河北省秦皇岛市卢龙县2019-2020学年八年级上学期期末考试数学试题
河北省2019-2020学年八年级第一学期期末考试数学试卷
河北省2019-2020学年八年级第一学期期末考试数学试卷 学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形都是由两个全等三角形组成的,其中是轴对称图形的是( )A. B. C. D.2.如图1,边长为2的正方形ABCD 与正方形A B C D ''''关于x 轴对称,若点A 的坐标为(1,1),则点D '的坐标为( )A.(-1,-3)B.(1,-3)C.(-1,3)D.(1,3)3.一个多边形的内角和等于它的外角和,则该多边形是( )A.三角形B.四边形C.五边形D.六边形4.下列计算结果不正确的是( )A.()3233()ab ab b ÷-=-B.2(2)2x x y x xy -+=-+C.40.0002085 2.08510-=⨯D.219300111444n ⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭5.若等腰三角形的周长为16,一边长为4,则它的另两边长为( )A.6,6B.6,4C.4,8D.6,6或4,8 6.若关于x 的方程223ax a x =-的解为1x =,则a 的值为( ) A.12 B.12- C.2 D.-27.下列各式因式分解不正确的是( )A.2(1)a b ab ab a -=-B.22244(2)x xy y x y -+=-C.222()x a x a -=-D.23()2()()(322)x y y x x y x y ---=--+8.如图2,已知射线OM ,以点O 为圆心,任意长为半径画弧,交射线OM 于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么AOB ∠的度数是( )A.30°B.45°C.60°D.90°9.下列各式计算结果相同的是( )①2(21)a --;②(21)(21)a a ---+;③(21)(21)a a +-;④24(21)a -A.①②B.③④C.①④D.②③10.积极推行节能减排,倡导绿色出行,“共享单车”、“共享助力车”先后上市,为人们出行提供了方便王老师骑“共享助力车”去距离家8千米的单位上班时,比骑“共享单车”少用10分钟,已知他骑共享助力车”的速度是骑“共享单车”的15倍.若设王老师骑“共享助力车”上班需x 分钟,根据题意可列方程为( ) A.881.510x x ⨯=- B.88 1.510x x =⨯- C.88 1.510x x =⨯+ D.881.510x x⨯=+ 11.如图3,已知50ACB AC BC ∠=︒=,,则1∠的度数为( )A.105°B.115°C.120°D.130°12.老师在黑板上写了一个分式的正确计算结果,随后用手遮住了原分式的一部分,如图4所示则被遮住的部分是( )A.11a a -+B.11a a -+C.311a a ++D.311a a -++ 13.如图5,若x 为正整数,则表示22(21)144121x x x x +-++++的值的点落在( )A.段①B.段②C.段③D.段④414.如图6,在ABC 中,9015B C DE ∠=︒∠=︒,,垂直平分AC ,若4AB =,则CD 的长为( )A.3B.4C.6D.815.点A 在∠MON 的一边上,,P Q 分别是,OM ON 上的动点,当点,P Q 处于如图7所示的位置时,AP PQ +的值最小,此时点,A A 关于OM 对称,若PB PQ =,则下列结论中不正确的是( )A.AP A P '=B.A Q ON '⊥C.AOB AA Q '≅D.40A '∠=︒16.如图8,ABC 与ADE 都是等腰直角三角形,若,BC BD BE BD ==平分CBE ∠,则下列结论中正确的有( )①BA 垂直平分DE ;②ABD ACE ≌;③BCE 是等边三角形;④150CDE ∠=︒A.1个B.2个C.3个D.4个二、解答题17.按要求完成下列各小题.(1)因式分解:2123b -;(2)先化简,再求值:22951442m m m m -⎛⎫÷- ⎪+++⎝⎭,其中2m =.18.如图11,点,,,B C E F 在同一条直线上,,,B E ACDF AB DE ∠=∠=.(1)求证:AC DF =; (2)若,AM DN 分别是ABC 和DEF 的角平分线,求证:AM DN =.19.数学课上老师出了一题:用简便方法计算972的值,喜欢数学的王涵做出了这道题他的解题过程如图12所示,老师表扬王涵积极发言的同时,也指出了解题中的错误.(1)你认为王涵的解题过程中,从第___________步开始出错;(2)请你写出正确的解题过程;(3)用简便方法计算:222019201940402020-⨯+.20.如图13-1,已知BD 是ABC 的角平分线,AE BD ⊥,交BD 的延长线于点E.(1)若722:3ABC C ADB ∠=︒∠∠=,:.①求C ∠和DAE ∠的度数②求证:BD AD =;(2)如图13-2,AO 平分BAC ∠,请直接写出OAE ∠与C ∠之间的数量关系.21.某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元,现有以下三种施工方案.A :由甲队单独完成这项工程,恰好如期完工;B :由乙队单独完成这项工程,比规定工期多6天;C :由甲、乙两队,剩下的由乙队单独做,恰好如期完工小聪同学设规定工期为x 天,依题意列出方程:1155166x x x x -⎛⎫⨯++= ⎪++⎝⎭(1)请将C 中被墨水污染的部分补充出来;(2)求甲、乙两队单独完成这项工程各需多少天?(3)在不耽误工期的情况下,你认为哪种施工方案较节省工程款,说明你的理由.22.如图14,在四边形ABCD 中,90ABC C ∠=∠=︒,点E 在边BC 上,且BD 垂直平分AE ,交AE 于点O.(1)求证:ABO EBO ≌;(2)求证:CD AB CE =+;(3)若28,7ABED S CD ==四边形,求线段CE 的长度.23.在ABC 中,120AB AC BAC AD BC =∠=︒⊥,,,点,E F 分别在,AB AC 上(1)如图15-1,若90AED AFD ∠=∠=︒,则EDF ∠=____度,DEF 是_____三角形;(2)如图15-2,若180AED AFD ∠+∠=︒,试判断DEF 的形状,并证明你的结论;(3)如图15-3,已知120MON OP ∠=︒,平分MON ∠,且1OP =,若点G,H 分别在射线,OM ON 上,且PHG 为等边三角形,则满足上述条件的PHG 有__________个.三、填空题24.如果分式22x x +-有意义,那么x 的取值范围是__________. 25.如图9,在等边三角形ABC 中,6,AC AEB ADC =∠=∠.(1)若2AD =,则CE 的长度为_________.(2)CPE ∠的度数为___________.26.如图10,点,,D E F 在ABC 的边BC 上,且22ADC AEB B C ∠=∠=∠=∠.(1)图中有_________个等腰三角形;(2)若AF 是ABC 的高线,且6DF BC =,则BAE ∠的度数为__________.参考答案1.答案:C解析:2.答案:B解析:3.答案:B解析:4.答案:B解析:5.答案:A解析:6.答案:B解析:7.答案:C解析:8.答案:C解析:9.答案:D解析:10.答案:D解析:11.答案:B解析:12.答案:A解析:13.答案:C解析:14.答案:D解析:15.答案:D解析:16.答案:D解析:17.答案:(1)()()32121b b +-(2)32m m ++;54解析:18.答案:(1)AC DFACB DFE ∴∠=∠在ABC 和DEF 中,B E ACB DFE AB DE ∠=∠∠=∠=⎧⎪⎨⎪⎩,,,ABC DEF ∴≌AC DF ∴=(2)由(1)可知ABC DEF ≌CAB FDE ∴∠=∠又AM DN ,分别是ABC 和DEF 的角平分线,1122.CAM CAB FDE FDN ∴∠=∠=∠=∠又ACB DFE AC DF ∠=∠=,AMC DNF ∴≌AM DN ∴=解析:19.答案:(1)二;(2)22229710031002100339409=-=-⨯⨯+=()(3)1解析:20.答案:(1)①C ∠的度数为72°,DAE ∠的度数为18°; ②7236ABC C BAD ∠=∠=︒∴∠=︒,由①可知36ABD ∠=︒BAD ABD BD AD ∴∠=∠∴=,;(2)2OAE C ∠=∠解析:21.答案:(1)合作5天;(2)甲、乙两队单独完成这项工程分别需30天和36天;(3)方案23060A ⨯=:(万元);方案25 1.53055C ⨯+⨯=:(万元),施工方案C 较节省工程款. 解析:22.答案:(1)∵BD 垂直平分AE ,AO EO ∴=90BOA BOE ∠=∠=︒ AB BE =Rt Rt ABO EBO ∴≌(2)由(1)可得AB BE ABO EBO =∠=∠, 90ABC ∠=︒45EBO ∴∠=︒又90C ∠=︒45BDC EBO ∴∠=∠=︒ BC CD ∴=CD BE CE AB CE ∴=+=+(3)线段CE 的长度为3 解析:23.答案:(1)60;等边;(2)DEF 是等边三角形; 过点D 分别作DM AB ⊥于点M DN AC ⊥,于点N . ∵在四边形AEDF 中, 120BAC ∠=︒180AED AFD ∠+∠=︒ 60EDF ∴∠=︒AB AC AD BC =⊥, ∴AD 平分BAC ∠DM AB DN AC ⊥⊥, DM DN ∴=180AED AFD ∠+∠=︒ 180AED MED ∠+∠=︒ MED AFD ∴∠=∠ 又90DME DNF ∠=∠=︒ DME DNF ∴≌ DE DF ∴=60EDF ∠=︒∴DEF 是等边三角形;(3)无数.解析:24.答案:2x ≠. 解析:25.答案:(1)4;(2)60°解析:26.答案:(1)4;(2)90°解析:。
秦皇岛市2020版八年级上学期数学期末考试试卷B卷
秦皇岛市2020版八年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018九上·定安期末) 如图,在平面直角坐标系中,△ABC位于第二象限,点C的坐标是(﹣1,1),先把△ABC向右平移5个单位长度得到△A1B1C1 ,再作与△A1B1C1关于轴对称的△A2B2C2 ,则点C的对应点C2的坐标是()A . (4,1)B . (4,-1)C . (﹣6,1)D . (-6,-1)2. (2分) (2016八上·道真期末) 下列各式:① ,② ,③ ,④ ,其中是分式的有()A . ①②③④B . ①④C . ①②④D . ②④3. (2分) (2016八上·道真期末) 若分式有意义,则x的取值范围是()A . x≠0B .C .D .4. (2分) (2016八上·道真期末) 下列长度的三条线段,不能组成三角形的是()A . 9,15,8B . 4,9,6C . 15,20,8D . 3,8,45. (2分) (2016八上·道真期末) 下列运算中正确的是()A . (x3)2=x5B . 2a﹣5•a3=2a8C .D . 6x3÷(﹣3x2)=2x6. (2分) (2017八上·新会期末) 下列运用平方差公式计算,错误的是()A . (a+b)(a﹣b)=a2﹣b2B . (x+1)(x﹣1)=x2﹣1C . (2x+1)(2x﹣1)=2x2﹣1D . (﹣3x+2)(﹣3x﹣2)=9x2﹣47. (2分) (2016八上·道真期末) 等腰三角形的一条边长为6,另一边长为13,则它的周长为()A . 25B . 25或32C . 32D . 198. (2分) (2017八上·盂县期末) 已知x2+16x+k是完全平方式,则常数k等于()A . 64B . 48C . 32D . 169. (2分) (2016八上·道真期末) 若分式的值为负数,则x的取值范围是()A . x<2B . x>2C . x>5D . x<﹣210. (2分) (2017八上·新会期末) 一个长方形的面积为x2﹣2xy+x,长是x,则这个长方形的宽是()A . x﹣2yB . x+2yC . x﹣2y﹣1D . x﹣2y+111. (2分) (2016八上·道真期末) 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A . 125°B . 120°C . 140°D . 130°12. (2分) (2016八上·道真期末) 如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为()A . 5.5B . 4C . 4.5D . 3二、填空题 (共6题;共6分)13. (1分)定义新运算:对于任意实数a , b都有:a⊕b=a(a﹣b)+1。
河北省秦皇岛市八年级上学期数学期末考试试卷
河北省秦皇岛市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·龙湖期末) 在﹣3x、、﹣、、﹣、、中,分式的个数是()A . 3个B . 4个C . 5个D . 6个2. (2分)(2018·成都模拟) 下列运算正确的是()A .B .C .D .3. (2分)(2017·抚州模拟) 窗花是我国传统民间艺术,下列窗花中,是轴对称图形的为()A .B .C .D .4. (2分) (2016八下·费县期中) 要使式子有意义,则的取值范围是()A .B .C .D .5. (2分)把分式中的x、y都扩大到原来的5倍,则分式的值()A . 扩大5倍B . 不变C . 缩小为原来的D . 不能确定6. (2分) (2020八下·潮南月考) 当1<x<3时,的值为()A . 3B . -3C . 1D . -17. (2分) (2018八上·北京月考) 下列语句中正确的个数是()①两个能重合的图形一定关于某条直线对称;②等腰三角形底边上的中线是这个三角形的对称轴;③在三角形中,30°角所对的边等于最长边的一半;④轴对称图形的对应点一定在对称轴的两侧.A . 3个B . 2个C . 1个D . 0个8. (2分)(2020·衢州) 如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A .B .C .D .9. (2分) (2018八上·大石桥期末) 某开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完成;②乙队单独完成此项工程要比规定工期多用5天;③ ,剩下的工程由乙队单独做,也正好如期完工.小亮设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A . 甲先做了4天B . 甲乙合作了4天C . 甲先做了工程的D . 甲乙合作了工程的10. (2分) (2019八下·南岸期中) 等腰三角形的两边长是6cm和3cm,那么它的周长是A . 9cmB . 12 cmC . 12 cm或15 cmD . 15 cm二、填空题 (共10题;共10分)11. (1分)(2020·武汉模拟) 计算的结果是________.12. (1分)氢原子中,电子和原子核之间的距离为0.00000000529cm,用科学记数法表示为________ cm.(保留两位有效数字)13. (1分) (2019八下·东台期中) 若分式有意义,则x的取值范围是________.14. (1分) (2020七下·南通期中) 已知点P(3,﹣1)关于y轴的对称点Q的坐标是________.15. (1分)(2017·柳江模拟) 因式分解:ab+a=________16. (1分) (2019八下·尚志期中) 计算: ________.17. (1分)如图,在△ABC中,AB=AC,D、E分别在AC、AB上,BD=BC,AD=DE=BE,∠A的度数是________度18. (1分) (2019七下·苏州期末) 若关于的不等式的解集为,化简________.19. (1分) (2018八上·江苏月考) 如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=10,则CE=________.20. (1分) (2020八上·漯河期末) 如图,在△ABC中,∠ABC=2∠C,AP和BQ分别为∠BAC和∠ABC的角平分线,若△ABQ的周长为18,BP=4,则AB的长为________三、解答题 (共6题;共61分)21. (10分)(2017·沂源模拟) 计算:﹣2× +()﹣1+(π﹣2017)0 .22. (5分)(2015•营口)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.23. (6分) (2019八上·剑河期中) 如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(-3,2),点B的坐标为(-4,5),点C的坐标为(-5,3).(1)画出△ABC关于y轴对称的△A1B1C1 ,并写出点A1、B1、C1的坐标;(2)求△ABC的面积.24. (10分)哈尔滨地铁“二号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12台,全部车辆运输一次可以运输110吨残土.(1)求该车队有载重量8吨、10吨的卡车各多少辆?(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?25. (15分) (2017九下·莒县开学考) 已知,正方形ABCD的边长为6,菱形EFGH的三个顶点E、G、H 分别在正方形ABCD边AB、CD、DA上,AH=2.(1)如图1,当DG=2,且点F在边BC上时.求证:① △AHE≌△DGH;② 菱形EFGH是正方形;(2)如图2,当点F在正方形ABCD的外部时,连接CF.① 探究:点F到直线CD的距离是否发生变化?并说明理由;② 设DG=x,△FCG的面积为S,是否存在x的值,使得S=1,若存在,求出x的值;若不存在,请说明理由.26. (15分) (2017七下·东营期末) 在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
河北省秦皇岛市2020版八年级上学期数学期末考试试卷(II)卷
河北省秦皇岛市2020版八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·金华期中) 下列图形“线段、角、等腰三角形、平行四边形、圆”,其中既是轴对称图形,又是中心对称图形的有()A . 2个B . 3个C . 4个D . 5个2. (2分)下列图形具有稳定性的是()A . 梯形B . 五边形C . 等腰三角形D . 正方形3. (2分) (2019八下·安岳期中) 点P(5,-4)关于y轴的对称点是()A . (5,4)B . (5,-4)C . (4,-5)D . (-5,-4)4. (2分) (2018八上·邢台期末) 在,,,中,是分式的有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2018·无锡模拟) 下列计算正确的是()A . a2+a2=a4B . (a2)3=a5C . a+2=2aD . (ab)3=a3b36. (2分) (2017八下·遂宁期末) 将用小数表示为()A . 0.000205B . 0.0205C . 0.00205D . -0.002057. (2分)如图,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连接AE,CE.延长CE到F,连接BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F到BC的距离为;③BE+EC=EF;④S△AED=+;⑤S△EBF=.其中正确的个数是()A . 2个B . 3个C . 4个D . 5个8. (2分)(2011·海南) “比a的2倍大1的数”用代数式表示是()A . 2(a+1)B . 2(a﹣1)C . 2a+1D . 2a﹣19. (2分) (2016八上·徐闻期中) 如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A . SASB . ASAC . AASD . HL10. (2分) (2017八上·扶沟期末) 已知xm=6,xn=2,则x2m﹣n的值为()A . 9B .C . 18D .二、填空题 (共6题;共6分)11. (1分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长为________.12. (1分)(2019·河南模拟) 如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是________.13. (1分) (2016九上·无锡期末) 已知AB为⊙O的直径AC、AD为⊙O的弦,若AB=2AC= AD,则∠DBC 的度数为________.14. (1分)(2014·台州) 有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn=________(用含字母x和n的代数式表示).15. (1分) (2017七上·洪湖期中) 已知一个两位数M的个位数字母是a,十位数字母是b,交换这个两位数的个位与十位上的数字的位置,所得的新数记为N,则2M﹣N=________(用含a和b的式子表示).16. (1分) (2019八上·遵义期末) 如图,以 AB 为底分别作等边三角形 QAB 和正方形 ABCD.如果在正方形的对角线 AC上存在一点 P 使 PD+PQ 存在最小值为 2,则该正方形的面积是________ .三、解答题 (共9题;共80分)17. (5分) (2019八上·大洼月考) 计算:(1)(2),(3),其中,,(4)求的值18. (5分)(2017·德州模拟) 已知x=3是方程的一个根,求k的值和方程其余的根.19. (10分)计算:(1)(﹣x+2)(﹣x﹣2);(2)()();(3)(x﹣3)(x+3)(x2+9);(4)(2x+5)(2x﹣5)﹣(4+3x)(3x﹣4).20. (10分)(2018·湛江模拟) 如图,在△ABC中,∠ABC=80°,∠BAC=40°.(1)尺规作图作出AB的垂直平分线DE,分别与AC、AB交于点D、E.并连结BD;(保留作图痕迹,不写作法)(2)证明:△ABC∽△BDC.21. (10分) (2017八上·义乌期中) 如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.22. (10分) (2019七下·岳池期中) 如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H ,∠C=∠EFG ,∠CED=∠GHD.(1)求证:AB∥CD;(2)若∠EHF=75°,∠D=42°,求∠AEM的度数.23. (10分) (2018八上·宁波期末) 如图所示,在△ABC中,AB=AC,∠1=∠2,AD⊥CD于点D,AE⊥BE于点E,BE,CD交于点O.求证:(1)△ABE≌△ACD;(2) OD=OE.24. (10分) (2019七上·顺德期末) 小彬买了A、B两种书,单价分别是18元、10元.(1)若两种书共买了10本付款172元,求每种书各买了多少本?(2)买10本时付款可能是123元吗?请说明理由.25. (10分) (2018·盘锦) 如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共80分)17-1、17-2、17-3、17-4、18-1、19-1、19-2、19-3、19-4、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
河北省秦皇岛市卢龙县2020-2021学年上学期期末考试八年级数学试卷 解析版
2020-2021学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.“对顶角相等”的逆命题是()A.如果两个角是对顶角,那么这两个角相等B.如果两个角相等,那么这两个角是对顶角C.如果两个角不是对顶角,那么这两个角不相等D.如果两个角不相等,那么这两个角不是对顶角2.将34.945取近似数精确到十分位,正确的是()A.34.9B.35.0C.35D.35.053.若x=﹣1使某个分式无意义,则这个分式可以是()A.B.C.D.4.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A.B.C.D.5.若是二次根式,则a的值不可以是()A.4B.C.90D.﹣26.下列计算正确的是()A.4﹣3=1B.+=C.+=3D.3+2=5 7.实数5不能写成的形式是()A.B.C.D.8.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点9.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12B.12或15C.15D.15或1810.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.11.以直角三角形的三边为边向外作正方形,其中两个正方形的面积如图所示,则正方形A 的面积为()A.6B.36C.64D.812.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.713.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB 于点E,若PE=3,则两平行线AD与BC间的距离为()A.3B.4C.5D.614.如图,已知线段AB=20米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.5B.5或10C.10D.6或10二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.=.16.的平方根是.17.写出﹣和之间的所有整数.18.两个最简二次根式与相加得6,则a+b+c=.19.如图,AB=AC,∠C=36°,AC的垂直平分线MN交BC于点D,则∠DAB=.20.如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)计算:(1)3﹣2+;(2).22.(10分)如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等.23.(10分)老师所留的作业中有这样一个分式的计算题:,甲、乙两位同学完成的过程分别如下:甲同学:=第一步=第二步=第三步乙同学:=第一步=2x﹣2+x+5第二步=3x+3第三步老师发现这两位同学的解答都有错误:(1)甲同学的解答从第步开始出现错误;乙同学的解答从第步开始出现错误;(2)请重新写出完成此题的正确解答过程.24.(10分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)25.(10分)如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.26.(10分)已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.2020-2021学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.“对顶角相等”的逆命题是()A.如果两个角是对顶角,那么这两个角相等B.如果两个角相等,那么这两个角是对顶角C.如果两个角不是对顶角,那么这两个角不相等D.如果两个角不相等,那么这两个角不是对顶角【分析】把命题的题设和结论互换即可得到逆命题.【解答】解:命题“对顶角相等”的逆命题是“如果两个角相等,那么它们是对顶角”故选:B.2.将34.945取近似数精确到十分位,正确的是()A.34.9B.35.0C.35D.35.05【分析】把百分位上的数字4进行四舍五入即可得出答案.【解答】解:34.945取近似数精确到十分位是34.9;故选:A.3.若x=﹣1使某个分式无意义,则这个分式可以是()A.B.C.D.【分析】根据分式无意义的条件进行分析即可.【解答】解:A、当x=﹣时,分式无意义,故此选项不合题意;B、x=﹣1时,分式无意义,故此选项符合题意;C、当x=1时,分式无意义,故此选项不合题意;D、当x=﹣时,分式无意义,故此选项不合题意;故选:B.4.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项图形分析判断后即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.5.若是二次根式,则a的值不可以是()A.4B.C.90D.﹣2【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵是二次根式,∴a≥0,故a的值不可以是﹣2.故选:D.6.下列计算正确的是()A.4﹣3=1B.+=C.+=3D.3+2=5【分析】根据二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变进行计算即可.【解答】解:A、4﹣3=,故原题计算错误;B、和不能合并,故原题计算错误;C、+=+2=3,故原题计算正确;D、3和2不能合并,故原题计算错误;故选:C.7.实数5不能写成的形式是()A.B.C.D.【分析】根据二次根式的性质计算,判断即可.【解答】解:A、=5,B、=5,C、()2=5,D、﹣=﹣5,故选:D.8.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点【分析】由于角平分线上的点到角的两边的距离相等,而已知一点到△ABC的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.【解答】解:∵到△ABC的三条边距离相等,∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点.故选:B.9.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12B.12或15C.15D.15或18【分析】由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的周长的定义计算即可求解.【解答】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选:C.10.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【解答】解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.11.以直角三角形的三边为边向外作正方形,其中两个正方形的面积如图所示,则正方形A 的面积为()A.6B.36C.64D.8【分析】根据正方形可以计算斜边和一条直角边,则另一条直角边根据勾股定理就可以计算出来.【解答】解:如图,∵∠CBD=90°,CD2=14,BC2=8,∴BD2=CD2﹣BC2=6,∴正方形A的面积为6,故选:A.12.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.13.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB 于点E,若PE=3,则两平行线AD与BC间的距离为()A.3B.4C.5D.6【分析】过点P作PF⊥AD于F,作PG⊥BC于G,根据角平分线上的点到角的两边距离相等可得PF=PE,PG=PE,再根据平行线之间的距离的定义判断出EG的长即为AD、BC间的距离.【解答】解:如图,过点P作PF⊥AD于F,作PG⊥BC于G,∵AP是∠BAD的平分线,PE⊥AB,∴PF=PE,同理可得PG=PE,∵AD∥BC,∴点F、P、G三点共线,∴FG的长即为AD、BC间的距离,∴平行线AD与BC间的距离为3+3=6,故选:D.14.如图,已知线段AB=20米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.5B.5或10C.10D.6或10【分析】分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.【解答】解:当△APC≌△BQP时,AP=BQ,即20﹣x=3x,解得:x=5;当△APC≌△BPQ时,AP=BP=AB=10米,此时所用时间x为10秒,AC=BQ=30米,不合题意,舍去;综上,出发5秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:A.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.=2.【分析】如果一个正数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:216.的平方根是±.【分析】先把带分数化为假分数,再根据平方根的定义解答.【解答】解:∵2==(±)2,∴2的平方根是±.故答案为:±.17.写出﹣和之间的所有整数﹣1,0,1.【分析】先估算出的取值范围,再找出符合条件的整数即可.【解答】解:∵1<3<4,∴,∴,,∴﹣和之间的所有整数有﹣1,0,1.故答案为:﹣1,0,1.18.两个最简二次根式与相加得6,则a+b+c=11.【分析】两个最简二次根式可以合并,说明它们是同类二次根式,根据合并的结果即可得出答案.【解答】解:由题意得,与是同类二次根式,∵与相加得6,∴a+c=6,b=5,则a+b+c=11.故答案为:11.19.如图,AB=AC,∠C=36°,AC的垂直平分线MN交BC于点D,则∠DAB=72°.【分析】根据等腰三角形的性质得到∠B=∠C=36°,由线段垂直平分线的性质得到CD =AD,得到∠CAD=∠C=36°,根据外角的性质得到∠ADB=∠C+∠CAD=72°,根据三角形的内角和即可得到结论.【解答】解:∵AB=AC,∠C=36°,∴∠B=∠C=36°,∵AC的垂直平分线MN交BC于点D,∴CD=AD,∴∠CAD=∠C=36°,∴∠DAB=180°﹣∠C﹣∠CAD﹣∠B=72°,故答案为:72°20.如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为2.【分析】AB=AC=BC=CD,即可求出∠BAD=90°,∠D=30°,解直角三角形即可求得.【解答】解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)计算:(1)3﹣2+;(2).【分析】(1)直接利用二次根式的加减运算法则化简,进而计算得出答案;(2)直接利用二次根式的混合运算法则化简,进而计算得出答案.【解答】解:(1)原式=6﹣8+2=﹣2+2;(2)原式=×+×=1+9=10.22.(10分)如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等.【分析】利用角平分线的作法作出角平分线,再作出线段CD垂直平分线进而得出P点即可.【解答】解:如图所示:P点即为所求.23.(10分)老师所留的作业中有这样一个分式的计算题:,甲、乙两位同学完成的过程分别如下:甲同学:=第一步=第二步=第三步乙同学:=第一步=2x﹣2+x+5第二步=3x+3第三步老师发现这两位同学的解答都有错误:(1)甲同学的解答从第一步开始出现错误;乙同学的解答从第二步开始出现错误;(2)请重新写出完成此题的正确解答过程.【分析】(1)甲第一步通分错误;乙第二步分母丢掉,所以错误;(2)根据分式的混合运算顺序和运算法则化简可得.【解答】解:(1)甲同学的解答从第一步开始出现错误;乙同学的解答从第二步开始出现错误故答案为:一、二;(2)原式====.24.(10分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【分析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.【解答】解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.25.(10分)如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.【分析】(1)依据线段垂直平分线的性质,即可得到△CDE的周长=CD+DE+CE=AD+DE+BE=AB;(2)依据AD=CD,BE=CE,即可得到∠A=∠ACD,∠B=∠BCE,再根据三角形内角和定理,即可得到∠A+∠B=55°,进而得到∠ACD+∠BCE=55°,再根据∠DCE=∠ACB﹣(∠ACD+∠BCE)进行计算即可.【解答】解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.26.(10分)已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.【分析】(1)连接CE,由平行线的性质,结合条件可证明△ADC≌△BCE,可证明CD =CE;(2)由(1)中的全等可得∠CDE=∠CED,∠ACD=∠BEC,可证明∠BFE=∠BEF,可证明△BEF为等腰三角形.【解答】(1)证明:如图,连接CE,∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中∴△ADC≌△BCE(SAS),∴CD=CE;(2)解:△BEF为等腰三角形,证明如下:由(1)可知CD=CE,∴∠CDE=∠CED,由(1)可知△ADC≌△BEC,∴∠ACD=∠BEC,∴∠CDE+∠ACD=∠CED+∠BEC,即∠BFE=∠BED,∴BE=BF,∴△BEF是等腰三角形.。
八年级上册秦皇岛数学期末试卷测试卷(含答案解析)
八年级上册秦皇岛数学期末试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC 所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD 的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.2.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF 与△BDE 中BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CDF ≌△BDE (SAS )∴DE=DF(3)如图:过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,∵AD=BD ,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN ≌△BDM (AAS )∴DN=DM当S △ADF =2S △BDE .∴12×AF×DN=2×12×BE×DM ∴|4-3x|=2x ∴x 1=4,x 2=45综上所述:x=45或4 【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.3.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E与点A重合时,请说明线段BF DC=;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG ,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,∴+=+==BF CD BF BG GF AE=-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.4.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,△BPN,并连接BM,AN.(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交∠=︒,因此有BM⊥AN;AN于点C,得出MCN90(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.5.在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM与△OQN全等【解析】【分析】(1)根据OA=OE即可解决问题.(2)根据ASA证明三角形全等即可解决问题.(2)设运动的时间为t秒,分三种情况讨论:当点P、Q分别在y轴、x轴上时;当点P、Q都在y轴上时;当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时;列方程即可得到结论.【详解】(1)∵A(0,5),∴OE=OA=5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t=174(秒),③当点P在x轴上,Q在y轴上时,若二者都没有提前停止,则PO=QO得:t﹣5=3t﹣12,解得t=72(秒)不合题意;当点Q运动到点E提前停止时,有t﹣5=5,解得t=10(秒),综上所述:当两动点运动时间为72、174、10秒时,△OPM与△OQN全等.【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.二、八年级数学轴对称解答题压轴题(难)6.如图,在△ABC中,AB=BC=AC=20 cm.动点P,Q分别从A,B两点同时出发,沿三角形的边匀速运动.已知点P,点Q的速度都是2 cm/s,当点P第一次到达B点时,P,Q两点同时停止运动.设点P的运动时间为t(s).(1)∠A=______度;(2)当0<t<10,且△APQ为直角三角形时,求t的值;(3)当△APQ为等边三角形时,直接写出t的值.【答案】(1)60;(2)103或203;(3)5或20【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP时,△APQ为等边三角形;②当P于B重合,Q与C重合时,△APQ为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°. ∴QA=2PA . 即2022 2.t t -=⨯ 解得 10.3t =当∠AQP=90°时,∠APQ=90°-60°=30°. ∴PA=2QA . 即2(202)2.t t -= 解得 20.3t =∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t ∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形 ∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20 综上,当△APQ 为等边三角形时,t=5或20. 【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.7.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求ANBN的值.(2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BEBC-的值.【答案】(1)3;(2)见解析;(3)32. 【解析】 【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得. 【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点 ∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒ ∴30BAM ∠=︒,90AMB ∠=︒ ∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN ∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠ ∴在Rt BNM ∆中,2BM BN = 在Rt ABM ∆中,2AB BM = ∴24AB AN BN BM BN =+== ∴3AN BN =即3ANBN=. (2)如下图:过点M 作ME ∥BC 交AC 于E ∴∠CME=∠MCB ,∠AEM=∠ACB ∵ABC ∆是等边三角形 ∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB ∠=∠=︒,120MBN =︒∠ ∴120CEM MBN ∠==︒∠,60AEM A ∠=∠=︒ ∴AM=ME∵MNB MCB ∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP∆是等边三角形,120EMP FCP==︒∠∠∴AP MP AM==∵P点是AC的中点∴111222AP PC MP AM AC AB BC======∴12AM MB AB==在EMP∆与FCP∆中EMP FCPAEP PFCMP PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS∆∆≌∴ME FC=∴1322 BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+=∴3322BCBF BEBC BC-==.【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.8.如图,在平面直角坐标系中,点B坐标为()6,0-,点A是y轴正半轴上一点,且10AB=,点P是x轴上位于点B右侧的一个动点,设点P的坐标为()0m,.(1)点A的坐标为___________;(2)当ABP△是等腰三角形时,求P点的坐标;(3)如图2,过点P作PE AB⊥交线段AB于点E,连接OE,若点A关于直线OE的对称点为A',当点A'恰好落在直线PE上时,BE=_____________.(直接写出答案)【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫⎪⎝⎭;(3)425【解析】【分析】(1)根据勾股定理可以求出AO的长,则可得出A 的坐标;(2)分三种情况讨论等腰三角形的情况,得出点P的坐标;(3)根据PE AB⊥,点A'在直线PE上,得到EAG OPG,利用点A,A'关于直线OE对称点,根据对称性,可证'OPG EAO,可得'8OP OA,82AP,设BE x=,则有6AE x,根据勾股定理,有:22222BP BE EP AP AE解之即可.【详解】解:(1)∵点B坐标为6,0,点A是y轴正半轴上一点,且10AB=,∴ABO是直角三角形,根据勾股定理有:22221068AO AB BO,∴点A的坐标为()0,8;(2)∵ABP△是等腰三角形,当BP AB时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x =∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGAOGP∴EAGOPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA∴'FAO FAO,'FAE FAE∴'EAGEAO则有:'OPG EAO∴'AOP 是等腰三角形,则有'8OP OA ,∴22228882APAO OP ,设BE x ,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE 即:2222688210x x解之得:425BE x【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.9.如图1,在△ABC 中,∠ACB =90°,AC =12BC ,点D 为BC 的中点,AB =DE ,BE ∥AC . (1)求证:△ABC ≌△DEB ; (2)连结AD 、AE 、CE ,如图2. ①求证:CE 是∠ACB 的角平分线;②请判断△ABE 是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE 是等腰三角形,理由详见解析. 【解析】 【分析】(1)由AC//BE ,∠ACB=90°可得∠DBE=90°,由AC=12BC ,D 是BC 中点可得AC=BD ,利用HL 即可证明△ABC ≌△DEB ;(2)①由(1)得BE=BC ,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS 可证明△ACE ≌△DCE ,可得AE=DE ,由AB=DE 可得AE=AB 即可证明△ABE 是等腰三角形. 【详解】(1)∵∠ACB=90°,BE ∥AC ∴∠CBE=90°∴△ABC 和△DEB 都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.10.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N . 【答案】(1)见详解;(2)见详解. 【解析】 【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可. 【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示: (2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b )2+(b-c )2+(c-a )2] =12(a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2) =12×(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac ,故a 2+b 2+c 2-ab-bc-ac=12[(a-b )2+(b-c )2+(c-a )2]正确; (2)20182+20192+20202-2018×2019-2019×2020-2018×2020 =12×[(2018-2019)2+(2019-2020)2+(2020-2018)2] =12×(1+1+4) =12×6 =3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.12.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.【答案】(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.13.观察以下等式:(x+1)(x 2-x+1)=x 3+1(x+3)(x 2-3x+9)=x 3+27(x+6)(x 2-6x+36)=x 3+216...... ......(1)按以上等式的规律,填空:(a+b )(___________________)=a 3+b 3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)【答案】(1)a2-ab+b2;(2)详见解析;(3)2y3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b)(a2-ab+b2)=a3+b3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.【详解】(1)(a+b)(a2-ab+b2)=a3+b3;(2)(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3;(3)(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)=x3+y3-(x3-y3)=2y3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.14.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).【答案】(1)提公因式,两次;(2)2004次,(x+1)2005;(3) (x+1)1n【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,=(1+x)[1+x+x(1+x)+…+ x(x+1)2003]⋯=22003(1)(1)(1)(1)(1)x x x x x +++++个=(1+x )2005,故分解1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x (x+1)+x (x+1)2…+x (x+1)n (n 为正整数)的结果是:(x+1)n+1. 故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.15.观察:22213-=;2222432110-+-=;22222265432121-+-+-=. 探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)【答案】(1)36;(2)83n -;(3)210π【解析】【分析】(1)根据已知条件,直接结算可得;(2)根据观察可得规律:结果就是底数和;其实是运用平方差公式得到;(3)根据题意列出式子,()()()()()22222222222019181716154321ππππππππππ-+-+-++-+-,再根据上面规律简便运算.【详解】(1)2222222287654321-+-+-+-=15+21=36;(2)222222(2)(21)(22)(23)21n n n n --+---+-=[][][][]()()2(21)2(21)(22)(23)(22)(23)2121n n n n n n n n +-•--+-+-•---++•-2(21)(22)(23)21n n n n =+-+-+-++=83n -;(3)由题意可得阴影面积是:()()()()()22222222222019181716154321ππππππππππ-+-+-++-+- =2019181716154321ππππππππππ++++++++++ =()1202012π⨯⨯+ =210π【点睛】 考核知识点:因式分解在运算中的应用.观察并找出规律,利用平方差公式分析问题是关键.四、八年级数学分式解答题压轴题(难)16.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造,后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少【解析】【分析】(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠,∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22s t a b=+, ∴22()22()a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,,∴()20a b ->, ∴202a b S S ab a b+->+,即:12t t >, ∴方案二所用的时间少.【点睛】 本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.17.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽 新能源 EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续 航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费, 并求出与燃油车相同里程下的所需费用(油电)百分比.【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%【解析】【分析】(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.【详解】解:(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:300x :3000.6x+ =4:1, 解得:x=0.2, ∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.(2)依题可得新能源汽车400公里所需费用为:0.48×55=26.4(元),∴新能源汽车每公里所需电电费为:26.4÷400=0.066(元/公里),依题可得燃油汽车400公里所需费用为:400×0.8=320(元),∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:26.4÷320=0.0825=8.25%.答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.【点睛】本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.18.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:48728x x=+,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y 元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y 的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.19.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价25%后的售价为1.25元,则该商品在甲商场的原价为 元;(2)乙商场定价有两种方案:方案①将该商品提价20%;方案②将该商品提价1元。
河北省秦皇岛市卢龙2019-2020学年八年级上期末数学试卷(附详细答案)
2019-2020学年河北省秦皇岛市卢龙县八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下图中的轴对称图形有()A. (1),(2)B. (1),(4)C. (2),(3)D. (3),(4)2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根B. 1根C. 2根D. 3根3.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. AB=ACB. DB=DCC. ∠ADB=∠ADCD. ∠B=∠C4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180°B. 220°C. 240°D. 300°5.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A. (x+a)(x+a)B. x2+a2+2axC. (x-a)(x-a)D. (x+a)a+(x+a)x6.下列各式:①a0=1;②a2•a3=a5;③2-2=-1;④-(3-5)+(-2)4÷8×(-1)=0;⑤x2+x2=2x2,4其中正确的是()A. ①②③B. ①③⑤C. ②③④D. ②④⑤7.下列各选项中,所求的最简公分母错误的是()A. 13x 与16x的最简公分母是6xB. 13a2b3与13a2b3c最简公分母是3a2b3cC. 1a(x−y)与1b(y−x)的最简公分母是ab(x-y)(y-x)D. 1m+n 与1m−n的最简公分母是m2-n28.如果|x|−2x2−x−6=0,则x等于()A. ±2B. -2C. 2D. 39.化简x2x−1+x1−x的结果是()A. x+1B. x-1C. -xD. x10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A. 8x +15=82.5xB. 8x=82.5x+15 C. 8x+14=82.5xD. 8x=82.5x+14二、填空题(本大题共10小题,共30.0分)11.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=______度.12.若等腰三角形的周长为26cm,一边为11cm,则腰长为______.13.分解因式:x3-4x2-12x=______.14.已知当x=2时,分式x+a2x−b的值为0;当x=1时,分式无意义.则a-b=______.15.当n为奇数时,(-a2)n+(-a n)2=______16.化简:m2−4mn+4n2m2−4n2=______.17.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值为______.18.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为______.19.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.20. 已知n >1,M =n n−1,N =n−1n ,P =n n+1,则M 、N 、P 的大小关系为______.三、计算题(本大题共2小题,共20.0分) 21. 先化简(1x−1−1x+1)÷x2x 2−2,然后从不等式组{−12x <13x+14−2x−13<56的整数解中选取一个你认为合适的数作为x 的值代入求值.22. 某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?四、解答题(本大题共4小题,共40.0分)23. 解方程:x x−2-1=8x 2−4.24. 先化简,再求值:5(3a 2b ﹣ab 2)﹣3(ab 2+5a 2b ),其中a =13,b =﹣12.。
河北省秦皇岛市卢龙县2019-2020学年八年级上学期期末考试数学试题
2019—2020学年度第一学期期末质量检测八年级数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列式子是分式的是()A.2xB.2xC.xπD.2x y+2.近似数0.13是精确到()A. 十分位B. 百分位C. 千分位D. 百位3.下列四张扑克牌中,左旋转180°后还是和原来一样的是()A B. C. D.4.在33⨯的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A. B. C. D.5.16的平方根与-8的立方根之和是()A. 0B. -4C. 0或-4D. 46.在代数式1x-3和x-3中,x均可以取的值为()A. 9B. 3C. 0D. -2题号选择题填空题21 22 23 24 25 26 总分得分7.如果把分式3a-w6b中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W可以是()A. 1B. 12b C. ab D. a28.下列各分式中,最简分式是()A.()()37x yx y-+B.22m nm n-+C.2222a ba b ab-+D.22222x yx xy y--+9.下列各式:①33+3=63;②177=1;③2+6=8=22;④243=22;其中错误的有().A. 3个B. 2个C. 1个D. 0个10.一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时.A. 11a b+ B.1abC.1a b+D.aba b+11.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A. a=7,b=24,c=25B. a=5,b=13,c=12C. a=1,b=2,c=3D. a=30,b=40,c=5012.已知等腰三角形的一边长为2,周长为8,那么它的腰长为 ( )A. 2B. 3C. 2或3D. 不能确定13.如图,在正方形网格中,网格线的交点称为格点.已知A,B是两格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合题意的点C有()A. 6个B. 7个C. 8个D. 9个14.如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为()A. 1B. 3 2C. 2D. 5 2二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.-5的绝对值是___________.16.直角三角形两直角边长为5和12,则它斜边上的高为________.17.已知a2-2ab+b2=6,则a-b=____________.18.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD的周长=________.18题图 19题图19.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为________.20.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为____________.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(本题满分18分,共3个小题,每小题6分)按下列要求解题 .(1) 计算:312-248+8(2)(3) 计算:a-1a2-4a+4÷a2-1a2-422.(本题满分6分)如图,以为圆心,以为半径画弧交数轴于点.(1)求数轴上点所表示的数;(2)比较点所表示的数与 -2.5的大小.23.(本题满分6分)某小区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹.)24. (本题满分10分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D点在∠BAC的平分线上.25. (本题满分10分)为了提升阅读速度,某中学开设了高效阅读课.小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小静现在每分钟阅读的字数.26.(本题满分10分)如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明.8年级数学答案1.B2.B3.C4.D5.C6.A7.B8.A9.A 10.D 11.C 12.B 13.C 14.B15. 5 16. 601317. 6±18.10 19.10 20.60︒或120︒21.(1)原式=3×2-2×4+2=6-8+2………………………………………………. 3分=-2+2…………………………………………………….6分(2)原式5222263-=-……………………………………………..3分626=-………………………………………………………5分6=-……………………………………………………………..6分(3)原式=a-1(a-2)2·(a+2)(a-2)(a+1)(a-1)………………………3分=a+2(a-2)(a+1)…………………………..6分22.解:(1)由题意得:OB=OA==,……………… 3分点所表示的数为-,…………………………………………4分(2)->-2.5……………………………………………………6分23.作AB的垂直平分线,…………………………………………3分以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可……………6分24.证明:∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,………………………………………1分在△BDE和△CDF中,,………………………………………4分∴△BDE≌△CDF (AAS ),………………………………………6分 ∴DE=DF,…………………………………………………………7分 又∵CE⊥AB,BF⊥AC,…………………………………………8分 ∴D 在∠BAC 的平分线上. ……………………………………10分 25.解:设小静原来每分钟阅读的字数是x ,…………………1分由题意,得3500x =91002x +300,……………………………………5分解得x =500,………………………………………………………7分经检验x =500是原方程的解且符合题意,………………………8分 2×500+300=1300………………………………………………….9分 答:小静现在每分钟阅读的字数是1300字.……………………10分 26.(1)∵∴……………………………………1分 又∵∴……………………………………………………………2分在△ABD 和△ACE 中……………………………………………………………4分∴△ABD ≌△ACE ;……………………………………………………5分 (2)…………………………………………6分(只写结论给1分)理由如下: 连接FE , ∵∴由(1)知△ABD≌△ACE∴,∴………………………7分∴∴………………………………………………8分∵AF 平分∴在△DAF和△EAF中∴△DAF≌△EAF…………………………………………………9分∴. …………………………………………………10分∴;八年级数学试卷第5页(共8页)。
秦皇岛市2020年八年级上学期数学期末考试试卷(II)卷
秦皇岛市2020年八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列四组数中,其中有一组与其他三组规律不同,这一组是()A . 3,4,5B . 6,8,10C . 5,12,13D . 4,5,72. (2分)的值为()A . ±2B . 2C . -2D . 不存在3. (2分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332那么这些运动员跳高成绩的众数和中位数分别是()A . 3,2.5B . 1.65,1.65C . 1.65,1.70D . 1.65,1.754. (2分)(2020·温州模拟) 已知点A(m,-3)与点B(-4,n)关于x轴对称,则m+n的值为()A . 1B . -1C . 7D . -75. (2分) (2017八上·杭州月考) 如图,N,C,A 三点在同一直线上,在△ ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠B CM:∠BCN 等于()A . 1:2B . 1:3C . 2:3D . 1:46. (2分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得关于x,y的二元一次方程组的解是()A .B .C .D .7. (2分)(2017·本溪模拟) 若实数a,b满足ab<0,且a<b,则函数y=ax+b的图象可能是()A .B .C .D .8. (2分) (2016八上·开江期末) 下列语句是真命题的是()A . 过一点有且只有一条直线与已知直线平行B . 在直线l上截取一条线段AB,使AB=3cmC . 在同一坐标系内,直线y=2x+3与直线y=x+3平行D . 三角形的一个外角大于任意一个内角9. (2分)如图,已知AB∥CD,CE、AE分别平分、,则= ()A .B .C .D .10. (2分)下列函数中,图象经过原点的为()A . y=5x+1B . y=-5x-1C . y=-D . y=二、填空题 (共8题;共10分)11. (1分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是________.12. (1分) (2019八上·辽阳期中) 一个正数的两个平方根分别是2m﹣6和3+m,则(﹣m)2的值为________.13. (1分)如果是方程组的解,那么2a﹣b=________.14. (1分)(2019·下城模拟) 如图,若,则∠1的度数为________.15. (1分)在草稿纸上计算:① ;② ;③ ;④ ,观察你计算的结果,用你发现的规律直接写出下面式子的值: =________.16. (1分) (2018八下·集贤期末) 在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶7.5米、10米,则10秒后两车相距________米;17. (1分)(2020·长沙模拟) 《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛=________斛米.(注:斛是古代一种容量单位)18. (3分)如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)加油过程中的常量是________ ,变量是________ ;(2)请用合适的方式表示加油过程中变量之间的关系________三、解答题 (共6题;共61分)19. (10分) (2017七下·兰陵期末) 综合题。
河北省秦皇岛市2020版八年级上学期数学期末考试试卷(II)卷
河北省秦皇岛市2020版八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020七下·涿鹿期中) 下列说法正确的是().A . 若,则x=2B . 9的平方根是3C . -27的立方根是-9D .2. (2分)若(x-2)2与|5+y|互为相反数,则yx 的值()A . 2B . -10C . 10D . 253. (2分)下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2 ,计算结果为负数的个数有()A . 4个B . 3个C . 2个D . 1个4. (2分) (2017八上·沂水期末) 下列计算正确的是()A . (x+y)2=x2+y2B . (x﹣y)2=x2﹣2xy﹣y2C . (x+1)(x﹣1)=x2﹣1D . (x﹣1)2=x2﹣15. (2分) (2018八上·确山期末) 长和宽分别为a,b的长方形的周长为14,面积为10,则a2b+ab2的值为()A . 24B . 35C . 70D . 1406. (2分) (2020八下·迁西期末) 有下列调查:其中不适合普查而适合抽样调查的是()①了解地里西瓜的成熟程度;②了解某班学生完成 20 道素质测评选择题的通过率;③了解一批导弹的杀伤范围;④了解迁西县中学生睡眠情况.A . ①②③B . ①②④C . ①③④D . .②③④7. (2分) (2020八下·和平期末) 如图,在矩形中,对角线,交于点,以下说法错误的是()A .B .C .D .8. (2分) (2020八上·青龙期末) 以直角三角形的三边为边做正方形,三个正方形的面积如图,正方形A 的面积为()A . 6B . 36C . 64D . 89. (2分)若已知CD是Rt△ABC斜边AB上的高,AC=8,BC=6,则cos∠BCD的值是()A .B .C .D .10. (2分)若直角三角形两直角边长分别为5,12,则斜边上的高为()A . 6B . 8C .D .11. (2分) (2017八上·独山期中) 如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A . 40°B . 30°C . 20°D . 10°12. (2分) (2018九下·嘉兴竞赛) 如图,l1∥l2∥l3∥l4∥l5∥l6,每相邻两条直线之间的距离为1,点A,B,C分别在直线“l1,l3,l6上,AB交l2于点D,BC交l4于点E,CA交l2于点F.若△DEF的面积为2,则△ABC的面积为()A . 8B . 9C . 10D . 12二、填空题 (共6题;共6分)13. (1分) (2019八上·阜新月考) 设的整数部分是m,小数部分是n,则n2﹣2m﹣1的值为________.14. (1分) (2016九下·农安期中) 在一次植树活动中,某班共有a名男生每人植树3棵,共有b名女生每人植树2棵,则该班同学一共植树________棵.(用含a,b的代数式表示)15. (1分) (2019八上·宝鸡月考) 已知:如图,四边形ABCD中,AB=BC=1,CD= ,AD=1,且∠B=90°.则四边形ABCD的面积为________.(结果保留根号)16. (1分)如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为________17. (1分)为了解某学校学生一年中的课外阅读量,该校对800名学生采用随机抽样的方式进行了问卷调查,调查的结果分为四种情况:A、10本以下;B、10~15本;C、16~20本;D、20本以上.根据调查结果统计整理并制作了如图所示的两幅统计图表.各种情况人数统计频数分布表课外阅读情况A B C D频数20x y40(1)填空:x=________ ,y=________ ;(2)在扇形统计图中,C部分所对应的扇形的圆心角是________ 度;(3)根据抽样调查结果,请估计该校学生一年阅读课外书20本以上的学生人数________ .18. (1分) (2019八下·大石桥期中) 已知直角三角形的两条边长分别是6和10,那么这个三角形的第三条边的长为________.三、解答题 (共8题;共87分)19. (10分)(2017·南宁模拟) 计算:.20. (15分)“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.其中A地20张,B地40张,C地30张,D地10张.(1)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(2)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?21. (10分) (2020七下·大石桥期末)(1)(2)求的值:(3)解方程组(4)解不等式组并把解集在数轴上表示出来.22. (5分) (2018八上·佳木斯期中) 如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.23. (5分) (2019八下·博罗期中) 如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.24. (15分) (2020九上·潮南期末) 如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,且点E在线段AD上,若AF=4,∠F=60°.(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.25. (12分) (2015七下·深圳期中) 图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的阴影部分的正方形的边长等于多少?________(2)请用两种不同的方法求图b中阴影部分的面积.方法1:________(只列式,不化简)方法2:________(只列式,不化简)(3)观察图b你能写出下列三个代数式之间的等式关系吗?代数式:(m+n)2 ,(m﹣n)2 , mn.________(4)根据(2)题中的等量关系,解决如下问题:若a+b=8,ab=5.求(a﹣b)2 .26. (15分) (2020七上·抚州期末) 以直线上一点O为端点作射线,使,将一块直角三角板的直角顶点放在处,一边放在射线上,将直角三角板绕点O逆时针方向旋转直至边第一次重合在射线上停止.(1)如图1,边在射线上,则 ________;(2)如图2,若恰好平分,则 ________;(3)如图3,若,则 ________ ;(4)在旋转过程中,与始终保持的数量关系是________,并请说明理由.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共87分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、答案:21-4、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、答案:25-4、考点:解析:答案:26-1、答案:26-2、答案:26-3、答案:26-4、考点:解析:。
2019-2020年八年级数学上学期期末试题
河北省秦皇岛市卢龙县2016-2017学年八年级数学上学期期末试题10.在长方形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线间的函数图象大致为( ).A .B .C .D.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分) 11.计算:38-= . 12.计算:233(2)_________x xy ⋅-=.13.若函数y =4x +3-k 的图象经过原点,那么k = . 14.已知等腰三角形的两边长为2cm 、5cm ,则它的周长为 cm .15、已知点p(2,m)在函数y=2x-1的图象上,则点p 关于y 轴对称的点的坐标是 .16.若3=+y x ,1=xy ,则=+22y x ___________. 17.一次函数b kx y +=的图象如右图所示,则不等式0≤b kx +<5的解集为 .Py yy3 y2 318.一次函数y x a =-+与一次函数y x b =+的图像的交点坐标为(m ,8),则a b +=_____. 19.如图:函数y 1=21x-2和y=-3x+5交于点A (2,-1),当x 时y 1<y.第19题图20.某公用电话亭打电话时,需付电话费y图象表示为直线,小文打了8分钟付费 元.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分) 21. 计算:(本题满分12分,每小题各6分)(1))7)(5()1(2+-+-a a a a ; (2)22)5()5(y x y x +--;22.分解因式:(本题满分12分,每小题各6分)(1)223242ab b a a +-;(2)44y x -;23.(本题满分6分)将多项式241x +加上一个单项式后,使它能成为一个整式的完全平方。
则添加单项式的方法共有多少种?请写出所有的式子及演示过程.24.(本题满分10分)如图所示,折线表示小丽骑车离家的距离与时间的关系,小丽上午九时离开家,下午十五时到家,根据折线图所提供的信息,思考并回答下列问题: (1)小丽什么时间离家最远?离家最远距离是多少? (2)小丽一共休息了几次?各是从什么时间开始的?各休息多少时间?(3)小丽什么时刻离家的距离是15千米?(只需回答结果即可).25. (本题满分10分)如图所示,L1,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数关系图像,假设两种灯的使用寿命都是2000h,照明效果一样.(1)根据图像分别求出L1,L2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明500h,他买了一个白炽灯和一个节能灯,观察图像,用哪种灯照明最省钱?(简要说明理由即可).26.(本题满分10分)如图,已知BE⊥AD,CF⊥AD,且BE =CF . (1)请你判断AD 是△ABC 的中线还是角平分线?并证明你的结论. (2)在(1)的条件下,若AB =6,AC =4,请确定AD 的取值范围.八年级数学试题参考答案1.C 2.A 3.A 4.B 5.D 6.C 7. D 8. D 9.D 10.C11、2- 12、 -6 x 3y 313、3 14、12 15、(-2,3) 16.7 17.02x <≤ 18、16 19、 <2 20、2.221.(1))7)(5()1(2+-+-a a a a ; =a 3-a 2 +a 2+2a-35…………….3分D FACBE=a 3+2a-35……………………6分(2)22)5()5(y x y x +--;=(x-5y+x+5y)(x-5y-x-5y)…………3分 =-20xy ……………………………………6分 22.(1)223242ab b a a+-;=2a(a 2-2ab+b 2)………………………….3分 =2a(a-b)2…………………………………………………6分(2)44y x -;=(x 2+y 2)(x 2-y 2) ………………………….3分 = (x 2+y 2)(x+y)(x-y) …………………………6分23.解:添加的方法有5种,其演示的过程分别是 …………1分添加4x ,得4x 2+1+4x =(2x +1)2. …………2分添加-4x ,得4x 2+1-4x =(2x -1)2. ……………3分添加4x 4,得4x 2+1+4x 4=(2x 2+1)2. ……………4分添加-4x 2,得4x 2+1-4x 2=12. ……………5分添加-1,得4x 2+1-1=(2x )2. ……………6分24、(1)中午12点—13点离家最远,----------1分 最远距离是30cm 。
河北省秦皇岛市2019-2020学年数学八上期末模拟质量跟踪监视试题(2)
河北省秦皇岛市2019-2020学年数学八上期末模拟质量跟踪监视试题(2)一、选择题1.要使分式24a a +-有意义,则a 的取值范围是( ) A.4a > B.4a < C.4a ≠D.2a ≠- 2.我们八年级下册的数学课本厚度约为0.0085米,用科学记数法表示为( ) A .8.5×10﹣4米 B .0.85×10﹣3米C .8.5×10﹣3米D .8.5×103米 3.设a >b >0,a 2+b 2=4ab ,则a b a b +-的值为( )A.3 C.2 4.下列等式由左边到右边的变形中,属于因式分解的是( ) A.x 2+5x -1=x(x +5)-1B.x 2-4+3x =(x +2)(x -2)+xC.x 2-9=(x +3)(x -3)D.(x +2)(x -2)=x 2-4 5.下列运算正确的是( )A .-a 2·3a 3=-3a 6B .(-12a 3b)2=14a 5b 2C .a 5÷a 5=aD .33328y y x x ⎛⎫-=- ⎪⎝⎭ 6.下列计算中,正确的是( )A .a 2•a 4=a 8B .(a 2)4=a 6C .a 2+a 4=a 6D .a 6÷a 4=a 27.如图所示,将矩形纸片先沿虚线AB 按箭头方向向右对折,接着对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则展开后的图形是( )A. B. C. D.8.如图,在△ABC 中,AB =AC ,∠BAC =50°,∠BAC 的角平分线AF 与AB 的垂直平分线DF 交于点F ,连接CF ,BF ,则∠BCF 的度数为( )A .30°B .40°C .50°D .45°9.如图,矩形ABCD 中,AB=4,BC=8,P ,Q 分别是直线BC ,AB 上的两个动点,AE=2,△AEQ 沿EQ 翻折形成△FEQ ,连接PF ,PD ,则PF+PD 的最小值是().A.2B.8C.10D.210.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.AAS D.ASA11.下列判断正确的个数是( )(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个12.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=28,DE=4,AC=6,则AB的长是( )A.8B.10C.12D.不能确定13.一个多边形的内角和是7200,则这个多边形的边数是( )A.2 B.4 C.6 D.814.下列哪一种正多边形不能..铺满地面()A.正三边形B.正四边形C.正六边形D.正八边形15.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.E、G之间B.A、C之间C.G、H之间D.B、F之间二、填空题16.一个氧原子的直径为0.000000000148m,用科学记数法表示为_____m.17.如果a﹣b=5,ab=2,则代数式|a2﹣b2|的值为_____.【答案】18.如图,在△ABC 中,∠ACB =90°,∠A =30°,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,若AF =6,则BC 的长为_____.19.如图,把ABC ∆纸片沿DE 折叠,使点A 落在图中的'A 处,若29A ∠=︒,'90BDA ∠=︒,则'A EC ∠的大小为______.20.在同一平面内,将一副直角三角板ABC 和EDF 如图放置(∠C =60°,∠F =45°),其中直角顶点D 是BC 的中点,点A 在DE 上,则∠CGF =_____°.三、解答题21.关于x 的方程xx k x --=+-2321. (1)当3k =时,求该方程的解;(2)若方程有增根,求k 的值.22.化简:32223124ab b a b a -÷23.如图,将长方形ABCD 沿对角线AC 翻折,点B 落在点E 处,EC 交AD 于点F .(1)试说明:AEF CDF △≌△;(2)若4AB =,8BC =,3EF =,求图中阴影部分的面积.24.如图,在Rt ACB 中,90C =∠,BE 平分ABC ∠,ED 垂直平分AB 于点D ,若9AC =,求AE 的长.25.直线AB 、CD 相交于点O ,OE 平分∠BOD .OF ⊥CD ,垂足为O ,若∠EOF =54°.(1)求∠AOC 的度数;(2)作射线OG ⊥OE ,试求出∠AOG 的度数.【参考答案】***一、选择题16.48×10﹣10.17.无18.19.32°20.15°三、解答题21.(1)x=1;(2)k=1.22.23ab23.(1)详见解析;(2)10【解析】【分析】(1)根据矩形和折叠的性质可得E D ∠=∠,AE CD =即可求解;(2)根据全等三角形的性质可得3DF EF ==,再求出AD,CD,根据三角形的面积公式求解即可.【详解】解:(1)∵四边形ABCD 是长方形,∴AB CD =,90B D ∠=∠=︒,∵将长方形ABCD 沿对角线AC 翻折,点B 落在点E 处,∴E B ∠=∠,AB AE =,∴AE CD =,E D ∠=∠,在AEF 与CDF 中,AFE CFD E D AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF CDF AAS △≌△(); (2)根据(1)得:AEF CDF △≌△,3EF =∴3DF EF ==∵4AB =,8BC =,∴8AD BC ==,4CD AB == ∴阴影部分的面积1122ADC FDC S S AD DC FD DC =-=⋅-⋅△△1184341661022=⨯⨯-⨯⨯=-= ∴阴影部分的面积10【点睛】本题考查的是矩形,熟练掌握全等三角形和折叠的性质是解题的关键.24.AE 的长为6.【解析】【分析】根据角平分线的性质可得DE=CE ,根据垂直平分线可得AE=BE ,进而得到30A ABE CBE ∠=∠=∠=,设AE x =,则9DE CE x ==-,根据直角三角形30°角所对直角边为斜边的一半得到关于x 的方程,然后求解方程即可.【详解】解:设AE x =,则9CE x =-,BE 平分ABC ∠,CE CB ⊥,ED AB ⊥,9DE CE x ∴==-,又ED 垂直平分AB ,AE BE ∴=,A ABE CBE ∴∠=∠=∠,在Rt ACB 中,90A ABC ∠+∠=,30A ABE CBE ∴∠=∠=∠=,12DE AE ∴=,即192x x -=, 解得6x =.即AE的长为6.【点睛】本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.25.(1)72°(2)54°或126°。
河北省秦皇岛市2020年八年级上学期数学期末考试试卷(I)卷
河北省秦皇岛市2020年八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各运算中,正确的是()A . 3a+2a=5a2B . (-3a3)2=9a6C . a4÷a2=a3D . (a+2)2=a2+42. (2分) (2019八下·长沙开学考) 把 x - y - 2 y -1分解因式结果正确的是()A . (x + y +1)(x - y -1)B . (x + y -1)(x - y -1)C . (x + y -1)(x + y +1)D . (x - y +1)(x + y +1)3. (2分) (2017八上·高邑期末) 下列运算中正确的是()A .B .C .D .4. (2分)(2016·资阳) 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A . 7.6×B . 7.6×C . 7.6×D . 7.6×5. (2分)(2017·迁安模拟) 若分式□ 运算结果为x,则在“□”中添加的运算符号为()A . +B . ﹣C . +或×D . ﹣或÷6. (2分)通过尺规作图作一个角的平分线的理论依据是()A . SASB . SSSC . ASAD . AAS7. (2分)下列四边形中,两条对角线一定不相等的是()A . 正方形B . 矩形C . 等腰梯形D . 直角梯形8. (2分) (2018八上·信阳月考) 如图,把一个正方形经过上折、右折、下方折三次对折后沿虚线剪下,则所得图形是()A .B .C .D .9. (2分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A . 带①去B . 带②去C . 带③去D . 带①和②去10. (2分)一车间有甲、乙两个工作小组,甲组的工作效率比乙组高25%,因此甲组加工200个零件所用的时间比乙组加工180个零件所用的时间还少30分钟.若设乙组每小时加工x个零件,则可列方程()A . -=30B . -=C . -=30D . -=二、填空题 (共7题;共8分)11. (1分) (2019九上·沙坪坝期末) 计算:|-1|+()-1=________.12. (2分)(2017·黄冈模拟) 分式方程﹣ =1的解是________.13. (1分) (2019八上·朝阳期中) 如图,在ΔABC中,∠ABC=120°,点D、E分别在AC和AB上,且AE =ED=DB=BC,则∠A的度数为________°.14. (1分)(2018·正阳模拟) 如图,△ABC中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α=________°15. (1分) (2017九下·富顺期中) 给出下列命题:命题1:直线与双曲线有一个交点是(1,1);命题2:直线与双曲线有一个交点是( ,4);命题3:直线与双曲线有一个交点是( ,9);命题4:直线与双曲线有一个交点是( ,16);请你阅读、观察上面命题,得出命题n(n为正整数)为:________。
秦皇岛市2020版八年级上学期数学期末考试试卷C卷
秦皇岛市2020版八年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40°,对∠BOC=()A . 110°B . 120°C . 130°D . 140°2. (2分)下列命题中,正确的命题个数有()①平分一条弦的直径一定垂直于弦;②相等的两个圆心角所对的两条弧相等;③两个相似梯形的面积比是1:9,则它们的周长比是1:3;④在⊙O中,弦AB把圆周分成1∶5两部分,则弦AB所对的圆周角是30º;⑤正比例函数y=2x与反比例函数的图象交于第一、三象限;⑥△ABC中,AD为BC边上的高,若AD=1,BD=1,CD=,则∠BAC的度数为105°A . 1个B . 2个C . 3个D . 4个3. (2分) (2019八上·陕西月考) 如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()A . 3D . 64. (2分)(2019·滨州) 满足下列条件时,不是直角三角形的为().A .B .C .D .5. (2分)如图,在正方形中,顶点在坐标轴上,且,以为边构造菱形 .将菱形与正方形组成的图形绕点逆时针旋转,每次旋转,则第2020次旋转结束时,点的坐标为()A .B .C .D .6. (2分) (2019七下·重庆期中) 下列命题:垂直于同一直线的两条直线互相平行; 的平方根是; 若一个角的两边与另一个角的两边互相垂直,且其中一个角是45°,则另一个角为45°或135°;④若是的整数部分,是不等式的最大整数解,则关于,方程的自然数解共有3对;⑤在平面直角坐标系中,点A、B的坐标分别为(2,0),(0,1),将线段AB平移至,的位置,则 .其中真命题的个数是()C . 4D . 57. (2分)下列命题:①圆周角等于圆心角的一半;②是方程的解;③平行四边形既是中心对称图形又是轴对称图形;④的算术平方根是4。
河北省秦皇岛市2019-2020学年数学八上期末模拟质量跟踪监视试题(3)
河北省秦皇岛市2019-2020学年数学八上期末模拟质量跟踪监视试题(3)一、选择题1.如果分式22444x x x --+的值为0,则x 的值为( ) A .2-B .2C .2±D .不存在 2.化简2211444a a a a a --÷-+-,其结果是( ) A.22a a -+ B.22a a +- C.22a a +- D.22a a -+3.如果a b =+222a b a b a a b⎛⎫+-⋅ ⎪-⎝⎭的值为( )A B .C .D .4.下列计算正确的是( ) A .x 2+x 2=x 4 B .(x ﹣y)2=x 2﹣y 2 C .(﹣x)2•x 3=x 5D .(x 2y)3=x 6y 5.如果()()43x x +-是212x mx --的因式,那么m 是( )A .7B .7-C .1D .1- 6.下列运算中正确的是( ) A.2235a a a +=B.222(2)4a b a b +=+C.236236a a a ⋅=D.()()22224a b a b a b -+=- 7.若等腰直角三角形底边上的高为1,则它的周长是( )A .4B .1C .D .28.如图,矩形ABCD 中,AB=7,BC=4,按以下步骤作图:以点B 为圆心,适当长为半径画弧,交AB,BC 于点E,F;再分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧在∠ABC 内部相交于点H,作射线BH,交DC 于点G,则DG 的长为( )A .1B .112C .3D .2129.如图,已知ABD BAC ∠∠=,添加下列条件不能判断ABD ≌BAC 的条件是( )A .D C ∠∠=B .AD BC = C .BAD ABC ∠∠= D .BD AC =10.平面直角坐标系内的点A (1,﹣2)与点B (1,2)关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称11.到三角形三边距离相等的点是三角形( )的交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019—2020学年度第一学期期末质量检测
八年级数学试卷
一、精心选一选,慧眼识金!(本大题共14 小题,每小题3 分,共42 分,在每小
题给出的四个选项中只有一项是正确的)
1.下列式子是分式的是()
x 2
A. B.
2 x
x
C. D.
π
x +y
2
2.近似数0.13是精确到()
A. 十分位
B. 百分位
C. 千分位
D. 百位
3.下列四张扑克牌中,左旋转180°后还是和原来一样的是()
A B. C. D.
4.在3⨯3 的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()
A. B. C. D.
5. 16 的平方根与-8的立方根之和是()
A. 0
B. -4
C. 0或-4
D. 4
1
6.在代数式
x-3
和x-3 中,x均可以取的值为()
A. 9
B. 3
C. 0
D. -2
7.如果把分式
3a-w
6b 中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 可以是()1
A. 1
B. b
C. ab
D. a2
2
8.下列各分式中,最简分式是()
3(x -y) A.
7(x +y)
m2 -n2
B.
m +n
a2 -b2
C.
a2b +ab2
x2 -y2
D.
x2 - 2xy +y2 1
9.下列各式:①3 3 +3=6 3 ;②
7 7 =1;③ 2 + 6 = 8 =2 2 ;④
24
=2 2 ;其中错
3
误的有().
A. 3个
B. 2个
C. 1个
D. 0个
10.一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时.
A. 1
+
1
B.
1
C.
1
D.
ab a b ab a +b a +b
11.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()
A. a=7,b=24,c=25
B. a=5,b=13,c=12
C. a=1,b=2,c=3
D. a=30,b=40,c=50
12.已知等腰三角形的一边长为2,周长为8,那么它的腰长为( )
A. 2
B. 3
C. 2或3
D. 不能确定
13.如图,在正方形网格中,网格线的交点称为格点.已知A,B是两格点,若点C也是图中的格点,且使得△ABC 为等腰三角形,则符合题意的点C有()
A. 6个
B. 7个
C. 8个
D. 9个
14.如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为()
3
A. 1
B.
2
5
C. 2
D.
2
二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3 分,共18 分)
15.-5的绝对值是.
16.直角三角形两直角边长为5和12,则它斜边上的高为_ .
17.已知a2-2ab+b2=6,则a-b=_ .
18.如图,已知△ABC 中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长= .
18题图19题图
19.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_ .
20.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为_ _.
三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60 分)
21.(本题满分18分,共3个小题,每小题6分)按下列要求解题 .
(1) 计算: 3 12 -2 48 +8
2
(2)
(3) 计算:
a -1 a 2-4a +4 ÷a -1
a 2-4
22.(本题满分6分)如图,以为圆心,以为半径画弧交数轴于点.
(1)求数轴上点所表示的数;
(2)比较点所表示的数与-2.5的大小.
23.(本题满分6分)某小区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C 的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹.)
24. (本题满分10分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.
求证:D点在∠BAC的平分线上.
25. (本题满分10分)为了提升阅读速度,某中学开设了高效阅读课.小静经过2个月的训练,
发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500 字的文章所用的时间相同.求小静现在每分钟阅读的字数.
26.(本题满分10分)如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接
AD,过点A作AE⊥AD,并且始终保持AE=AD,连接
CE. (1)求证:△ABD≌△ACE;
(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明.
8年级数学答案
1.B
2.B
3.C
4.D
5.C
6.A
7.B
8.A
9.A 10.D 11.C 12.B 13.C 14.B
15. 5 16. 60
13
17. 6
± 18.10 19.10 20.60︒或120︒
21.(1)原式=3×2-2×4+2
=6-8+2………………………………………………. 3分=-2+2…………………………………………………….6分
(2)原式
5222
26
3
-
=-……………………………………………..3分
626
=-………………………………………………………5分6
=-……………………………………………………………..6分
(3)原式=
a-1
(a-2)2·
(a+2)(a-2)
(a+1)(a-1)………………………3分
=
a+2
(a-2)(a+1)……………………… …..6分
22.解:(1)由题意得:OB=OA==,……………… 3分点所表示的数为-,………………………………………… 4分(2)->-2.5……………………………………………………6分
23.作AB的垂直平分线, (3)
分
以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于
点M即可……………6分
24.证明:∵CE⊥AB,BF⊥AC,
∴∠BED=∠CFD=90°,………………………………………1分
在△BDE和△CDF中,
,………………………………………4分
∴△BDE≌△CDF(AAS),………………………………………6分∴DE=DF,…………………………………………………………7分又∵CE⊥AB,BF⊥AC,…………………………………………8分∴D在∠BAC的平分线上.……………………………………10分25.解:设小静原来每分钟阅读的字数是x,…………………1分
由题意,得3500
x=
9100
2x+300,……………………………………5分
解得x=500,………………………………………………………7分经检验x=500是原方程的解且符合题意,………………………8分2×500+300=1300………………………………………………….9分答:小静现在每分钟阅读的字数是1300字.……………………10分26.(1)∵
∴
……………………………………
1分
又∵
∴
(2)
分
在△ABD和△ACE中
……………………………………………………………4分
∴△ABD≌△ACE;……………………………………………………5分(2)…………………………………………6分(只写结论给1分)理由如下:
连接FE,∵
∴
由(1)知△ABD≌△ACE
∴,
∴………………………7分
∴
∴………………………………………………8分
∵AF平分
∴
在△DAF和△EAF中
∴△DAF≌△EAF…………………………………………………9分
∴. …………………………………………………10分
∴;
八年级数学试卷第11页(共8 页)。