣核心素养目标,注重培养学生的数学思维能力,提高学生解决实际问题的综合素养。
三、教学难点与重点
1.教学重点
(1)掌握去括号法则:在解一元一次方程时,能够正确运用去括号法则,包括同号括号相乘和异号括号相乘的情况,确保在简化方程过程中各项符号的正确性。
其次,去分母法则对学生来说是个难点。找最小公倍数这个过程让学生们感到有些困难,导致消去分母时出现错误。针对这个问题,我考虑在下一节课中,先带领学生们复习最小公倍数的概念和求解方法,然后再进行去分母的练习。
七年级上册数学教案:去括号实例讲解
七年级上册数学教案:去括号实例讲解一、教学目标本节课的教学目标是:通过实例讲解,让学生掌握去括号法则的运用。
二、教学重点和难点本节课教学的重点是:让学生掌握去括号运用的基本方法。
本节课教学的难点是:通过实例说明去括号法则的具体运用。
三、教学过程1、引入教师可以通过简单的练习,让学生快速回忆一下第一课的知识点,为本课的内容做好铺垫。
2、讲解接下来,教师可以依次讲解以下实例:(1) a×(b+c) = a×b+a×c (分配律)例如:5×(2+3) = 5×2+5×3 = 10+15 = 25(2) (a+b)×c = a×c+b×c (分配律)例如:(2+3)×5 = 2×5+3×5 = 10+15 = 25(3) (a+b)² = a²+2ab+b² (平方公式)例如:(2+3)²=2²+2×2×3+3²=4+12+9=25(4) (a-b)² = a²-2ab+b² (平方公式)例如:(6-3)²=6²-2×6×3+3²=36-36+9=9(5) (a+b)³=a³+3a²b+3ab²+b³ (立方公式)例如:(1+2)³=1³+3×1²×2+3×1×2²+2³=1+6+12+8=27(6) a²-b²=(a+b)×(a-b) (差平方公式)例如:3²-2²=(3+2)×(3-2)=53、归纳整合教师可以通过课堂小测等方式,让学生自主总结归纳本次讲解的方法和注意事项等相关知识点,以此提升学生的学习效果。
人教版七年级上数学《 解一元一次方程(二)——去括号去分母》课堂笔记
《解一元一次方程(二)——去括号去分母》课堂笔记一、知识点梳理1.解一元一次方程的基本步骤:去括号、去分母、移项、合并同类项、系数化为1。
2.去括号的方法:括号前面是正号,去掉括号不变号;括号前面是负号,去掉括号要变号。
3.去分母的方法:在方程两边同时乘以各分母的最小公倍数,去掉分母。
注意分母是小数时,要把小数化为整数。
4.解实际问题的能力:分析问题中的等量关系,设未知数、列方程、解方程并检验。
二、重难点解析1.去括号和去分母的技巧和方法是本节课的重点,需要学生熟练掌握。
2.解一元一次方程的基本步骤中,移项和合并同类项是难点,需要学生通过练习和思考掌握。
3.解实际问题的能力是本节课的另一个难点,需要学生通过实例掌握分析问题的方法和技巧。
三、例题解析例1. 解方程:2x+3=7分析:这是一个简单的一元一次方程,我们可以直接进行移项和合并同类项,得到答案x=2。
例2. 解方程:5x-7=3x+9分析:这是一个稍微复杂的一元一次方程,我们需要先去括号,再进行移项和合并同类项,得到答案x=7。
例3. 解方程:4(2x+3)=7(x-1)+10(2x+3)分析:这是一个含有括号的方程,我们需要先去括号,再进行移项和合并同类项,最后进行系数化为1,得到答案x=5。
四、注意事项1.在去括号时,要注意括号前面是负号时,去掉括号要变号。
2.在去分母时,要注意分母是小数时,要把小数化为整数。
同时注意各分母的最小公倍数。
3.在解一元一次方程时,要注意移项和合并同类项的技巧和方法。
4.在解实际问题时,要注意分析问题中的等量关系,设未知数、列方程、解方程并检验。
人教版七年级上册数学教案第三章3.3解一元一次方程-去括号与去分母
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“去括号与去分母在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调分配律的正确运用和最小公倍数的寻找这两个重点。对于难点部分,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与去括号与去分母相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的方程求解实验操作。这个操作将演示去括号与去分母的基本原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程-去括号与去分母》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配物品或平均分配食物的情况?”(如:将一定数量的糖果平均分给几个朋友)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程去括号与去分母的奥秘。
-目标:确保学生能熟练运用去括号与去分母的方法,解决一元一次方程。
2.教学难点
-难点内容:在去括号与去分母过程中,学生容易出现的错误。
-难点突破:
(1)去括号时,负号的运用错误。
-举例:解方程-2(x + 3) = 4,学生可能会错误地将-பைடு நூலகம்乘以括号内的每一项,而忘记变号。
(2)去分母时,最小公倍数的寻找不准确,导致计算错误。
4.2.2 去 括 号 考点梳理及难点突破 课件 2024-2025学年人教版七年级数学上册
4.2.2 去 括 号
● 考点清单解读
● 重难题型突破
● 易错易混分析
■考点一
去括号法则
一般地,一个数与一个多项式相乘,需要去括号,
法则 去括号就是用括号外的数乘括号内的每一项,再
把所得的积相加
(1)如果括号外的符号是正号,去括号后原括号
内各项的符号与原来的符号相同.如:a+(b-c+d)
=a+b-c+d
方法
(2)如果括号外的符号是负号,去括号后原括号
内各项的符号与原来的符号相反.如:a-(b-c+d)
=a-b+c-d
续表
(1)去括号时,应将括号前的符号连同括号一起
去掉
注意
事项
(2)括号前是数字因数时,应利用乘法分配律先
将因数与括号内的各项分别相乘再去括号,以免
出错
归纳总结
巧记去括号法则:
典例2
化简:3x2y -[2x2z -(2xyz -x2z+4x2y)].
[解题思路]
[答案]解:解法一:原式=3x2y-2x2z+(2xyz-x2z+4x2y)
=3x2y-2x2z+2xyz-x2z+4x2y=7x2y-3x2z+2xyz.
解法二:原式=3x2y-[2x2z-2xyz+x2z-4x2y]=3x2y 2x2z+2xyz-x2z+4x2y=7x2y-3x2z+2xyz.
解题通法
代入求值时,要代入化简后的式子计算求
值,才能使运算简化.
■题型二
例 2
含绝对值的代数式的化简
已知有理数 a,b,c 在数轴上的对应点分别是 A,
2024去括号与去分母人教版数学七年级上册教案
2024去括号与去分母人教版数学七年级上册教案一、教学目标1.理解去括号与去分母的法则。
2.能够熟练运用去括号与去分母的法则进行计算。
3.培养学生运用数学知识解决问题的能力。
二、教学重难点重点:去括号与去分母的法则。
难点:运用去括号与去分母的法则进行混合运算。
三、教学过程第一课时:去括号1.导入同学们,我们之前学习了有理数的加减乘除运算,那么大家知道如何去掉式子中的括号吗?2.探索我们来观察一个简单的例子:\(2\times(3+4)\)。
大家觉得去掉括号后,这个式子会变成什么?很好,去掉括号后,式子变成了\(2\times3+2\times4\)。
这就是去括号的法则,即乘法分配律。
3.练习下面我们来做一些练习题,巩固一下去括号的法则。
题目1:\(5\times(2+3)\)题目2:\(4\times(62)\)题目3:\(3\times(24)\)经过刚才的练习,大家应该已经掌握了去括号的法则。
记住,当我们遇到括号前面有乘号时,要将括号内的每一项分别乘以括号外的数。
第二课时:去分母1.导入同学们,上一节课我们学习了去括号的法则,那么这节课我们来学习如何去掉式子中的分母。
2.探索我们先来看一个例子:\(\frac{2}{3}\times(4+5)\)。
去掉分母后,这个式子会变成什么?对,去掉分母后,式子变成了\(2\times4+2\times5\)。
这就是去分母的法则,即乘法分配律的逆运用。
3.练习下面我们来做一些练习题,巩固一下去分母的法则。
题目1:\(\frac{3}{4}\times(52)\)题目2:\(\frac{5}{6}\times(7+3)\)题目3:\(\frac{2}{5}\times(94)\)经过刚才的练习,大家应该已经掌握了去分母的法则。
记住,当我们遇到分母时,要将分子乘以分母的倒数,然后进行计算。
第三课时:混合运算1.导入同学们,前两节课我们分别学习了去括号和去分母的法则,那么这节课我们来学习如何进行混合运算。
去括号-人教版七年级数学上册教案
去括号-人教版七年级数学上册教案一、教学目标1.能够理解加法分配律、乘法分配律、以及去括号后的最简形式。
2.能够正确去掉括号,并会应用分配律把式子拆开。
3.能够在实际问题中正确应用去括号法则。
二、教学重点1.去括号法则的学习和运用。
2.分配律的理解和应用。
3.应用去括号和分配律解决实际问题。
三、教学难点1.理解和应用分配律。
2.运用分配律拆开式子。
3.运用去括号法则解决实际问题。
四、教学方法1.案例教学法:引入实例,帮助学生理解去括号和分配律的思想。
2.合作学习法:让学生分组,共同研究一个问题,配合完成一个问题,增强合作学习的能力。
五、教学过程第一课时1. 教师引入例如,一个表达式(a + b) × c,其中有括号,后面出现了× c的乘号。
我们想要用乘法分配律去掉括号,但这样要怎么操作呢?2. 理解加法分配律通过引入适当的例子,如3 × (4 + 2) = 3 × 4 + 3 × 2,让学生理解加法分配律。
3. 理解乘法分配律引入例子,如2 × (3 + 4) = 2 × 3 + 2 × 4,让学生理解乘法分配律。
4. 与学生一起应用分配律通过引入表达式(a + b) × c,与学生一起运用乘法分配律去掉括号,即(a+ b) × c = ac + bc。
5. 练习让学生完成课本上的练习,巩固加法分配律、乘法分配律的理解。
第二课时1. 教师应用例子引导针对去括号问题,引入问题2(x + 3) + y(x + 3),并以具体操作的方式,与学生一起去掉括号,发现结果为 3x+2y+6。
2. 提出类似例子如(a + b) × (c + d)或(a - b) × c + (a - b) × d,与学生一起去掉括号,让学生发现这些式子可以用分配律进行计算。
3. 练习让学生完成课本上的练习,巩固去括号和分配律的应用。
人教版七年级上册数学去括号
2.去括号的应用: 合并同类项时,如果多项式中含有括号,就应该先_去__括__号__, 再__合__并__同__类__项____.
A.-y-z B.-y+z C.y-z
D.y+z
3.有理数a,b在数轴上的位置如图所示,则|a+b|-2|a-b|化简后的结果为
(A )
A.b-3a B.-2a-b C.2a+b D.-a-b
练习 4.化简[x-(y-z)]-[(x-y)-z]的结果为( B )
A.2y B.2z C.-2y D.-2z
教材P65~66 部分内容. 提出问题: (1)格尔木到拉萨的铁路全长可以怎样表示?冻土地段与非冻土地段相差多少 千米? (2)观察(1)中列出的式子与我们学过的多项式有什么不同? (3)类比数的运算,你能将它化简吗?如何化简? (4)通过上面的化简,你能发现去括号时符号变化的规律吗?
活动3 知识归纳 1.去括号法则:
第二章 整式的加减 2.2 整式的加减 第2课时 去括号
一、教学目标 1.掌握去括号法则,能准确进行去括号. 2.掌握利用去括号法则将整式化简的方法.
二、教学重难点
重点 会利用去括号法则正确地对整式进行化简.
难点
括号前面是“-”号时,注意括号中各项都要与“-” 号相乘.
三、教学设计
活动1 新课导入利用乘法分配律计算:(1)12× 16-23
1
2
=_1_2_×___6_-__1_2_×___3__=__2_-__8_=__-__6_,;
2.2整式的加减(第2课时)去括号(导学案)七年级数学上册(人教版)
2.2 整式的加减(第2课时)去括号导学案1. 通过类比讨论、归纳去括号时符号变化的规律.2. 能熟练、准确地应用去括号、合并同类项将整式化简.★知识点:去括号去括号是对多项式变形. 去括号时,括号中符号的处理是难点,也是容易出错的地方,掌握去括号的关键是理解去括号的依据.1. 如果括号外的因数是,去括号后原括号内各项的符号与原来的符号.2. 如果括号外的因数是,去括号后原括号内各项的符号与原来的符号.问题:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段的行驶速度是100km/h,在非冻土地段的行驶速度可以达到120km/h,请根据这些数据回答下列问题:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5 h,如果列车通过冻土地段要t h,则这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少km?追问1:上面的式子①②都带有括号,类比数的运算,它们应如何化简?追问2:比较上面两式,你能发现去括号时符号变化的规律吗?归纳:1. 填空(1)a+(b-c)= ;(2)a-(b+c)= ;(3)a-(b-c)= ;(4)(a+b)-(c+d)= ;(5)(a+b)-(c-d)= .2. 判断:(1)3(x+8)=3x+8(2)-3(x-8)=-3x-24(3)4(-3-2x)=-12+8x(4)-2(6-x)=-12+2x例1:化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).针对训练:化简:(1)3(a2-4a+3)-5(5a2-a+2);(2)3(x2-5xy)-4(x2+2xy-y2)-5(y2-3xy);(3)abc-[2ab-(3abc-ab)+4abc].例2:两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少?例3:先化简,再求值:已知x=-4,y=12,求5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.1. 下列去括号中,正确的是()A . a2-(2a-1)=a2-2a-1B . a2+(-2a-3)=a2-2a+3C . 3a-[5b-(2c-1)]=3a-5b+2c-1D . -(a+b)+(c-d)=-a-b-c+d2.不改变代数式的值,把代数式括号前的“-”号变成“+”号,a-(b-3c)结果应是()A. a+(b-3c)B. a+(-b-3c)C. a+(b+3c)D. a+(-b+3c)3. 已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A. 1B. 5C. -5D. -14. 化简:(1)12(x-0.5);(2)1515x⎛⎫--⎪⎝⎭;(3)-5a+(3a-2)-(3a-7);(4)1(93)2(1)3y y-++.5. 先化简,再求值:2(a+8a2+1-3a3)-3(-a+7a2-2a3),其中a=-2.6. 飞机的无风航速为a km/h,风速为20 km/h. 飞机顺风飞行4 h的行程是多少?飞机逆风飞行3h的行程是多少?两个行程相差多少?化简下列各式:(1)-(a -b )-(-c -d ); (2)(5a +4c +7b )+(5c -3b -6a );(3)(8xy -x 2+y 2)-(x 2-y 2+8xy ); (4)221123422x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭; (5)3x 2-[7x -(4x -3)-2x 2]; (6)3b -2c -[-4a +(c +3b )]+c ;(7)4(a +b )+2(a +b )-(a +b ); (8)3(x +y )2-7(x +y )+8(x +y )2+6(x +y )-11(x +y )2.1.(4分)(2020•重庆B 卷5/26)已知a +b =4,则代数式的值122a b ++为( ) A .3 B .1 C .0 D .-12.(4分)(2020•广东14/25)已知x =5-y ,xy =2,计算3x +3y -4xy 的值为 .1. 本节课你学习的主要内容是什么?这些内容中体现了哪些数学思想方法?2. 推导与理解去括号法则的基本依据是什么?利用去括号法则简化运算时,重点要关注什么?3. 本节课你还有哪些收获与感受?①去括号时要将括号前的符号和括号一起去掉;②去括号时首先弄清括号前是“+”还是“-”;③去括号时当括号前有数字因数应用乘法分配律,切勿漏乘.【参考答案】1. 正数;相同;2. 负数;相反.问题:100t +120(t -0.5);100t -120(t -0.5).追问1:100t +120(t -0.5)=100t +120t -120×0.5=220t -60;100t -120(t -0.5)=100t -120t +120×0.5=-20t +60.追问2:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.1.(1)a+b-c;(2)a-b-c;(3)a-b+c;(4)a+b-c-d;(5)a+b-c+d.2.(1)错;(2)错;(3)错;(4)对;例1:解:(1)8a+2b+(5a-b)= 8a+2b+5a-b=13a+b;(2)(5a-3b)-3(a2-2b)= 5a-3b-3a2+6b=-3a2+5a +3b.针对训练:解:(1)原式=3a2-12a+9-25a2+5a-10=-22a2-7a-1;(2)原式=3x2-15xy-4x2-8xy+4y2-5y2+15xy=-x2-8xy-y2;(3)原式=abc-(2ab-3abc+ab+4abc)=abc-3ab-abc=-3ab.例2:解:(1)2(50+a)+2(50-a)=100+2a+100-2a=200(km);(2)2(50+a)-2(50-a)=100+2a-100+2a=4a(km).答:两小时后两船相距200千米,两小时后甲船比乙船多航行4a千米.例3:解:原式=5xy2-(-xy2+2x2y)+2x2y-xy2 =5xy2.当x=-4,y=12时,原式=5×(-4)×2 1 2⎛⎫⎪⎝⎭=-5.1.C;2.D ;3.B ;4. 解:(1)12(x -0.5)=12x -12×0.5=12x -6;(2)1515x ⎛⎫-- ⎪⎝⎭=151(5)55x x ⎛⎫-⨯+-⨯-=-+ ⎪⎝⎭; (3)-5a +(3a -2)-(3a -7)= -5a +3a -2-3a +7=-5a +5;(4)1(93)2(1)3y y -++=119(3)2233y y ⨯+⨯-++=3y -1+2y +2=5y +1.5. 解:原式=-5a 2+5a +2.当a =-2时,原式=-8.6. 解:飞机顺风飞行的速度是(a +20) km/h ,顺风飞行4h 的行程(单位:km )为: 4(a +20)=4a +80.飞机逆风飞行的速度是(a -20) km/h ,逆风飞行3h 的行程(单位:km )为: 3(a -20)=3a -60.两个行程相差的里程(单位:km )是:4(a +20)- 3(a -20)= 4a +80-3a +60=a +140.解:(1)-a +b +c +d ;(2)-a +4b +9c ;(3)-2x 2+2y 2; (4)2562x x --; (5)5x 2-3x -3; (6)4a -2c ; (7)5a +5b ; (8)-x -y .1.【解答】解:当a +b =4时,原式111()1422a b =++=+⨯=1+2=3,故选:A .2.【解答】解:因为x =5-y ,所以x +y =5,当x +y =5,xy =2时,原式=3(x +y )-4 xy =3×5-4×2=15-8=7,故答案为:7.。
人教版七年级数学上册:4.2.2 去括号
典型例题
解:(1)由题意得: 2(50+a)+2(50-a) =100+2a+100-2a =200(km). 可知,2小时后两船相距 200km。
(2)由题意得: 2(50+a)-2(50-a) =100+2a-100+2a =4a(km) 可知,2小时后甲船比 乙船多航行4akm。
当堂训练
1. 下列去括号的式子中,正确的是( C ) A. a2–(2a–1)= a2–2a–1 B. a2+(–2a–3)= a2–2a+3 C. 3a– [5b – (2c–1)]= 3a–5b +2c–1 D. –(a +b) + (c–d)= –a – b –c+d
探究新知
92b 72b 0.15 92b 72b 10.8 164b 10.8 92b 72b 0.15 92b 72b 10.8 20b 10.8
思考:请同学们根据以上探究过程总结一下去括号法则
探究新知
去括号法则:一般地,一个数与一个多项式相乘, 需要去括号,去括号就是用括号外的数乘括号内的 每一项,再把所得的积相加。 特别地,+(x-3)与-(x-3)可以看作1与-1分别相乘, 得:+(x-3)=x-3,-(x-3)=-x&1)8a+2b+(5a-b) (2)(4y-5)-3(1-2y)
为什么 -3×(-2y)=6y?
解:(1)8a+2b+(5a-b) (2)(4y-5)-3(1-2y)
=8a+2b+5a-b
=4y-5-3+6y
=13a+b
=10y-8.
典型例题
例2 两船从同一港口同时出发反向而行,甲船顺水, 乙船逆水,两船在静水中的速度是50km/h,水流速度是 a km/h (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米?
去括号 课件 2023--2024学年人教版七年级数学上册_46418640
归纳
一般地,一个数与一个多项式相 乘,需要去括号,去括号就是用括号 外的数乘括号内的每一项,再把所得 的积相加.
特别地,+(x-3)与-(x-3)可以看作 1与-1分别乘(x-3).利用分配律,可以 将式子中的括号去掉,得:
(x-3)=x-3, -(x-3)=-x十3. 这也符合上面的去括号的方法.
第四章 整式的加减
4.2.2 去括号
学习目标
(1)让学生经过观察、合作交流、类比讨论、总结 出去括号法则; (2) 理解去括号就是将分配律用于整式运算,掌握 去括号法则; (3)能熟练、准确地应用去括号、合并同类项将整 式化简.
学习重难点
重点:能运用运算律探究去括号法则. 难点:会利用去括号法则将整式化简.
例1 化简下列各式: (1)8a+2b+(5a-b);(2) (4y-5)-3(1-2y).
为什么-3X(-2y)=6y?
例2 两船从同一港口同时出发反向而行,甲船顺水, 乙船逆水,两船在静水中的速度都是50 km/h, 水流速度是a km/h. (1)2 h后两船相距多远? (2)2 h后甲船比乙船多航行多少km?
解:顺水航速=船速十水速=(50+a)km/h, 逆水航速=船速一水速=(50-a)km/h.
(1)由2(50+a)+2(50-a) =100+2a十100-2a =200
可知,2h后两船相距 200 km. (2)由2(50+a)-2(50-a)
=100+2a-100+2a =4a 可知,2h后甲船比乙船多航行 4a km.
(1)a b c d
(2)5a 4c 7b 5c 3b 6a
ห้องสมุดไป่ตู้
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
去括号重难点突破
一、解含有括号的一元一次方程
突破建议:
解方程中的去括号法则与有理数运算中的去括号法则相同,依据是乘法的分配律.要注意括号前的符号,它是决定去括号后括号内各项是否变号的依据.
去括号时应将括号前的符号连同括号一起去掉,要注意,括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余项的符号;若括号前有因数时,应利用乘法的分配律将该因数与括号内的每一项分别相乘,再把所得的积相加,以免发生漏乘.遇到多层括号时,一般由里到外,逐层去括号.先去小括号,再去中括号,最后去大括号.
去括号的口诀:去括号,关键要看连接号.括号前面是正号,去掉括号不变号.括号前面是负号,去掉括号都变号.
例1 对于方程,去括号正确的是( ).
A. B. C. D.
解析:本题考查一元一次方程中的去括号方法.运用分配律去括号时,用括号外面的数去乘括号内的每一项,再把所得的积相加.括号前是负因数时,去掉括号后,括号内的每一项都应改变符号.本题正确的答案应选择C.
例2 解方程:.
解析:本题考查用去括号解一元一次方程.先按去括号法则去掉括号,然后再移项、合并同类项.
去括号,得;移项,得;合并同类项,得.
二、建立一元一次方程模型
突破建议:
根据实际问题建立一元一次方程模型,首先应该通过读题审题,分析、找出问题中各个数量之间的运算、相等等关系,并尝试用已知数、未知数来表示.
对于教科书问题1的教学,可设计如下步骤:
学生合作探究:小组讨论本问题中有哪些量,这些量存在着怎样的相等关系?
师生互动探究:
1.弄清问题中的数量:上、下半年的用电量、月平均用电量,全年用电量;
2.找出问题中的数量关系:全年用电量=上半年用电量+下半年用电量;
3.出示思路,让学生填空:
设上半年每月平均用电量为度,则下半年每月平均用电______;上半年共用电______,下半年共用电______.可列方程为 + =150 000.
4.教师总结:下半年每月平均用电,上半年共用电,下半年共用电量,根据全年用电量=上半年用电量+下半年用电量,得.
例3 某学校组织师生共110人到公园游玩,公园规定:成人票每位40元,学生票每位20元.该学校购票共花费2 400元,在这次游览活动中,教师和学生各有多少人?
解析:本题考查列一元一次方程解应用题.
设教师有人,则学生有人.根据“该学校购票共花费2 400元”,得,解得,.
答:教师有10人,学生有100人.。