CATIA_装配部件有限元分析.

合集下载

用CATIA对弧形梁进行有限元分析

用CATIA对弧形梁进行有限元分析

用CATIA对弧形梁进行有限元分析
操作内容:应用CATIA 分析仿真(Analysis Simulation)对弧形梁进行有限元分析(包括前处理与后处理两部分内容)。

操作软件:CATIA V5 R18
操作步骤:
零件设计模块
第一步、绘制弧形梁的草图,见下图。

第二步、对草图进行拉伸,见下图。

第三步、对部件赋予材料属性,见下图。

高级网格划分模块
第四步、进入高级网格划分模块,选择静力分析,见下图。

第五步、对弧形梁进行四面体网格划分,见下图。

第六步、显示网格划分后的效果,见下图。

创成式结构分析模块
第七步、进入创成式结构分析模块,见下图。

第八步、赋予梁3D属性,见下图。

第九步、对梁施加压力载荷,见下图。

第十步、对梁的两端施加固定约束,见下图。

第十一步、开始计算,见下图。

第十二步、对计算结果进行后处理,见下图。

形变图
冯米斯应力图
位移图
主应力图。

CATIA装配部件有限元分析

CATIA装配部件有限元分析

CATIA装配部件有限元分析CATIA(计算机辅助三维交互应用)是一种广泛应用于机械设计和制造领域的软件。

它提供了一套完整的工具和功能,用于实现产品创新、设计优化和数字化制造。

CATIA的装配部件有限元分析是其中一个功能强大的工具,可以帮助工程师评估设计的结构强度和性能。

装配部件有限元分析(FEA)是一项工程分析技术,用于通过将大型复杂结构分解为小的离散单元,然后通过求解线性和非线性方程组来模拟和预测结构的行为和响应。

在CATIA中,装配部件有限元分析可以通过定义装配体与零部件之间的约束关系和关联关系来分析和评估整个装配体的性能。

在进行装配部件有限元分析之前,首先需要定义整个装配体的几何模型。

CATIA可以通过多种方式创建几何模型,包括绘制、拉伸、旋转、剪切等操作,以及导入其他CAD软件中的模型。

一旦几何模型定义完毕,就可以将其转换为有限元网格模型。

在有限元网格模型中,装配体被分解为小的离散单元,每个单元称为有限元。

这些有限元具有一些特定的属性,如几何形状、材料特性和边界条件。

材料特性定义了材料的力学性能,如弹性模量、屈服强度和断裂韧性。

边界条件定义了固定和加载条件,如约束、力、压力等。

一旦有限元网格模型定义完毕,就可以进行装配部件的有限元分析。

CATIA提供了多种分析类型,包括静态分析、动态分析、热分析、疲劳分析和优化分析。

静态分析用于评估结构的强度和稳定性,动态分析用于分析结构的振动特性,热分析用于评估结构的热响应,疲劳分析用于评估结构在不同加载条件下的寿命,优化分析用于改进结构设计。

装配部件有限元分析的结果通常以图形和数值形式呈现。

CATIA可以生成各种图表和图形,以显示应力、应变、位移、刚度等参数的分布情况。

此外,CATIA还可以生成报告和动画,以帮助工程师更好地理解和解释分析结果。

总之,CATIA的装配部件有限元分析是一种强大的工具,可以帮助工程师评估装配体的强度、稳定性和性能。

通过使用CATIA的装配部件有限元分析,工程师可以优化设计、降低制造成本并提高产品质量。

有限元分析

有限元分析
有限元分析
工程分析模块概述 三维模型相关处理 有限元分析过程
分析模块概述

工程分析
Catia有限元分析包括静态分析(Static Analysis)和动态分析。

动态分析
Catia动态分析又分为自由固有频率分析和约 束固有频率分析。

常用动态分析
专业有限元软件如ANSYS、ABAQUS、 NASTRAN的动态分析包括模态分析、谐分析、谱 分析和瞬态分析等。

生成分析报告 可将有限元模型、多种工况及其分析结果 汇总,产生分析报告。
分析过程3-后处理1

变形云图
分析过程3-后处理2

等效应力云图
分析过程3-后处理3
分析过程3-后处理4

粒子云图
总结与练习
Summary Practice1 如右图示模型 进行静力分析 约束模态分析 Practice2 对实例分别 更改约束条件 和载荷类型数据 进行分析仿真 The end! Thank you!
分析过程3-前处理1

单元类型及尺寸
分析过程3-前处理2

网格预览
分析过程3-前处理3

约束/载荷 Case定义
分析过程3-求解及后处理

工况求解与结果预览
针对同一个有限元网格模型,可以定义不同 的边界条件和载荷类型模拟多种工况,并进工况 合并。分析结果以静态云图和动画的形式,反 出模型的最大最小量值。
3D模型与有限元模型

3D模型的简化 工程数据准备 工况仿真模拟
有限元分析过程1


确定工程分析类型 导入几何模型(已赋予材质) 设置单元类型进行网格划分 模拟施加约束边界条件 模拟施加不同类型的载荷 工况求解与结果预览 生成分析报告

CATIA设计优化技巧分享

CATIA设计优化技巧分享

CATIA设计优化技巧分享随着现代工业制造的发展,设计工程师们面临着越来越高的要求。

为了提高设计效率和产品质量,他们不断寻求新的技巧和方法。

CATIA作为一款专业的三维设计软件,为设计师们提供了丰富的功能和工具。

本文将分享一些CATIA设计优化技巧,帮助设计工程师们更加高效地使用CATIA进行设计。

立体造型技巧在CATIA中,立体造型是设计过程中的基本操作之一。

下面将分享一些立体造型的技巧,帮助设计师更加准确和高效地进行建模。

1. 利用辅助平面和轴线:在建模过程中,合理使用辅助平面和轴线可以提高建模的精度和效率。

通过选择合适的辅助平面和轴线,可以更加准确地对模型进行定位和旋转,同时还可以更好地控制模型的对称性和比例关系。

2. 使用参数化建模:参数化建模是CATIA中的一项强大功能。

通过定义参数和公式,设计师可以创建具有可调整尺寸和形状的模型。

这种方法可以大大提高设计的灵活性和可重复性。

3. 应用草图功能:CATIA的草图功能可以帮助设计师快速构建基础形状。

合理运用草图工具,可以高效地创建各种形状,减少重复劳动。

装配设计技巧除了立体造型,装配设计也是CATIA的重要应用之一。

下面将介绍一些装配设计的技巧,帮助设计师更好地完成装配任务。

1. 使用装配约束:在进行装配设计时,合理使用装配约束可以确保零件之间的正确位置和运动关系。

CATIA提供了多种装配约束选项,如约束、连接、限制等。

设计师可以根据具体需求选择适当的约束方法,确保装配的准确性和稳定性。

2. 借助装配分析:CATIA的装配分析功能可以帮助设计师评估装配的可行性和性能。

在装配过程中,设计师可以进行干涉检查、运动模拟等分析,及时发现并解决问题,确保装配的质量和效果。

3. 利用装配模式:CATIA提供了多种装配模式,如顶层装配、子装配、虚拟装配等。

在进行复杂装配设计时,设计师可以采用逐步、分阶段的方式进行设计,通过不同的装配模式进行模块化设计和验证。

CATIA有限元分析

CATIA有限元分析

实验报告目录实验一:CATIA 中的工程分析动臂应力分析问题描述解题思路操作过程实验二:电子样机运动机构模拟四连杆运动机构模拟问题描述解题思路操作过程实验三:电子样机空间分析柴油机燃油供给系中输油泵空间分析问题描述解题思路操作过程感想实验一:装载机动臂应力分析问题描述装载机无偏载工作时,动臂承受一定外载荷和来自车架的约束。

动臂结构示意图见图1。

在建立模型时,油缸假设为柔性弹簧,A铰点作为动臂的支点,允许动臂绕通过A 铰点的轴转动,B铰点是动臂油缸支点(动臂油缸的刚度假设为2.0e7N_m)。

C铰点和D铰点是外载荷的作用点。

本实例分析的工况是正铲无偏载,载荷、结构同时对称,最好取出模型的一般,通过施加对称约束,进行有限元求解二、 解题思路1、 进入并载入源文件2、 前处理(施加约束和载荷)3、 求解4、 后处理三、 操作过程1、进入并载入源文件⑴、打开文件 dongbi.CATPART 。

(2) 、进行有限元分析前的基本设置工作。

(3) 、单击 Start/Analysis Simulation/Generative Structural Analysis 进入有限元分析模 块,选择Static Analysis,进入静态有限元分析,如图2所示。

2、前处理El开始EHOVIA V5文件编辑 观图插入工具窗口帮助ITev Analysis Case| [鼻硒定寸/取消Fimt t Element Model - 1 Nodes and Elen ent sStatic Anal]Properties.1Frequency Analysi E]Keep as default starting uielyEi s case图2在A 点建立刚性虚件,如下图所示。

B 点建弹簧虚件,如下图所示u 寿 Properties.1 “事 MateTials. 1 Handler No selectionIT&jri^ Rigid Virtu :al Part. 1 Supports ■■埶 Virtu. … ®限 疋A 占八、、自 由 度如 下 图所 示o圆锥角约束,如下图所示。

catia 有限元分析命令详解

catia 有限元分析命令详解

( a)
( b)
图8-27形体的冯米斯应力图和图像编辑对话框
2. 位移显示(模态显示) 单击该图标,显示形体的位移图,见图 8-28 。双击该应力 图或特征树的 节点,将弹出图8-27(b)所示图像编辑对话框。 通过该对话框选择不同的频率阶数,即可得到相应的位移图。 图8-28是频率阶数为10时形体的位移图。
移值,参照图8-12。
图8-11位移载荷对话框
图8-12在夹紧约束上施加位移载荷
8.4 静态有限元计算过程和后处理 如果在进入工程分析模块时选择了 Static Analyses(见图81所示对话框),在确定了约束条件和施加载荷之后就可以进 行静态有限元计算和后处理工作。 例如上述零件的底部选择了夹紧约束,左孔施加了X、Y分 量均为-1000N的轴承载荷,右孔施加了X分量为1000N、Y分 量为-1000N的轴承载荷,见图8-13。
体单元或虚拟实体起作用),
图8-5高级约束对话框
例如约束图8-6所示形体外棱边的2(Y方向)和3(Z方 向)的平移自由度,第一自由度(X方向)未被约束, 因此X轴上无箭头。
图8-6 选择棱边为高级约束
4.静态约束 该功能使形体不能产生刚体运动,成为静定状 态(约束平移和旋转自由度)。操作步骤是:(1)
双击图8-26(a)所示特征树上频率分析工况节点
,弹出图8-26(b)所示频率参数对话框,在对话框中指定计算模 态的最高阶数,例如10。
(a) (b) 图8-26特征树和频率参数对话框
8.5.3显示动态分析结果 1. 冯米斯应力(Stress von Mises)显示
单击 图标,显示形体的冯米斯应力图,见图8-27(a)。双击该应 力图或特征树的节点 ,将弹出图8-27(b)所示图像编辑 对话框。通过该对话框选择不同的频率阶数,即可得到相应的应力图。

CATIA有限元分析计算实例(完整版)

CATIA有限元分析计算实例(完整版)

CATIA有限元分析计算实例CATIA有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1-1划分四面体网格的计算(1)进入【零部件设计】工作台启动CATIA软件。

单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。

图11-1单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。

在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。

点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。

(2)进入【草图绘制器】工作台在左边的模型树中单击选中【xy平面】, 如图11-3所示。

单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。

这时进入【草图绘制器】工作台。

图11-2【新建零部件】对话框图11-3单击选中【xy平面】(3)绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。

在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。

用同样分方法再绘制一个同心圆,如图11-6所示。

图11-4【草图编辑器】工具栏图11-5【轮廓】工具栏下面标注圆的尺寸。

点击【约束】工具栏内的【约束】按钮,如图11-7所示。

点击选择圆,就标注出圆的直径尺寸。

用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图图11-7【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。

在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。

用同样的方法修改第二个圆的直径尺寸为50mm。

修改尺寸后的圆如图11-10所示。

图11-8标注直径尺寸的圆草图图11-9【约束定义】对话框(4)离开【草图绘制器】工作台点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。

退出【草图绘制器】工作台,进入【零部件设计】工作台。

CATIA有限元分析计算实例

CATIA有限元分析计算实例

CATIA有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1-1划分四面体网格的计算(1)进入【零部件设计】工作台启动CATIA软件。

单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。

图11-1单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。

在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。

点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。

(2)进入【草图绘制器】工作台在左边的模型树中单击选中【xy平面】, 如图11-3所示。

单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。

这时进入【草图绘制器】工作台。

图11-2【新建零部件】对话框图11-3单击选中【xy平面】(3)绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。

在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。

用同样分方法再绘制一个同心圆,如图11-6所示。

图11-4【草图编辑器】工具栏图11-5【轮廓】工具栏下面标注圆的尺寸。

点击【约束】工具栏内的【约束】按钮,如图11-7所示。

点击选择圆,就标注出圆的直径尺寸。

用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图图11-7【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。

在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。

用同样的方法修改第二个圆的直径尺寸为50mm。

修改尺寸后的圆如图11-10所示。

图11-8标注直径尺寸的圆草图图11-9【约束定义】对话框(4)离开【草图绘制器】工作台点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。

退出【草图绘制器】工作台,进入【零部件设计】工作台。

图11-10修改直径尺寸后的圆图11-11【工作台】工具栏(5)拉伸创建圆筒点击【基于草图的特征】工具栏内的【凸台】按钮,如图11-12所示。

catia静强度有限元分析

catia静强度有限元分析

20
CATIA静强度有限元分析
(12)求解计算 选择 命令,在Compute中选择Analysis Case Solution Selection,然
后在Solution(s) to Be Computed中选择模型树上的Static Case Solution.1,点击确定,弹出计算的信息,选择Yes开始计算。
量,可以双击模型树中的
下的
编辑网格参数。大小可以调整为10mm,垂度为尺寸的十分之一1mm,也 可以对孔添加局部网格尺寸,点击local-local size并添加,定义大小,提 高圆孔处的网格质量。所有网格参数修改完成后,网格显示的已经被抑制, 重新激活后,可以看出网格质量要比调整参数之前的有所提高。
35
CATIA静强度有限元分析
点击确定,将metal下的steel拖到Product1下,点击确定,为装配体下的 各个零件赋予钢铁材料属性。
若零件材料不同,也可分别单独将材料拖到各个零件上。 另材料的属性也可以在分析模块定义。
9
CATIA静强度有限元分析
(4)进入CAE分析模块 开始-分析与模拟-Generative Structural Analysis(通用求解器)
并释放。 模型缩放:按住中键不放,单击左键或右键(建议右
键)并释放,向上移动鼠标实现放大,向下移 动鼠标实现缩小。注意:整个缩放过程,鼠标 中间始终保持按压状态。
3
CATIA静强度有限元分析
2、CATIA有限元模块介绍 (1)有限元方法介绍
4
CATIA静强度有限元分析
(2)CATIA有限元模块
CATIA软件在机械设计方面功能强大,但机械设计只是软件功能的一部 分。对于机械设计工程师来说,在设计完成产品中,对于产品能否满足强 度要求,能否满足各种行业标准和规范的要求,就需要对设计的产品进行 应力和应变分析。

catia 有限元分析命令详解

catia 有限元分析命令详解

8.1 进入工程分析模块
1. 进入工程分析模块前的准备工作 (1)在三维实体建模模块建立形体的三维模型,为三维形体添
加材质,见4.7。
(2)将显示模式设置为Shading(着色)和Materials(材料), 这样才能看到形体的应力和变形图,详见2.11.6。
2. 进入工程分析模块
选择菜单【 Start 】 【 Analysis & Simulation 】 【Generative Structural Analysis】弹出图8-1所示新的分析实 例对话框。 在对话框中选择静态分析(Static Analyses)、限制状态 固有频率分析(Frequency Analyses)还是自由状态固有频率 分析(Free Frequency Analyses),单击OK按钮,将开始一 个新的分析实例。
单击图标
,弹出对话框。(2)选择约束对象,同
时在形体附近显示静态约束标记 。
8.3 施加载荷 1. 均匀压力载荷 该载荷施加于曲面或平面,均匀分布,方向为表面的法向方 向。操作步骤为:(1)单击该图标 ,弹出图8-7所示施加 压力载荷对话框。( 2)选择施加对象(表面)。( 3 )输入 压力数值(压强),参照图8-8。
体单元或虚拟实体起作用),
图8-5高级约束对话框
例如约束图8-6所示形体外棱边的2(Y方向)和3(Z方 向)的平移自由度,第一自由度(X方向)未被约束, 因此X轴上无箭头。
图8-6 选择棱边为高级约束
4.静态约束 该功能使形体不能产生刚体运动,成为静定状 态(约束平移和旋转自由度)。操作步骤是:(1)
图8-13选择了夹紧约束和施加了轴承载荷的零件
8.4.1计算 1. 确定存放计算数据和计算结果文件的的路径. 可以通过下面两种方法指定计算数据和结果存储路径: (1)选择图标 ,通过随后弹出的图8-14所示的确定存储路 径对话框输入计算数据和计算结果文件的的路径。

catia有限元分析模块

catia有限元分析模块
catia有限元分析模块
目 录
• catia有限元分析模块简介 • catia有限元分析模块的基本操作 • catia有限元分析模块的高级功能 • catia有限元分析模块的案例分析 • catia有限元分析模块的未来发展
01 catia有限元分析模块简 介
什么是有限元分析
有限元分析(FEA)是一种数值分析方法,用于模拟和分析复 杂结构的力学行为。它通过将连续的结构离散化为有限个小的 单元(或称为元素),然后利用数学方法来求解这些单元的响 应,从而得到整个结构的性能。
1. 建立汽车整体和局部结构的有限元模型。
03
2. 定义材料属性,包括各材料的弹性模量、泊松比、 密度和抗撞性能参数等。
案例二:汽车碰撞安全性分析
01
02
03
04
3. 设定碰撞条件,如碰 撞速度、碰撞角度等。
4. 进行碰撞模拟,记录 碰撞过程中各节点的应 力、应变和位移等数据。
5. 分析碰撞结果,评估 汽车结构的安全性能。
03 catia有限元分析模块的 高级功能
非线性分析
非线性分析
能够模拟复杂的非线性行为,如塑性变形、弹性变形、超弹性等。
材料非线性
支持多种非线性材料模型,如弹塑性、粘塑性、损伤和断裂模型等。
边界条件和载荷非线性
能够处理复杂的边界条件和载荷,如随时间变化的载荷和位移约束。
动力学分析
模态分析
计算系统的固有频率和模态形状,用于评估系统 的振动特性。
CATIA有限元分析模块提供了强大的前后处理工具,可以 方便地创建和编辑模型、划分网格、定义边界条件和载荷 等,提高了分析的效率和精度。
多种求解器支持
CATIA有限元分析模块支持多种求解器,如Nastran、 Abaqus、Marc等,可以满足用户不同的分析需求。

CATIA有限元分析计算实例 完整版

CATIA有限元分析计算实例 完整版

创作编号:BG7531400019813488897SX创作者:别如克*CATIA有限元分析计算实例CATIA有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1-1划分四面体网格的计算(1)进入【零部件设计】工作台启动CATIA软件。

单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。

图11-1单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。

在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。

点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。

(2)进入【草图绘制器】工作台在左边的模型树中单击选中【xy平面】, 如图11-3所示。

单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。

这时进入【草图绘制器】工作台。

图11-2【新建零部件】对话框图11-3单击选中【xy平面】(3)绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。

在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。

用同样分方法再绘制一个同心圆,如图11-6所示。

图11-4【草图编辑器】工具栏图11-5【轮廓】工具栏下面标注圆的尺寸。

点击【约束】工具栏内的【约束】按钮,如图11-7所示。

点击选择圆,就标注出圆的直径尺寸。

用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图图11-7【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。

在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。

用同样的方法修改第二个圆的直径尺寸为50mm。

修改尺寸后的圆如图11-10所示。

图11-8标注直径尺寸的圆草图图11-9【约束定义】对话框(4)离开【草图绘制器】工作台点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。

catia有限元分析

catia有限元分析

catia有限元分析声明:该文章由文鼎教育汇编、转载,版权归原作者所有.南京catia有限元分析培训CATIA有限元分析计算实例CATIA有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1,1划分四面体网格的计算,1,进入【零部件设计】工作台启动CATIA软件。

单击【开始】?【机械设计】?【零部件设计】选项,如图11,1所示,进入【零部件设计】工作台。

图11,1 单击【开始】?【机械设计】?【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。

在对话框内输入新的零件文鼎教育集团—南京声明:该文章由文鼎教育汇编、转载,版权归原作者所有.名称,在本例题中,使用默认的零件名称【Part1】。

点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。

,2,进入【草图绘制器】工作台在左边的模型树中单击选中【xy平面】, 如图11-3所示。

单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。

这时进入【草图绘制器】工作台。

图11,2 【新建零部件】对话框图11,3 单击选中【xy平面】,3,绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。

在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。

用同样分方法再绘制一个同心圆,如图11-6所示。

文鼎教育集团—南京声明:该文章由文鼎教育汇编、转载,版权归原作者所有.图11,4 【草图编辑器】工具栏图11,5 【轮廓】工具栏下面标注圆的尺寸。

点击【约束】工具栏内的【约束】按钮,如图11-7所示。

点击选择圆,就标注出圆的直径尺寸。

用同样分方法标注另外一个圆的直径,如图11-8所示。

图11,6 两个同心圆草图图11,7 【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11,9所示。

在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。

用同样的方法修改第二个圆的直径尺寸为50mm。

catia有限元分析简述

catia有限元分析简述

前言运用固体力学理论(包括结构力学、弹性力学、塑性力学等)对结构进行强度和刚度分析,是工程设计的重要内容之一。

随着科学技术的进步和生产的发展,工程结构的几何形状和载荷情况日益复杂,新的材料不断出现,使得寻找结构分析的解析解十分困难,甚至不可能,因而人们转而寻求近似解。

1908年,W.Ritz提出一种近似解法,具有重要意义。

它利用带未知量的试探函数将势能泛函近似,对每一个未知量求势能泛函的极小值,得到求解未知量的方程组。

Ritz法大大促进了弹性力学在工程中的应用。

Ritz法的限制是试探函数必须满足边界条件。

对于几何形状比较复杂的结构来说,寻找满足整个边界条件的试探函数也非易事。

1943年,R.Couran对Ritz法做了极其重要的推广。

他在求解扭转问题时,将整个截面划分为若干个三角形区域,假设翘曲函数在各个三角形区域内做近似线性分布,从而克服了以前Ritz法要求整体近似函数满足全部边界条件的困难。

Couran这样应用Ritz法与有限元法的初期思想是一致的。

但是这种近似解法要进行大量数值计算,在当时还是个难题。

因此,未能得到发展。

有限单元法是采用计算机求解数学物理问题的一种数值计算近似方法。

它发源于固体力学,后迅速扩展到流体力学、传热学、电磁学、声学等其它物理领域。

固体力学有限元法的理论依据,从发展历史看,主要有三种途径,即结构矩阵法、变分法和加权余量法。

整个计算过程是泰国编制好的程序在电子计算机上自动进行。

它具有极大的通用性,在程序功能范围内,只要改变输入的数据,就可以求解不同的工程实际问题。

这种解法完全改变了解析法中针对一种实际问题寻找一种解法的局限性。

在1946年电子计算机诞生以后,首先采用它进行数值计算的是杆系结构力学。

它的理论依据是由结构力学位移法和力学演变成的矩阵位移法和矩阵力学,统称为结构矩阵法。

它采用矩阵代数运算,不仅能使算式书写简明,而且编制计算机程序非常方便。

结构矩阵法的力学概念清楚,全部理论公式按结构力学观点讲都是准确的,仅在数值计算过程中,由于计算机存储位数的限制,造成舍入误差。

catia静强度有限元分析

catia静强度有限元分析
16
CATIA静强度有限元分析
c)定义换档摇臂和四脚支架总成销连接关系的属性 选择Fastened Connection Property,Supports选择模型树上的 general Analysis Connection.1,或则选择3D模型上的 ,点击确定。 完成后要激活网格可视化。注意区分两组连接的差别,面面连接和远距离 连接选用不同的命令。
12
CATIA静强度有限元分析
(7)建立连接关系 a)建立换档摇臂和四脚支架总成的销连接的连接关系:
选择
命令,隐藏四脚支架总成,在First component中选择换
档摇臂销孔的内表面,显示四脚支架总成,隐藏换档摇臂,在Second
component中选择四脚支架总成的销轴的外表面,单击确定,在模型树
20
CATIA静强度有限元分析
(12)求解计算 选择 命令,在Compute中选择Analysis Case Solution Selection,然
后在Solution(s) to Be Computed中选择模型树上的Static Case Solution.1,点击确定,弹出计算的信息,选择Yes开始计算。
模型树上右键隐藏四脚支架总成,再选择连接支架与四脚支架总成接触的
表面,出现了约束符号
,完成接触约束,再将隐藏的四脚支架总成
显示出来。
连接关系也可以在分析模块定义,本操作是为说明在装配模块中定义的
连接关系同样适用于分析模块。
8
CATIA静强度有限元分析
(3)定义材料属性 选择 命令,弹出错误提示(由于材料库不支持中文显示的原因),
树中出现Analysis connection.1,表示已经成功建立了连接。

CATIA软件高级建模技巧

CATIA软件高级建模技巧

CATIA软件高级建模技巧CATIA软件是一种广泛应用于工程设计和产品开发的三维建模软件。

具备强大的建模功能和丰富的工具库,CATIA的使用技巧在工程行业中变得至关重要。

本文将介绍一些CATIA软件的高级建模技巧,以帮助工程师和设计师更好地利用该软件进行复杂建模任务。

一、草图设计技巧在使用CATIA进行建模之前,草图的创建是必不可少的。

以下是一些草图设计的高级技巧:1. 使用关系和约束:CATIA提供了多种关系和约束,可以帮助用户更好地控制草图的几何形状和属性。

合理地使用关系和约束,可以大大简化后续的建模操作。

2. 参数化设计:CATIA支持参数化设计,可以通过设定参数来控制草图的尺寸和形状。

这种设计方法使得修改和调整草图变得更加方便和快捷。

3. 外部引用:CATIA允许在不同的草图之间建立外部引用关系,使得草图的修改能够自动更新到其他相关的部件和装配体上。

合理使用外部引用可以提高建模效率和准确性。

二、零件建模技巧在进行零件建模时,以下是一些CATIA高级建模技巧的示例:1. 曲面建模:CATIA提供了多种曲面建模工具,例如挤压、拉伸、修剪等,可用于创建复杂的曲面形状。

合理运用这些工具,可以轻松实现更为复杂的零件设计。

2. 法线控制:通过在创建曲面时控制法线方向,可以使得曲面在装配时更好地对齐,并提高装配的精度。

使用法线控制技巧可以避免未来可能出现的装配问题。

3. 多实体建模:CATIA允许在同一个零件中创建多个实体,这些实体可以相互关联,形成复杂的几何体。

运用多实体建模技巧可以提高零件的可塑性和设计的灵活性。

三、装配体建模技巧对于复杂的装配体建模任务,以下是一些CATIA高级建模技巧的示例:1. 零件约束:CATIA提供了丰富的零件约束工具,可以帮助用户准确地定位和调整装配体中的各个零件。

合理运用零件约束可以保证装配的稳定性和正确性。

2. 可变约束:在装配体中,有时需要调整某些零件的位置或角度,以满足不同的设计需求。

装配件catia有限元分析

装配件catia有限元分析

装配件的有限元分析1、打开装配件。

2、进入工作台在菜单栏中选择【开始】→【分析与模拟】→【Generative Structural Analysis】命令,进入【结构有限元分析】工作台。

3、进入分析模块进入【结构有限元分析】工作台后,弹出窗口【New Analysis Case】,如图3-1所示,选择【Static Analysis】选项,单击【确定】按钮,生产一新分析算题。

3-1装配件有限元模型4、指定材料 (material)点击工具栏图标来指定零件材料,系统可能弹出图3-2所示对话框,提示没有中文材料库,确定即可;弹出图3-3所示对话框,左键点击【Analysis Manager】模型树内【Rubber】, 再点击材料库对话框内【Other】卡片下的【rubber】,【确定】完成橡胶主簧材料的指定。

3-2无中文材料库报错对话框3-3材料指定对话框同理定义上液室、惯性通道体、下液室均、橡胶底模为铝制材料【aluminium】,外壳为橡胶【rubber】。

5、网格划分(nodes and elements)双击模型树中的来调整rubber的单元划分参数,则弹出图3-4所示四面体网格密度定义对话框,输入图中所示数值,完成网格参数修正。

同理对其他部分划分网格。

3-4网格划分密度定义对话框6、定义约束(Restraints)装配件通过橡胶底模用螺栓固定在车身或车架上,可以用橡胶主簧和外壳的完全固定来模拟分析,单击【Restraints】工具栏中的【Clamp】按钮,弹出图3-5所示【Clamp(夹紧)】定义对话框,选择橡胶主簧上表面和外壳下表面固定,【确定】完成约束定义。

3-5、定义约束7、定义装配件接触约束定义在左边的模型树中将【Links Manager.1】展开,显示出装配件下面的约束,选择【曲面约束.1】,单击【Connection Properties】工具栏中的【Fasten Connection Property】按钮,弹出如图3-6所示对话框,对话框显示已经选择了一个约束,单击【确定】按钮,关闭窗口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过盈配合压力连接 Pressure Fitting
用来连接两个通过过盈配合连接在一起的 两个实体。根据过盈配合或者间隙配合的 大小,能够精确地种连接
螺栓紧固连接 虚拟刚性螺栓紧固连接 虚拟柔性螺栓紧固连接 焊缝连接 焊点连接 自定义连接 …
接触连接 Contact Connection
接触连接创建的两个实体间的连接的特点 是:要求它们在共同的边界上不相互穿透, 并且用户可以指定接触间隙,接触连接考 虑了零件间相互作用产生的弹性变形。
扣紧连接 Fastened Connection
零件在共同的边界上相互黏结,连接后两 个实体就被看作一个实体,扣紧连接也考 虑了零件间相互作用产生的弹性变形。
轴系GAS有限元分析实例
如图所示的某减速器中的轴与齿轮,它们 之间采用过盈连接。试分析这种过盈连接 引起的预应力和预应力与工作载荷共同作 用时在轴上产生的应力
特性。 (4) 在Generative Structural Analysis中划分网格、
施加约束与载荷、求解、后处理。这些步骤与 GPS完全相同。
创建连接关系
为定义连接特性做准备,因为定义连接特性需 要引用该连接关系。
零件之间的连接关系的定义的2 种方式。
部件装配中的约束; 分析连接工具栏中的工具;
刚性连接 Rigid Connection[选讲]
不考虑连接件间的相互作用 引起的弹性变形,即它们的 连接是完全刚性的,并且扣 紧在一起。连接后就像在两 个实体之间连接了一个完全 刚性的虚拟零件,被连接件 的网格划分可以不一致。
柔性连接 Smooth Connection [选讲]
创建了柔性连接后就像在两个实体之间连 接了一个虚拟的柔性的虚拟零件,柔性连 接考虑了相互作用产生的弹性变形的影响。
装配部件结构 有限元分析
Generative Assembly Structural Analysis
GAS 分析流程
(1) 从部件装配模块进入有限元分析模块,或者在 有限元分析模块中导入即将分析的装配部件。
(2) 正确定义装配部件之间的连接关系。 (3) 在 Generative Structural Analysis中添加连接
创建连接特性
进行GAS分析时,零部件之间的连接关系 只是说明了零件之间的连接关系,必须转 化成有限元分析的连接特性,才能进行有 限元分析。
滑动连接 Slider Connection
在两个实体之间创建连接,其特点是:允 许它们在公共边界的法向共同移动,切平 面内允许有相对滑动,并且该滑动连接考 虑了相互作用的弹性变形的影响。
相关文档
最新文档