高等数学微积分笔记

合集下载

微积分知识点总结 pdf

微积分知识点总结 pdf

微积分知识点总结
微积分知识点总结如下:
1.极限:极限是微积分的基础,描述函数在某个点附近的趋势。

极限有多种计算方法,包括直接代入法、因式分解法、有理化法、夹逼定理等。

2.导数:导数表示函数在某一点处的变化率或斜率。

导数的计算方法有定义法、四则运算法则、链式法则、乘积法则、商法则等。

3.积分:积分表示函数在某个区间上的累积量或面积。

定积分等于被积函数在该区间上与x轴围成的面积。

积分的计算方法有反导数法、换元法、分部法、定积分性质等。

4.无穷级数:无穷级数表示无穷多项相加的表达式。

它可以分为收敛和发散两种类型,收敛级数有有限或无限的和,而发散级数的和是无穷大。

5.微分学:微分学是微积分的重要组成部分,包括函数的微分、微分法则、微分的应用等。

6.积分学:积分学是微积分的另一个重要部分,包括定积分、不定积分、积分的应用等。

7.多元函数微积分:多元函数微积分包括多元函数的极限、连续性、偏导数、全微分、方向导数等,以及多元函数的积分和重积分等。

8.微分方程:微分方程是描述变量之间依赖关系的数学模型,包括一阶微分方程、高阶微分方程、线性微分方程和非线性微分方程等。

9.泰勒公式与麦克劳林公式:泰勒公式是一个将一个函数展开成无穷级数的公式,而麦克劳林公式则是泰勒公式的特殊形式。

10.幂级数与傅里叶级数:幂级数是一种无穷级数,可以用来展开函数;傅里叶
级数则是将一个函数展开成正弦和余弦函数的无穷级数。

大学微积分l知识点总结(一)

大学微积分l知识点总结(一)

大学微积分l知识点总结【第一部分】大学阶段准备知识1、不等式:引申双向不等式:两侧均在ab≥0或ab≤0时取等号柯西不等式:设a1、a2、。

.。

a n,b1、b2、。

.b n均是实数,则有:2、函数周期性和对称性的常用结论1、若f(x+a)=±f(x+b),则f(x)具有周期性;若f(a+x)=±f(b-x),则f (x)具有对称性。

口诀:“内同表示周期性,内反表示对称性”2、周期性(1)若f(x+a)=f(b+x),则T=|b—a|(2)若f(x+a)=-f(b+x),则T=2|b—a|(3)若f(x+a)=±1/f(x),则T=2a(4)若f(x+a)=【1—f(x)】/【1+f(x)】,则T=2a(5)若f(x+a)=【1+f(x)】/【1—f(x)】,则T=4a3、对称性(1)若f(a+x)=f(b-x),则f(x)的对称轴为x=(a+b)/2(2)若f(a+x)=—f(b—x)+c,则f(x)的图像关于((a+b)/2,c/2)对称4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。

(1)若f(x)的图像有两条对称轴x=a和x=b,则f(x)必定为周期函数,其中一个周期为2|b-a|。

(2)若f (x )的图像有两个对称中心(a ,0)和(b,0),(a ≠b),则f (x )必定为周期函数,其中一个周期为2|b —a |。

(3)若f (x )的图像有一个对称轴x=a 和一个对称中心(b ,0),(a ≠b ),则f(x)必定为周期函数,其中一个周期为4|b —a|。

3、三角函数倒数关系: 商的关系: 平方关系:平常针对不同条件的两个常用公式: 一个特殊公式: 二倍角公式: 半角公式: 三倍角公式: 万能公式: 两角和公式: 和差化积公式: 积化和差公式:口诀:奇变偶不变,符号看象限4、数学归纳法数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。

3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。

\large δ:是邻域半径。

2.极限的性质是什么?●唯一性极限存在必唯一。

从左从右逼近相同值。

●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。

●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。

●极限运算性质1、满足四则运算。

2、满足复合函数嵌套极限。

3、极限存在则左右极限相等。

●极限存在性质迫(夹)敛(逼)定理。

●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。

高等数学微积分笔记

高等数学微积分笔记

第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限: A y n n =∞→lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界. 2.函数的极限:⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x→时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim㈡无穷大量和无穷小量 1.无穷大量:+∞=)(limx f称在该变化过程中)(x f 为无穷大量。

大一微积分知识点总结

大一微积分知识点总结

大一微积分知识点总结微积分是高等数学的重要组成部分,对于大一的同学来说,是一门具有挑战性但又十分重要的课程。

以下是对大一微积分主要知识点的总结。

一、函数与极限函数是微积分的基础概念之一。

我们需要理解函数的定义、定义域、值域、单调性、奇偶性、周期性等性质。

比如,单调递增函数指的是当自变量增大时,函数值也随之增大;偶函数满足 f(x) = f(x) ,奇函数满足 f(x) = f(x) 。

极限是微积分中一个极其重要的概念。

极限的计算方法有很多,例如直接代入法、化简法、等价无穷小替换法、洛必达法则等。

等价无穷小在求极限时经常用到,比如当 x 趋近于 0 时,sin x 与 x 是等价无穷小。

洛必达法则则适用于“0/0”或“∞/∞”型的极限。

二、导数与微分导数反映了函数在某一点处的变化率。

对于常见的基本初等函数,如幂函数、指数函数、对数函数、三角函数等,要熟练掌握它们的求导公式。

导数的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。

复合函数的求导法则是一个重点也是难点,需要通过链式法则来求解。

微分是函数增量的线性主部。

函数在某一点的微分等于函数在该点的导数乘以自变量的增量。

三、中值定理与导数的应用中值定理包括罗尔定理、拉格朗日中值定理和柯西中值定理。

这些定理在证明一些等式和不等式时非常有用。

利用导数可以研究函数的单调性、极值和最值。

当导数大于 0 时,函数单调递增;当导数小于 0 时,函数单调递减。

导数为 0 的点可能是极值点,但还需要通过二阶导数来判断是极大值还是极小值。

在实际问题中,经常需要通过求导数来找到最优解,比如求成本最小、利润最大等问题。

四、不定积分不定积分是求导的逆运算。

要熟练掌握基本积分公式,如幂函数的积分、指数函数的积分、三角函数的积分等。

积分的方法有换元积分法和分部积分法。

换元积分法包括第一类换元法(凑微分法)和第二类换元法。

分部积分法通常适用于被积函数是两个函数乘积的形式,比如 xe^x 。

微积分知识点总结笔记

微积分知识点总结笔记

微积分知识点总结笔记微积分是数学中的一个重要分支,它涉及到了各种变化率、积分、微分和极限等概念。

在现代数学中,微积分是一门非常基础的学科,它广泛应用于物理、工程、经济学等领域。

本文将从微积分的基本概念、函数的极限、导数和微分、不定积分和定积分、微分方程等方面对微积分的知识点进行总结。

1.微积分的基本概念微积分的基本概念包括函数、极限、导数和积分。

首先,函数是自变量到因变量的映射规律,通常用f(x)或y来表示。

当自变量x的取值逐渐接近某一数值时,函数值f(x)也有着确定的趋势,这种趋势称为极限。

导数是函数在某一点处的变化率,而积分则是对函数在某一区间上的累积效应。

2.函数的极限函数的极限是微积分中的基础概念之一,它用来描述自变量趋于某一数值时,函数值的变化情况。

数学上通常用极限符号lim来表示,比如lim(x->a)f(x)=L表示当x趋近a时,函数f(x)的极限是L。

在微积分中,函数的极限经常用来计算导数和积分,因此对于函数的极限有着很重要的意义。

3.导数和微分导数是函数在某一点处的变化率,它描述了函数在这一点附近的近似线性变化。

导数的计算可以通过极限的方法进行,通常用f'(x)或dy/dx来表示。

微分是导数的积分形式,它表示了函数的微小变化。

在实际中,导数和微分常用来描述函数的变化趋势和优化问题,比如求解最大值、最小值和函数图像的曲线斜率等。

4.不定积分和定积分不定积分是对函数的积分形式,它表示了函数在某一区间上的累积效应。

通常用∫f(x)dx来表示,它求解的是函数的原函数。

定积分则是对函数在某一区间上的定量描述,它表示了函数曲线与x轴之间的面积。

在微积分中,不定积分和定积分是密切相关的,它们有着许多重要的性质和应用,比如面积、体积、弧长、曲线图形的面积等。

5.微分方程微分方程是描述变化规律的数学方程,它由未知函数、自变量和导数等组成。

微分方程在物理、工程、生物等领域中有着广泛的应用,它可以用来描述各种自然现象的变化规律,比如弹簧振动、电路运行、生物种群的增长和衰减等。

高等数学 一 微积分 考试必过归纳总结 要点重点

高等数学 一 微积分 考试必过归纳总结 要点重点

高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续(包括级数) 第二部分 导数及其应用(包括多元函数)第三部分 积分计算及其应用 (包括二重积分和方程)第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。

2、判断函数的有界性、周期性、单调性、奇偶性。

3、求反函数。

4、求复合函数的表达式。

二、 极限与连续 常见考试题型:1、求函数或数列的极限。

2、考察分段函数在分段点处极限是否存在, 函数是否连续。

3、函数的连续与间断。

4、求函数的渐进线。

5、级数的性质及等比级数。

6、零点定理。

每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。

3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。

每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。

第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。

2、判断函数的有界性、周期性、单调性、奇偶性。

3、求反函数。

4、求复合函数的表达式。

例1..函数___________. 2007.7知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。

解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。

高等数学上册(微积分)必背公式总结

高等数学上册(微积分)必背公式总结

高等数学上册(微积分)必背公式总结以下仅是个人总结仅供参考(不包含微分方程模块)常用三角函数公式积化和差公式\begin{aligned} \sin \alpha \cos\beta&=\frac{1}{2}[\sin (\alpha+\beta)+\sin(\alpha-\beta)] \\ \cos \alpha \sin \beta&=\frac{1}{2}[\sin (\alpha+\beta)-\sin(\alpha-\beta)] \\ \cos \alpha \cos \beta&=\frac{1}{2}[\cos (\alpha+\beta)+\cos(\alpha-\beta)] \\ \sin \alpha \sin \beta&=-\frac{1}{2}[\cos (\alpha+\beta)-\cos(\alpha-\beta)]\end{aligned}和差化积公式\begin{aligned}\sin\alpha+\sin\beta&=2\sin\frac{\alpha+\beta}{2}\cos\ frac{\alpha-\beta}{2} \\ \sin\alpha-\sin\beta&=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha -\beta}{2} \\\cos\alpha+\cos\beta&=2\cos\frac{\alpha+\beta}{2}\cos\ frac{\alpha-\beta}{2} \\ \cos\alpha-\cos\beta&=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\\ \tan\alpha+\tan\beta&=\frac{\sin(\alpha+\beta)}{\cos\alpha\cdot\cos \beta}\end{aligned}归一化公式\begin{aligned} \label{gyhgs} \sin^2 x+\cos^2x&=1\\\sec^2 x-\tan^2x&=1\\\cosh^2x-\sinh^2x&=1\end{aligned}倍(半)角公式降(升)幂公式\begin{aligned} \sin^2x&=\frac{1}{2}(1-\cos 2x)\\\cos^2x&=\frac{1}{2}(1+\cos 2x) \\ \tan^2x&=\frac{1-\cos 2x}{1+\cos 2x} \\ \sinx&=2\sin\frac{x}{2}\cos\frac{x}{2} \\ \cosx&=2\cos^2\frac{x}{2}-1=1-2\sin^2\frac{x}{2}=\cos^2\frac{x}{2}-\sin^2\frac{x}{2} \\ \tan x&=\frac{2\tan(x/2)}{1-\tan^2(x/2)}\end{aligned}万能公式令 u=\tan\dfrac{x}{2} 则\begin{aligned} \sin x=\frac{2u}{1+u^2}\\ \cosx=\frac{1-u^2}{1+u^2}\end{aligned}常用的佩亚诺型余项泰勒公式有泰勒公式 \begin{aligned}f(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o[(x-x_0)^n]\notag\\f(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\small{ (\xi \mbox{在}x_0 \mbox{与}x\mbox{之间})} \notag\end{aligned}\begin{aligned}\mathrm{e}^{x}&=1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}+ \cdots+\frac{1}{n!}x^{n}+o(x^{n})\\ \ln(x+1)&=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\cdots+(-1)^{n-1}\frac{1}{n}x^{n}+o(x^{n})\end{aligned}令 n=2m 有,\begin{aligned} \sin x&=x-\frac{1}{6}x^{3}+\frac{1}{120}x^{5}+\cdots+(-1)^{m-1}\frac{1}{(2m-1)!}x^{2m-1}+o(x^{2m}) \\ \cos x&=1-\frac{1}{2}x^2+\frac{1}{24}x^4-\cdots+(-1)^m\frac{1}{(2m)!}x^{2m}+o(x^{2m+1}) \\ \tanx&=x+\frac{1}{3}x^3+\frac{2}{15}x^5+\frac{17}{315}x^7+ \cdots+o(x^{2m-1})\end{aligned} \begin{aligned}\arcsinx&=x+\frac{1}{6}x^3+\frac{3}{40}x^{5}+\cdots+o(x^{2m}) \end{aligned}常用于近似计算的泰勒公式\begin{aligned} \frac{1}{1-x}&=1+x+x^2+x^3+\cdots+x^n+o(x^n) \\(1+x)^{\alpha}&=\sum_{i=0}^{n}\frac{\prod_{j=0}^{i-1}{(\alpha-j})}{i!}x^n+o(x^n)\notag \\ &=1+\alphax+\frac{\alpha(\alpha-1)}{2}x^2+\cdots+o(x^n) \\\alpha^x&=\sum_{i=0}^{n}\frac{\ln^n\alpha}{n!}x^n+o(x^n)\notag \\ &=1+x\ln\alpha+\frac{\ln^2 \alpha}{2}x^2+\cdots+\frac{\ln^n \alpha}{n!}x^n+o(x^n)\end{aligned}基本求导公式\begin{equation} \left( C\right)'=0 \\\left( x^{\mu}\right)'=\mu x^{\mu-1} \\ \left( \sinx\right)'=\cos x \\ \left( \cos x\right)'=-\sin x \\ \left( \tan x\right)'=\sec^2 x\\ \left( \cotx\right)'=-\csc^2 x \\ \left( \sec x\right)'=\secx\cdot\tan x \\ \left( \csc x\right)'=-\csc x\cdot\cot x \\ \left( a^x\right)'=a^x\ln a\ (a>0,a\neq1)\\\left( \log_{a}x\right)'=\frac{1}{x\cdot\ln a}\(a>0,a\neq1) \\ \left( \arcsinx\right)'=\frac{1}{\sqrt{1-x^2}} \\ \left( \arccosx\right)'=-\frac{1}{\sqrt{1-x^2}} \\ \left( \arctanx\right)'=\frac{1}{1+x^2} \\ \left( \mathrm{arccot}\, x\right)'=-\frac{1}{1+x^2} \\ \end{equation}函数图形描述中涉及到的重要公式常用曲率计算公式曲率的定义式K=\displaystyle\left|\frac{\mathrm{d}\alpha}{\mathrm{d}s}\right|由定义式我们可以推得1.直角坐标系中的曲线 y=y(x) 有曲率表达式K=\frac{\left|y''\right|}{\left( 1+y^{'2}\right)^{3/2}}\mbox{;}2.参数方程表示的曲线 x=\varphi(t),y=\psi(t) 有曲率表达式 K=\frac{\left|\varphi'(t)\psi''(t)-\varphi''(t)\psi'(t)\right|}{\left[ \varphi^{'2}(t) +\psi^{'2}(t) \right]^{3/2}}\mbox{;}3.极坐标表示的的曲线 y=y(x) 有曲率表达式K=\frac{\left|r^2+2r^{'2}-r\cdotr''\right|}{\left(r^2+r^{'2}\right)^{3/2}}\mbox{;}曲线在对应点 M(x,y) 的曲率中心 D(\alpha,\beta) 的坐标为\begin{cases} \alpha=x-\displaystyle\frac{y'(1+y^{'2})}{y^{''2}} \\\beta=y+\displaystyle\frac{1+y^{'2}}{y''} \end{cases} 曲线的渐近线1.若 \lim\limits_{ x\rightarrow \infty }f(x)=b ,则称 y=b 为曲线 f(x) 的水平渐近线;2.若 \lim\limits_{ x\rightarrow x_0 }f(x)=\infty ,则称 x=x_0 为曲线 f(x) 的垂直渐近线;3.若 \lim\limits_{ x\rightarrow \infty }[f(x)-(ax+b)]=0 ,其中 \begin{cases} a=\displaystyle\lim\limits_{x\to \infty}\frac{f(x)}{x} \\b=\displaystyle \lim\limits_{x\to \infty}[f(x)-ax] \end{cases} 则称 y=ax+b 为曲线 f(x) 的斜渐近线.基本积分公式\begin{aligned} &\int k \,\mathrm{d}x=kx+C \ \mbox{(其中}k\mbox{为常数)} \\ &\intx^\mu\,\mathrm{d}x=\frac{x^{\mu+1}}{\mu+1}+C\(\mu\neq-1) \\ &\int \frac{1}{x}\,\mathrm{d}x=\ln|x|+C \\ &\int\frac{\mathrm{d}x}{1+x^2}=\arctan x+C \\&\int\frac{\mathrm{d}x}{\sqrt{1-x^2}}=\arcsin x+C_1=-\arccos x+C_2 \\ &\int \sin x\,\mathrm{d}x=-\cos x+C\\ &\int\cos x \,\mathrm{d}x=\sin x +C \\ &\int\tanx\,\mathrm{d}x=-\ln |\cos x|+C \\ &\int\cotx\,\mathrm{d}x=\ln |\sin x|+C \\ &\int\cscx\,\mathrm{d}x=\int\frac{1}{\sin{x}}\,\mathrm{d}x=\fra c{1}{2} \ln{\left|\frac{1-\cos{x}}{1+\cos{x}}\right|}+C=\ln{\left|\tan{\frac{x}{ 2}}\right|}+C=\ln{\left|\csc{x}-\cot{x}\right|}+C \\ &\int\secx\,\mathrm{d}x=\int\frac{1}{\cos{x}}\,\mathrm{d}x=\fra c{1}{2} \ln{\left|\frac{1+\sin{x}}{1-\sin{x}}\right|}+C=\ln{\left|\sec{x}+\tan{x}\right|}+C \\ &\int\sec^2 x\,\mathrm{d}x=\tan x +C \\ &\int\csc^2 x\,\mathrm{d}x=-\cot x +C \\ &\int \secx\cdot\tan x \,\mathrm{d}x=\sec x+C \\ &\int\csc x\cdot\cot x \,\mathrm{d}x=-\csc x+C \\ &\int\mathrm{e}^x \,\mathrm{d}x=\mathrm{e}^x+C \\ &\inta^x\,\mathrm{d}x=\frac{a^x}{\ln a}+C \\ &\int \sinhx\,\mathrm{d}x=\cosh x+C \\ &\int \coshx\,\mathrm{d}x=\sinh x+C \\ &\int\frac{1}{a^2+x^2}\,\mathrm{d}x=\frac{1}{a}\arctan\frac {x}{a}+C \\ &\int \frac{1}{a^2-x^2}\,\mathrm{d}x=\frac{1}{2a}\ln \left|\frac{a+x}{a-x}\right|+C \\ &\int \frac{1}{\sqrt{a^2-x^2}}\,\mathrm{d}x=\arcsin\frac{x}{a}+C \\ &\int\frac{1}{\sqrt{x^2\pm a^2}}\,\mathrm{d}x=\ln\left|x+\sqrt{x^2\pm a^2}\right|+C \end{aligned}基本积分方法第一类换元法1.一般地,对于 \sin^{2k+1}x\cos^n x 或 \sin^n x\cos^{2k+1}x (其中 k\in\mathbb{N} )型函数的积分,总可依次作变换 u=\cos x 或 u=\sin x ,从而求得结果;2.一般地,对于 \sin^{2k}x\cos^{2l}x 或 (其中 k,l\in\mathbb{N} )型函数的积分,总是利用降幂公式\sin^2=\dfrac{1}{2}(1-\cos 2x),\cos^2=\dfrac{1}{2}(1+\cos 2x) 化成 \cos 2x 的多项式,从而求得结果;3.一般地,对于 \tan^{n}x\sec^{2k} x 或 \tan^{2k-1} x\sec^{n}x (其中 n,k\in\mathbb{N}_{+} )型函数的积分,总可依次作变换 u=\tan x 或 u=\sec x ,从而求得结果;\begin{aligned} &\int {f( ax + b){\rm{d}}x= }\frac{1}{a}\int {f(ax+b){\mathrm{d}}(ax + b)\;(a\neq 0)} \\ &\int {f(a{x^{m + 1}} + b){x^m}{\rm{d}}x} = \frac{1}{{a(m + 1)}}\int {f(a{x^{m + 1}} +b){\rm{d}}(a{x^{m + 1}} + b)} \\ &\int{f\left( \frac{1}{x}\right)\frac{{{\rm{d}}x}}{{{x^2}}}\;} = - \int{f\left( \frac{1}{x}\right){\rm{d}}\left( \frac{{\rm{1}}}{x}\right) \;} \\ &\int {f(\ln x)\frac{1}{x}} {\rm{d}}x = \int {f(\lnx){\rm{d(}}\ln x)} \\ &\int {f({\mathrm{e}^x})}{\mathrm{e}^x}{\rm{d}}x = \int{f({\mathrm{e}^x}} ){\rm{d(}}{\mathrm{e}^x}) \\ &\int {f(\sqrt x } )\frac{{{\rm{d}}x}}{{\sqrt x }} = 2\int {f(\sqrt x } ){\rm{d}}(\sqrt x ) \\ &\int {f(\sinx)\cos x{\rm{d}}x = } \int {f(\sin x){\rm{d}}\sin x} \\ &\int {f(\cos x)\sin x{\rm{d}}x = } - \int {f(\cos x){\rm{d}}\cos x} \\ &\int {f(\tan x){{\sec }^2}}x{\rm{d}}x = \int {f(\tan x){\rm{d}}\tan x} \\ &\int{f(\cot x){{\csc }^2}} x{\rm{d}}x = - \int {f(\cotx){\rm{d}}\cot x} \\ &\int {f(\arcsinx)\frac{1}{{\sqrt {1 - {x^2}} }}} {\rm{d}}x = \int{f(\arcsin x){\rm{d}}\arcsin x} \\ &\int {f(\arctanx)\frac{1}{{1 + {x^2}}}} {\rm{d}}x = \int {f(\arctan x){\rm{d}}\arctan x} \\ &\int {\frac{{f'(x)}}{{f(x)}}} {\rm{d}}x = \int {\frac{{{\rm{d}}f(x)}}{{f(x)}}} = \ln \left| f(x)\right| + C\end{aligned}部分分式\begin{aligned} \frac{{P(x)}}{{Q(x)}} =&\frac{{{A_1}}}{{{{(x - a)}^\alpha }}} +\frac{{{A_2}}}{{{{(x - a)}^{\alpha - 1}}}} + \cdots + \frac{{{A_\alpha }}}{{x - a}} + \notag\\\&\frac{{{B_1}}}{{{{(x - b)}^\beta }}} +\frac{{{B_2}}}{{{{(x - b)}^{\beta - 1}}}} + \cdots +\frac{{{B_\beta }}}{{x - b}} + \notag\\\&\frac{{{M_1}x + {N_1}}}{{{{({x^2} + px +q)}^\lambda }}} + \frac{{{M_2}x + {N_2}}}{{{{({x^2} + px + q)}^{\lambda - 1}}}} + \cdots +\frac{{{M_\lambda }x + {N_\lambda }}}{{{x^2} + px + q}} + \notag\ \\&\cdots \end{aligned}三角函数的特殊定积分\begin{aligned}I_n&=\int_0^{\frac{\pi}{2}}\sin^nx\,\mathrm{d}x=\int_0 ^{\frac{\pi}{2}}\cos^nx\,\mathrm{d}x\notag \I_n&\\&=\frac{n-1}{n}I_{n-2}\notag\ \\&=\begin{cases} \ \dfrac{{n - 1}}{n} \cdot \dfrac{{n - 3}}{{n - 2}}\cdots \dfrac{4}{5} \cdot \dfrac{2}{3}\quad (n\mbox{为大于}1\mbox{的正奇数}),I_1=1\\ \ \dfrac{{n - 1}}{n} \cdot \dfrac{{n - 3}}{{n - 2}} \cdots \dfrac{3}{4}\cdot \dfrac{1}{2} \cdot \dfrac{\pi }{2}\quad(n\mbox{为正偶数}),I_0=\dfrac{\pi}{2}\end{cases}\end{aligned}。

微积分笔记整理

微积分笔记整理

微积分笔记整理以下是一份微积分笔记整理的示例,涵盖了微积分的一些关键概念和公式:一、导数(Derivative)1. 定义:函数在某一点的切线斜率。

2. 公式:$(f(x+h)-f(x))\div h$(当$h$趋近于$0$时)。

3. 导数的意义:- 函数的变化率。

- 曲线的切线斜率。

- 判断函数的单调性。

二、微分(Differential)1. 定义:函数在某一点的切线增量。

2. 公式:$df=f^\prime(x)dx$。

3. 微分的意义:- 切线的近似值。

- 函数的增量。

三、积分(Integral)1. 定义:函数在某个区间上的面积。

2. 公式:$\int_{a}^{b}f(x)dx$。

3. 积分的意义:- 函数的面积。

- 函数的平均值。

- 求导的逆运算。

四、微积分基本定理(Fundamental Theorem of Calculus)1. 牛顿-莱布尼茨公式(Newton-Leibniz Formula):若$F^\prime(x)=f(x)$,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$。

2. 不定积分(Indefinite Integral):函数的原函数族。

3. 定积分(Definite Integral):函数在某个区间上的确定积分值。

五、常见函数的导数和积分1. 常数函数:导数为$0$,积分为$cx$($c$为常数)。

2. 线性函数:导数为常数,积分为$cx+d$($c$、$d$为常数)。

3. 指数函数:导数为指数本身,积分为指数加$1$的反函数。

4. 对数函数:导数为$\frac{1}{x}$,积分为$x\ln|x|+c$。

5. 三角函数:正弦函数的导数为余弦函数,余弦函数的导数为负的正弦函数;积分根据不同的三角函数有不同的公式。

高中数学微积分知识点总结(全)

高中数学微积分知识点总结(全)

高中数学微积分知识点总结(全)微积分是高中数学的一个重要分支,主要由导数、微分和积分三部分组成。

以下是微积分的常见知识点总结:导数- 导数的定义:$$ f'(x)=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$- 导数的计算公式:$$(cf(x))'=cf'(x)$$ $$(f(x)\pm g(x))'=f'(x)\pmg'(x)$$ $$(f(x)g(x))'=f(x)g'(x)+g(x)f'(x)$$ $$\left(\frac{f(x)}{g(x)}\right )'=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}$$- 导数的求解:- 可导函数的求法:$y=f(x)$可导的条件是必须存在极限$$ \lim_{\Delta x\to0}\frac{\Delta y}{\Delta x} $$- 可导函数的求导法则:函数导数等于其导函数,即求导公式。

微分- 微分的定义:$$ \Delta y=f'(x)\Delta x+\alpha(\Delta x)\Deltax=\text{d}x+f'(x)\Delta x $$ 其中$\alpha(\Delta x)$是$\Delta x$的高阶无穷小,$f'(x)\Delta x$称为函数$f(x)$在点$x$的微分。

- 微分的应用:线性近似、误差分析、微分中值定理。

积分- 定积分的定义:$$ \int_{a}^{b}f(x)\text{d}x=\lim_{\max\Delta x_i\to0}\sum_{i=1}^{n}f(\xi_i)\Delta x_i $$- 定积分的性质:线性性、区间可加性、不等式、介值定理、平均值定理。

大一微积分重点知识点总结

大一微积分重点知识点总结

大一微积分重点知识点总结微积分是数学的一门重要分支,也是大一学习的一门必修课程。

通过学习微积分,我们可以研究数学中的变化以及极限问题。

下面是大一微积分的重点知识点总结:1. 函数与极限函数是微积分的基础,它描述了自变量与因变量之间的关系。

函数的概念、性质以及函数图像的绘制是大一微积分的第一部分内容。

极限是微积分中的重要概念,通过极限,我们可以研究函数在某一点的变化趋势。

大一微积分研究的主要是一元函数的极限,其中包括函数的左极限、右极限以及无穷大极限等。

2. 导数与微分导数是描述函数变化率的工具,它表示函数在某一点的切线斜率。

大一微积分中,我们主要研究一元函数的导数,其中包括导数的定义、性质以及常见函数的导数计算方法。

微分是导数的一个应用,它表示函数在某一点上的微小变化量。

微分的计算方法包括差分法、高阶微分以及隐函数微分等。

3. 积分与定积分积分是求解函数面积或曲线长度的工具,它是导数的逆运算。

在大一微积分中,我们主要学习一元函数的不定积分,其中包括不定积分的基本性质、基本积分表以及换元积分法等。

定积分是求解曲线下面积的工具,它表示函数在一定区间上的积累效应。

大一微积分中,我们主要学习一元函数的定积分,其中包括定积分的定义、性质以及常见函数的定积分计算方法。

4. 微分方程微分方程是描述变化规律的方程,它将导数和未知函数联系在一起。

大一微积分中,我们主要学习一阶常微分方程,其中包括常微分方程的基本概念、解的存在唯一性以及常见微分方程的求解方法。

5. 应用领域微积分在各个科学领域和工程技术中都有广泛应用。

在物理学中,微积分被用于描述物体的运动和力学问题;在工程学中,微积分被用于解决电路、材料以及流体力学等问题;在经济学中,微积分被用于求解最优化问题和经济模型等。

总结:大一微积分是复杂而重要的学科,通过学习微积分可以培养我们的逻辑思维能力和问题解决能力。

本文对大一微积分的重点知识点进行了总结,包括函数与极限、导数与微分、积分与定积分、微分方程以及应用领域等。

高等数学一微积分考试必过归纳总结要点重点

高等数学一微积分考试必过归纳总结要点重点

高等数学一微积分考试必过归纳总结要点重点微积分是高等数学一门重要的学科,对于大部分学习该学科的学生来说,微积分考试是一个必须要过的关卡。

为了帮助大家更好地应对微积分考试,下面将对微积分的重点内容进行归纳总结,希望对大家有所帮助。

1. 导数与微分- 定义:导数是描述函数在某一点的变化率,微分是导数的代数形式。

- 基本公式:常见函数的导函数,如幂函数、指数函数、对数函数等。

- 高阶导数:描述函数变化率变化的快慢程度。

2. 极限与连续性- 极限的概念:函数逐渐趋近于某一值的过程。

- 常见极限:基本极限,如常数极限、幂函数极限、指数函数极限等。

- 连续性:函数在某一点上没有间断的特性。

- 常见连续函数:多项式函数、三角函数、指数函数等。

3. 微分中值定理与导数应用- 中值定理:介于两个点之间存在某一点,该点的切线斜率等于这两个点的斜率之差。

- 增量与微分:增量是函数值的改变量,微分是函数值的无穷小部分。

- 泰勒展开:将函数表示为幂级数的形式,用来逼近函数在某一点附近的近似值。

4. 积分与定积分- 不定积分:求函数的原函数,即求导的逆运算。

- 定积分:表示曲线下面的面积。

- 牛顿-莱布尼兹公式:定积分与不定积分的关系。

5. 微分方程与应用- 常微分方程:描述变化的过程中,一些量的关系式。

- 一阶微分方程:只涉及到一阶导数的方程。

- 区分可分离方程、一阶线性方程、齐次方程、可化为齐次形式的方程等常见类型。

以上就是微积分考试的必过归纳总结要点重点,希望对大家的学习有所帮助。

无论是在理论还是实际应用中,微积分都是一门重要的学科,需要大家掌握扎实。

希望大家通过复习和练习,能够在微积分考试中取得好成绩。

祝愿大家学业进步!。

高等数学(微积分部分)--口诀

高等数学(微积分部分)--口诀
32:分部积分难变易,弄清u、v是关键。
33:变限积分双变量,先求偏导后求导。加日志标题
34:定积分化重积分,广阔天地有作为。
35;微分方程要规范,变换,求导,函数反。
36:多元复合求偏导,锁链公式不可忘。
37:多元隐函求偏导,交叉偏导加负号。
38:多重积分的计算,累次积分是关键。
39:交换积分的顺序,先要化为重积分。
01:函数概念五要素,定义关系最核心。
02:分段函数分段点,左右运算要先行。
03:变限积分是函数,遇到之后先求导。
04:奇偶函数常遇到,对称性质不可忘。
05:单调增加与减少,先算导数正与负。
06:正反函数连续用,最后只留原变量。
07:一步不行接力棒,最终处理见分晓。
08:极限为零无穷小,乘有限仍无穷小。
40:无穷级数不神秘,部分和后求极限。
41:正项级数判别法,较、比值和根值。
42:幂级数求和有招,公式、等比、列方程.
24:导数函数合(组合)为零,辅助函数用罗尔。
25:寻找ξη无约束,柯西拉氏先后上。
26:寻找ξη有约束,两个区间用拉氏。
27:端点、驻点、非导点,函数值中定最值。
28:凸凹切线在上下,凸凹转化在拐点。
29:数字不等式难证,函数不等式先行。
30:第一换元经常用,微分公式要背透。
31:第二换元去根号,规范模式可依靠。
两边极限一起上,方程之中把值找。
17:函数为零要论证,介值定理定乾坤。
18:切线斜率是导数,法线斜率负倒数。
19:可导可微互等价,它们都比连续强。
20:有理函数要运算,最简分式要先行。
21:高次三角要运算,降次处理先开路。

大一(上)-微积分-知识点(重点)

大一(上)-微积分-知识点(重点)

大一(上) 微积分 知识点第一章 函数一、A ⋂B=∅,则A 、B 是分离的。

二、设有集合A 、B ,属于A 而不属于B 的所有元素构成的集合,称为A 与B 的差。

A-B={x|x ∈A 且x ∉B}(属于前者,不属于后者)三、集合运算律:①交换律、结合律、分配律与数的这三定律一致; ②摩根律:交的补等于补的并。

四、笛卡尔乘积:设有集合A 和B ,对∃x ∈A,∃y ∈B ,所有二元有序数组(x,,y )构成的集合。

五、相同函数的要求:①定义域相同②对应法则相同六、求反函数:反解互换七、关于函数的奇偶性,要注意:1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数;2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的)(f D x ∈,)()(x f x f =-成立,则)(x f 为偶函数;若对所有的)(f D x ∈,)()(x f x f -=-成立,则)(x f 为奇函数;若)()(x f x f =-或)()(x f x f -=-不能对所有的)(f D x ∈成立,则)(x f 既不是奇函数也不是偶函数;3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。

第二章 极限与连续一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。

二、极限存在定理:左、右极限都存在,且相等。

三、无穷小量的几个性质:1、limf(x)=0,则2、若limf(x)=)(lim x g =0,则0)()(lim =+x g x f3、若limf(x)=)(lim x g =0,则lim )(x f ·)(x g 0=4、若g(x)有界(|g(x)|<M ),且limf(x)=0,则limf(x)·g(x )=0四、无穷小量与无穷大量的关系:①若y 是无穷大量,则y 1是无穷小量;②若y (y ≠0)是无穷小量,则y1是无穷大量。

《高等数学(微积分学)》笔记

《高等数学(微积分学)》笔记

高等数学(微积分学)主讲:王飞燕教授、柳重堪教授、蔡高厅教授宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。

(华罗庚,1910—1985)数学处于人类智能的中心领域。

(冯﹒诺依曼,1903—1957)数学是调节理论和实践、思想和经验之间差异的工具。

它架起了一座连通双方的桥梁,并在不断地加固它。

事实上,全部现代文明中有关理性认识和征服自然的部分都有赖于数学。

(希尔伯特,1863—1943)前言《高等数学》主要包括:一元和多元函数、极限与连续、导数与微分学、导数应用、不定积分、定积分、无穷级数(包括傅里叶级数)、微分方程、矢量代数、空间解析几何。

教学目标:掌握高等数学基本知识、基本理论,基本计算方法,提高数学素养;培养学生抽象思维和逻辑推理能力,辩证的思想方法;培养学生的空间想象能力;培养学生分析问题和解决问题的能力;为学生进一步学习数学打下一定的基础,为学习专业的后继课程准备必要的数学基础。

第一章函数一、实数:1、数的扩展:自然数集(N)、整数集(Z,自然数+零+负整数)、有理数集(Q,整数+分数)、实数集(R,有理数+无理数)、复数(实数+虚数)……在高等数学研究中的数基本上都是实数,若用到虚数都会特别的说明。

2、数的几何表示——数轴:数轴的特点:有正负方向、有零点、有刻度。

它的作用是:数轴上的点与实数是一一对应的关系。

3、区间:某一实数集A与数轴上的某一区间对应。

﹛x:a<x<b﹜=﹙a ,b﹚——开区间,﹛x:a≤x≤b﹜=[a,b]——闭区间。

4、邻域:假设有两个数,a、δ(δ>0),则称实数集﹛x|a-δ<x<a+δ﹜为点a的δ邻域,记为N(a,δ),a被称为N(a,δ)的中心,δ>0被称为N(a,δ)的半径。

去心邻域:把N(a,δ)的中心点a去掉,称为a的去心邻域,记为N(a,δ)=﹛x|0<|x-a|<δ﹜=N(a,δ)﹨﹛a﹜。

高中微积分重要知识点总结

高中微积分重要知识点总结

高中微积分重要知识点总结一、函数与极限1. 函数概念:函数是一种特殊的映射关系,它将一个自变量映射为一个因变量。

2. 函数的性质:奇函数、偶函数、周期函数等。

3. 极限概念:当自变量趋于某一值时,函数的取值趋于一个确定的常数。

4. 极限的性质:唯一性、有界性、保号性等。

5. 极限的计算方法:无穷小替换法、洛必达法则、泰勒展开式等。

二、导数与微分1. 导数的概念:函数在某一点的变化率。

2. 导数的性质:可加性、可积性、伊尔米特公式等。

3. 导数的计算方法:基本导数公式、复合函数求导、隐函数求导、参数方程求导等。

4. 微分的概念:函数值的变化量与自变量的变化量的比值。

5. 微分的性质:可加性、可积性、微分中值定理等。

三、微分中值定理与应用1. 微分中值定理:拉格朗日中值定理、柯西中值定理、罗尔中值定理等。

2. 泰勒公式及应用:泰勒展开式、泰勒公式的应用。

3. 凹凸性与拐点:二阶导数的概念、凹凸性的判定、拐点的判定。

四、不定积分与定积分1. 不定积分:初等函数的不定积分、换元积分法、分部积分法、有理函数的积分、三角函数的积分等。

2. 定积分:黎曼积分的概念、定积分的性质、定积分的计算方法、定积分的应用。

五、微分方程1. 微分方程的基本概念:微分方程的定义、微分方程的分类、微分方程的初值问题等。

2. 微分方程的解法:可分离变量法、齐次微分方程、常数变易法、一阶线性微分方程等。

3. 高阶微分方程:高阶微分方程的基本概念、高阶微分方程的解法、特解与通解等。

六、级数与收敛1. 级数的概念:无穷级数、收敛级数、发散级数、等比级数、调和级数等。

2. 收敛的判定:级数的收敛判定、级数的比较判别法、级数的积分判别法、级数的根值判别法等。

3. 级数的运算:级数的加法、级数的乘法、级数的分解、级数的换序等。

综上所述,高中微积分的重要知识点包括函数与极限、导数与微分、微分中值定理与应用、不定积分与定积分、微分方程以及级数与收敛等内容。

高数一

高数一

高数一(微积分)总复习笔录---高数一(微积分)总复习笔录可能考的知识点:第一章:函数及其图形(一)对于定义域的求法:形如y=1/f(x),要求f(x)不等于0对于根号f(x),要求f(x)大于等于0对于Y=logf(x),要求f(x)大于0对于y=arccosf(x)或y=arcsinf(x),要求f(x)大于等于负1,小于等于正1.*值域:以定义域带进去求。

(二)判断函数的奇偶性:奇函数:f(-x)=-f(x),关于原点对称;偶函数:f(-x)=f(x),关于Y轴对称。

(1)两个偶函数之和或差是偶函数,两个奇函数之和或差是奇函数;(2)两个偶函数或两个奇函数之积或商是偶函数;(3)一个奇函数与一个偶函数之积或商是奇函数。

(三)复合函数的分解:(四)反函数的求法:把x 从y=f(x)中反解出来即可。

* (五)经济学中常用的函数:(1)需求函数:D=(a-P)/b;D=(a-P^2)/b;(2)供给函数:S=aP-b;S=(aP-b)/(cP+d)。

(3)总收益函数。

(4)总成本函数:总成本=固定成本+可变成本。

(5)总利润函数:第二章极限与连续(一)收敛数项级数的极限计算:1、当等比级数的公比的绝对值小于1时收敛,其和为a/(1-q);当大于1时发散;2、荚逼定理:;3、单调上升有上界(或单调下降有下界)的数列必有极限。

(二)函数极限:1、定理:当x->x`时函数f(x)以A为极限的充分必要条件是f(x)在x`的左、右极限都存在并均为A。

2、极限的四则运算法则:(三)利用无穷小量与无穷大量的运算法则求极限:1、无穷小量:无穷小量的和、差、积也都是无穷小量。

有界变量与无穷小量的积为无穷小量。

2、两个无穷小量相除:a/b趋于0,a是比b高阶的无穷小,a趋于0的速度比b快;(四)利用无穷小量与无穷大量的关系求极限:(五)利用两个重要极限求极限:(六)利用函数的连续性求极限:函数在一点处连续,要求在这一点有定义,函数的极限存在,并且相等.(七)利用等价无穷小的代换求极限:(八)连续函数的运算和初等函数的连续性:1、连续函数的和、差、积、商仍是连续函数;2、设函数在区间上是单调的连续函数,则其值域是一个区间,且它的反函数是区间上的单调连续函数;3、闭区间上的连续函数必有界;4、最值定理:闭区间上的连续函数必有最大值和最小值;5、零点定理:设f(x)是[a,b]上的连续函数,且f(a),f(b)异号,则函数f(x)在(a,b)中至少有一个零点;6、介值定理:闭区间上的连续函数必能取得它在区间上的最大值和最小值之间的任何值。

大一高等数学微积分知识点

大一高等数学微积分知识点

大一高等数学微积分知识点微积分作为大一高等数学的重要组成部分,是数学学习中的基础与核心内容。

掌握微积分的知识点对于学生来说至关重要。

本文将从微积分的基本概念、导数、积分以及应用等方面介绍一些大一高等数学微积分的知识点。

一、基本概念1. 函数与极限:函数是自变量与因变量之间的关系。

极限是函数在某一点上的特殊取值方式,表示随着自变量的趋近,函数值的趋近情况。

2. 连续与间断:在一个区间内,如果函数在任意点上都连续,则函数在该区间内连续。

如果存在某一点使得函数在该点不连续,则函数在该点间断。

二、导数1. 导数的定义:导数是描述函数变化率的概念,表示函数在某一点上的瞬时变化率。

导数的定义为函数在该点上的极限。

2. 基本求导法则:常见函数的求导规则包括常数函数、幂函数、指数函数、对数函数、三角函数等。

通过基本求导法则,可以求得函数在某一点的导数。

三、积分1. 定积分:定积分是求函数在一个区间上的总量的方法。

它表示函数在该区间内的面积或曲线长度。

2. 不定积分:不定积分是求函数的原函数的过程,结果表示函数的“积分”。

四、应用1. 最值与最优化问题:利用微积分的知识可以求解函数的最值问题,比如最大值、最小值问题。

在应用中,还可以通过最优化问题来做出最佳决策。

2. 曲线的切线与法线:导数的概念可以帮助我们计算曲线在某一点的切线斜率,进而求得切线方程。

同时,利用切线的垂直性质,可以求得曲线在该点的法线方程。

以上仅为大一高等数学微积分的一些基本知识点的介绍,针对每个知识点还有更加深入的理论和应用。

学生应该通过课堂学习、习题练习与实际运用,逐步掌握微积分知识,建立起扎实的数学基础。

掌握微积分知识不仅对于学习数学学科有很大帮助,也对于其他学科的学习和科学研究具有重要作用。

希望学生通过努力学习,能够将微积分知识应用到实际问题中,提升自己的数学素养。

大一微积分基础考试必背知识点

大一微积分基础考试必背知识点

大一微积分基础考试必背知识点微积分是数学的一门重要分支,也是大学数学教学中的一门必修课程。

在大一微积分基础考试中,掌握一些必备的知识点能够帮助学生更好地应对考试,提高成绩。

本文将介绍大一微积分基础考试中的一些必背知识点,以供参考。

一、函数与极限1. 函数的定义与分类:函数的定义,常见函数的分类(多项式函数、指数函数、对数函数、三角函数等)。

2. 函数的极限:极限的定义,极限的运算法则,常用极限公式(如sin x/x的极限等),函数的左右极限与无穷远处的极限。

3. 无穷小与无穷大:无穷小的定义与性质,无穷大的定义与性质,无穷小的比较、运算法则。

二、导数与微分1. 导数的概念与计算方法:导数的定义,导数的几何意义,导数的计算方法(基本初等函数的导数、常数乘法法则、和差法则、乘积法则、商法则等)。

2. 高阶导数与高阶微分:高阶导数的概念与计算,高阶微分的概念与计算。

3. 微分与线性近似:微分的几何意义,微分的应用(线性近似、误差估计等)。

三、微分中值定理1. 罗尔定理:罗尔定理的条件和结论,罗尔定理的几何解释。

2. 拉格朗日中值定理:拉格朗日中值定理的条件和结论,拉格朗日中值定理的几何解释。

3. 柯西中值定理:柯西中值定理的条件和结论,柯西中值定理的几何解释。

四、不定积分与定积分1. 不定积分的定义与基本性质:不定积分的定义,常用不定积分公式(如基本初等函数的不定积分、分部积分法、换元积分法等),定积分与不定积分的关系。

2. 定积分的定义与性质:定积分的定义,定积分的几何意义,定积分的性质(线性性、可加性、保号性等)。

3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式的表述与应用。

以上是大一微积分基础考试中的一些必背知识点,希望对你的备考有所帮助。

在复习中,要结合教材和课堂笔记进行系统学习,多做一些相关的例题和习题,加强对概念的理解和运用能力。

同时,也要注重对公式和性质的记忆,以便在考试中能够熟练运用。

加油,祝你考试顺利!。

大一高数微积分知识点笔记

大一高数微积分知识点笔记

大一高数微积分知识点笔记微积分是数学的一个重要分支,它研究了函数的变化和运动规律,是自然科学和工程技术的基础。

在大一的高数学习中,微积分是一个重要的知识点。

本文将为大家整理总结大一高数微积分的知识点,希望能够帮助大家理解和掌握这些内容。

一、函数的极限在微积分中,我们经常需要研究函数在某个点的极限,以探究函数的趋势和特性。

一个函数 f(x) 在 x=a 处的极限,可以用以下公式来表示:Lim(x->a) f(x) = L其中 Lim 表示极限的运算符,x->a 表示 x 在无限趋近于 a 的时候,函数 f(x) 的值趋近于 L。

通过计算极限,我们可以得到函数在某个点的重要性质,比如函数的连续性和可导性等。

二、导数与微分导数是微积分中的重要概念,用于描述函数在某个点的变化率。

如果函数 f(x) 在 x=a 处存在导数,那么该导数可以通过以下公式来计算:f'(a) = Lim(h->0) [f(a+h) - f(a)] / h其中 h 是一个无限小的增量,表示 x 在 a 处的偏移。

导数的几何意义是函数图像在该点的切线斜率。

在实际问题中,导数可以帮助我们研究函数的变化趋势和最优化问题等。

微分是导数的一个应用,表示函数在某个点的微小变化值。

微分可以用以下公式来表示:df = f'(x)dx其中 df 表示微分值,f'(x) 表示函数在 x 处的导数,dx 表示自变量 x 的微小增量。

微分在物理学和工程学中有广泛的应用,比如用于描述速度、加速度和力等。

三、极值与最值极值和最值是函数最重要的特性之一,用于研究函数的最大值和最小值。

对于一个函数 f(x) 来说,如果在 x=a 处取得极大值或极小值,那么该点就称为极值点。

通常,我们可以通过求函数的导数来找到极值点,即导数为零的点和导数不存在的点。

通过求解导数方程,我们可以得到极值点的解析表达式。

四、定积分与不定积分定积分和不定积分是微积分的两个核心概念,分别用于研究弧长和曲线下面积的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章函数、极限和连续§1.1函数一、主要内容㈠函数的概念1. 函数的定义:y=f(x),x ∈D 定义域: D(f),值域: Z(f). 2.分段函数: 21)()(D xx g D x x f y3.隐函数: F(x,y)= 04.反函数:y=f(x) →x=φ(y)=f -1(y)y=f-1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y是严格单调增加(或减少)的;则它必定存在反函数:y=f-1(x), D(f-1)=Y, Z(f-1)=X且也是严格单调增加(或减少)的。

㈡函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x1)>f(x2),则称f(x)在D内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称偶函数:f(-x)=f(x)奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x∈(-∞,+∞)周期:T——最小的正数4.函数的有界性:|f(x)|≤M , x∈(a,b)㈢基本初等函数1.常数函数:y=c ,(c为常数)2.幂函数:y=x n , (n为实数)3.指数函数:y=a x , (a>0、a≠1)4.对数函数:y=log a x ,(a>0、a≠1)5.三角函数:y=sin x , y=con xy=tan x , y=cot xy=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon xy=arctan x, y=arccot x㈣复合函数和初等函数1.复合函数:y=f(u) , u=φ(x)y=f[φ(x)] , x∈X 2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极限一、主要内容㈠极限的概念1.数列的极限:A y nnlim称数列ny 以常数A 为极限;或称数列ny 收敛于 A.定理: 若n y 的极限存在n y 必定有界.2.函数的极限:⑴当x时,)(x f 的极限:Ax f Ax f A x f xxx)(lim )(lim )(lim ⑵当0x x时,)(x f 的极限:Ax f x x)(lim 0左极限:Ax f x x)(lim 0右极限:Ax f x x)(lim 0⑶函数极限存的充要条件:定理:Ax f x f Ax f x x x x x x)(lim )(lim )(lim 0㈡无穷大量和无穷小量1.无穷大量:)(lim x f 称在该变化过程中)(x f 为无穷大量。

X 再某个变化过程是指:,,,xx x00,,x x x x x x 2.无穷小量:0)(lim x f 称在该变化过程中)(x f 为无穷小量。

3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim0)(lim x f x f x f 4.无穷小量的比较:lim ,0lim⑴若0lim ,则称β是比α较高阶的无穷小量;⑵若c lim(c 为常数),则称β与α同阶的无穷小量;⑶若1lim,则称β与α是等价的无穷小量,记作:β~α;⑷若lim,则称β是比α较低阶的无穷小量定理:若:;,2211~~则:2121limlim㈢两面夹定理1.数列极限存在的判定准则:设:nnnz x y (n=1、2、3…)且:az y nnnnlim lim 则:ax nnlim 2.函数极限存在的判定准则:设:对于点x 0的某个邻域内的一切点(点x 0除外)有:)()()(x h x f x g 且:A x h x g xx xx )(lim )(lim 0则:Ax f xx)(lim 0㈣极限的运算规则若:Bx v A x u )(lim ,)(lim 则:①BA x v x u x v x u )(lim )(lim )]()(lim[②BA x v x u x v x u )(lim )(lim )]()(lim[③BA x v x u x v x u )(lim )(lim )()(lim)0)((lim x v 推论:①)]()()(lim[21x u x u x u n )(lim )(lim )(lim 21x u x u x u n ②)(lim )](lim[x u c x u c ③nnx u x u )]([lim )](lim [㈤两个重要极限1.1sin limxx x或1)()(sinlim 0)(x x x2.e xxx)11(lim ex xx10)1(lim §1.3 连续一、主要内容㈠函数的连续性1.函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o0)]()([lim lim0000x f x x f yxx2o)()(lim 00x f x f x x左连续:)()(lim 00x f x f x x右连续:)()(lim 00x f x f x x2.函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续)(x f 在0x 处极限存在3.函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x xx xx x4.函数在ba,上连续:)(x f 在ba,上每一点都连续。

在端点a 和b 连续是指:)()(lim a f x f a x左端点右连续;)()(lim b f x f bx右端点左连续。

a +b -x5.函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点。

间断点有三种情况:1o)(x f 在0x 处无定义;2o)(lim 0x f x x不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x存在,但)()(lim 00x f x f xx 。

两类间断点的判断:1o 第一类间断点:特点:)(lim 0x f x x和)(lim 0x f x x都存在。

可去间断点:)(lim 0x f x x存在,但)()(lim 00x f x f x x,或)(x f在0x 处无定义。

2o 第二类间断点:特点:)(lim 0x f x x和)(lim 0x f x x至少有一个为∞,或)(lim 0x f x x振荡不存在。

无穷间断点:)(lim 0x f x x和)(lim 0x f x x至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x,)()(lim 00x g x g x x1o)()()]()([lim 000x g x f x g x f x x2o)()()]()([lim 000x g x f x g x f xx 3o)()()()(lim 000x g x f x g x f xx 0)(lim 0x g x x2.复合函数的连续性:)]([),(),(x f yx uu f y )]([)(lim),()(lim0)(000x f u f x x x ux x则:)]([)](lim[)]([lim 00x f x f x f x xxx 3.反函数的连续性:)(),(),(001x f y x fx x f y)()(lim )()(lim 01100y fy fx f x f y yx x㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续)(x f 在],[b a 上一定存在最大值与最小值。

yy+M Mf(x) f(x)0 a b xm-M0 a b x2.有界定理:) (x f在],[ba上连续)(xf在],[ba上一定有界。

3.介值定理:) (x f在],[ba上连续在),(ba内至少存在一点,使得:cf)(,其中:Mcmy yMf(x)C f(x)0 a ξ b xm0 a ξ1ξ2 b x推论:) (x f在],[ba上连续,且)(af与)(bf异号在),(ba内至少存在一点,使得:)(f。

4.初等函数的连续性:初等函数在其定域区间内都是连续的。

第二章一元函数微分学§2.1 导数与微分一、主要内容㈠导数的概念1.导数:)(x f y在0x 的某个邻域内有定义,xx f x x f x y x x )()(lim lim 000)()(lim 0x xx f x f xx 0)(0x xx xdx dyx f y2.左导数:00)()(lim)(0x xx f x f x f x x右导数:00)()(lim)(0x xx f x f x f x x定理:)(x f 在0x 的左(或右)邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x(或:)(lim )(00x f x f x x)3.函数可导的必要条件:定理:)(x f 在0x 处可导)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f yx x 存在)()(00x f x f ,且存在。

5.导函数:),(x f y ),(b a x )(x f 在),(b a 内处处可导。

y)(0x f )(x f 6.导数的几何性质:y)(0x f 是曲线)(x f y上点x00,y x M 处切线的斜率。

ox 0x㈡求导法则1.基本求导公式:2.导数的四则运算:1o vu v u)(2o vu vu v u )(3o2vvu vu vu )0(v3.复合函数的导数:)]([),(),(x f y x u u f y dxdu du dy dxdy ,或)()]([})]([{x x f x f ☆注意})]([{x f 与)]([x f 的区别:})]([{x f 表示复合函数对自变量x 求导;)]([x f 表示复合函数对中间变量)(x 求导。

4.高阶导数:)(),(),()3(x f x fx f 或)4,3,2(,])([)()1()(n x f x fn n 函数的n 阶导数等于其n-1导数的导数。

㈢微分的概念1.微分:)(x f 在x 的某个邻域内有定义,)()(x o x x A y其中:)(x A 与x 无关,)(x o 是比x较高阶的无穷小量,即:)(lim 0xx o x 则称)(x f y在x 处可微,记作:xx A dy)(dxx A dy )()0(x 2.导数与微分的等价关系:定理:)(x f 在x 处可微)(x f 在x 处可导,且:)()(x A x f 3.微分形式不变性:duu f dy )(不论u 是自变量,还是中间变量,函数的微分dy 都具有相同的形式。

相关文档
最新文档