熔化极CO2焊接过程熔滴过渡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
熔化极CO2焊接过程熔滴过渡
成型二班
一、实验目的
通过实验了解CO2气体保护焊设备的组成,熟悉CO2气体保护操作过程和焊接规范调整方法,对几种典型熔滴过渡的形成条件及其对焊缝成形和焊接飞溅的影响有更深入的了解。
二、概述
在熔化极气体保护电弧焊接方法中,惰性气体保护焊(MIG焊)和二氧化碳气体保护焊(CO2焊)占有重要地位。在熔化极电弧焊过程中,焊丝端部金属受热熔化形成熔滴,并在多种力联合作用下向熔池过渡。熔滴过渡(Metal Transfer)对焊接过程稳定性、焊缝成形、焊接飞溅等有显著影响。在不同的弧焊工艺条件下,化极气体保护焊熔滴过渡呈现不同的形式:
自由过渡一一熔滴经电弧空间飞行至熔池,焊丝端部与熔池不发生直接接触;
接触过渡一一焊丝端部熔滴与熔池表面发生触进而过渡;
在细丝小电流低电压CO2焊接过程中,短路过渡是典型的熔滴过渡方式,属于接触过渡类型。短路过渡CO2焊接的规范参数参见表2-1和图2-1。在焊接过程中,不断重复燃弧、短路、液桥收缩和熔滴过渡、电弧复燃几个阶段,如图2-2所示。
当电弧电压较高时,焊丝端部熔化后不能接融到熔池形成短路,熔滴长大,电弧力的作用使熔滴产生大滴排斥过渡。
表2-1 低碳钢CO焊短路过渡焊接规范参数
序号焊丝直径/mm 电弧电压/V 焊接电流/A
1 0.8 18 100-110
2 1.2 19 120-135
3 1.6 20 140-180
三、实验系统
1)熔化极气体保护电弧焊设备
熔化极气体保护电弧焊接实验系统由弧焊电源、送丝机构、供气系统、焊枪、防止被焊工件的移动工作台等几部分组成,如图2-3所示。选用全数字熔化极气体保护电弧焊机(可焊材料:碳钢、不锈钢;适用直径:12/1.4/1.6mm;弧焊电源输出特性:恒压;输出电压可调范围17-41V;额定输出电流:500A)。
图2-3 熔化极气体保护电弧焊基本装置示意图
2)弧焊过程波形/数据采集系统
波形采集系统如图2-4所示。实验者可以从示波器面上直接实时观察熔滴过渡的波形,也可用计算机存储过渡电压电流参数,离线观察。
图2-4 熔化极电弧焊接过程波形采集系统原理示意图
四、实验内容
1)了解熔化极气体保护电弧焊接设备的构成以及熔滴过渡波形检测系统工作原理。
2)按照表2-2给定的规范进行焊接,观察和铯康焊接过程中有关数据和、波形,如电弧电压、焊接电流和电弧电压波形等。
3)实际比较不同形式熔滴过渡的形成条件以及熔滴过渡对焊缝成形和焊接飞溅的影响。
表2-2 焊接电流保持基本不变、变换焊接电压
电压16V 18V 20V 24V 26V 30V 电流120A 120A 120A 120A 120A 120A 频率 4.16 4.16 4.16 4.16 4.16 3.57
五、实验仪器设备及材料
1)YD-500SV C02气体护焊机1台
2)计算机数据采集系统;计算机及相应的软硬件
3)TDS3012B数字式示波器1台
4)φ1.2mmH08Mn2Si焊丝
5)CO2气体1瓶,预热减压流量计1只
六、实验步骤
1)根据本实验思考题,查阅相关参考资料,预习实验内容,指定实验计划。
2)认真读本实验安全操作注意事项并切实执行。
3)熟悉实验設备和采集系玩,了解技术原理和操作规程,将波形采集系统按照图2-4接好线。
4)按照制定的计划进行熔化极CO2,弧焊实验过焊接系统调整规范参数并记录表观显示值,通过数字示波器观察和存储焊接电流和焊接电压波形。
5)在实验中注意观察比较不同焊接过程产生的飞溅状况,焊后注意了解认识熔滴过渡对焊缝成形的影响规律。
七、安全操作注意事项
1)实验前应预先了解实验仪器设备结构和安全操作要领。
2)实验中必须谨慎操作,注意避免触电等安全事故发生。
3)燃弧焊接时必须佩带焊接面罩并穿好工作服装,、以免弧光刺伤眼睛和灼烧皮肤。
八、实验报告要求
1)总结熔化极C02弧焊实验数据,并分析指出焊接规范参数对熔短路过渡频率计焊接过程稳定性的影响。
大电流区和小电流区飞溅都较小,而介于两者之间则飞溅率较大。所以选择电流时应避开飞溅率较高的电流区域。电流选择好后再匹配适当的电压,以保证飞溅量最小
2)比较不同熔滴过渡方式对焊缝成形和焊接飞溅的影响。
细粒自由过渡时产生飞溅的原因有二:其一,是由冶金反应引起的飞溅,焊接过程中CO2 在电弧高温作用下,易分解为一氧化碳和氧,使电弧气氛具有很强的氧化性。熔滴和熔池中的碳氧化成CO,CO在焊接条件下不溶于金属,也不与金属发生反应,在电弧高温作用下,体积急速膨胀,压力迅速增大,使熔滴和熔池金属产生爆破,从而产生大量飞溅。
短路电流增长速度过快,会使液态小桥处的液体金属在电磁收缩力的作用下急剧收缩。随着电流的增加和短路小桥直径的减小,短路小桥被高速增长的电流急剧加热(焦耳-愣次热),进而导致液态小桥急剧膨胀汽化发生爆炸。由于短路小桥在熔滴下方,爆炸力排斥熔滴向熔池过渡,引起较多的细颗粒金属飞溅
九、思考题
1)熔化极CO2焊接方法的特点和适用范围。
1)焊接生产率高。由于焊接电流密度较大,电弧热量利用率较高,以及焊后不需清渣,因此提高了生产率。CO2焊的生产率比普通的焊条电弧焊高2~4倍。2)焊接成本低。CO2气体来源广,价格便宜,而且电能消耗少,故使焊接成本降低。通常CO2焊的成本只有埋弧焊或焊条电弧焊的40%~50%3)焊接变形小。由于电弧加热集中,焊件受热面积小,同时CO2气流有较强的冷却作用,所以焊接变形小,特别适宜于薄板焊接。4)焊接品质较高。对铁锈敏感性小,焊缝含氢量少,抗裂性能好。5)适用范围广。可实现全位置焊接,并且对于薄板、中厚板甚至厚板都能焊接。6)操作简便。焊后不需清渣,且是明弧,便于监控,有利于实现机械化和自动化焊接
O2焊主要用于焊接低碳钢及低合金钢等黑色金属。对于不锈钢,由于焊缝金属有增碳现象,影响抗晶间腐蚀性能。所以只能用于对焊缝性能要求不高的不锈钢焊件。此外,CO2焊还可用于耐磨零件的堆焊、铸钢件的焊补以及电铆焊等方面
2)几种典型熔滴过渡形成机理和工艺条件。
短路过度:使受电弧热熔化的消耗电极(焊条)前端与母材熔池短路,边重复进行燃弧,短