第2章 双端网络的等效变换

合集下载

电路的等效变换

电路的等效变换

例4
5 10V 10V 6A
+ 5 U_
2A 6A
+ U_ 5∥5
U=20V
第二章 电路的等效变换
三、实际电压源与实际电流源的等效变换
I
I
+
Us - U
RS
R
Is
I1
+ U
RS
-
参考方向:
1、电流
源的电
U U S IRS IIS UISS / RISO I IS I1
第二章 电路的等效变换
电路原理
第二章 —电路的等效变换
第二章 电路的等效变换
第二章 电路的等效变换
重点
1. 电路等效的概念; 2. 电阻的串、并联、混联、 Y— 变换; 3. 电压源和电流源的等效变换。
第二章 电路的等效变换
第一节 二端网络等效变换的概念
一. 二端网络(单口网络)
任何一个复杂的电路, 向外引出两个 端钮,且从一个端子流入的电流等于从 另一端子流出的电流,则称这一电路为 二端网络 (或单口网络)。
电源中的电 流不确定。
º
特例
第二章 电路的等效变换
理想电压源与任意电路并联
I
+
+
+
uS _
任意 元件
uR _
uS_
对外等效!
I
+ uR _
第二章 电路的等效变换
二. 理想电流源的串联并联
并联
iS1
i s i s 1 i s 2 i s n i s k
ºiS
二. 二端网络等效的概念
i i
两个二端电路,当它们与同一外电路相接时,若端口的伏安关 系完全相同,则称它们对外电路是等效。

机器人学院电路理论课程2等效变换方法

机器人学院电路理论课程2等效变换方法

R1
R2 uS
的并联
A + u_S
B
+ uS _ R
A
B
uS uS1 uS2 R R1 R2
A + u_S
B
二.、理想电流源的串并联 并联: 可等效成一个理想电流源 i S( 注意参考方向).
iS1
iS2
º iSk
º iS
º
º
is isj , is is1 is2 isk

º
40
R
30
º
30
R = 30
8
§2 电阻网络的Y-转换(星-三角转换)
求简单二端网络的等效
内阻时,用串、并联的
方法即可求出。如下例:
A
R1
R2
C
D Rd
求某些二端网络的等效 内阻时,用串、并联的 方法则不行。如下图:
A
R1 C
R0
R2 D
RAB
R3
R4
B
Rd R1 // R2 R3 // R4
u
Req
_
_
(a) 各电阻两端分别接在一起,两端为同一电压 (KVL); (b) 总电流等于流过各并联电阻的电流之和 (KCL)。
i = i1+ i2+ …+ ik+ …+in
6
2. 等效电阻Req (电导)
1/Req= 1/R1+1/R2+…+1/Rn
Geq=G1+G2+…+Gn= Gk
3. 并联电阻的电流分配
is is=is2-is1
归纳:等效前后,送至外部的电压、电流不变

第2章_电路中等效的问题

第2章_电路中等效的问题
的功率。 • 解: 据KCL有:I2=I1+I1
据KVL有; US=R1I1+ R2I2 = (R1+R2+R2 ) I1 15= (5+2.5+2. 53) I1 解得:I1 =1A I2= 4A 电压源的功率: P1=-USI1 = -151 = - 15W(发出) 电阻R1的功率: P2=R1I12 = 51 = 5W(吸收) 电阻R2的功率: P3=R2I22 = 2.5 42= 40W(吸收) I1 R1
第一章重点内容回顾
电流与电压的参考方向 关联参考方向 关联参考方向与功率的关系 欧姆定律 基尔霍夫电流定律 基尔霍夫电压定律
1
第二章
2.1 2.2 2.3 2.4
电路中的等效
二端网络的端口等效 电源的等效变换 受控电源与二端网络输入电阻 电路的 Y — 等效变换
2
2.1
+
U
-
+ -
2I
-
1 I 2
+
12 6
U
-
U = 4I + 2I = 6I
注:受控源和独立源一样可以进行电源转换。
转换过程中注意不要丢失控制量。
27
法则8:当一端口电路中仅含受控电源和线 性电阻元件,且控制量与受控电源在同一 电路中时,该电路可以等效为一个电阻 (该电阻可能为负);
法则9:受控电源也可以进行等效变换,变 则变量转移。 注意:控制量不能丢
10
四、电阻的混联
• 要求:弄清楚串、并联的概念。 • 计算举例:
• 例. 求下图所示电路的入端电阻R。
40 40 40 R 30 30
R
30
30
R = (40∥40+30∥30∥30) = 30

二端网络的等效

二端网络的等效

A
3.
+
1
i1
B
1
+1
i2 i1=?=i2
3
1
_
1
21 _
A
5
1.7 二端网络的等效
a
N0
b
无源
R
a
N
b
有源
重点:
is
R
诺顿等效电路
R
+
us-
戴维南等效电路
1、网络的伏安关系及等效概念
2、等效电阻的求法
3、实际电源的等效变换 6
二端网络:对外只有两个端钮的网络整体 ,也称为单口网络。
二端网络端口上电压与电流的关系称为二 端网络的伏安关系。
(3)用戴维南定理求VCR
8
注意: 当外电路变时,该二端网络的
VCR不变,只有当网络内部的连接关 系变或参数变时,VCR才变。 例:1-5,1-6
9
1.7.2 二端网络的等效
1、等效二端网络的定义 定义 :如果一个二端网络N与另一个二端网
络N’具有完全相同的VCR,则N与N’是互为等 效的二端网络。
16
1.7.3 常用基本网络的等效
1. 电阻串、并联 串联等效
n
R R1 Rn Rk k 1
并联等效
1 1 + + 1 n 1
R R1
Rn k1 Rk

n
G=G1 Gn Gk
k 117
1.7.3 常用基本网络的等效
1、电阻串、并联
(1)电阻串联(电流相同)
R1 R2
等效电阻: +
is=1A
a

us=1V a
1A

1V 1Ω

《二端网络的等效》课件

《二端网络的等效》课件
03 在设计和分析二端网络时,需要特别关注内部元 件的性质,以确保网络的性能和稳定性。
网络的拓扑结构
01
二端网络的拓扑结构是指网络中元件的连接方式。
02
网络的拓扑结构必须相同或相近,才能认为两个网络
是等效的。
03
在实际应用中,可以采用电路分析软件等工具来分析
和比较网络的拓扑结构。
03 二端网络的等效电路
03
等效方法可能只适用于某些特定类型的元件,对于其他类型的
元件可能需要采用其他方法。
04 二端网络等效的应用
在电路分析中的应用
01 02
简化电路模型
在电路分析中,经常需要将复杂的电路模型等效为简单的模型,以便于 分析和计算。二端网络等效可以将复杂的电路结构简化为简单的二端网 络,大大简化了分析过程。
提高计算效率
通过二端网络等效,可以将复杂的电路计算简化为几个关键的参数计算 ,提高了计算效率,减少了计算量。
电容的等效电路
总结词
电容的等效电路是将不同电容的元件用 等效的方式表示,使得电路的分析和计 算更加简便。
VS
详细描述
在电容的等效电路中,通常将多个电容元 件组合在一起,形成一个等效电容。等效 电容的值等于各个电容元件的电容值之和 或之比。这种等效方法在分析含有电容元 件的交流电路时非常有用,可以简化电路 的结构,减少元件的数量,提高计算效率 。
02
在实际应用中,可以通过测量端口电压和电流来验证网络 的等效性。
03
端口电压和电流的测量可以采用电压表、电流表等测量仪 器进行。
内部元件的性质
01 二端网络内部的元件性质必须相同或相近,包括 电阻、电容、电感等元件的数值和类型。
02 如果内部元件性质不同,即使端口电压和电流相 等,两个网络也不能认为是等效的。

第二章 等效变换

第二章 等效变换

二、电阻的串并联等效变换 1、串联
电阻首尾相联,流过同一电流的连接方式,称为串联(图2-2a)
VCR:
u u1 u2 un R1i R2i Rni
( R1 R2 Rn )i
VCR:
u Reqi
即 若 干 电 阻 串 联 等 效 于 一 个 电 阻 , Req=R1+R2+···+Rn
2、引入“等效”概念:所谓等效,是指二端网络的端口伏安 关系特性相同。
1. N, N´互换不影响外接电路,即等效相对外电路而言 等效的 作用 2.简化外电路的分析计算 3.不含独立电源的一端口可用一电阻 Req 等效
求二端网络等效网络的过程叫做等效变换,等效变换是电路理论 中一个非常重要的概念,它是简化电路的常用方法
② 利用对称性求解
Rab 2 Rae 2 1 // 1.25 10 1.111 9
例6:
求图2-9a电路中电流 I1, I2, I3 , I4。
I
I2 I1
解: 思路
Δ→Y
Req
I
Rb
48 2, 同理, 求得 : R 2, R 1, Req (1 Rb ) //(5 Rd ) Rc 4 c d 4 48 1 Rb 18 I 1A, I 2 I I1 2 A I 3 A, 由分流公式, 可得: I1 1 Rb 5 Rd 2 Req U 5 I1 1 I 2 I 3 db 0.75 A, I 4 I1 I 3 1.75A 4 4
任何二端网络和电流源串联,从端口看,均等效作一个电流源。
5、 须注意的特殊情况
任意电路与电压源并联等效 任意电路与电流源串联等效

2.1 二端网络与等效

2.1 二端网络与等效

用C替代B后,A电路的任何电压、电流和功率都将维持 与原电路相同,则对A而言,C与B等效。
2.二端网络等效的条件
两个二端网络,若端口具有相同的电压、电流关系 (VCR),则称它们对外等效。
B
i
+ u -
VCR相同
C
i
+ u -
对A电路而言,B和C所起的作用完全相同。
B
A
C
A
明 (2)电路等效变换的对象 确
例:求图示无源单口网络的等效电阻。
6Ω U0/6 3I 12Ω U0/12 I
+ U0 外加电源
U0 则 Req I
解:由KCL得:
U0 U0 3I I 6 12
U0 16 I
U0 Req 16 I
二端网络与等效
中国计量学院现代科技学院 卢 飒 副教授
二端(单口)网络
具有两个端子与外部相连的电路。
i i
特点:从一个端子流入的电流 等于从另一端子流出的电流.
i
无 源 i 有 源
有源二端网络
无源二端网络
等效的概念
1.问题的提出 A 5Ω + 15V 20 Ω 20Ω 20Ω I 10Ω B A 5Ω + 15V 10 Ω I C
(3)电路等效变换的目的
(1)电路等效变换的条件
两电路具有相同的VCR 外电路 简化电路,方便计算
I1 +
10-U
5Ω 10V
I
20Ω
+ U -
等效
4Ω + 8V -
I
+ U -
-
U/20
10 U I1 5
根据KCL得: U 10 U U U I I1 2 20 5 20 4

电路理论分析-第2章

电路理论分析-第2章

R1
(R (R
R1) R1)
RA RA
400 0.5 R1 400 0.5
100 0.5 100
电路中的电流为
I U 500 5A 1.8A
R1 100
该电流超过了滑线变阻器的额定电流,在电气工程中是不允许的,
此时的输出电压几乎为零。
10
实例分析1
+ 火线 U_
A
C
零线
B
A点等效电路
R
4 1 1 3
1A
PR I 2 R 3W
U RI 3V
PUS 41 4W
内部
PIS IsU 4 3 12W
PRS I 2Rs 1W
PRS U 2Gs 9W
25
例2 求电压U3
i1 5Ω
2i1
+
6V
3Ω 3Ω
_
解:由于电路中的R3对电流i1无影 响,暂且将其短路;
R1 5 i1
所谓端口上伏安关系相同,即外特性相同,指的是当N1 和N2分别接上同一个外电路时,它们对应端电压相等,对 应端电流相等,相应的外电路的功率也相等,则N1和N2对 外部电路是等效的。
3
§2.1 不含独立源电路的等效变换
一.无源二端网络电阻的串联、并联和混联连接
电阻串联( Series Connection of Resistors )
uS _
º
º
+
+
+
uS1_
uS2_
uS us us1 us2
_
º
20
2. 理想电流源的串联并联
并联
is is1 is2 isn isk
iS1 iS2

电路分析-第2章 电路的等效变换

电路分析-第2章 电路的等效变换

R12 R 23 R31 R
则 Δ→Y 时:
1 R1 R2 R3 3 R
2. Y形变换成为Δ形的公式
R R R R R R R R R R R R R R R R R R1
2 12 31 12 23 12 23 12 23 23 31 3 12 23
(5 ) (6 )
2 3
2
R
3
P :P :P R :R :R
2
a
a
I + U R
(a)
(b)
总结:电阻串联
1、电流相同
2、等效电阻:R=Ri 3、分压公式:u Ri u i s Ri
R1 R2 Rn + un Rn+1
+
us
-
例2.1 有一量程为100mV, 内阻为1kΩ的电压表。 如欲将其改装成量程为 U1=1V , U2=10V 的电压表,试 问应采用什么措施?
根据并联电阻分流关系, 有

R I R R R I ( ) 10010 R R R R I 510 R 400 40 360 Ig
2 2 2 g 1 2 g g 1 2 3 2 1
6
(1600 400 ) 40
四、电阻混联
电阻混联:既有电阻串联,又有电阻并联等复杂电阻 电路。 求等效电阻:1、认清端子;2、有无明显的串并联, 有则合并,形成新的电路;3、重复1 、 2两步,逐步化简。
2
3
各并联电导所消耗的功率与该电导的大小成正比,即 与电阻成反比。
3. 两电阻并联时的等效电阻计算及分流公式
R
R 1 // R 2
此时分流公式为:
RR R R

二端网络的等效41页文档

二端网络的等效41页文档
二端网络的等效
电压源元件
伏安关系: u uus (t)
恒压源
o
i
u 符号
+ s_
us
u 实际电压源 + s-
R
电阻表示实际电
源的损耗
2
1.7 二端网络的等效
a
N0
b
无源
R
aห้องสมุดไป่ตู้
N
b
有源
重点:
is
R
诺顿等效电路
R
+
us-
戴维南等效电路
1、网络的伏安关系及等效概念
2、等效电阻的求法
3、实际电源的等效变换 7
2.电阻的混联
二端电阻混联网络简化的基本思路是:利用 电阻串联、并联等效电, 阻原理,逐步进行化简, 直到最简形式——单个电阻为止。 例如:



R6
R2R3 R2 R3

R8 R1R6
R7 R4R5
R R7R8 R7 R218
简化混联电路的难点在于,如何判定哪些电阻 是串联的,哪些电阻是并联的。这里介绍一种易 学的判定方法:第一步把两个端点整理成分在两 边(上与下,或左与右),第二步把电阻改画为 同方向排列,并让流过各电阻的电流为同一方向 (都是从上到下,或都是从左到右)。这种方法 简单叙述为:“端点分两边,电流顺向流”。
us= R is
(a) uiRuS
us= R is
(b) u i iS R iR iS R is= us / R
注意:1. R= 0 以及 R= 时转换不成立
2. 转换中注意电源极性
25
• 用两种模型进行等效变换时,应注意: • 1、理想电压源不能变换为理想电流源,理

第二节二端口网络的等效电路

第二节二端口网络的等效电路

第二节 二端口网络的等效电路任何复杂的无源线性二端口网络可以用一个等效阻抗来替代。

因为任何给定的无源线性二端口网络的外部特性都可用三个参数来确定,所以只要找到一个具有三个阻抗(或导纳)组成的简单二端口就可以。

如果这个二端口网络与给定的二端口网络的参数分别相等,则这两个二端口网络的外部特性也就完全相同,及他们是等效的。

有三个阻抗组成的二端口网络为Τ形电路,由导纳组成的二端口网络形成为П形电路。

如图6-2-1所示。

对于二端口网络内部含受控源则4个参数相互独立,它的等效电路我们只作简单分析。

一、Τ形二端口网络:若给定二端口网络的Z 参数,要确定此二端口网络的Τ形电路如图6-2-1(a )所示中的1Z 、2Z 、3Z 的值1121Z Z Z ⎡=⎢⎣ 1222Z Z ⎤⎥⎦(6-2-1) 1221Z Z =根据电路的互易性可知对于无源二端口网络,则Τ形电路的回路电流方程为:....111212....22122U Z I Z I I U Z I I Z I =+=+3(+)(+)(6-2-2)与(6-2-1)比较 整理的 ...1111211212()()U Z Z I Z I I=-++....2121222122()()U Z I I Z Z I =++-.即:11112Z Z Z =-、21221Z Z Z ==、32212Z Z Z =- (6-2-3) 等效电路如下图6-2-2所示。

Y 1Y 3Y 2(a ) (b )图6-2-1 二端网络的等效电路+ _.1U + _.2U ..I 图6-2-2二、П形二端口网络:若给定二端口网络的Y 参数可用П形二端口网络等效,要确定此二端口网络的П形二端口网络如图6-2-1(b )所示中的1Y 、2Y 、3Y 的值...1111122Y I Y U Y U =+参数描述 ...2211222I Y U Y U =+因为 1221Y Y =,按求Τ形网络等效电路的方法可得....1111211212()()I Y Y U Y U U =+--....2122112222()()I Y U U Y Y U =--++ 即:11112Y Y Y =+、21221Y Y Y =-=-、32212Y Y Y =+ (6-2-4) 等效电路如下图6-2-3所示。

第02章 双端网络的等效变换

第02章 双端网络的等效变换
+ u1 _ 15
u 27.5i1 Rin 11Ω i 2.5i1
10
10 15 Rin 5 11Ω 10 15
第二章 双端网络的等效变换
• 2.1 电阻的串联、并联和混联及等效电阻(自主学习)
• 2.2 独立电源的连接及等效变换
• 2.3 受控源及含受控源电路的等效变换
2.2 独立电源的连接及其等效变换
理想电压源的串联和并联 usk ①串联u us1 us 2 usn uS1 uS2 _ _ + + 等效电路 _ u +
6 I 2A 10 + 40V _ I 10 + 60V _ 4 + 30V _
4 + 30V _
返 回 上 页 下 页
2.3 受控电源(非独立源)
1.定义
电压或电流的大小和方向不是给定 的时间函数,而是受电路中某个地方的电压(或电 流)控制的电源,称受控源。

电路符号
+

受控电流源
受控电压源
3i1 i i1 1.5i1 6
外加电 压源
3.
i2 i5 1 + u1 _
+ 15 u
i
u1 15i1
i i1 i2 2.5i1
u1 i2 1.5i1 10
0.1u1
等效

u 5i u1 5 2.5i1 15i1 27.5i1
5
返 回
上 页
下 页
2.分类
根据控制量和被控制量是电压u 或电流i,受控源 可分四种类型:当被控制量是电压时,用受控电压 源表示;当被控制量是电流时,用受控电流源表示。 ①电流控制的电流源 ( CCCS ) i1 i2 四端元件 + + i2 i1 u2 u1 : 电流放大倍数 _ i1 _ 输入:控制部分 输出:受控部分

第02章 简单电路和等效变换

第02章 简单电路和等效变换
(2)因为图(b)中的 c 、 d 两点等电位(电桥平衡), cd 支路开路。所以原电路等效为
c



a
d


b
所以,电路的输入电阻为
根据授课内容提出问题,以促使活跃学生思维和加深记忆;
对重点、难点、混淆点,课后留给学生思考问题以加深知识点的掌握和理解。
本章知识结构图
二端网络
基本概念 等效二端网络

输入电阻

等电位点


单回路电路分析

双节点电路分析
等 简单电路 平衡电桥

分压和分流公式


常用基本二端网络的等效
等效变换 星角变换
单回路电路和双节点电路的分析(含分压公式和分流公式); 等效二端网络的概念,常用基本二端网络的等效(电阻的串并联等效化简、独立源的串并联 化简、电源模型之间的等效变换、多余元件的处理、含受控源网络的等效化简); 星形网络和三角形网络的等效变换; 等效变换化简分析法; 输入电阻的概念和输入电阻的求法; 等电位点的概念及其在电路化简中的应用。 2. 能力训练点 正确运用分压公式和分流公式; 单回路电路和双节点电路的分析; 掌握两条支路合一的方法;电源模型的等效变换、Y—△变换; 灵活运用等效变换的方法化简电路,并进而求解电路; 求输入电阻; 利用等电位点的概念对电路进行化简。 3. 其它 扩充内容为能识别具有对称结构的电路,并根据等电位点或等效的概念分析此类电路; 注意在等效变换过程中受控源和多余元件的处理。
I = 3A
【例 5】求图 5 所示电路的输入电阻 Rab 。
c
a
b
60Ω
10Ω
20Ω
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑶ 控制量为零时受控源为零,受控电压源表现 为短路,受控电流源表现为开路。
⑷ 受控源可以对外提供能量,属于有源元件。
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
分析含有受控源的电路时,应注意以下几点: ⑴ 对简单电路,先求控制量; ⑵ 可将受控源视为独立电源建立电路方程,控 制量用未知量表示,代入方程; ⑶ 受控源可以像独立电源那样进行两种电源模型 的等效变换,但控制量不能消失。必要时转换控制量;
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
2、等效电阻、输入电阻
等效电阻是指用来等效替代一个无源一端口线性
电阻网络的电阻。
输入电阻是一个无源一端口网络的端口电压与端
口电流的比值,用Rin来表示。
Rin

u i
输入电阻就是等效电阻。
i

u
N

当无源一端口网络内含有受控源时,该网络可以 等效为一个电阻。但必须采用输入电阻的求解方法。
i
1
8A 0.5

4V 0.5 3V 0.5
i
3

i 1A
3V

0.5

4V


2.5 1V
i

0.5 1V 8A
0.5
i
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
【例2-6】 求上例电路中的电流i1。
3A 6A
2A

2

i1
3V 0.5
2
2 1A
u

串联电路在任一时刻吸收的功率
p ui (u1 u2 un )i (R1 R2 Rn )i2 Ri2
在电阻串联电路中,任一时刻电路吸收的总功率 等于各电阻吸收的功率之和。
⑵ 并联 并联电路的特点是:各电阻上为同一个电压。
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
1
8A 0.5
2A 2
i1

3V 0.5
分流公式求
1
9A
2
i1 3A i1
2A
2
1
7A
i1

2A
4V
2

0.5
i1

0.5 3V

7V

1
2A 2
i1
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
附加:简单含源一端口的化简

IS
US

IS

US

US
R

u 11i 44 i 33
Rin =
u i


11 3

44 3


11
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
【例2-4】 求所示电路的输入电阻。 解 由欧姆定律、KCL
u1 2i i i2 2i2
i i2
i 2
u1 u

2i2
⑴ S1、S5闭合; ⑵ S2、 S3 和S5闭合; ⑶ S1、 S3 和S4闭合。
S4
S2 S5
a
R1
R2
R3
R4
b
S3
S1
⑴ S1、S5闭合 ⑵ S2、 S3 和S5闭合 ⑶ S1、 S3 和S4闭合
Rab R1 R2 R3 3 Rab R1 R2∥R3∥R4 1.333 Rab R1∥R4 0.5
Req R1 R5∥(R2+ R3∥R4 )
R5
R3 R4
【例2-1】 求电阻网络的等效电阻(电阻值单位 Ω)
a
4
b
4
4
4
4 4
2
a
4
b
2
4 2 2
a
2
4 2
b
R eq 2
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
【例2-2】 四个电阻均为1Ω,求a、b之间的电阻值。
⑷ 确定只含受控源和无源元件的一端口网络的伏 安关系时,必须采用外加独立电源法。
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
【例2-7】 求所示电路中的电压U。
2
3A I 2
I 1

3 U

解 先求控制量。 3 I I 求出 I 2A
2
得出 U 3I 32 6V
由 KVL 得
u u1 i2 0.5u1
1.5u1 i2 3i i
2i
输入电阻得
Rin

u i

2
1
i2
0.5u1
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
2-2 独立电源的连接及等效变换
实际 电源

u

(a) 实际电源
u U0
o
i
(b) 实验曲线
受控源共分四种类型:


u1
u1


(a) VCVS

u1
gu1

(b) VCCS

i1
ri1

(c) CCVS
i1
i1
(d) CCCS
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
图中 u1、i1为控制量,u、r、g和β是控制系数。
⑴ 当控制系数为常数时,受控源称为线性受控源。
⑵ 受控源不同于独立电源,在电路中不起激励 作用。它反映电路中某处电压或电流对另一处电压 或电流的控制作用,或表示两处电路变量之间的耦 合关系。
令 R R1 R2 Rn R为总电阻
u Ri
福建工程学院电工基础教ቤተ መጻሕፍቲ ባይዱ室 陈炳煌编制 2020年3月
(b)
(2 1) (2 2)
串联电路中第k个电 阻上的电压为:
uk

Rk i

Rk R
u
分压公式
i R1 R2
Rn
u1 u2 ... un
第二章 双端网络的等效变换
2-1 电阻的串、并、混联及等效电阻 2-2 独立电源的连接及等效变换 2-3 受控源及含受控源电路的等效变换
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
等效是一个非常重要的概念。 等效变换是一种常用的分析方法。
N
NS
(a) 无源双端网络
(b) 有源双端网络
对外只有两个端钮的电路称为一端口网络或双端 网络。依据内部是否含有独立电源,分为有源或无源 网络。
(2 4) (2 5) (2 6) (2 7)
分流公式
ik

u Rk
Gku
Gk G
i
i

i1
u R1

i2
R2

总功率
p

ui

u(i1

i2

in )

u2(
1 R1

1 R2

1 Rn
)

u2 R
in Rn
电路吸收的总功率等于各个电阻吸收的功率之和。
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
如果两个一端口网络的内部电路、元件参数并不 完全相同,但端口的伏安特性完全相同,则两个网络 互为等效。可以互相替代,即等效变换。
等效是指对外等效,对内显然不等效。 研究一端口网络等效变换的目的,是使一个复杂 电路在一步步的等效变换中,逐渐简单化,最终等效 变换成一个简单电路。
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
2-1 电阻的串、并、混联及等效电阻
1.电阻的串并联
⑴ 串联
i R1 R2
Rn
u1 u2 ... un
u

i

u
R

(a)
u u1 u2 un R1i R2i Rni (R1 R2 Rn )i
解 U1 2 5 10V
0.05U1 0.5A Ucb (0.5 20) 6 16V
P 0.05U1Ucb 0.5 (16) 8W
5 a 20
2A

U1

c
6V

0.05U1
b
受控电流源发出功率8W。
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
3) 只允许大小、极性相同的电压源并联,及大小、 方向相同的电流源串联,可用其中一个电源等效。
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
【例2-5】 求所示电路中的电流i。
2A

2

2 6A

1
2

i1
3V 0.5
i
6V
1V

3A 6A
2
2 1A
2A

2

0.5
i1 3V
u
U OC
o
i
ISC
(c) 伏安特性
R

US


u
US
u
o
IS

u
RIS
US
R u
Ri
o
IS i
(a)
(b)
(c)
(d)
实际电压源模型
实际电流源模型
US UOC RIS UOC
US R

ISC
IS ISC
福建工程学院电工基础教研室 陈炳煌编制 2020年3月
相关文档
最新文档