2018年中考数学复习《不等式与不等式组》专题练习(含答案)
2018年全国各地中考数学真题汇编:数与式、方程不等式(浙江专版)(解析卷)
2018年全国各地中考数学真题汇编(浙江专版)数与式、方程不等式参考答案与试题解析一.选择题(共5小题)1.(2018•绍兴)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④解:①(a+b)2=a2+2ab+b2,故此选项错误;②(﹣2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;④a3•a4=a7,故此选项错误.故选:C.2.(2018•温州)若分式的值为0,则x的值是()A.2 B.0 C.﹣2 D.﹣5解:由题意,得x+5=0,解得,x=﹣5.经检验,当x=﹣5时,=0.故选:A.3.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=60解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.4.(2018•嘉兴)不等式1﹣x≥2的解在数轴上表示正确的是()A.B.C.D.解:不等式1﹣x≥2,解得:x≤﹣1,表示在数轴上,如图所示:故选:A.5.(2018•温州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.解:设49座客车x辆,37座客车y辆,根据题意可列出方程组.故选:A.二.填空题(共8小题)6.(2018•宁波)要使分式有意义,x的取值应满足x≠1.解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.7.(2018•杭州)因式分解:(a﹣b)2﹣(b﹣a)=(a﹣b)(a+b+1).解:原式=(a﹣b)2+(a﹣b)=(a﹣b)(a﹣b+1),故答案为:(a﹣b)(a﹣b+1)8.(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为﹣8.解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣159.(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1.解:原式=x2﹣1,故答案为:x2﹣110.(2018•温州)不等式组的解是x>4.解:,解①得x>2,解②得x>4.故不等式组的解集是x>4.故答案为:x>4.11.(2018•嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:=×(1﹣10%).解:设设甲每小时检测x个,则乙每小时检测(x﹣20)个,根据题意得,=(1﹣10%),故答案为=×(1﹣10%).12.(2018•绍兴)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为20尺,竿子长为15尺.解:设索长为x尺,竿子长为y尺,根据题意得:,解得:.答:索长为20尺,竿子长为15尺.故答案为:20;15.13.(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1三.解答题(共9小题)14.(2018•宁波)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.15.(2018•金华)计算: +(﹣2018)0﹣4sin45°+|﹣2|.解:原式=2+1﹣4×+2=2+1﹣2+2=3.16.(2018•湖州)解不等式≤2,并把它的解表示在数轴上.解:去分母,得:3x﹣2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:17.(2018•温州)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.18.(2018•金华)解不等式组:解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.19.(2018•嘉兴)(1)计算:2(﹣1)+|﹣3|﹣(﹣1)0;(2)化简并求值()•,其中a=1,b=2.解:(1)原式=4﹣2+3﹣1=4;(2)原式=•=a﹣b;当a=1,b=2时,原式=1﹣2=﹣1.20.(2018•绍兴)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.解:(1)原式=2﹣2﹣1+3=2;(2)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,x===1,则x1=1+,x2=1﹣.21.(2018•嘉兴)用消元法解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=3.解法二:由②得,3x+(x﹣3y)=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.解:(1)解法一中的解题过程有错误,由①﹣②,得3x=3“×”,应为由①﹣②,得﹣3x=3;(2)由①﹣②,得﹣3x=3,解得x=﹣1,把x=﹣1代入①,得﹣1﹣3y=5,解得y=﹣2.故原方程组的解是.22.(2018•衢州)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:解:由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答。
中考数学不等式与不等式祖专题训练50题(含参考答案)
中考数学不等式与不等式祖专题训练含答案一、单选题1.如果a >b ,则下列各式中不成立的是( )A .a+4>b+4B .2+3a>2+3bC .a-6>b-6D .-3a>-3b 2.不等式5x ≥的解集在数轴上表示正确的是( )A .B .C .D . 3.一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3- 4.若a b >,则下列各式正确的是( )A .33a b -<-B .0a b -<C .33a b <D .a b >5.如图,不等式组1239x x -<⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .6.不等式组 21352x x ->-⎧⎨->⎩的整数解有( ) A .3个 B .4个 C .5个 D .6个 7.若m <n ,则下列不等式正确的是( )A .m ﹣2>n ﹣2B .44m n >C .﹣6m >﹣6nD .﹣8m <﹣8n 8.下列语句或式子中正确的是( )A .任何实数的零次幂都等于1B .5的倒数的相反数是-5C .1111()()a b a b ab ---++=D .若a<b ,则a 2<b 29.已知不等式30x a +≥的负整数解恰好是3-,2-,1-.那么a 满足条件( ) A B CD10.若点P (2m +1,312m -)在第四象限,则m 的取值范围是( ) A .m <13 B .m >12- C .1123m -<< D .1123m -≤≤ 11.若x <y ,比较2-3x 与2-3y 的大小,则下列式子正确的是( )A .2-3x >2-3yB .2-3x <2-3yC .2-3x=2-3yD .无法比较大小12.不等式组21013x x ->⎧⎨+≤⎩的解集表示在数轴上正确的是( ) A . B .C .D .13.不等式ax -2<0的解集在数轴上表示如图,那么a 的取值范围是( )A .1a <B .2a <C .1a =D .2a =14.下列不等式的解集中,不包括-3的是( )A .3x ≤-B .3x ≥-C .4x ≤-D .4x >- 15.若0<x <1,则x,2x ,3x 的大小关系是( )A .x <2x <3xB .x <3x <2xC .3x <2x <xD .2x <3x <x 16.(天津市和平区普通中学2018届初三数学中考复习综合练习题)如果m<n<0,那么下列式子中错误的是A .m −9<n −9B .−m>−nC .1m <1nD .m n>1 17.若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +1 18.用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,设需要x 分钟才能将污水抽完,则x 的取值范围是( ) A .x≥40 B .x≤50 C .40<x <50 D .40≤x≤50 19.下列说法中,错误的一项是( )A .由a (m 2+1)<b (m 2+1)成立可推a <b 成立B .由a (m 2﹣1)<b (m 2﹣1)成立可推a <b 成立C .由a (m +1)2<b (m +1)2成立可推a <b 成立D .由a (m +b )<b (m +a )成立可推am <bm 成立20.已知正整数a ,b ,c ,d 满足:a <b <c <d ,a +b +c +d =2022,22222022d c b a -+-=,则这样的4元数组(a ,b ,c ,d )共有( )A .251组B .252组C .502组D .504组二、填空题21.x 的3倍与5的差小于6,用不等式表示为________.22.如果关于x 的一元二次方程210kx +=有两个不相等的实数根,则k 的取值范围是________.23.不等式11x -的非负整数解是__.24.已知一次函数()1123y a x a =-+-,如果函数值y 随着自变量x 的增大而减小,那么在平面直角坐标系中,这个函数图象与y 轴的交点M 位于y 轴的______半轴.(填正或负)25.若不等式|x +1|+|x ﹣2|>a 对任意实数x 恒成立,则a 的取值范围是_____.26.不等式组31432x x -<⎧⎨+≥⎩的解集是___________. 27.不等式2x ﹣1≤3x +2的负整数解的和是 ___.28.若点P (1﹣a ,1)在第二象限,则(a ﹣1)x <1﹣a 的解集为______.29.不等式7x+21>0的解集为_____30.不等式()231a x -<的解集是123x a >-,则a 的取值范围是_______________________.31.不等式2﹣x >0的解集是_____.32.把一些书分给几名同学,如果每人分4本,那么余3本;如果前面的每名同学分6本,那么最后一人就分得不超过2本,则这些书有本______. 33.若不等式组841x x x m +>-⎧⎨≤⎩的解集为x<3,则m 的取值范围是____________. 34.如果关于x 的方程325x k x +=-的解是正数,则k 的取值范围是________.35.不等式组2421x x -<⎧⎨-≥⎩的解集是______. 36.当_________时,34x x -++有最小值,最小值是_________;37.如果(1)20m m x +-<是关于x 的一元一次不等式,则m=_______38.若不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,且使关于x 的分式方程6mx x -=436x x +- 有整数解,那么符合条件的所有整数m 的值之和是______.39.在橙子收获旺季,某果园开展现场采摘现场销售活动,每天接待到果园采摘橙子的游客络绎不绝.果园里有A 、B 、C 三种不同品种的橙子,第一周A 、B 、C 三种橙子的采摘重量之比为4:3:5,第一周C 品种橙子的单价是A 、B 品种橙子的单价之和的3倍,第一周C 品种橙子的单价小于21元且不低于3元.第二周继续接待采摘三种橙子的游客,本周A 、C 品种橙子的采摘重量之比为2:3,B 品种橙子的采摘重量比第一周下降了15,A 品种橙子的单价与第一周相同,B 品种橙子的单价比第一周增加1倍,C 品种橙子的单价是第一周的4倍.两周结束后,经统计,第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额多1090元,第一周三种橙子的总采摘重量与第二周三种橙子的总采摘重量之差不低于166斤且小于196斤,则这两周C 种橙子的总销售额一共为 _____元,(A 、B 、C 三种不同品种橙子的单价为每斤整数元,以及每次采摘重量都是整数斤)三、解答题40.下面是小明解不等式532122x x ++-<的过程: ①去分母,得5132x x +-<+,①移项、合并同类项,得22x,①两边都除以-2,得1x >.先阅读以上解题过程,然后解答下列问题.(1)小明的解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是___________________________________________________;(3)第①步的依据是___________________________________________;(4)该不等式的解集应该是________________. 41.解不等式组4+6>13(1)5x x x x --≤-⎧⎨⎩①② 请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式①,得_____;(3)把不等式①和①的解集在数轴上表示出来.(4)原不等式组的解集为_____.42.下面是小红同学解不等式5117263x x -≤-的过程,请认真阅读并完成相应任务. 解:5111214x x -≤-,.............第一步5121114x x -≤-,.............第二步73x -≤-....................第三步37x ≤........................第四步 任务一:填空.(1)以上解题步骤中,第___步是去分母,去分母的依据是___;(2)第___步出现错误,这一步错误的原因是___,这一步正确的结果是___,依据是___.任务二:除了任务一中出现的错误外,请根据平时的学习经验,就解不等式时还需要注意的事项给其他同学提一条建议.43.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)不等式3x ≥ (选填“是”或“不是”3x ≤的“云不等式”).(2)若关于x 的不等式20x a -≥与不等式1211x x ->-互为“云不等式”且有2个公共的整数解,求a 的取值范围.44.解不等式(组):(1)()3511x x >+-; (2)()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩①② 45.某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案? 46.2021年体育实验考试期间,商城县某初中组织本校332名九年级考生和8名领队教师到商城高中参加考试,学校准备租用45座甲种客车和30座的乙种客车.若租用1辆甲种客车和2辆乙种客车共需租金1650元;若租用2辆甲种客车和1辆乙种客车共需租金1800元.(1)求甲乙两种客车每辆的租金各是多少元?(2)为了保证安全,学校要求每辆车上至少要有一名领队教师陪同,在总租金不超过5200元的情况下,有多少种租车方案?并求出最省钱的租车方案.47.为应对新型冠状病毒,某药店老板到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌的数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?48.2019年4月29日至2019年10月7日,2019年中国北京世界园艺博览会(简称北京世园会)在中国北京市延庆区举行,展期162天.这是继云南昆明后第二个获得国际园艺生产者协会批准及国际展览局认证授权举办的A1级国际园艺博览会.北京世园会门票种类分为平日票、指定日票、三次票等票种,同时按销售对象分为普通票、优惠票和团队票(学生享受优惠票,15人以上可以享受团体票).指定日包括开园日、“五一”假期、端午节假期、中秋节假期、“十一”假期这些日期,其余时间为平日;三次票是指除指定日外,同一持票人在展会期间可以任选三天入园的票种. 具体如下表:小明,小亮两家共10人打算一起参观北京世园会(10人均需购票).(1)若他们端午节去北京世园会参观购买门票共用去1360元,问买了普通票和优惠票各几张(2)如果他们平日去北京世园会参观,且购买门票的费用不超过2000元,那么在保证游玩的前提下最多可以买几张三次票?共有几种买票方案?分别是什么?49.清明节,除了扫墓踏青之外,传统时令小吃——青团也深受大家欢迎,知味观推出一款鲜花牛奶青团和一款芒果青团,鲜花牛奶青团每个售价是芒果青团的54倍,4月份鲜花牛奶青团和芒果青团总计销售60000个,且鲜花牛奶青团和芒果青团销售量之比为5:7,鲜花牛奶青团销售额为250000元.(1)求鲜花牛奶青团和芒果青团的售价?(2)5月份正值知味观店庆,决定再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花牛奶青团个数的32,且不多于鲜花牛奶青团的2倍,其中,鲜花牛奶青团每个让利a元销售,芒果青团售价不变,并且让利后的鲜花牛奶青团售价不得低于芒果青团售价的78,知味观如何设计生产方案使总销售额最大?参考答案:1.D【分析】适当地选用不等式的基本性质对所给不等式进行变形,注意不等号方向的“不变”与“改变”.【详解】A .根据不等式的基本性质1可知,44a b +>+,此选项正确,不符合题意; B .根据不等式的基本性质1和2可知,2323a b +>+,此选项正确,不符合题意; C .根据不等式的基本性质1可知,66a b ->-,此选项正确,不符合题意;D .根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即-3a<-3b ,故D 错误;故选D .【点睛】本题考查了不等式的基本性质,解决这类问题时,先看已知不等式与变化后的不等式两边变化情况,从而确定应用哪一个性质.2.C【分析】不等式的解集在数轴上表示的方法:①定点,根据不等式中的实数确定数轴上的点(“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示);①定向,根据不等号方向确定(>,≥向右画;<,≤向左画),按要求操作即可得出.【详解】解:根据5和≥确定在数轴上取对应的数字为5的实心点,然后方向向右,从而得到:,故选:C .【点睛】本题考查了不等式的解集在数轴上表示的方法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.D【分析】由一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),利用一次函数图象上点的坐标特征即可得出关于m 的方程,解之即可得出m 的值,由y 的值随着x 的值的增大而减小,利用一次函数的性质可得出m -2<0,解之即可得出m <2,进而可得出m =-3.【详解】解:①一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),①m 2-3=6,即m 2=9,解得:m =-3或m =3.又①y 的值随着x 的值的增大而减小,①m -2<0,①m <2,①m =-3.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m 的方程及一元一次不等式是解题的关键.4.A【分析】根据不等式的性质和绝对值的定义,结合“a b >”,依次分析各个选项,选出正确的选项即可.【详解】解:A 、若a b >,则33a b -<-,正确,该选项符合题意;B 、若a b >,则0a b ->,原变形错误,该选项不符合题意;C 、若a b >,则33a b >,原变形错误,该选项不符合题意; D 、若a 和b 同为负数,若a b >,a b <,该选项不符合题意;故选:A .【点睛】本题考查了不等式的性质和绝对值,正确掌握不等式的性质和绝对值的定义是解题的关键.5.A【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】解:1239x x -⎧⎨-≤⎩<①② 由①,得x <3;由①,得x≥-3;故不等式组的解集是:-3≤x <3;表示在数轴上如图所示:故选:A . 【点睛】此题考查在数轴上表示不等式的解集、解一元一次不等式组.解题关键在于掌握把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.A【分析】先求出两个不等式的解集,再求其公共解,然后写出所有的整数解即可求出个数.【详解】解:解不等式213x ->-得:1x >-,解不等式52x ->得:3x <,所以,不等式组的解集是13x -<<,所以,不等式组的整数解有0、1、2共3个.故选:A .【点睛】本题主要考查了一元一次不等式组整数解的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.C【分析】根据不等式的基本性质,逐项判断即可.【详解】解:A 、①m <n ,①m ﹣2<n ﹣2,①选项A 不符合题意;B 、①m <n ,①44m n <,①选项B 不符合题意; C 、①m <n ,①﹣6m >﹣6,①选项C 符合题意;D 、①m <n ,①﹣8m >﹣8n ,①选项D 不符合题意.故选:C .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.8.C【分析】根据零次幂,相反数,负指数幂,不等式一一判定即可.【详解】A.0的零次幂没有意义,故错误;B. 5的倒数的相反数是-15,故错误; C. ()()1111a b a b ab---++=,正确; D.当a ,b 都为负数时,不等式不成立,故错误.故选C【点睛】本题考查了相反数,不等式的性质,熟练掌握概念和性质是解题的关键. 9.D【分析】首先解不等式求得不等式的解集,然后根据不等式的负整数解得到关于a 的不等式组,从而求得a 的范围.【详解】解不等式30x a +≥,得:3a x ≥-, 根据题意得:433a -<-≤-, 解得:912a ≤<.故选D . 【点睛】本题考查了不等式的整数解,根据x 的取值范围正确确定3a -的范围是解题的关键.在解不等式时要根据不等式的基本性质.10.C【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:①点P (2m +1,312m -)在第四象限. ①2103102m m +>⎧⎪⎨-<⎪⎩. 解得1123m -<<. 故选:C .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.11.A【分析】根据不等式的基本性质对以下选项进行一一验证即可.【详解】解:在不等式x <y 的两边同时乘以-3,不等号的方向改变,即-3x >-3y . 在不等式-3x >-3y 的两边同时加上2,不等号的方向不变,即2-3x >2-3y ,故选项A 正确.故选:A .【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.A【分析】先求出不等式组的解集,再表示在数轴上即可解答;【详解】解:210x ->,解得:12x >; 13x +≤,解得:2x ≤;①原不等式组的解集为:122x <≤, 在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式组及解集在数轴上的表示,掌握相关知识并正确求解是解题的关键.13.D【分析】先根据题意得出不等式的解集,进而可得出结论.【详解】①数轴上点1处是空心圆点,且折线向左,①不等式的解集为x <1,解不等式ax-2<0得,x <2a, ①2a=1, 解得a=2.故选D . 【点睛】本题考查的是在数轴上表示不等式的解集,熟知不等式解集的表示方法是解答此题的关键.14.C【分析】不包括-3即-3不在解集内,由此可得出答案.【详解】解:根据题意,不包括-3即-3不在解集内,只有C选项,x≤ -4,不包括-3.故选C.【点睛】本题考查不等式的解集,熟练掌握是解题的关键.15.C【详解】试题分析:当0<x<1时,则3x<2x<x.本题可以利用特殊值法来进行比较.考点:数的大小比较16.C【详解】A、根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立.m<n两边减去9,得到:m−9<n−9,成立;B、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时乘以−1得到−m>−n,成立;C、由m<n<0,可设m=−2,n=−1,验证1m>1n,不成立.D、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时除以负数n得到mn>1,成立.故选C.17.C【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.【详解】解:A、a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、①a>b,①a+1>b+1,①b+1>b﹣1,①a+1>b﹣1,符合题意;D、a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是关键.18.D【分析】设大约需x分钟才能将污水抽完,利用总的抽水量超过1200t而不足1500t列出不等式组解决问题.【详解】设大约需x 分钟才能将污水抽完,由题意得:301200{301500x x ≥≤ , 解得:40≤x≤50.故选D .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.19.B【分析】根据不等式的基本性质逐一判断即可.【详解】解:①m 2+1>0,则不等式的两边同时除以m 2+1,则不等式不变号,①A 正确;①a (m 2﹣1)<b (m 2﹣1)中,m 2﹣1可以是正数也可以是负数或0,①B 错误; ①a (m +1)2<b (m +1)2成立,①(m +1)2≠0,可得(m +1)2>0,则不等式的两边同时除以(m +1)2,则不等式不变号,①C 正确;①a (m +b )<b (m +a )可以化为am +ab <bm +ab ,则不等式的两边同时减去ab ,则不等式不变号,①D 正确;故选:B .【点睛】本题考查不等式的基本性质;熟练掌握不等式的基本性质是解题的关键. 20.D【分析】根据题意得出321a b c d +≤+≤+≤,继而得出()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=,再由已知条件构造()10102a c a a =+≥++,即可解答.【详解】因为a ,b ,c ,d 为正整数,且a b c d <<<,所以321a b c d +≤+≤+≤.所以()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=.因此1d c -=,1b a -=,即1d c =+,1b a =+.所以()()112022a b c d a a c c +++=+++++=,因此1010a c +=.又2a c +≤,所以()10102a c a a =+≥++,因此1504a ≤≤.所以符合条件的4元数组(),,,a b c d 为(),1,1010,1011a a a a +--,其中1504a ≤≤. 所以符合条件的4元数组有504组.故选:D .【点睛】本题考查了整式的应用,解题的关键是根据题目已知等式构造不等式,属于竞赛题.21.356x <【分析】根据运算的顺序列不等式即可.【详解】解:x 的3倍与5的差小于6,用不等式表示为:356x <,故答案为:356x <.【点睛】本题考查列一元一次不等式,解题关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.22.113k -≤<且0k ≠【分析】根据一元二次方程的定义和根的判别式得出0k ≠,310k +≥,(2410k ∆=-⨯>,据此求解即可 【详解】解:关于x 的一元二次方程2(1)210k x x --+=有两个不相等的实数根, ①0k ≠,310k +≥且(2410k ∆=-⨯>, 解得:113k -≤<且0k ≠, 故答案是:113k -≤<且0k ≠.【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键.23.0x =,1,2【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项可得答案.【详解】解:移项得:11x +,合并同类项得:2x ,故不等式的非负整数解是0x =,1,2.故答案为:x =0,1,2.【点睛】本题主要考查解一元一次不等式的基本能力,注意掌握解不等式的基本步骤是解题的关键.24.正【分析】根据函数值y 随着自变量x 的增大而减小,可得120a -<,从而得到103a ->,即可求解.【详解】解:①函数值y 随着自变量x 的增大而减小,①120a -<, 解得:12a >, ①103a ->, ①这个函数图像与y 轴的交点M 位于y 轴的正半轴.故答案为:正【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质以及一次函数图象上点的坐标特征是解题的关键.25.a <3.【分析】根据绝对值的几何意义,求得|x +1|+|x ﹣2|的最小值为3,从而得到实数a 的取值范围.【详解】解:①|x +1|+|x ﹣2|表示数轴上的x 对应点到﹣1、2对应点的距离之和, ①它的最小值为3,①不等式|x +1|+|x ﹣2|>a 对任意的实数x 恒成立,①a <3,故答案为:a <3.【点睛】本题主要考查了绝对值的意义,以及绝对值不等式的解法.解题的关键是利用绝对值不等式的几何意义,体现了数形结合的思想.26.513x -≤< 【分析】分别求出两个不等式的解集,再进行求解即可.【详解】解:解314x -<得53x <, 解32x +≥得1x ≥-,①不等式组的解集为:513x -≤<,故答案为:513x -≤<. 【点睛】本题考查了不等式组的求解,正确的计算是解决本题的关键.27.6-.【分析】先求出不等式的解集,找出不等式的负整数解即可.【详解】解:2132x x -≤+,①233x x -≤,①3x -≤,①3x ≥-;①负整数解有:3-,2-,1-;①负整数解的和是:3(2)(1)6-+-+-=-;故答案为:6-.【点睛】本题主要考查一元一次不等式的整数解,不等式的性质,解一元一次不等式等知识点的理解和掌握,能求出不等式的解集是解此题的关键.28.x <﹣1【分析】根据点P 在第二象限得出a >1,据此知a ﹣1>0,再将不等式两边都除以a ﹣1即可得答案.【详解】解:①点P (1﹣a ,1)在第二象限,①1﹣a <0,则a >1,①a ﹣1>0,①不等式(a ﹣1)x <1﹣a 的解集为x <﹣1,故答案为:x <﹣1.【点睛】本题考查了第二象限内点的坐标特征,不等式的性质,解不等式,系数化为1的过程中,在解不等式时,一定要先判断两边所除的式子的符号.29.x >-3【分析】先移项、然后按不等式的基本性质进行解答即可.【详解】解:7x+21>07x >-21x >-3故答案为x>-3.【点睛】本题主要考查了解一元一次不等式,掌握不等式的基本性质是解答本题的关键.30.32 a<【分析】据已知不等式的解集,结合x的系数确定出2a-3为负数,求出a的范围即可.【详解】解:①不等式(2a-3)x<1的解集是123xa>-,①2a-3<0,①32a<,即a的取值范围是32a<,故答案为32a<.【点睛】本题考查了解一元一次不等式和不等式的性质,能根据不等式的性质得出关于a 的不等式是解此题的关键.31.x<2【分析】利用不等式的基本性质解出不等式的解集即可【详解】根据不等式的基本性质将2﹣x>0变形为2>x,故不等式2﹣x>0的解集是x<2【点睛】主要考查一元一次不等式的解法32.19【分析】设共有x名同学分书,则这批书共有(4x+3)本,根据“如果前面的每名同学分6本,那么最后一人就分得不超过2本”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出结论.【详解】解:设共有x名同学分书,则这批书共有(4x+3)本,依题意,得436(1) 436(1)2x xx x+>-⎧⎨+≤-+⎩,解得:7292x≤<,又①x为正整数,①x=4,①4x+3=19.故答案为:19.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.33.m≥3【分析】化简不等式组得3x x m <⎧⎨≤⎩,根据不等式组的解集为x<3,即可得出m 的取值范围. 【详解】解:解不等式组得3x x m <⎧⎨≤⎩, ①不等式组解集为x<3,①m≥3.故答案为:m≥3.【点睛】本题主要考查的是不等式组的解集,掌握不等式组的解集是解题的关键.34.52k <- 【分析】解出方程的解为522k x --=,再根据题意得到5202k -->,转化为解一元一次不等式即可解答.【详解】解:325x k x +=- 解得522k x --= 关于x 的方程325x k x +=-的解是正数,5202k --∴> 520k ∴-->52k ∴<- 故答案为:52k <-. 【点睛】本题考查方程的解、解一元一次方程、解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.35.3x ≥【分析】先求出每一个不等式的解集,后确定不等式组的解集.【详解】①2421x x -<⎧⎨-≥⎩①②①解不等式①,得x >-2,解不等式,①,得x ≥3,①不等式组的解集为x ≥3,故答案为:x ≥3.【点睛】本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键. 36. 43x -≤≤ 7【分析】根据题意以及绝对值的非负性,再利用分类讨论的数学思想可以解答本题.【详解】当x >3时,34x x -++=34217x x x -++=+>;当43x -≤≤时,34x x -++34x x =-++=7;当x <-4时,34x x -++=34=217x x x ----->.∴当43x -≤≤时,34x x -++有最小值7.故答案为:43x -≤≤;7.【点睛】本题考查了绝对值相关最值的求解,涉及不等式运算,解答本题的关键是明确绝对值的定义,利用分类讨论的数学思想解答.37.1【分析】利用一元一次不等式的定义判断即可确定出m 的值.【详解】①(1)20m m x +-<是关于x 的一元一次不等式,①1m +≠0且|m|=1,①m =1.故答案是:1.【点睛】考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.38.11【分析】根据不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立确定出m 的范围,再由m 是整数得到m 的值,分式方程去分母后将m 的值代入检验,使分式方程的解为整数即可.【详解】①3x <6,①x <2,①不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,①不等式(m-1)x <m+5的解集是51m x m +<-, ① 521m m +≥-, 解之得1<m≤7,①m 是整数,①m=2,3,4,5,6,7, ①6mx x -=436x x +-, ①mx=3x-18+4x , ①187x m=- , ①分式方程6mx x -=436x x +- 有整数解, ①m=2, 185x =,舍去;m=3, 92x =,舍去;m=4, 6x =,是增根,舍去;m=5, 9x =;m=6, 18x =;m=7,x 无解,舍去;①5+6=11.故答案为11.【点睛】本题主要考查的是分式方程的解法,一元一次不等式组的解法的有关知识,熟练掌握分式方程的解法是解答本题的关键.39.2880【分析】设第一周A 、B 、C 三种橙子的采摘重量分别为4m 斤、3m 斤、5m 斤,第一周A 、B 单价分别为x 元,y 元;设第二周A 、C 三种橙子的采摘重量分别为2m 斤、3m 斤;则第一周C 品种橙子的单价为3(x +y )元,第二周A 、B 、C 三种橙子的单价分别为x 元,2y 元;12(x +y )元,通过第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额。
2017-2018年中考数学专题复习题 不等式与不等式组(含解析)
2017-2018年中考数学专题复习题:不等式与不等式的组一、选择题1.下列给出四个式子,;;;,其中是不等式的是A. B. C. D.2.下列四个不等式:;;;,一定能推出的有A. 1个B. 2个C. 3个D. 4个3.若不等式组的解集为,则m的取值范围是A. B. C. D.4.关于x的不等式组有四个整数解,则a的取值范围是A. B. C. D.5.某工程队计划在10天内修路8km,前两天一共修完了2km,由于计划发生变化,准备提前两天完成修路任务,以后几天内平均每天至少要修路A. 1kmB.C.D.6.解不等式的下列过程中错误的是A. 去分母得B. 去括号得C. 移项,合并同类项得D. 系数化为1,得7.若是关于x的一元一次不等式,则A. B. 1 C. D. 08.已知点在第四象限,则a的取值范围在数轴上表示正确的是A. B. C. D.9.设a,b,c,d都是整数,且,,,,则a的最大值是A. 480B. 479C. 448D. 44710.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于,则宽的长度xcm应满足的不等式组为A. B. C. D.二、填空题11.用不等号“、、、”填空: ______12.不等式组的解集是,则a的取值范围是______ .13.若不等式组只有2个整数解,则m的取值范围是______ .14.如果是关于x的一元一次不等式,则其解集为______ .15.若不等式的解集是,则m的取值范围是______.16.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张17.关于x的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______ .18.有背面完全相同的9张卡片,正面分别写有这九个数字,将它们洗匀后背面朝上放置,任意抽出一张,记卡片上的数字为a,则数字a使不等式组有解的概率为______ .19.在,2,0,,,中能使不等式成立的数是______ .20.运行程序如图所示,从“输入实数x”到“结果是否”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是______ .三、计算题21.解不等式组.22.解不等式组:;并将解集在数轴上表示出来.23.已知一元一次不等式.若它的解集是,求m的取值范围;若它的解集是,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.24.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:求出足球和篮球的单价;若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?在的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【答案】1. D2. A3. A4. C5. A6. D7. B8. C9. D10. A11.12.13.14.15.16. 15217.18.19.20.21. 解:,由得:;由得:;不等式组的解集是.22. 解:,由不等式解得,,由不等式解得,,在数轴上表示如下:所以,原不等式组的解集是.23. 解:不等式,移项合并得:,由解集为,得到,即;由解集为,得到,即,且,解得:,不合题意,则这样的m值不存在.24. 解:设足球的单价为x元,则篮球的单价为元,根据题意,得,解得:,.即足球的单价为60元,则篮球的单价为80元;设购进足球y个,则购进篮球个.根据题意,得,解得:,为整数,,39,40.当,;当,;当,.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;商家售方案一的利润:元;商家售方案二的利润:元;商家售方案三的利润:元.故第二次购买方案中,方案一商家获利最多.。
各地2018年中考数学试卷不等式及不等式(组)(word,含解析)
不等式及不等式(组)一、选择题1.(2018•ft东滨州•3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.2.(2018·ft东临沂·3分)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有 1、2、3 这 3 个,故选:C.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.[www.3.(2018·ft东泰安·3分)不等式组有 3 个整数解,则 a 的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5【分析】根据解不等式组,可得不等式组的解,根据不等式组的解有3 个整数解,可得答案.【解答】解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x 的不等式组有3 个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选:B.【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a 的不等式是解题关键.4.(2018•湖南省永州市•4 分)甲从商贩 A 处购买了若干斤西瓜,又从商贩 B 处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为 3:2,然后将买回的西瓜以从 A、B 两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A 的单价大于商贩B 的单价B.商贩A 的单价等于商贩B 的单价C.商版A 的单价小于商贩B 的单价D.赔钱与商贩A、商贩B 的单价无关【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.【点评】此题考查一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.5.(2018•株洲市•3组成的不等式组的解集为.( )A. B. C. D.【答案】C【解析】分析:首先计算出不等式 5x>8+2x 的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.详解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是 x<5,故选:C.点睛:此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.6.(2018 年江苏省宿迁)若 a<b,则下列结论不一定成立的是()。
中考数学不等式与不等式祖专题训练50题-含参考答案
中考数学不等式与不等式祖专题训练含答案一、单选题1.已知a <0, -1<b <0.则a ,ab ,ab 2 由小到大的排列顺序是( ). A .a <ab <ab 2B .ab 2<ab <aC .a <ab 2<abD .ab <a <ab 22.据气象台预报,2020年5月某日大埔最高气温27℃,最低气温21℃,则当天气温t (℃)的变化范围是( ) A .t >21B .t ≤27C .21<t <27D .21≤t ≤273.若a >b ,则下列不等式正确的是( ) A .2a <2b B .ac >bc C .-a+1>-b+1D .3a +1>3b +14.不等式123x x +>-的最大整数解为:( ) A .1B .2C .3D .45.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛得分要超过100分,他至少要答对多少道题( ). A .13B .14C .15D .166.如果不等式(a -2)x>a -2的解集是x<1,那么a 必须满足( ) A .a<0B .a>1C .a>2D .a<27.不等式组1020x x +>⎧⎨-≥⎩的解集在数轴上表示正确的是( )A .B .C .D .8.如果成立,则实数的取值范围是( ) A .B .C .D .9.如果 x > y ,那么下列结论错误的是( ) A .x + 2 > y + 2B .x - 2 > y - 2C .2x > 2 yD .-2x > -2 y10.下列不等式中是一元一次不等式的是( )A .3y x +≥B .3-4<0C .2241x -≥D .24x -≤11.把不等式组30322x x -<⎧⎪⎨+≥⎪⎩的解集表示在数轴上,正确的是( )A .B .C .D .12.若关于x 的不等式()11a x ->的解集是11x a <-,则a 的取值范围是( ) A .1a >B .1a <C .1a ≠D .1a <且0a ≠13.如果a >b ,那么下列不等式中一定成立的是( ) A .a +m <b +mB .am <bmC .am 2>bm 2D .m ﹣a <m ﹣b14.函数12y x =+-,当4m x ≤≤,对应y 的取值范围为23y -≤≤,则m 的取值范围为( ) A .1m =-B .1m ≤-C .61m -≤≤-D .14m -≤<15.若关于x 的不等式组023115x ax x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,且关于y 的方程2433a y a y y -=---的解是正数,则所有满足条件的整数a 的值之和是( ) A .﹣8B .﹣4C .﹣3D .﹣116.将一箱苹果分给若干个学生,每个学生都分到苹果.若每个学生分5个苹果,则还剩12个苹果;若每位学生分8个苹果,则有一个学生所分苹果不足8个.若学生的人数为x ,则列式正确的是( ) A .05128(1)8x x ≤+--< B .05128(1)8x x <+--≤ C .15128(1)8x x ≤+--< D .15128(1)8x x <+--≤17.下列各式中正确的是( ) A .若a >b ,则a ﹣1<b ﹣1 B .若a >b ,则a 2>b 2 C .若a >b ,则ac >bcD .若a c >bc,则a >b18.某商品的进价是1000元,标价为1500元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打( )折出售此商品. A .9B .8C .7D .619.不等式组()11{?22213x x -<++≥的解集是( ) A .﹣1<x≤3 B .1≤x <3 C .﹣1≤x <3 D .1<x≤320.不等式2x 97x ≤-的解集在数轴上表示出来,正确的是( ) A . B . C .D .二、填空题21.若(1)30k k x -+≥是关于x 的一元一次不等式,则k 的值为______. 22.满足一元一次不等式组101203x x -≤⎧⎪⎨->⎪⎩的最大整数值为___.23.有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使总收入不低于15.6万元,则至多安排______人种甲种蔬菜.24.若不等式组1>125x ax x -⎧⎨-≥-⎩的解为1<2x ≤-,则a 的取值是_____________25.不等式组10324x x x ->⎧⎨>-⎩所有整数解的和为_____.26.不等式2x <4x ﹣6的最小整数解为_____.27.x 的3倍与15的差不小于8,用不等式表示为 ________28.小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有 _____种.29.不等式组23348x x ⎧>-⎪⎨⎪-≤⎩的最小整数解为_____.30.一辆公共汽车上原有(54)a -名乘客,到某一车站有(92)a -名乘客下车,车上原来可能有_____名乘客.31.已知实数x ,y ,a 满足x +3y +a =4,x ﹣y ﹣3a =0.若﹣1≤a ≤1,则2x +y 的取值范围是_____.32.已知将直线y kx =向上平移2个单位后,恰好经过点(1,0)-,则不等式42x kx -<+的解集为_____.33.不等式2x-6≥0的解集为________.34.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.35.不等式了()133x m m ->-的解集为5x >,则m 的值为_______. 36.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简=__________.37.若关于x 的不等式组324x a x a <+⎧⎨>+⎩无解,则a 的取值范围是__.38.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;哥哥上午十点钟从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,那么哥哥的速度至少是__________. 39.若关于x 的不等式组123354413x x xa x a恰有两个整数解,则a 的取值范围是_____.三、解答题 40.解不等式(组) (1)()2332x x +≥+ (2)12323x x -+< (3)2130x x >⎧⎨-<⎩(4)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩41.某商品经销店计划购进A ,B 两种纪念品,若购进A 种纪念品7件,B 种纪念品8件共需380元;若购进A 种纪念品10件,B 种纪念品6件共需380元. (1)求A ,B 两种纪念品每件的进价分别为多少元;(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备购进A ,B 两种纪念品共40件,且这两种纪念品全部售出后总获利不低于216元,求该商店最多可以购进A 种纪念品多少件.42.根据下列语句列不等式并求出解集:x 与4的和不小于6与x 的差.43.某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元. (1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?44.解不等式组()()3151124x x x x ⎧-<+⎪⎨-≥-⎪⎩并求它的所有的非负整数解.45.如图甲所示的A 型(11⨯)正方形板材和B 型(31⨯)长方形板材,可用于制作成图乙所示的竖式和横式两种无盖箱子.已知板材每平方米20元.(1)若用2860元的资金去购买A 、B 两种型号板材,并全部制作竖式箱子,问可以制作竖式箱子多少只?(2)若有A 型板材67张、B 型板材135张,用这批板材制作两种类型的箱子共40只.问有哪几种制作方案? 46.计算(1)解不等式组312(1)212x x x +≥-⎧⎪⎨-<⎪⎩(2)解方程:53.212x x =-+ 47.飞盘运动由于门槛低、限制少,且具有较强的团体性和趣味性,在全国各地悄然兴起,深受年轻人喜爱.某商家购进了海绵和橡胶两种飞盘进行销售,已知一个橡胶飞盘比一个海绵飞盘的进价多30元,其中购买海绵飞盘花费4000元,购买橡胶飞盘花费3200元,且购买海绵飞盘的数量是购买橡胶飞盘数量的2倍.(1)求一个海绵飞盘的进价是多少元;(2)商家第一次购进的飞盘很快售完,决定再次购进同种类型的海绵和橡胶两种飞盘共80个,但海绵飞盘的进价比第一次购买时提高了16%,而橡胶飞盘的进价在第一次购买时进价的基础上打9折,如果商家此次购买海绵和橡胶两种飞盘的总费用不超过4800元,那么此次最多可购买多少个橡胶飞盘?48.在“母亲节”到来之际,某校九年级团支部组织全体团员到敬老院慰问.为筹集慰问金,团员们利用课余期间去卖鲜花.已知团员们从花店按每支1.5元的价格买进鲜花共支,并按每支5元的价格全部卖出,若从花店购买鲜花的同时,还用去50元购买包装材料.(1)求所筹集的慰问金y(元)与x(支)之间的函数表达式;(2)若要筹集不少于650元的慰问金,则至少要卖出鲜花多少支?49.为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A 种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?参考答案:1.C【分析】根据:不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时乘以负数a,得到:0>ab2>a,据此即可求得各数的大小关系.【详解】℃a<0,b<0,℃ab>0,℃−1<b<0,℃b2<1;℃a<ab2<ab.故选C.【点睛】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.D【分析】变化范围是指在最低值和最高值之间,且包含最高值和最低值,根据题意用不等式表示.【详解】最高气温27℃,最低气温21℃,则t的变化范围为:21≤t≤27.故选D.【点睛】本题考查不等式表示生活中的应用,知道这个量的最大值和最小值,便可确定变量的变化范围,从而可用不等式表示,理解题意是解题的关键.3.D【分析】根据不等式的性质,逐项判断即可.【详解】解:℃a>b,℃2a>2b,℃选项A不符合题意;℃a>b,c<0时,ac<bc,℃选项B不符合题意;℃a>b,℃-a <-b , ℃-a +1<-b +1, ℃选项C 不符合题意; ℃a >b , ℃3a >3b ,℃3a +1>3b+1,℃选项D 符合题意. 故选:D .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 4.C【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出最大整数解即可.【详解】解:123x x +>- 移项得231x x ->-- 合并同类项得4x ->- 系数化为1得4x <故该不等式的最大整数解为3,故选C.【点睛】本题考查一元一次不等式的整数解.解本题注意在第三步系数化为1时需改变不等号的方向. 5.B【分析】竞赛得分=10×答对的题数+(-5)×未答对(不答)的题数,根据本次竞赛得分要超过100分,列出不等式求解即可. 【详解】解:设要答对x 道. 10x+(-5)×(20-x )>100, 10x-100+5x >100, 15x >200,解得x >403=1133,他至少要答对14道题, 故选B .【点睛】本题考查一元一次不等式的应用,得到得分的关系式是解决本题的关键. 6.D【详解】试题分析:根据两边同时除以(a -2),不等号的方向改变,可得(a -2)<0,解得a <2.考点:解一元一次不等式 7.B【分析】先分别求出各不等式的解集,再求其公共解集,然后把解集在数轴上表示出来即可.【详解】解:解10x +>得x >−1, 解20x -≥得x≤2,℃不等式组的解集为−1<x≤2, 在数轴上表示解集为:故选:B .【点睛】本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则. 8.C 【详解】如果成立那么必须30,30,0mm m m-〉-≥≥可得9.D【分析】根据不等式的基本性质来分别判断求解.【详解】解:A .因为x y >,在不等边两边同时加上2,不等式方向不变,故原选项正确,此项不符合题意;B .因为x y >,在不等边两边同时减去2,不等式方向不变,故原选项正确,此项不符合题意;C.因为x y>,在不等边两边同时乘2,不等式方向不变,故原选项正确,此项不符合题意;D.因为x y>,在不等边两边同时除以-2,不等式方向要改变,故原选项错误,此项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质,理解等式的基本性质是解答关键.不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.10.D【分析】利用一元一次不等式的定义判断即可.【详解】下列不等式中是一元一次不等式的是2-x≤4,故选D.【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.11.A【分析】先求出不等式组的解集,再根据解集画图即可.【详解】解:30322xx-<⎧⎪⎨+≥⎪⎩①②,由℃得,x<3,由℃得,x≥-2,故不等式组的解集为-2≤x<3.故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式的解集,每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.B【分析】根据不等式()11a x ->的解集是11x a <-,得出关于a 的不等式,求出a 的取值范围即可. 【详解】解:℃原不等式两边同时除以1a -,不等号方向改变,℃10a -<,解得1a <,故B 正确.故答案选:B .【点睛】本题考查的是解一元一次不等式,熟知不等式的基本性质,是解答此题的关键. 13.D【分析】根据不等式的基本性质,对每个选项分别进行判断,即可得到答案.【详解】解:A .℃a >b ,℃a +m >b +m ,故本选项不合题意;B .如果a >b ,m >0,则am >bm ,故本选项不合题意;C .如果a >b ,m =0,则am 2=bm 2,故本选项不合题意;D ..℃a >b ,℃﹣a <﹣b ,℃m ﹣a <m ﹣b ,故本选项符合题意;故选:D .【点睛】本题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质进行判断. 14.C【分析】求出当y =3和y =-2时的x 的值,根据函数图像即可求出m 的取值. 【详解】解:画出函数12y x =+-图象如图所示.把3y =代入12y x =+-得312x =+-,解得4x =或6-,把=2y -代入12y x =+-得212x -=+-,解得=1x -,当4m x ≤≤,对应y 的取值范围为23y -≤≤,=由图可知61m -≤≤-.故选:C .【点睛】本题主要考查了带绝对值的一次函数的图像和性质,熟练掌握一次函数图像上点的坐标特征是解题的关键.15.B【分析】先解不等式组,根据关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,可得a 的取值范围,再解分式方程,关于y 的方程2433a y a y y-=---的解是正数,可得a 的取值范围,进一步求和即可.【详解】解: 023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩①②, 解不等式℃得,x a >,解不等式℃得,3x ≤,关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解, 3a ∴<,解分式方程 2433a y a y y-=---, 去分母得,24(3)a y y a =-+-, 解得:3125a y +=, 关于y 的方程2433a y a y y-=---的解是正数, y ∴>0且3y ≠,31205a +∴>且31235a +≠, 解得4a ->,且1a ≠,43a ∴-<<且1a ≠,∴满足条件的整数a 的值:32102---、、、、;3(2)(1)024-+-+-++=-,故选:B .【点睛】本题考查了分式方程的解,和解一元一次不等式组,熟练掌握解不等式组的方法以及解分式方程的步骤是解题的关键.16.C【分析】根据每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友所分苹果不到8个.由此得出不等式组.【详解】解:根据小朋友的人数为x ,根据题意可得:15128(1)8x x ≤+--<,故选:C .【点睛】此题主要考查了一元一次不等式的应用,根据题意找出不等式的取值范围是解决问题的关键.17.D【详解】A 、不等式的两边都减1,不等号的方向不变,故A 错误;B 、当a=-1,b=-2时,a 2<b 2,故B 错误;C 、当c=0时,ac=bc ,故C 错误;D 、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D 正确;故选D .18.C【分析】设售货员可以打x 折出售此商品,利用利润=售价-进价,结合利润率不低于5%,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设售货员可以打x 折出售此商品,依题意得:1500×10x -1000≥1000×5%, 解得:x ≥7,℃售货员最低可以打7折出售此商品.故选:C .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.19.C【详解】分析:分别求出每一个不等式的解集,然后再确定不等式组的解集即可. 详解:解不等式112x -<,得:x <3, 解不等式2(x+2)+1≥3,得:x≥﹣1,℃不等式组的解集为﹣1≤x <3,故选C .点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.C【分析】先利用不等式的性质求出原不等式的解集,再把它的解集在数轴上表示出来即可.【详解】2x 97x ≤-,2x 7x 9+≤,9x 9≤,x 1≤.在数轴上表示如下图所示:故选C .【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,关键是明确解不等式的方法,会在数轴上表示不等式的解集.21.1- 【分析】根据一元一次不等式的定义可得1k =且10k -≠,分别进行求解即可.【详解】解:℃(1)30k k x -+≥是关于x 的一元一次不等式, ℃1k =且10k -≠,解得:1k =-,故答案为:1-.【点睛】本题主要考查一元一次不等式定义的“未知数的最高次数为1次”这一条件;还要注意,未知数的系数不能是0,掌握一元一次不等式的定义是解题的关键.22.1【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得满足不等式组的整数解.【详解】解:由不等式x ﹣1≤0,得x ≤1,由不等式2﹣13x >0,得x <6, 故原不等式组的解集是x ≤1,℃最大整数x =1,故答案为:1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.23.4【分析】设最多安排x 人种甲种蔬菜,根据有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使收入不低于15.6万元,可列不等式求解.【详解】解:设安排x 人种甲种蔬菜,3x ×0.5+2(10﹣x )×0.8≥15.6,解得:x ≤4.所以最多安排4人.故答案为:4.【点睛】本题考查了一元一次不等式的应用,关键设出种植甲的人数,以总收入作为不等量关系列不等式求解.24.2-【分析】先解不等式组得出12a a +≤<,然后根据不等式组的解集为1<2x ≤-,列出关于a 的方程,是解题的关键.【详解】解:解不等式组1>125x a x x -⎧⎨-≥-⎩得:12x a x ≤>+⎧⎨⎩, ℃不等式组的解集为1<2x ≤-,℃11a +=-,解得:2a =-.故答案为:2-.【点睛】本题主要考查了解不等式组,解题的关键是根据不等式组的解集列出关于a 的方程,是解题的关键.25.﹣6【分析】根据一元一次不等式组求出不等式组的解集,进而即可得到所有整数解的和.【详解】解:解不等式10x ->,得:1x <解不等式324x x >-,得:4x >-则不等式组的解集为41x -<<其整数解得和为32106---+=-,故答案为:6-.【点睛】本题主要考查了一元一次不等式组的解,熟练掌握相关计算技巧是解决本题的关键.26.4【详解】移项,合并同类项,系数化成1,即可求出不等式的解集,即可得出答案.解:℃2x<4x-6,℃2x-4x<-6,℃-2x<-6,℃x>3,℃不等式2x<4x-6的最小整数解为4,故答案为4.27.3x﹣15≥8【分析】首先表示“x的3倍”为3x,再表示“与15的差”为3x-15,最后再表示“不小于8”为3x-15≥8.【详解】由题意可知:3x-15≥8故答案为:3x-15≥8.28.3【分析】设购买A种玩具x件,则购买B种玩具102x-⎛⎫⎪⎝⎭件.根据题意即可列出关于x的一元一次不等式组,解出x的解集,再根据x为整数,102x-为整数,即得出答案.【详解】设购买A种玩具x件,则购买A种玩具用x元,℃购买B种玩具用(10-x)元,℃购买B种玩具102x-⎛⎫⎪⎝⎭件,根据题意可知11012102xxxx⎧⎪≥⎪-⎪≥⎨⎪-⎪>⎪⎩,解得:1383x<≤.℃x为整数,102x-为整数,℃x的值为4或6或8,即可购买A种玩具4件,B种玩具3件,可购买A种玩具6件,B种玩具2件,可购买A种玩具8件,B种玩具1件.故小明的购买方案有3种.故答案为:3.【点睛】本题考查一元一次不等式组的应用.正确的用x表示出购买B种玩具的数量和正确的列出不等式组是解题关键.29.0【分析】先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值,进而得出最小整数解.【详解】解:23348xx⎧>-⎪⎨⎪-≤⎩①②,解℃得x>23 -,解℃得3x<12,即x≤4,由上可得23-<x≤4,℃x为整数,故x可取0、1、2、3、4,℃最小整数解为0.故答案为:0.【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.30.6,11,16【分析】关系式为:车上人数、下车人数一定都是非负整数,因而就可以得到一个关于a 的不等式组,求出a的范围,再根据车上人数、下车人数一定都是整数,则a一定是整数,从而求出a的值.【详解】解:根据题意,得5a−4≥9−2a解得a≥137,又℃540920aa-≥⎧⎨-≥⎩,解得:4952a≤≤,℃139 72a≤≤因为a为整数,所以a=2,3,45a−4分别为6,11,16即客车上原有乘客6人或11人或16人.故答案为:6,11,16【点睛】解决本题的关键是理解所有的人数均为自然数.根据这一条件求出a的范围.31.0≤2x +y ≤6【分析】把a 当作参数,联立方程组求出x ,y 的值,然后用x 表示出2x +y ,利用不等式的性质求解.【详解】联立方程组3430x y a x y a ++=⎧⎨--=⎩①②,将a 作为参数解得:121x a y a =+⎧⎨=-⎩, ℃﹣1≤a ≤1,℃2x +y =3a +3,可得:0≤2x +y ≤6.故答案为0≤2x +y ≤6.【点睛】本题主要考查不等式的性质和解二元一次方程组,解题时要把a 当作参数,联立方程组求出x ,y 的值,然后利用不等式的性质求解.32.6x >-【分析】根据题意,先求出k 值,然后解不等式即可.【详解】直线y kx =向上平移2个单位后,解析式为2y kx =+,℃过点(1,0)-,℃20k -+=,解得:2k =,则不等式为:422x x -<+,解得:6x >-,故答案为:6x >-.【点睛】本题主要考查一次函数图象的平移,根据题意准确求出平移之后的解析式是解题关键.33.x≥3【分析】先移项,再将不等式的两边同时除以2,就可得到不等式的解集.【详解】解: 2x-6≥02x≥6解之:x≥3故答案为x≥3【点睛】考核知识点:解一元一次不等式.34.1825【分析】先按照方案一结合题意求解出增订前的各类书的数量,并求出增订的总数量,再按照方案二的比例分别解出按照方案二增订后的各类书的总量,进而求解比例即可.【详解】设原本有A 类新书4x 本,B 类新书x 本,则C 类新书有(900-5x )本, 由题意:4400559005428x x x ≤⎧⎪⎨-≤⨯⎪⎩,解得:70100x ≤≤, 设两种方案都增订m 本书,方案一:增订A 类15m 本,B 类310m 本,C 类12m 本, 则增订后共计:A 类145x m +本,B 类310x m +本,C 类190052x m ⎛⎫-+ ⎪⎝⎭本, 按方案一增订,则增订后A ,B 两类书总数量之比为7:2, 可得:1475=3210x m x m ++,解得:1710x m =,即:10=17m x , 由70100x ≤≤,且m 和x 均为正整数,得x =85,m =50,℃求得增订前:A 类340本,B 类85本,C 类475本,方案二:增订A 类2205m =本,B 类1510m =本,C 类1252m =本, 则增订后共计:A 类360本,B 类90本,C 类500本,增订后A ,C 两类书总数量之比为36018=50025, 故答案为:1825. 【点睛】本题考查列方程及不等式解决问题,解题关键在于根据题意建立不等式,求解出范围中符合题意的数据.35.2【分析】解一元一次不等式如下步骤:℃去分母;℃去括号;℃移项;℃合并同类项;℃化系数为1.以上步骤中,只有℃去分母和℃化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向. 【详解】解:解不等式()133x m m ->- ℃x-m >9-3m℃x >9-2m ,℃解集为x >5,℃9-2m=5,解得m=2,故答案为2.【点睛】本题考查了解一元一次不等式,熟练解一元一次不等式是解题的关键. 36.5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩,23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ℃2m <,|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:℃k >0,b >0⇔y=kx+b 的图象在一、二、三象限;℃k >0,b <0⇔y=kx+b 的图象在一、三、四象限;℃k <0,b >0⇔y=kx+b 的图象在一、二、四象限;℃k <0,b <0⇔y=kx+b 的图象在二、三、四象限.37.1a.【分析】把a当作已知条件,根据不等式组无解求出a的取值范围即可.【详解】解:324x ax a<+⎧⎨>+⎩①②,不等式组无解,432a a∴++.解得:1a故答案为1a【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.38.16千米/时【详解】设哥哥的速度至少为x千米/时,根据题意可得:40404206060x-⨯≥,解得:16x≥.答:哥哥的速度至少是16千米/时.故答案为16千米/时.39.1a1 2<【分析】先求出不等式组的解集,再根据不等式组有且只有两个整数解,求出实数a的取值范围.【详解】解:123354413x xx a x a①②,由℃得:25 x>-,由℃得:2x a<,不等式组的解集为:225x a -<<,不等式组只有两个整数解为0、1,122a,∴1a1 2<.故答案为1a 12<. 【点睛】此题考查的是一元一次不等式的解法和特殊解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.40.(1)3x ≤-(2)9x >- (3)132x << (4)1x ≥-【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集;(4)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)去括号得:2x +3≥3x +6,移项得:2x -3x ≥6-3,合并同类项得:-x ≥3,系数化1得:x ≤-3;(2)去分母得:3(x -1)<2(2x +3),去括号得:3x -3<4x +6,移项得:3x -4x <6+3,合并同类项得:-x <9,系数化1得:x >-9;(3)解第一个不等式得:x >12,解第二个不等式得:x <3, 所以不等组得解集为:12<x <3;(4)解第一个不等式得:x >-4,解第二个不等式得:x ≥-1,。
中考数学《不等式组》专题训练(附答案解析)
中考数学《不等式组》专题训练(附答案解析)一、单选题(共10小题 每小题3分 共计30分)1.不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A .无解 B .1x ≤ C .1x ≥- D .11x -≤≤【答案】D 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1 得:x≤1解不等式x−1≥−2(x +2) 得:x≥−1则不等式组的解集为−1≤x≤1故选:D .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.不等式组()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩的解集是( )A .0x 2<≤B . 0x 6<≤C . x 0>D .x 2≤【答案】A 分别解不等式组中的两个不等式 再取解集的公共部分即可.【详解】解:()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩①② 由①得:242x x -≤-36,x ∴≤2,x ∴≤由②得:3(2)2(3)x x ++>x ∴>0,∴ 不等式组的解集是0 2.x ≤<故选A .【点睛】本题考查的是解不等式组 掌握解不等式组的方法是解题的关键.3.(贵州贵阳市·)已知a b < 下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb > 【答案】D 根据不等式的性质解答.【详解】解:A 、不等式a <b 的两边同时减去1 不等式仍成立 即a−1<b−1 故本选项不符合题意; B 、不等式a <b 的两边同时乘以-2 不等号方向改变 即22a b ->- 故本选项不符合题意; C 、不等式a <b 的两边同时乘以12 不等式仍成立 即:1122a b < 再在两边同时加上1 不等式仍成立 即111122a b +<+ 故本选项不符合题意; D 、不等式a <b 的两边同时乘以m 当m>0 不等式仍成立 即ma mb <;当m<0 不等号方向改变 即ma mb >;当m=0时 ma mb =;故ma mb >不一定成立 故本选项符合题意故选:D .【点睛】本题考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时 一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时 一定要对字母是否大于0进行分类讨论.4.不等式213x -≤的解集在数轴上表示正确的是( )A .B .C .D .【答案】C 先求出不等式的解集 再在数轴上表示出来即可.【详解】解:移项得 2x ≤3+1合并同类项得 2x ≤4系数化为1得 x ≤2在数轴上表示为:故选:C .【点睛】 本题考查的是在数轴上表示不等式的解集 熟知“小于向左 大于向右 在表示解集时≥ ≤要用实心圆点表示;< >要用空心圆点表示”是解答此题的关键.5.关于x 的不等式0721x m x ->⎧⎨->⎩的整数解只有4个 则m 的取值范围是( ) A .21m -<≤- B .21m -≤≤- C .21m -≤<- D .32m -<≤-【答案】C 不等式组整理后 表示出不等式组的解集 根据整数解共有4个 确定出m 的范围即可.【详解】解:不等式组整理得:3x m x >⎧⎨<⎩ 解集为m <x <3由不等式组的整数解只有4个 得到整数解为2 1 0 -1∴-2≤m<-1故选:C .【点睛】本题主要考查对解一元一次不等式 不等式的性质 解一元一次不等式组 一元一次不等式组的整数解等知识点的理解和掌握 能根据不等式组的解集得到-2≤m<-1是解此题的关键. 6.若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解 则a 的取值范围是( ) A .02a ≤≤ B .02a ≤< C .02a <≤ D .02a <<【答案】C 先求出不等式组的解集(含有字母a ) 利用不等式组有三个整数解 逆推出a 的取值范围即可.【详解】解:解不等式351x -得:2x ≥解不等式28x a -<得:82a x +<∴不等式组的解集为:822a x +≤<∵不等式组35128x x a -⎧⎨-<⎩有三个整数解 ∴三个整数解为:2 3 4 ∴8452a +<≤ 解得:02a <≤故选:C .【点睛】本题考查了解一元一次不等式组 一元一次不等式组的整数解的应用 解此题的关键就是根据整数解的个数得出关于a 的不等式组.7.某单位为响应政府号召 需要购买分类垃圾桶6个 市场上有A 型和B 型两种分类垃圾桶 A 型分类垃圾桶500元/个 B 型分类垃圾桶550元/个 总费用不超过3100元 则不同的购买方式有( ) A .2种 B .3种 C .4种 D .5种【答案】B 设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x ) 然后根据题意列出不等式组 确定不等式组整数解的个数即可.【详解】解:设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x )个由题意得:500550631006x x x +-≤⎧⎨≤⎩() 解得4≤x ≤6 则x 可取4、5、6 即有三种不同的购买方式.故答案为B .【点睛】本题考查了一元一次方程组的应用 弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.8.不等式组1051x x ->⎧⎨-≥⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个【答案】C 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集 从而得出答案.【详解】解:解不等式x ﹣1>0 得:x >1解不等式5﹣x ≥1 得:x ≤4则不等式组的解集为1<x ≤4所以不等式组的整数解有2、3、4这3个故选:C .【点睛】此题考查求不等式组的整数解 正确求出每个不等式的解集得到不等式组的解集是解题的关键.9.(山东聊城市·)若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解 则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >【答案】A 求出第一个不等式的解集 根据口诀:大大小小无解了可得关于m 的不等式 解之可得.【详解】 解不等式1132x x +<- 得:x >8 ∵不等式组无解∴4m≤8解得m≤2故选A .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(四川广安市·)若m n > 下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >【答案】D 根据不等式的性质:不等式两边加(或减)同一个数(或式子) 不等号的方向不变;不等式两边乘(或除以)同一个正数 不等号的方向不变;不等式两边乘(或除以)同一个负数 不等号的方向改变 即可得到答案.【详解】解:A 、不等式的两边都加3 不等号的方向不变 故A 错误;B 、不等式的两边都乘以﹣3 不等号的方向改变 故B 错误;C 、不等式的两边都除以3 不等号的方向不变 故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质 “0”是很特殊的一个数 因此 解答不等式的问题时 应密切关注“0”存在与否 以防掉进“0”的陷阱.二、填空题(共5小题 每小题4分 共计20分)11.关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解 则a 的取值范围是________________. 【答案】-114≤a <-52解不等式组求得不等式组的解集 根据不等式组有四个整数解 进而求出a 的范围.【详解】 ()2331324x x x x a ①②⎧<-+⎪⎨+>+⎪⎩解不等式①得 x >8;解不等式②得 x <2-4a ;∴不等式组的解集为8<x <2-4a.∵不等式组有4个整数解∴12<2-4a ≤13∴-114≤a <-5212.若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解 则m 的取值范围是______. 【答案】1≤m <4解不等式组得出其解集为﹣2<x ≤23m + 根据不等式组有且只有三个整数解得出1≤23m +<2 解之可得答案. 【详解】解不等式2143x x--<得:x>﹣2解不等式2x﹣m≤2﹣x得:x≤2 3 m+则不等式组的解集为﹣2<x≤2 3 m+∵不等式组有且只有三个整数解∴1≤23m+<2解得:1≤m<4故答案为:1≤m<4.13.若不等式52x+>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立则实数m的取值范围是_______.【答案】236≤m≤6解不等式52x+>﹣x﹣72得x>﹣4据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立再分m﹣6=0和m﹣6≠0两种情况分别求解.【详解】解:解不等式52x+>﹣x﹣72得x>﹣4∵x>﹣4都能使不等式(m﹣6)x<2m+1成立①当m﹣6=0即m=6时则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0则不等式(m﹣6)x<2m+1的解要改变方向∴m﹣6<0即m<6∴不等式(m﹣6)x<2m+1的解集为x>216 mm+-∵x>﹣4都能使x>216mm+-成立∴﹣4≥216 mm+-∴﹣4m+24≤2m+1∴m≥23 6综上所述m的取值范围是236≤m≤6.故答案为:236≤m≤6.14.世纪公园的门票是每人5元一次购门票满40张每张门票可少1元.若少于40人时一个团队至少要有________人进公园买40张门反而合算.【答案】33先求出购买40张票 优惠后需要多少钱 然后再利用5x >160时 求出买到的张数的取值范围再加上1即可.【详解】解:设x 人进公园若购满40张票则需要:40×(5-1)=40×4=160(元) 故5x >160时解得:x >32∴当有32人时 购买32张票和40张票的价格相同则再多1人时买40张票较合算;∴32+1=33(人);则至少要有33人去世纪公园 买40张票反而合算.故答案为:33.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝 并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数 同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4 则阅读过《水浒传》的人数的最大值为_____.【答案】6根据题中给出阅读过《三国演义》的人数 则先代入条件(3)可得出阅读过《西游记》的人数的取值范围 然后再根据条件(1)和(2)再列出两个不等式 得出阅读过《水浒传》的人数的取值范围 即可得出答案.【详解】解:设阅读过《西游记》的人数是a 阅读过《水浒传》的人数是b (,a b 均为整数)依题意可得:48a b b a >⎧⎪>⎨⎪<⎩且,a b 均为整数可得:47b <<b ∴最大可以取6;故答案为6.三、解答题(共5小题 每小题10分 共计50分)16.如图 “开心”农场准备用50m 的护栏围成一块靠墙的矩形花园 设矩形花园的长为()a m 宽为()b m .(1)当20a =时 求b 的值;(2)受场地条件的限制 a 的取值范围为1826a ≤≤ 求b 的取值范围.【答案】(1)b=15;(2)1216b ≤≤(1)根据等量关系“围栏的长度为50”可以列出代数式 再将a=20代入所列式子中求出b 的值;(2)由(1)可得a,b 之间的关系式 用含有b 的式子表示a,再结合1826a ≤≤ 列出关于b 的不等式组 接着不等式组即可求出b 的取值范围.【详解】解:(1)由题意 得250a b +=当20a =时 20250b +=.解得15b =.(2)∵1826a ≤≤ 502a b =-∴5021850226b b -≥⎧⎨-≤⎩解这个不等式组 得1216b ≤≤.答:矩形花园宽的取值范围为1216b ≤≤.【点睛】此题主要考查了列代数式 正确理解题意得出关系式是解题关键.还考查了解不等式组 难度不大.17.解不等式组:3512(21)34x x x x -<+⎧⎨--⎩ 并把它的解集在数轴上表示出来.【答案】-2≤x<3 解集在数轴上表示见解析.先求出两个不等式的解集 再求其公共解.【详解】解:3512(21)34x x x x -<+⎧⎨--⎩①② 解不等式① 得x<3.解不等式② 得x ≥-2.所以原不等式组的解集为-2≤x<3.在数轴上表示如下:【点睛】本题主要考查了一元一次不等式组解集的求法 其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大 同小取小 大小小大中间找 大大小小找不到(无解).18.第33个国际禁毒日到来之际 贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动 某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下 为什么说学习委员搞错了;(2)学习委员连忙拿出发票 发现的确错了 因为他还买了一本笔记本 但笔记本的单价已模糊不清 只能辨认出单价是小于10元的整数 那么笔记本的单价可能是多少元?【答案】(1)方程见解析 因为钢笔的数量不可能是小数 所以学习委员搞错了;(2)可能是2元或者6元(1)根据题意列出方程解出答案判断即可;(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.【详解】解:(1)设单价为6元的钢笔买了x 支 则单价为10元的钢笔买了(100x -)支根据题意 得610(100)1300378x x +-=-解得:19.5x =.因为钢笔的数量不可能是小数 所以学习委员搞错了(2)设笔记本的单价为a 元 根据题意 得610(100)1300378x x a +-+=-整理 得13942x a =+ 因为010a << x 随a 的增大而增大 所以19.522x << ∵x 取整数∴20,21x =.当20x 时 420782a =⨯-=当21x =时 421786a =⨯-=所以笔记本的单价可能是2元或者6元.【点睛】本题考查方程及不等式的列式和计算,关键在于理解题意找到等量关系.19.解不等式31212x x -->. 解:去分母 得2(21)31x x ->-.……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”)A .不等式两边都乘(或除以)同一个正数 不等号的方向不变;B .不等式两边都乘(或除以)同一个负数 不等号的方向改变.【答案】(1)余下步骤见解析;(2)A .(1)按照去括号、移项、合并同类项的步骤进行补充即可; (2)根据不等式的性质即可得.【详解】(1)31212x x --> 去分母 得2(21)31x x ->-去括号 得4231x x ->-移项 得4312x x ->-+合并同类项 得1x >;(2)不等式的性质:不等式两边都乘(或除以)同一个正数 不等号的方向不变31212x x -->两边同乘以正数2 不等号的方向不变 即可得到2(21)31x x ->- 故选:A .【点睛】本题考查了解一元一次不等式、不等式的性质 熟练掌握一元一次不等式的解法是解题关键. 20.某水果店销售苹果和梨 购买1千克苹果和3千克梨共需26元 购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克 且总价不超过100元 那么最多购买多少千克苹果?【答案】(1)每千克苹果售价8元 每千克梨6千克;(2)最多购买5千克苹果(1)设每千克苹果售价x 元 每千克梨y 千克 由题意列出x 、y 的方程组 解之即可;(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意列出a 的不等式 解之即可解答.【详解】(1)设每千克苹果售价x 元 每千克梨y 千克 由题意得:326222x y x y +=⎧⎨+=⎩解得:86x y =⎧⎨=⎩ 答:每千克苹果售价8元 每千克梨6千克(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意得:8a+6(15-a)≤100解得:a ≤5∴a 最大值为5答:最多购买5千克苹果.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用 解答的关键是认真审题 分析相关信息 正确列出方程组和不等式.。
2018年中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)
不等式(组)一.选择题1. (2018·湖北江汉·3分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.2.(2018·四川省攀枝花·3分)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1.2.3,则3≤a<4.故答案为:3≤a<4.3.(2018·辽宁省阜新市)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为.故选B.4. (2018•呼和浩特•3分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值范围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,∴m<,∴m≤﹣4故选:D.5.(2018·吉林长春·3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.二.填空题1.(2018·辽宁省沈阳市)(3.00分)不等式组的解集是﹣2≤x<2 .【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.(2018·辽宁省盘锦市)不等式组的解集是0<x≤8.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.3. (2018•呼和浩特•3分)若不等式组的解集中的任意x,都能使不等式x ﹣5>0成立,则a的取值范围是.解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴﹣2a≥5或﹣a+2≥5,解得:a≤﹣2.5或a≤﹣6,经检验a≤﹣2.5不符合,故答案为:a≤﹣6.三.解答题1. (2018·广西贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.2. (2018·广西梧州·8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1.2.3,原式=•[﹣]=•=,∵x≠±3.1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.3. (2018·湖北荆州·5分)求不等式组的整数解.【解答】解:解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1.0.4.(2018·四川省攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.5.(2018·云南省昆明·8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.6.(2018·云南省·8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A.B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)3 2 120A商品2.53.5 200B商品设生产A种商品x千克,生产A.B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.7.(2018·浙江省台州·8分)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.8.(2018·辽宁省葫芦岛市) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建6个足球场.9.(2018·辽宁省阜新市)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.10.(2018·辽宁省抚顺市)(12.00分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.11. (2018•乐山•9分)解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.12. (2018•广安•3分)已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.【点评】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(2018·辽宁大连·9分)解不等式组:解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.14. (2018·湖北咸宁·10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于=(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值范围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为,解得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,综合起来可知汽车总数为8辆,故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.15.(2018·江苏常州·8分)解方程组和不等式组:(2)【分析】(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.16.(2018·江苏镇江·5分)(2)解不等式组:【解答】解:(2)解不等式2x﹣4>0,得:x>2,解不等式x+1≤4(x﹣2),得:x≥3,则不等式组的解集为x≥3.11。
2018 初三数学中考总复习 不等式(组)及其应用 专题训练题 含答案(解析版)
2018 初三数学中考复习不等式(组)及其应用专题复习训练题1.1.不等式组的解集在数轴上表示为( )..................A. AB. BC. CD. D【答案】B【解析】【分析】根据在数轴上表示不等式解集的方法和要求,大于向右,小于向左,包含等号用实心,不含等号用空心,即可求解.【详解】根据不等式解集在数轴上表示方法可得:故选B.【点睛】本题主要考查不等式组的解集在数轴上的表示,解决本题的关键是要熟练掌握在数轴上表示不等式组的方法.2.2.如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B【解析】试题分析:由①得,x>﹣2,由②得,x≤2,故此不等式组的解集为:﹣2<x≤2.故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.3.3.若a<b,则下列不等式成立的是( )A. -a>-bB. -a+1>b+1C.D. ac<bc【答案】A【解析】【分析】根据不等式的基本性质:不等式的两边同时加或减去同一个数,不等号方向不变;不等式的两边同时乘以或除以一个正数,不等号的方向不变;不等式的两边同时乘以或除以一个负数,不等号的方向要改变.【详解】若a<b,根据不等式的性质: 不等式的两边同时乘以或除以一个负数,不等号的方向要改变所以-a>-b,因此A正确, 故选A.【点睛】本题主要考查不等式的基本性质,解决本题的关键是要熟练掌握不等式的基本性质.4.4.已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( )A. B. C. D.【答案】B【解析】分析:根据点的位置,可得不等式组,根据解不等式组的方法,可得答案.详解:M(1-2m,m-1)在第四象限,则,解得.故选:B.点睛:本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.5.5.不等式3(x﹣1)≤5﹣x的非负整数解有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题分析:解不等式得:3x﹣3≤5﹣x,4x≤8,x≤2,所以不等式的非负整数解有0、1、2这3个,故答案选C.考点:一元一次不等式组的整数解.6.6.若不等式ax-2>0的解集为x<-2,则关于y的方程ay+2=0的解为( )A. y=-1B. y=1C. y=-2D. y=2【答案】D【解析】根据ax-2>0的解集为x<-2,解得a=-1,则方程ay+2=0为得:故选D.7.7.“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织七年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A. 60B. 70C. 80D. 90【答案】C【解析】试题分析:设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得:2x+≤200,解得:x≤80,∴最多可搬桌椅80套,故选C.考点:一元一次不等式的应用.8.8.已知不等式组的解集是x≥1,则a的取值范围是( )A. a<1B. a≤1C. a≥1D. a>1【答案】A【解析】试题分析:∵等式组的解集是x≥1,∴a<1,故选A.考点:不等式的解集;含待定字母的不等式(组).9.9.下列数值中不是不等式5x≥2x+9的解的是( )A. 5B. 4C. 3D. 2【答案】D【解析】试题分析:移项得,5x﹣2x≥9,合并同类项得,3x≥9,系数化为1得,x≥3,所以,不是不等式的解集的是x=2.故选D.考点:不等式的解集.视频10.10.不等式组的解集为( )A. -1<x<2B. 1<x≤2C. -1<x≤2D. -1<x≤3【答案】C【解析】试题分析:,∵由①得,x≤2;由②得,x>﹣1,∴此不等式组的解集为:﹣1<x≤2.故选C.考点:解一元一次不等式组.视频11.11.不等式-x+3<0的解集是____.【答案】x>6【解析】试题分析:移项,得,系数化为1得x>6.故答案为:x>6.考点:解一元一次不等式.12.12.不等式组的解集是___.【答案】-1<x≤2【解析】【分析】根据不等式的基本性质解不等式,由可得:,由解得:,因此不等式组的解集是.【详解】解:,由不等式得:,由不等式得:,所以不等式组的解集是.故答案为:.【点睛】本题主要考查不等式组的解集,解决本题的关键是要熟练掌握解不等式组的方法.13.13.不等式组有3个整数解,则m的取值范围是____.【答案】2<m≤3【解析】【分析】根据不等式组有3个整数解,先根据可确定3个整数解是0,1,2,所以. 【详解】根据不等式组有3个整数解,可得:.故答案为:.【点睛】本题主要考查不等式组整数解问题,解决本题的关键是要熟练掌握不等式组的解法.14.14.已知不等式组在同一条数轴上表示不等式①②的解集如图,则b-a的值为____.【答案】【解析】分析:根据不等式组,和数轴可以得到a、b的值,从而可以得到b-a的值.详解:,由①得,x⩾−a−1,由②得,x⩽b,由数轴可得,原不等式的解集是:−2⩽x⩽3,∴,解得,∴b-a=3−1=,故答案为:.点睛:此题主要考查了在数轴上表示不等式的解集,正确得出a,b的值是解题的关键.15.15.解不等式组:【答案】2<x≤5【解析】试题分析:分别求出不等式组中各个不等式的解集,再求出这两个不等式的解集的公共部分,即这个不等式组的解集.试题解析:解:解①得:x>2,解②得x≤5.则不等式组的解集是:2<x≤5.16.16.解不等式2x﹣1>,并把它的解集在数轴上表示出来.【答案】不等式的解集为x>1,在数轴上表示见解析.【解析】试题分析:根据分式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.试题解析:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:17.17.已知关于x 的不等式组有四个整数解,求实数a的取值范围.【答案】-3≤a<-2【解析】试题分析:分别求出不等式组中两不等式的解集,根据不等式组有四个整数解,即可确定出的范围.试题解析:解不等式组解不等式①得:解不等式②得:∵不等式组有四个整数解,解得:实数的取值范围是:18. 有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【答案】(1)22元;(2)20千克【解析】试题分析:(1)根据加权平均数的计算公式和三种糖果的单价和克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果(100-x)千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和锦糖的单价每千克至少降低2元,列出方程进行求解即可.试题解析:(1)根据题意得:=24 (元/千克).答:该什锦糖的单价是24元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:=20,解得:x=40.答:加入丙种糖果40千克.点睛:本题主要考查了加权平均数的知识,解题的关键是掌握加权平均数的公式,注意:权的差异对结果会产生直接的影响.19. 已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?【答案】(1)80元,50元;(2)43个【解析】试题分析:试题解析:(1)、设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)、设买m个篮球,则购买(54﹣m)个足球,由题意得,80m+50(54﹣m)≤4000,解得:m≤,∵m为整数,∴m最大取43,答:最多可以买43个篮球.考点:(1)、二元一次方程组;(2)、不等式的应用20.20.某市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)【答案】(1)从今年年初起每年新增电动车数量最多是2万辆(2)今年年底到明年年底电动车拥有量的年增长率是8.2%【解析】【分析】(1)设从今年年初起每年新增电动车数量是x万辆,由题意可得出:今年将报废电动车:10×10%=1(万辆), (10-1)+x-10%[(10-1)+x]+x≤11.9,即[(10-1)+x](1-10%)+x≤11.9,解得x≤2.(2)根据今年年底电动车拥有量为:(10-1)+2=11(万辆),明年年底电动车拥有量为:11.9万辆,因此设今年年底到明年年底电动车拥有量的年增长率是y.则11(1+y)=11.9,解得y≈0.082=8.2%.【详解】设从今年年初起每年新增电动车数量是x万辆,由题意可得出:今年将报废电动车:10×10%=1(万辆),∴(10-1)+x-10%[(10-1)+x]+x≤11.9,即[(10-1)+x](1-10%)+x≤11.9,解得x≤2.答:从今年年初起每年新增电动车数量最多是2万辆.(2)∵今年年底电动车拥有量为:(10-1)+2=11(万辆),明年年底电动车拥有量为:11.9万辆,∴设今年年底到明年年底电动车拥有量的年增长率是y.则11(1+y)=11.9,解得y≈0.082=8.2%.答:今年年底到明年年底电动车拥有量的年增长率是8.2%.【点睛】本题主要考查不等式解决实际问题,解决本题的关键是要熟练掌握正确确定不等式中的等量关系.。
中考数学《方程与不等式》专题训练50题(含参考答案)
中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。
2018中考数学不等式与不等式组
2018中考数学不等式与不等式组一.选择题(共22小题)1.(2018•衢州)不等式3x+2≥5的解集是()A.x≥1 B.x≥C.x≤1 D.x≤﹣1【分析】根据一元一次不等式的解法即可求出答案.【解答】解:3x≥3x≥1故选:A.2.(2018•岳阳)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式组进而在数轴上表示出来即可.【解答】解:,解①得:x<2,解②得:x≥﹣1,故不等式组的解集为:﹣1≤x<2,故解集在数轴上表示为:.故选:D.3.(2018•广安)已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.4.(2018•襄阳)不等式组的解集为()A.x>B.x>1 C.<x<1 D.空集【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式2x>1﹣x,得:x>,解不等式x+2<4x﹣1,得:x>1,则不等式组的解集为x>1,故选:B.5.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.【分析】根据不等式解集的表示方法,可得答案.【解答】解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.6.(2018•衡阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解两个不等式得到x>﹣1和x≤3,从而得到不等式组的解集为﹣1<x≤3,然后利用此解集对各选项进行判断.【解答】解:,解①得x>﹣1,解②得x≤3,所以不等式组的解集为﹣1<x≤3.故选:C.7.(2018•聊城)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.8.(2018•滨州)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.9.(2018•荆门)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m 的取值范围.【解答】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.10.(2018•临沂)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的正整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.11.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.【解答】解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.12.(2018•广西)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2 B.C.6m<6n D.﹣8m>﹣8n【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【解答】解:A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误;故选:B.13.(2018•贵港)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.14.(2018•娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k) D.f(k)=0或1【分析】根据题意可以判断各个选项是否正确,从而可以解答本题.【解答】解:f(1)=[]﹣[]=0﹣0=0,故选项A正确;f(k+4)=[]﹣[]=[+1]﹣[+1]=[]﹣[]=f(k),故选项B正确;C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C错误;D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D选项的结论正确;故选:C.15.(2018•嘉兴)不等式1﹣x≥2的解在数轴上表示正确的是()A.B.C.D.【分析】先求出已知不等式的解集,然后表示在数轴上即可.【解答】解:不等式1﹣x≥2,解得:x≤﹣1,表示在数轴上,如图所示:故选:A.16.(2018•湘西州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先定界点,再定方向即可得.【解答】解:不等式组的解集在数轴上表示如下:故选:C.17.(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.18.(2018•宿迁)若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.﹣>﹣D.a2<b2【分析】由不等式的性质进行计算并作出正确的判断.【解答】解:A、在不等式a<b的两边同时减去1,不等式仍成立,即a﹣1<b﹣1,故本选项错误;B、在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C、在不等式a<b的两边同时乘以﹣,不等号的方向改变,即﹣>﹣,故本选项错误;D、当a=﹣5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.19.(2018•株洲)下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>0【分析】首先计算出不等式5x>8+2x的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.【解答】解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.20.(2018•娄底)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣x≥x﹣2,得:x≤2,解不等式3x﹣1>﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故选:B.21.(2018•长春)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.22.(2018•台湾)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.143【分析】设妮娜需印x张卡片,根据利润=收入﹣成本结合利润超过成本的2成,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内最小的整数即可得出结论.【解答】解:设妮娜需印x张卡片,根据题意得:15x﹣1000﹣5x>0.2(1000+5x),解得:x>133,∵x为整数,∴x≥134.答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.故选:C.二.填空题(共7小题)23.(2018•黔南州)不等式组的解集是x<3 .【分析】首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.【解答】解:由(1)x<4,由(2)x<3,所以x<3.24.(2018•安顺)不等式组的所有整数解的积为0 .【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【解答】解:,解不等式①得:x,解不等式②得:x≤50,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.25.(2018•扬州)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.26.(2018•包头)不等式组的非负整数解有 4 个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.27.(2018•温州)不等式组的解是x>4 .【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,解①得x>2,解②得x>4.故不等式组的解集是x>4.故答案为:x>4.28.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5529.(2018•聊城)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1 .【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.三.解答题(共13小题)30.(2018•威海)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.31.(2018•常德)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.32.(2018•南京)如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在 B .A.点A的左边 B.线段AB上 C.点B的右边【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.【解答】解:(1)由数轴上的点表示的数右边的总比左边的大,得﹣2x+3>1,解得x<1;(2)由x<1,得﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.数轴上表示数﹣x+2的点在A点的右边;作差,得﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,数轴上表示数﹣x+2的点在B点的左边.故选:B.33.(2018•自贡)解不等式组:,并在数轴上表示其解集.【分析】分别解不等式①、②求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.【解答】解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.34.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.35.(2018•黄石)解不等式组,并求出不等式组的整数解之和.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可.【解答】解:解不等式(x+1)≤2,得:x≤3,解不等式≥,得:x≥0,则不等式组的解集为0≤x≤3,所以不等式组的整数解之和为0+1+2+3=6.36.(2018•南通模拟)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.37.(2018•哈尔滨)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A 型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.38.(2018•济宁)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【解答】解:(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得:,解得:,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.39.(2018•苏州)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A 型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.40.(2018•郴州)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【解答】解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.41.(2018•广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【分析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:设购买A型号笔记本电脑x台时的费用为w元,(1)当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8﹣5)a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.42.(2018•湘潭)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解答】解:(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.。
2018年中考数学《不等式与不等式组》同步提分训练含答案解析
2018年中考数学提分训练: 不等式与不等式组一、选择题1.不等式组的解集为()A. x>B. x>1C. <x<1D. 空集2.下列哪个选项中的不等式与不等式组成的不等式组的解集为.( )A. B. C. D.3.如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A. 112B. 121C. 134D. 1434.不等式组的解集在数轴上表示正确的是()A. B. C. D.5. 不等式组的解集为()A. x<3B. x≥2C. 2≤x<3D. 2<x<36.关于x的不等式的解集为x>3,那么a的取值范围为()A. a>3B. a<3C. a≥3D. a≤37. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A. B. C. D.8. 不等式3x+6≥9的解集在数轴上表示正确的是()A. B.C. D.9.若不等式组无解,则m的取值范围是()A. m>3B. m<3C. m≥3D. m≤310. 不等式组的非负整数解的个数是()A. 4B. 5C. 6D. 7二、填空题11. 不等式2x+1>0的解集是________.12. 已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是________.13.不等式组的解集是________.14.不等式组的最小整数解是________.15.若不等式组的解集是x>3,则m的取值范围是________.16.如果关于x的方程x2﹣3x+m=0没有实数根,那么m的取值范围是________.17. 不等式组的解集是x>﹣1,则a的取值范围是________.18.用一组,,的值说明命题“若,则”是错误的,这组值可以是________,________,________.三、解答题19.计算题(1)解不等式2x+9≥3(x+2)(2)解不等式组并写出其整数解。
2018-2019学年下学期初三中考冲刺数学《不等式与不等式组》专题总复习附答案
2018-2019学年下学期初三中考冲刺数学《不等式与不等式组》专题总复习一、单选题1.如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()A. 5B. 7C. 9D. 112.不等式组的解集在数轴上表示正确的是()A. B. C. D.3.不等式9>-3x的解集是()A. x>3B. x<3C. x>-3D. x<-34.在数学表达式① -3<0 ② 4x+3y>0 ③ x=3 ④ x2+xy+y2⑤⑥x+2>y+3中,是不等式的有()个.A. 1B. 2C. 3D. 45.不等式组的所有整数和是()A. -1B. 0C. 1D. 26.关于x的不等式组的解集为x>1,则a的取值范围是()A. a>1B. a<1C. a≥1D. a≤17.若t>0,那么a+t与的大小关系是()A. +t>B. a+t> aC. a+t≥ aD. 无法确定8.如图,是关于x的不等式2x-a≤-1的解集,则a的取值是()A. 0B. -3C. -2D. -19.不等式2x+1<8的最大整数解是()A. 4B. 3C. 2D. 110.下面说法正确的是()A. x=3是不等式2x>3的一个解B. x=3是不等式2x>3的解集C. x=3是不等式2x>3的唯一解D. x=3不是不等式2x>3的解11.不等式组的解集在数轴上表示正确的是()A. B.C. D.12.若“a是非负数”,则它的数学表达式正确的是()A. a>0B. |a|>0C. a<0D. a≥013.已知a>b,则下列不等式中,正确的是()A. -3a>-3bB. -<-C. 3-a>3-bD. a-3>b-314.某品牌电脑的成本为2400元,标价为4200元,如果商店要以利润率不低于5%的售价打折销售,最低可打()折出售.A. 6折B. 7折C. 7.5折D. 8折15.如果a>b,那么下列结论一定正确的是()A. a―3<b—3B. 3―a<3—bC. ac2>bc2D. a2>b216.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于分,最低的得3分,至少有3人得4分,则得5分的有________ 人二、填空题17.请你写出一个满足不等式2x-1<6的正整数x的值:________.18.若商品原价为5元,如果降价x%后,仍不低于4元,那么x的取值为________19.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是 ________20.若a,b均为整数,a+b=﹣2,且a≥2b,则有最大值________21.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到江阴儿童福利院看望孤儿.如果分给每位儿童5盒牛奶,那么剩下18盒牛奶;如果分给每位儿童6盒牛奶,那么最后一位儿童分不到6盒,但至少能有3盒.则这个儿童福利院的儿童最少有________个,最多有________ 个.三、解答题22.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________;(Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为________.23.解不等式组,并将它的解集在数轴上表示出来.四、计算题24.解不等式组.25.解不等式组;并写出解集中的整数解.26.解不等式:﹣1>6x.27.解不等式:2(x+1)-3(x+2)<0;-28. 解不等式.五、综合题29. 我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=________,<3.5>=________.(2)若[x]=2,则x的取值范围是________;若<y>=﹣1,则y的取值范围是________.(3)已知x,y满足方程组,求x,y的取值范围.30.解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:________;(2)解不等式②,得:________;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:________.答案一、单选题1.C2.B3.C4.D5.B6.D7.A8.D9.B 10.A11.C 12.D 13.D 14.A 15.B 16.22二、填空题17.1,2,3 18.x≤20 19.a<3 20.1 21.19;21三、解答题22.x<2;x≥﹣1;﹣1≤x<223.解:不等式的解是,不等式的解是,∴不等式组的解是,四、计算题24.解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<,则不等式组的解集为:25.解:解不等式组;解不等式①得:x≤2,解不等式②得:x>,∴不等式组的解集为:<x≤2;∴整数解为:1,2.26.解:去分母,得:3x+20﹣2>12x,移项、合并,得:﹣9x>﹣18,系数化为1,得:x<227.解:2(x+1)-3(x+2)<028.解:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.五、综合题29.(1)﹣5;4(2)2≤x<3;﹣2≤y<﹣1(3)解:解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.30.(1)x<3(2)x≥﹣4(3)(4)﹣4≤x<3。
2018年浙江省中考数学《第10讲:不等式与不等式组》总复习讲解(含答案)
第10讲不等式与不等式组1.不等式的概念及性质2.一元一次不等式(组)的解法及应用1.(2015·嘉兴)一元一次不等式2(x +1)≥4的解在数轴上表示为( )2.(2015·丽水)如图,数轴上所表示关于x 的不等式组的解集是( )A .x ≥2B .x >2C .x >-1D .-1<x ≤2 3.(2017·湖州)一元一次不等式组⎩⎪⎨⎪⎧2x>x -1,12x≤1的解集是( )A .x >-1B .x ≤2C .-1<x ≤2D .x >-1或x ≤2 4.(2016·金华)不等式3x +1<-2的解集是____________________. 5.(2017·衢州)解下列一元一次不等式组:⎩⎪⎨⎪⎧12x≤2,3x +2>x.【问题】给出以下不等式:①2x +5<4(x +2), ②x -1<23x , ③1x -1>0, ④x -1≤8-4x .(1)上述不等式是一元一次不等式的是________;(2)上述不等式中,选取其中二个一元一次不等式,并求其公共解. (3)选取其中一个一元一次不等式,使其只有一个正整数解.(4)通过以上问题解答的体会,解一元一次不等式(组)要注意哪些问题?【归纳】通过开放式问题,归纳、疏理解一元一次不等式(组)的一般步骤及注意的问题.类型一 不等式的基本性质例1 (1)若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x 3>y3 C .x +3>y +3 D .-3x >-3y(2)若实数a ,b ,c 在数轴上对应位置如图所示,则下列不等式成立的是( )A .ac >bcB .ab >cbC .a +c >b +cD .a +b >c +b (3)设a 、b 、c 表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )A .c <b <aB .b <c <aC .c <a <bD .b <a <c 【解后感悟】将一个不等式两边同时加上(或减去)同一个数,不等号方向肯定不变;将一个不等式两边同时乘以(或除以)同一个不确定的数,则需要进行分类讨论.对于第(2)、(3)题渗透了数形结合的思想.1.(2016·大庆)当0<x <1时,x 2、x 、1x的大小顺序是( )A .x 2<x <1xB .1x <x <x 2C .1x <x 2<xD .x <x 2<1x类型二 一元一次不等式的解法例2 解不等式:x +12+x -13≤1.【解后感悟】解答这类题学生往往在解题时不注意,在去分母时漏乘没有分母的项.移项时不改变符号而出错;解一元一次不等式的过程与解一元一次方程极为相似,只是最后一步把系数化为1时,需要看清未知数的系数是正数还是负数.如果是正数,不等号方向不变;如果是负数,不等号方向改变.2.(1)(2016·绍兴)不等式3x +134>x3+2的解是____________________.(2)(2015·南京)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.类型三 一元一次不等式组的解法例3 解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【解后感悟】求不等式组的解集,不管组成这个不等式组的不等式有几个,都要先分别求解每一个不等式,再利用口诀“大大取大,小小取小,大小小大中间找,大大小小找不到(无解)”或利用数轴求出它们的公共解集,还要确定其中的特殊解.注意不等式中整数解问题.3.解不等式组:(1)(2015·泰州)⎩⎪⎨⎪⎧x -1>2x ,12x +3<-1;(2)⎩⎪⎨⎪⎧3(x +2)>x +8,x 4≥x -13,并把它的解集在数轴上表示出来.类型四 不等式的解的应用例4 (1)(2017·丽水)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤2(2)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( )A .m >-23B .m ≤23C .m >23D .m ≤-23【解后感悟】(1)列出不等式是解题的关键;(2)本题是已知不等式组的解集求字母系数,是逆向思维问题,故先求出不等式组的解集,再根据已知解集,列关系式求字母系数.4.(1)(2016·通州模拟)如果不等式(a -3)x >a -3的解集是x >1,那么a 的取值范围是( ) A .a <3 B .a >3 C .a <0 D .a >0(2)(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( )A .m ≥5B .m >5C .m ≤5D .m <5【阅读理解题】(2017·湖州)对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.【方法与对策】解答本题的关键是仔细阅读材料,理解例题的解题过程.这类题型复习时应注意给出方法和过程.【求不等式组中字母系数范围出错】如果一元一次不等式组⎩⎪⎨⎪⎧x>3,x<a 关于x 的整数解为4,5,6,7,则a 的取值范围是( )A .7<a ≤8B .7≤a <8C .a ≤7D .a ≤8参考答案第10讲 不等式与不等式组【考点概要】 1.< < > > 【考题体验】1.A 2.A 3.C 4.x <-1 5.-1<x ≤4. 【知识引擎】【解析】(1)①②④ (2)不唯一.选②和④,公共解为x ≤95(3)④ (4)解一元一次不等式(组),注意去分母时,不要漏乘没有分母的项;移项时要改变符号;最后一步把系数化为1时,需要看清未知数的系数是正数还是负数.如果是正数,不等号方向不变;如果是负数,不等号方向改变.【例题精析】例1 (1)D ;(2)B ;(3)A 例2 去分母得:3(x +1)+2(x -1)≤6,去括号得:3x +3+2x -2≤6,解得:x ≤1. 例3 ⎩⎪⎨⎪⎧2x +5≤3(x +2) ①,2x -1+3x2<1 ②,由①得:x ≥-1,由②得:x <3, 不等式组的解集为:-1≤x <3.在数轴上表示为:.不等式组的非负整数解为2,1,0. 例4 (1)C ;(2)解不等式①得,x <2m ,解不等式②得,x >2-m ,∵不等式组有解,∴2m >2-m ,∴m >23.故选C .【变式拓展】 1.A2.(1)x >-3 (2)x ≤-1.3.(1)x <-8. (2)由①得:x >1,由②得:x ≤4,所以这个不等式组的解集是1<x ≤4,用数轴表示为4.(1)B (2)A 【热点题型】【分析与解】(1)根据新定义列出关于x 的方程,2×3-x =-2011,得x =2017;(2)根据新定义列出关于x 的一元一次不等式,2x -3<5,得x <4.【错误警示】 A。
2018年中考数学专题复习卷:不等式与不等式组(含解析)
不等式与不等式组一、选择题1.下列式子一定成立的是()A.若ac2=bc2,则a=bB.若ac>bc,则a>bC.若a>b,则ac2>bc2D.若a<b,则a(c2+1)<b(c2+1)2.已知实数a,b,若a>b,则下列结论错误的是()A. a-7>b-7B. 6+a>b+6 C.D. -3a>-3b3.不等式3x﹣1≥x+3的解集是()A. x≤4B. x≥4 C. x≤2D. x≥24.不等式2x>3﹣x的解集是()A. x>3B. x<3 C. x>1 D. x<15.设a,b是常数,不等式>0的解集为x<,则关于x的不等式bx﹣a<0的解集是()A. x>B. x<﹣C. x>﹣D. x<6.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B.C.D.7.下列各数中,为不等式组解的是()A. -1 B.0 C.2 D. 48.不等式﹣x+2≥0的解集在数轴上表示正确的是()A. B.C. D.9.不等式组的最小整数解是()A. 1B. 2C. 3D. 410.不等式0≤ax+5≤4的整数解是1,2,3,4,则a的取值范围是()A. B. a≤C. ≤a<﹣1 D. a≥11.不等式组有3个整数解,则的取值范围是()A. B.C. D.12.关于x的不等式组的解集为,那么m的取值范围为()A. B.C.D.二、填空题13.函数中自变量x的取值范围为________.14.不等式3x+1>2x﹣1的解集为________.15.不等式组的解集为________.16.把一筐梨分给几个学生,若每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个,求学生人数和梨的个数.设有z个学生,依题意可列不等式组为________17.在实数范围内规定新运算“△”,其规则是:a△b=2a-b.已知不等式x△k≥1的解集表示在数轴上如图所示,则k的值是________18.当x________时,代数式1- 的值不大于代数式的值.19.若关于x,y的方程组的解满足x>y,则p的取值范围是________20.不等式组的所有整数解的和为________21.已知﹣1<b<0,0<a<1,则代数式a﹣b、a+b、a+b2、a2+b中值最大的是________.22.对于满足0≤p≤4的一切实数,不等式x2+px>4x+p﹣3恒成立,则实数x的取值范围是________三、解答题23.解不等式组,并把它的解集在数轴上表示出来.24.解不等式组并写出它的所有非负整数解.25.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时)。
2018年中考数学复习《不等式与不等式组》专题练习(含答案)
中考数学-不等式与不等式组专题练习(含答案)一、单选题1.下列各数为不等式组整数解的是()A. -1B.2C.0D.42.已知点P(3﹣a,a﹣5)在第三象限,则整数a的值是()A.4B.3,4C.4,5D.3,4,53.若关于x的不等式2x﹣m≤0的正整数解只有4个,则m的取值范围是()A.8<m<10B.8≤m<10C.8≤m≤10D.4≤m<54.已知整数x,y,z满足x≤y<z,且,那么x2+y2+z2的值等于()A.2B.14C.2或14D.14或175.数学表达式①﹣5<7;②3y﹣6>0;③a=6;④2x﹣3y;⑤a≠2;⑥7y﹣6>y+2,其中是不等式的有()A.2个B.3个C.4个D.5个6.如图,是关于x的不等式2x-a≤-1的解集,则a的取值是()A.0B.-3C.-2D.-17.不等式2x﹣4≤0的解集在数轴上表示为()A. B.C. D.8.不等式2x<6的非负整数解为()A.0,1,2B.1,2C.0,-1,-2D.无数个9.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A. B.C. D.10.下列说法正确的是()A.﹣a比a小B.一个有理数的平方是正数C.a与b之和大于bD.一个数的绝对值不小于这个数11.如果a-b+c>0,那么()A. B. C. D.12.恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数n如下表所示:用含n的不等式表示温饱家庭的恩格尔系数为()A.50%<n<75%B.50%<n≤75%C.50%≤n<75%D.50%≤n≤75%13.将不等式组的解集在数轴上表示,下列表示中正确的是()A. B.C. D.二、填空题14.若不等式组的解集是x>3,则m的取值范围是________.15.不等式的解是________.16.不等式组的解集是________.17.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.18.若关于x的不等式(1﹣a)x>2可化为x>,则a的取值范围是________三、计算题19.解不等式组:.20.(1)+()﹣1﹣2cos60°+(2﹣π)0(2)解不等式组.21.解不等式组:.四、解答题22.解不等式:-1<-<1(a<0)23.某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为多少克?24.解不等式组:并把解集在数轴上表示出来.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学-不等式与不等式组专题练习(含答案)一、单选题1.下列各数为不等式组整数解的是()A. -1B. 2C. 0D. 42.已知点P(3﹣a,a﹣5)在第三象限,则整数a的值是()A. 4B. 3,4C. 4,5D. 3,4,53.若关于x的不等式2x﹣m≤0的正整数解只有4个,则m的取值范围是()A. 8<m<10B. 8≤m<10C. 8≤m≤10D. 4≤m<54.已知整数x,y,z满足x≤y<z,且,那么x2+y2+z2的值等于()A. 2B. 14C. 2或14D. 14或175.数学表达式①﹣5<7;②3y﹣6>0;③a=6;④2x﹣3y;⑤a≠2;⑥7y﹣6>y+2,其中是不等式的有()A. 2个B. 3个C. 4个D. 5个6.如图,是关于x的不等式2x-a≤-1的解集,则a的取值是()A. 0B. -3C. -2D. -17.不等式2x﹣4≤0的解集在数轴上表示为()A. B.C. D.8.不等式2x<6的非负整数解为( )A. 0,1,2B. 1,2C. 0,-1,-2D. 无数个9.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为( )A. B.C. D.10.下列说法正确的是()A.﹣a比a小B.一个有理数的平方是正数C.a与b之和大于bD.一个数的绝对值不小于这个数11.如果 a-b+c>0,那么 ( )A. B. C.D.12.恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数n如下表所示:家庭类型贫困家庭温饱家庭小康家庭发达国家家庭最富裕国家家庭恩格尔系数(n)75%以上50%~75% 40%~49% 20%~39% 不到20%用含n的不等式表示温饱家庭的恩格尔系数为()A. 50%<n<75%B. 50%<n≤75%C. 50%≤n<75%D. 50%≤n≤75%13.将不等式组的解集在数轴上表示,下列表示中正确的是()A. B.C. D.二、填空题14.若不等式组的解集是x>3,则m的取值范围是________.15.不等式的解是________.16.不等式组的解集是________.17.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.18.若关于x的不等式(1﹣a)x>2可化为x>,则a的取值范围是 ________三、计算题19.解不等式组:.20.(1)+()﹣1﹣2cos60°+(2﹣π)0(2)解不等式组.21.解不等式组:.四、解答题22.解不等式:-1<-<1(a<0)23.某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为多少克?24.解不等式组:并把解集在数轴上表示出来.答案解析部分一、单选题1.下列各数为不等式组整数解的是()A. -1B. 2C. 0D. 4 【答案】B【考点】一元一次不等式组的整数解【解析】【解答】解:,由①得,x>,由②得,x<4,∴不等式组的解集为<x<4.四个选项中在<x<4中的只有2.故选:B.【分析】分别求出两个不等式的解集,再找到其公共部分即可.2.已知点P(3﹣a,a﹣5)在第三象限,则整数a的值是()A. 4B. 3,4C. 4,5D. 3,4,5 【答案】A【考点】一元一次不等式组的整数解,点的坐标【解析】【解答】解:∵点P(3﹣a,a﹣5)在第三象限,∴,解得:3<a<5,∵a为整数,∴a=4.故选:A.【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数.列出式子后可得到相应的整数解.3.若关于x的不等式2x﹣m≤0的正整数解只有4个,则m的取值范围是()A. 8<m<10B. 8≤m<10C. 8≤m≤10D. 4≤m<5 【答案】B【考点】一元一次不等式的整数解【解析】【解答】解:∵2x﹣m≤0,∴x≤ m,而关于x的不等式2x﹣m≤0的正整数解只有4个,∴不等式2x﹣m≤0的4个正整数解只能为1、2、3、4,∴4≤ m<5,∴8≤m<10.故选B.【分析】先求出不等式的解集,然后根据其正整数解求出m的取值范围.4.已知整数x,y,z满足x≤y<z,且,那么x2+y2+z2的值等于()A. 2B. 14C. 2或14D. 14或17 【答案】A【考点】解三元一次方程组,解一元一次不等式组,绝对值的非负性【解析】解:∵x≤y<z,∴|x﹣y|=y﹣x,|y﹣z|=z﹣y,|z﹣x|=z﹣x,因而第二个方程可以化简为:2z﹣2x=2,即z=x+1,∵x,y,z是整数,根据条件,则两式相加得到:﹣3≤x≤3,两式相减得到:﹣1≤y≤1,同理:,得到﹣1≤z≤1,根据x,y,z是整数讨论可得:x=y=﹣1,z=0或x=1,y=z=0此时第二个方程不成立,故舍去.∴x2+y2+z2=(﹣1)2+(﹣1)2+0=2.故选:A.【分析】根据绝对值的定义和已知条件,得出|x+y|,|x﹣y|式子的范围,得出的不等式组进行计算,从而确定x,y,z的范围即可求解.5.数学表达式①﹣5<7;②3y﹣6>0;③a=6;④2x﹣3y;⑤a≠2;⑥7y﹣6>y+2,其中是不等式的有()A. 2个B. 3个C. 4个D. 5个【答案】C【考点】不等式的解集【解析】【解答】解:数学表达式①﹣5<7;②3y﹣6>0;⑤a≠2;⑥7y﹣6>y+2是不等式,故选:C.【分析】根据用不等号连接的式子是不等式,可得答案.6.如图,是关于x的不等式2x-a≤-1的解集,则a的取值是()A. 0B. -3C. -2D. -1【答案】D【考点】在数轴上表示不等式的解集,解一元一次不等式【解析】【解答】由数轴上表示不等式解集的方法可知,此不等式的解集为x≤-1,解不等式2x-a≤-1得,x≤,即=-1,解得a=-1.故选D.【分析】先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a的方程,求出a的取值范围即可.本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.7.不等式2x﹣4≤0的解集在数轴上表示为()A. B.C. D.【答案】B【考点】在数轴上表示不等式的解集【解析】【解答】解:2x﹣4≤02x≤4x≤2故选B.【分析】先移项再系数化1,然后从数轴上找出.8.不等式2x<6的非负整数解为( )A. 0,1,2B. 1,2C. 0,-1,-2D. 无数个【答案】A【考点】一元一次不等式的整数解【解析】【分析】先根据不等式的基本性质求得不等式的解集,即可得到结果。
由2x<6得x<3,非负整数解为0,1,2故选A.【点评】解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变。
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变。
9.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为( )A. B.C. D.【答案】D【考点】一元一次不等式组的应用【解析】【分析】易得学生总人数,不空也不满意思是一个宿舍人数在1人和5人之间,关系式为:总人数-(x-1)间宿舍的人数≥1;总人数-(x-1)间宿舍的人数≤5,把相关数值代入即可.【解答】∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数-(x-1)间宿舍的人数在1和5之间,∴列的不等式组为:故选D.【点评】考查列不等式组,理解“不空也不满”的意思是解决本题的突破点,得到相应的关系式是解决本题的关键.10.下列说法正确的是()A.﹣a比a小B.一个有理数的平方是正数C.a与b之和大于bD.一个数的绝对值不小于这个数【答案】D【考点】不等式及其性质【解析】【解答】解:A、当a=0时,﹣a=a,故本选项错误; B、一个有理数的平方是非负数,故本选项错误;C、当a、b都是负数时,a与b之和不大于b,故本选项错误;D、一个数的绝对值是非负数,所以不小于这个数,故本选项正确;故选:D.【分析】根据实数的性质和不等式的定义解答.11.如果 a-b+c>0,那么 ( )A. B. C.D.【答案】D【考点】不等式的性质【解析】【分析】根据a-b+c>0,可知a+c>b,但是a、b、c的值不确定,也就是a+c、b 的值不能确定,故在a+c>b的基础上不能利用不等式性质2、3,只能利用不等式性质1,从而可知A、B、C都不对,而D是正确的.【解答】∵a-b+c>0,∴a+c>b,∴(a+c)5>b5,但是无法确定a+c、b的取值范围,又∵A、B、C的关系式要用到不等式性质2、3,∴A、B、C都是错误的.故选D.【点评】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数n如下表所示:家庭类型贫困家庭温饱家庭小康家庭发达国家家庭最富裕国家家庭恩格尔系数(n)75%以上50%~75% 40%~49% 20%~39% 不到20%用含n的不等式表示温饱家庭的恩格尔系数为()A. 50%<n<75%B. 50%<n≤75%C. 50%≤n<75%D. 50%≤n≤75%【答案】D【考点】一元一次不等式的应用【解析】【解答】解:根据题意得温饱家庭的恩格尔系数为:50%≤n≤75%.故选D.【分析】从表格中可看出温饱家庭的恩格尔系数,且看出包括50%和75%.从而可写出不等式.13.将不等式组的解集在数轴上表示,下列表示中正确的是()A. B.C. D.【答案】B【考点】在数轴上表示不等式的解集,解一元一次不等式组【解析】【解答】解:∵解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,故答案为:B.【分析】先求出每个不等式的解集,再求出不等式组的解集,然后根据解集选出正确答案即可。
二、填空题14.若不等式组的解集是x>3,则m的取值范围是________.【答案】m 3【考点】一元一次不等式组的应用【解析】【解答】解:解不等式组可得结果因为不等式组的解集是x>3,所以结合数轴,根据“同大取大”原则,不难看出结果为m 3.15.不等式的解是________.【答案】x<【考点】解一元一次不等式【解析】【解答】不等式两边同除以得,x<【分析】根据不等式的性质,不等式两边同时除以,不等号的方向改变;即x =,所以不等式的解集为:x。