熔化极CO2焊接过程熔滴过渡
第2章 焊丝的熔化与熔滴过渡

滴,由于受到各种大小不同的作用力,具体形状和位置不断变 化,从而熔滴以不同的形式脱离焊丝或焊条,过渡到熔池中去。
一
熔滴上的作用力
熔滴上的作用力可分为重力、表面张力、电弧力、熔滴爆破力 和电弧气体的吹力等。
1
重力
重力对熔滴过渡的影响依焊接位置的不同而不同。平焊时, 熔滴上的重力促使熔滴过渡;而在立焊及仰焊位置则阻碍熔滴 过渡。
1)
s
m y m
100%
焊接中飞溅的产生
a. 伴随气体析出而引起的飞溅.
b. c. d.
气体爆炸引起的飞溅
电弧斑点力引起的飞溅
短路过渡再引燃引起的飞溅 焊接方法和规范 过渡形式 电源动特性 气体介质 极性 焊丝、焊件表面的清洁度
2)影响飞溅的因素
a. b. c. d. e. f.
图2-21 射流过渡形成机理示意图
图2-22 熔滴过渡频率(或体积)与电流的关系 钢焊丝 φ1.6mm,Ar+O2(1%),弧长6mm,DCEP
图2-23 不同材质焊丝的临界电流
图2-24 焊丝直径、伸出长度与临界电流的关系
图2-25 射流过渡时飞溅示意图
磁控旋转射流过渡
a.正常射流过渡 b.旋转射流过渡
c. 5) a. b.
c.
d.
图2-12 短路过渡示意图
图2-13 短路过渡过程电弧电压和电流动态波形图
图2-14 短路过渡的主要形式
a.固态断路 b.细丝小电流时 c.中等电流小电感时
图2-15 短路过渡频率与电弧电压的关系
图2-16 送丝速度与短路过渡频率、短路时间和短路电流峰值的关系
2 接触过渡(短路过渡)
1) 定义:当电流较小,电弧电压较低时,弧长较短,熔滴未长成大 滴就与熔池接触形成液态金属短路,电弧熄灭,随之金属熔滴在 表面张力及电磁收缩力的作用下过渡到熔池中去,熔滴脱落之后 电弧重新引燃,如此交替进行。 短路过渡的过程: 稳定性及其影响因素
CO2气体保护焊

CO2气体保护焊CO2气体保护焊是利用CO2作为保护气体的熔化极电弧焊的方法,称为CO2焊。
由于CO2是具有氧化性的活性气体,因此除了具备一般气体保护电弧焊的特点外,CO2焊在熔滴过渡、冶金反应等方面与一般气体保护电弧焊有所不同。
1.CO2气体保护焊的工具与材料CO2气体保护焊的工具与材料有CO2气体、焊丝、焊枪。
1)CO2气体:CO2气体保护焊可以采用由专业厂商提供的CO2气体,也可以采用仪器加工厂的副产品CO2气体,但均应满足焊接对气体纯度的要求。
CO2气体的纯度对焊缝金属的致密性和塑性有较大的影响,影响焊缝质量的主要有害杂质是水分的氮气。
焊接时对焊缝质量要求越高,则对CO2气体纯度要求越高;气体纯度高,获得的焊缝金属塑性就越好。
2)焊丝:CO2焊的焊丝设计、制造和使用原则,除最基本的要求外,还对焊丝的化学成分有特殊要求,如焊丝必须含有足够数量的脱氧元素;焊丝的含碳量要低,一般要求小于0.15%;应保证焊缝金属具有满意的力学性能和抗裂性能。
目前,H08Mn2SiA焊丝是CO2焊中应用最广泛的一种焊丝。
它有较好的工艺性能和力学性能以及抗热裂纹能力,适应于焊接低碳钢和σb≤500MPa的低合金钢。
3)焊枪:CO2焊枪包括半自动枪和自动焊枪两种。
半自动焊枪按冷却方式分为气阀和水准两种,按结构分为手枪式和鹅颈式。
鹅颈式焊枪的结构如图所示,其重心在手握部分,因而操作灵活,使用较文,特别适合于小直径焊丝。
手枪式焊枪其重心不在手握部分,操作时不太灵活,常用于较大直径焊丝,采用内部循环水进行冷却。
自动焊枪的主要作用与半自动焊枪相同。
自动焊枪固定在机关或行走机构上,经常在大电流下使用,除要求其导电部分、导气部分和导丝部分性能良好外,为了适应大电流、长时间使用的需要,喷嘴部分要采用水准装置,这样既可以减少飞溅黏着,又可防止焊枪绝缘部分过热烧坏。
2.CO2气体保护焊的焊接方法1)操作时用身体的某个部分承担焊枪的重量,要求手腕能灵活带动焊枪平衡或转动,软管电缆不要有过大弯曲。
熔化极气体保护焊的熔滴过渡形式完整版

滴状过渡时电弧电压较高,由于焊接参数及材料的不同又分为粗滴过渡(大颗粒过渡)及细滴过渡(细颗粒过渡)。
1、粗滴过渡 电流较小而电弧电压较高时,因弧长较长,熔滴与熔池不发生短路,焊丝末端便形成较大的熔滴。当熔滴长大到一定程度后,重力克服表面张力使熔滴脱落。这种过渡方式由于熔滴大,形成的时间长,影响电弧的稳定性,焊缝成型粗糙,飞溅较大,在生产中基本不采用。粗滴过渡形式如图1所示:
气体介质对射流过渡的影响:不同的气体介质对电弧电场强度的影响不同。在Ar气保护下弧柱电场强度较低,电弧弧根容易扩展,易形成射流过渡,临界电流值较低。当Ar气中加入CO2时,随着CO2比例增加临界电流值增大。若CO2的比例超过30%时,则不能形成射流过渡,这是由于CO2气体解离吸热对电弧的冷却作用较强,使电弧收缩,电场强度提高,电弧不易扩展所致。
2、细滴过渡 电流比较大时,电磁收缩力较大,熔滴表面张力减小,熔滴细化,这些都促使熔滴过渡,并使熔滴过渡频率增加。这种过渡形式称为细滴过渡,因为飞溅少,电弧稳定,焊缝成型良好,在生产中被广泛应用。细滴过渡形式如图2所示:
3、射流过渡?
射流过渡是喷射过渡中最富有代表性的且用途广泛的一种过渡形式。获得射流过渡的条件是采用纯氩气或富氩气体保护,大电压,还必须使焊接电流大于临界值。射流过渡电弧稳定,飞溅极少,焊缝成形质量好。由于电弧稳定,对保护气流的扰动作用小,故保护效果好。射流过渡电弧功率大,热流集中,对焊件的熔透能力强。而且过渡的熔滴沿电弧轴线高速流向熔池,使焊缝中心部位熔深明显增大而呈指状熔深。射流过渡形式如图3所示:
熔化极气体保护焊的熔滴过渡形式
熔化极短路过渡主要用于直径小于的细丝CO2气体保护焊或混合气体保护焊,采用低电压,小电流的焊接工艺。由于电压低,电弧较短,熔滴尚未长大成熔滴时即与熔池接触而形成短路液体过桥,在向熔池方向的表面张力及电磁收缩力的作用下,熔滴金属过渡到熔池中去,这样的过渡形式称为短路过渡。这种过渡电弧稳定,飞溅较小,熔滴过渡频率高,焊缝成形良好,广泛用于薄板结构、根部打底焊及全位置焊接。
第二章 焊丝的熔化及熔滴过渡

第二章焊丝的熔化及熔滴过渡熔化极电弧焊的焊丝(条)具有两个作用:一是作为电极并与工件之间产生电弧;另是本身被加热熔化并作为填充金属过渡到熔池中去。
焊丝(条)的熔化及熔滴过渡,是熔化极电弧焊接过程中的重要物理现象,熔滴过渡方式及特点将直接影响焊接质量和生产效率。
第一节焊丝的加热与熔化一、焊丝的加热与熔化特性熔化极电弧焊时焊丝(条)的熔化主要是靠阴极区(正接)或阳极区(反接)所产生的热量,中括号焊接情况下,UK >> UW所以Pk>PA,这时,在同一材料和同一电流情况下,焊丝(条)为阴极(正接)时的产生热量要比为阳极(反接)时多。
因散热条件相同,所以焊丝(条)接负时比焊丝(条)接正时熔化快。
焊丝除了受电弧的加热外,在自动和半自动焊时,从焊丝与导电嘴的接触点到焊丝端头的一段焊丝(即焊丝伸出长度用表示)有焊接电流流过,所产生电阻热对焊丝有预热作用,从而影响焊丝的熔化速度(图2-1)。
特别是焊丝比较细和焊丝金属的电阻系数比较大时(如不锈钢),这种影响更为明显。
焊丝伸出长度的电阻热为:P R=I2RsRs=PLs/S (2-4)式中 Rs----为Ls段的电阻值;P-----焊丝的电阻率;Ls----焊丝的伸出长度;S----焊丝的断面积。
材料不同时,焊丝伸出长度部分产生的电阻热也不同。
如熔化极气体保护焊时,通常Ls=10~30mm,对于导电良好的铝和铜等金属,PR 与PA或PK相比是很小的,可忽略不计。
而对钢和钛等材料,电阻率高。
当伸出长度较大时PR 与PA或PK相比较大才有重要的作用。
)来表这是mα弧长较长时,电弧电压的变化对焊丝熔化速度影响不大;但在弧长较短的范围内,电弧电压降低,反而使得焊丝熔化速度增加。
在铝合金焊接时这种现象特别明显,图2-4a中的各条曲线,表示了直径为φ1.6mm铝合金焊丝等速送进时的熔化速度与电弧电压及电流的关系。
由图中可见,当弧长较长时,曲线AB段段与横轴垂直,此时的焊丝送进速度与熔化速度相平衡,焊丝的熔化速度主要决定于电流的大小。
2—2熔滴过渡及作用力

显然:dG﹥ dD促进过渡
dG< dD阻碍过渡
一般dG大小与气体介质,焊接电流有关。 如Ar与CO2相比,Ar弧弧根大,电流增大, dG增大 (四) 等离子流力 由于电弧截面不等,电磁力不一样造成压力差,使电弧产生轴 向推力,造成从焊丝端部向工件的气体流动,形成等离子流力。 电流较大时,等离子流力对熔滴产生很大的推力,使之沿焊丝 轴向方向运动。这种推力的大小与焊丝直径和电流大小密切相关。 (五) 其他力 1)斑点压力 电极上形成斑点时,此处是产热集中的地方。这样斑点处将承 受电子(反接时)或正离子(正接时)的撞击力,通常情况下斑点压力 阻碍熔滴过渡(斑点面积小于熔滴直径时);MIG焊喷射过渡的情况 下,而斑点面积很大且布满整个熔滴时,斑点压力常常促进熔滴过渡。 2)爆破力 当熔滴内部含有易挥发金属或由于冶金反应而生成气体时,都 会在电弧高温作用下气体积聚膨胀而造成较大的内力,从而使熔滴 爆炸而过渡。短路过渡焊接时,由于电流密度较大,使缩颈处熔断爆 破形成熔滴过渡,同时有飞溅产生。
四 熔滴过渡的飞溅与蒸发 1飞溅 飞溅问题主要针对短路过渡和颗粒过渡,射流过渡飞溅很小。 2产生飞溅的原因 1)由冶金反应在液体金属内产生气体,在高温的作用下气体要膨 胀,而液体金属又限制其膨胀,则发生爆炸,产生飞溅。 2)规范选择不合适,发生熔滴严重长大或固体焊丝插入熔池产生 大的爆断。 3)电源动特性调节不当,大电流峰值过大,引起飞溅。 4)斑点压力过大,产生大块排斥过渡。 5)气体介质,CO 2 、A r。 五 熔滴过渡的控制 (一)脉冲电流控制法 1 特点 1)电弧连续稳定燃烧,基值电流维弧,峰值电流过渡,小平均电 流下实现喷射过渡。 2)避免了喷射过渡的缺点,同一台设备可焊厚板、薄板,可进行 全位置焊接。
(四)喷射过渡 1 射流过渡形成的条件与特点 1)形成条件 钢焊丝TIG焊,电流较 小时,电弧与熔滴状态; 如图2--19a所示,熔滴在 重力作用下呈大滴状过渡。 随着电流的增加,电磁力 等离子流力增,轴向电磁力 由原来的阻碍过渡变为促 进过渡这时熔滴长大将受 到限制,在熔滴和焊丝之间 形成缩颈,此处在高电流密 度下,产生大量金属蒸气 ,细颈表面具备产生阳极斑点的有利条件,此 时,按最小电压原理,如果 :
CO2气体保护焊接基础知识

二、MIG/MAG设备及参数
常用的设备接线形式
电二压、、气焊M体接IG保电/护M流焊A、的G气规设体范流备参量及数、包参焊括数接电速源度极、性焊、丝电伸弧出
长度、直流回路电感等。
(1)电源极性
通常MIG焊应采用直流电源。因为交流电源将 破坏电弧稳定性,在电流过零时,电弧难以再引燃 。
使其不断被熔化而形成熔滴,离开焊丝末端而进入熔池,这个过程称为熔滴过渡,整个焊 接过程就是由无数个熔滴过渡所组成。
根据焊接参数的不同,出现有三种熔滴过渡: 他们是短路过渡、射滴过渡、射流过渡 。短路过渡是在低电压和小电流时用于焊接薄件和全位置焊缝,主要用于碳钢。射滴过渡 是最好的熔滴过渡形式。射流过渡常常是用在较大电流时,焊接过程稳定,焊缝成形良好 ,但是由于指状熔深而影响其运用。
一、气保焊工作原理
按照采用保护气体的性质,熔化极气体保护 电弧焊主要分为以下二类: 惰性气体保护电弧焊(简称MIG焊)
---保护气体Ar Ar+He He
活性气体保护电弧焊(简称MAG焊-Metal Active Gas Welding )
---保护气体: Ar+O Ar + CO2 + O2 Ar+CO2 (CFMA使用该种焊接,保护气体为20%Ar,
熔化极保护焊(CO2焊接)
非熔化极保护焊(TIG)
电一常粒、态子下。气的要保气使焊体气由工体中导作性电原分,理子首或先原要子有组一成个,使不其含产带生
带电粒子的过程。产生中一般采用接触引弧。先 将电极(钨棒或焊条)和焊件接触形成短路(图 4.2.3(a)),此时在某些接触点上产生很大的 短路电流,温度迅速升高,为电子的逸出和气体 电离提供能量条件,而后将电极提起一定距离( <5mm图4.2.3(b))。在电场力的作用下,被 加热的阴极有电子高速逸出,撞击空气中的中性 分子和原子,使空气电离成阳离子、阴离子和自 由电子。这些带电粒子在外电场作用下定向运动 ,阳离子奔向阴极,阴离子和自由电子奔向阳极 。在它们的运动过程中,不断碰撞和复合,产生
焊接方法及工艺试卷(题库)

如对您有帮助,欢迎下载支持,谢谢!3.使中性气体粒子失去第一个电子所需要的最低外加能量称为第一电离能。
5.阳极斑点的形成应具备这样的条件: 该点有金属蒸发 ,电流通过该电时能量损耗最小。
6.电弧焊时,加热熔化焊丝的热源主要是电弧热和电阻热。
7.熔合比是焊缝金属横截面中母材金属所占的比例。
9电弧焊按操作方式分为手工、半自动、全自动。
1 根据焊接过程特点可将焊接方法分为熔焊、压焊、钎焊。
2 电弧焊中,气体电离和阴极电子发射是电弧产生带电离子的两个基本物理过程,同时也伴随着激励、解离、扩散、复合、负离子产生等过程。
3 电弧中气体粒子的电离因外加能量的种类不同而分为热电离,电场作用下的场电离和光电离三种。
4由于外加能量形式不同,电子发射机构可分为热发射、电场发射、光发射和粒子碰撞发射等。
5 焊接电弧由三个不同电场强度的区域,即阳极区、阴极区和弧柱区构成。
6 弧柱区的产热和热损失相平衡,热损失有对流、传导和辐射等。
7 电弧的主要作用力包括电磁收缩力、等离子流力和斑点压力等。
8 若焊件与焊机的正极相接,焊条或焊炬与负极相接,称为正接法或正极性。
9 熔滴过渡时熔滴上的作用力包括表面张力、重力、电磁收缩力和等离子流力等。
10熔滴过渡的主要形式有自由过渡、接触过渡和渣壁过度。
11 手工电弧焊用于结构工程的连接形式是复杂多样的,按施焊空间位置可分为平焊、立焊、横焊和仰焊。
12 手工电弧焊焊接过程,焊工的焊接技术包括引弧、运条和收弧。
14 熔化极保护焊的分类中,根据保护气体种类和焊丝形式,实心焊丝可分:惰性气体保护焊、氧化性混合气体保护焊、co2气体保护焊。
6.引起磁偏吹的根本原因电弧周围磁场分布的不均匀。
3.埋弧焊机分为等速送丝和变速送丝。
3.埋弧焊机分为细丝小电流焊接和粗丝大电流焊接。
8.等离子弧分为转移型、非转移型、混合型三种形式。
如对您有帮助,欢迎下载支持,谢谢!3.埋弧焊机分为等速送丝式和变速送丝式。
8.焊缝符号主要有基本符号、辅助符号、补充符号、焊缝尺寸符号、引出线等组成。
熔滴的过渡

• 在空间任何位置进行焊接时,电磁力
都有促进熔滴过渡的作用。在用大电
流施磁力
第二节 熔滴过渡
4 爆破力
•
若熔滴内部含有易挥发金属或由于冶金反
应而生成气体,则在电弧高温作用下气体积聚和
膨胀而造成较大的内力,从而使熔滴爆炸。在
CO2短路过渡焊接时,电磁力及表面张力的作用
第二节 熔滴过渡
3、熔滴过渡特性对焊接过程的影响
1)熔滴过渡的速度和熔滴的尺寸影响焊接过程的稳 定性、飞溅程度以及焊缝成形的好坏;
2 )熔滴的尺寸大小和长大情况决定了熔滴反应的作 用时间和比表面积(指熔滴的表面积与其体积或质 量之比)的大小,从而决定了熔滴反应速度和完全程 度;
3 )熔滴过渡的形式与频率直接影响焊接生产率;
• 电磁力的方向垂直于导体表面(更确 切的说是垂直于电流线),使导体截 面积减小。电磁力对焊条未熔化部分 无甚影响,而对熔化的金属则有显著 的压缩作用。特别是在焊条末端与熔 滴之间的细颈部分,电流密度最大, 电磁力也最大。这种沿焊条轴线分布 不均匀的电磁力又构成一种轴向推力, 促使熔滴脱离焊条,而向熔池过渡。
端产生缩颈,轴向分力则
使熔滴保持在焊丝末
端.阻碍熔滴过渡。
第二节 熔滴过渡 熔滴受重力和表面张力示意图
第二节 熔滴过渡
•
如果焊丝半径为R,熔滴半径为r,则焊丝
与熔滴之间的表面张力Fδ为:
• Fδ=2πRσ 式中,σ是表面张力系数,其数值与
材料、温度、气体介质等因素有关。
表2-1 纯金属的表面张力系数
4 )熔滴过渡的特性对焊接热输入有一定的影响,改 变熔滴过渡的特性可以在一定程度上调节焊接热输 入,从而改变焊缝的结晶过程和热影响区的尺寸及 性能。
二氧化碳气体保护焊

四、二氧化碳气体保护焊工艺参数
1.焊丝直径 焊丝直径大于1.2mm称为粗丝。 2.焊接电流 焊接电流的选择,应根据焊件厚度、焊丝直
径、坡口形式、焊接位置和熔滴过渡形式等 来确定。
3.电弧电压 通常在细丝焊接时,电弧电压为16~24V;粗 丝焊接时,电弧电压为25~36V。
4.焊接速度 焊接速度一般为20~60cm/min。
三、二氧化碳气体保护焊设备
1.焊接电源 (1)对电源性的要求:由于CO2焊用交流电 源焊接的电弧不稳定,所以必须使用直流电源。
(2)对电源外特性的要求: 1)平特性电源——用于细丝(短路过渡)
焊接,配用等速送丝系统。
2)下降特性电源——用于粗丝焊接,配用 变速送丝系统。
2.送丝系统 CO2焊送丝系统由送丝机构、送丝软管、焊 丝盘三部分组成。
化碳气瓶的颜色为铝白色,标有黑色“二氧 化碳”字样。
在 0℃ 和 一 个 大 气 压 下 的 CO2 气 体 密 度 是 1.9768g/L,为空气的1.5倍。
2.焊丝 CO2气体保护焊对焊丝的化学成分还
有一些特殊要求:
(1)焊丝必须有足够数量的脱氧元素。 (2)焊丝的含C量要低,一般要求 C<0.11%。 (3)应保证焊缝金属具有满意的力学性 能和抗裂性能。
2. 二氧化碳气体保护的分类 CO2焊按所用焊丝直径不同 ,可分为细丝
CO2气体保护焊(焊丝直径为0.5~1.2mm.)和 粗丝保护焊(焊丝直径为6-5.0mm)。 操作方式又可分为CO2半自动焊和CO2自动焊。
3. 二氧化碳气体保护焊特点 (1)生产效率高。对于10mm以下的钢板不开坡 口可一次焊透,生产效率比手弧焊提高1~4倍。 (2)抗锈能力。 (3)焊接变形小。 (4)冷裂倾向小。 (5)采用明弧焊。 (6)适宜范围广。 (7)CO2焊的缺点:1)使用大电流焊接时,飞溅 较大且焊缝表面成形较差;2)很难用交流电源焊 接,设备比较复杂;3)抗风能力差,较难在有风 的地方和室外施焊;4)不能焊接容易氧化的有色 金属材料。
二氧化碳气体保护焊

3)潜弧射滴过渡
需要注意: 潜弧射滴过渡的焊缝深而窄, 且余高大, 成形系数不够理想, 易产生裂纹。
(2)二氧化碳气体保护焊的冶金特点
1)焊接过程合金元素的氧化与脱氧 CO2电弧高温下会分解, 放出的原子态氧, 易与合金元素产生化学反应, 可能造成合金元素烧损。
(2)二氧化碳气体保护焊的冶金特点
2)焊缝金属中的气孔 对CO2气体保护焊过程来说.焊缝金属中的气孔可 能由于下述三种情况造成: ①焊丝中脱氧元素含量不足: 当焊丝金属中含脱氧元素不足时,焊接过程中就会 有较多的FeO溶于熔池金属中。随后在熔池冷凝时就会 发生如下的化学反应:
当熔池金属冷凝过快时,生成的CO气体来不及完全 从熔池中逸出,从而成为CO气孔。通常这类气孔常出现 在焊缝根部与表面,且多呈针尖状。 由此可见,为了防止生成CO气孔,对于焊丝的化学 成分应要求含碳量低和有足够数量的脱氧元素,以避免焊 接过程中Fe被大量氧化.以及FeO和C在熔池中产生化学 反应。
(2)二氧化碳气体保护焊的冶金特点
1)焊接过程合金元素的氧化与脱氧
一般常用的脱氧元素有Al、Ti、Si、Mn等。 在A1、Ti、Si、Mn四种元素中,各自单独作用时其脱氧 效果并不理想。 实践证明,用Si、Mn联合脱氧时其效果最好, 如目前最常用的H08Mn2SiA焊丝,就是采用Si、Mn联合 脱氧的焊丝。
1)滴状过渡
CO2焊在较粗焊丝(>φ1.6mm)、较大焊接电流和较高电弧 电压焊接时, 当电流在400A以上时,虽然仍为非轴向过渡,但飞溅减 小,电弧较稳定,焊缝成形较好,在生产中应用较广。
2)短路过渡
CO2焊时,在采用细焊丝、小电流,特别是较低电弧电 压的情况下,可获得短路过渡。
二氧化碳气体保护焊-精选文档

(2)二氧化碳气体保护焊的冶金特点
2)焊缝金属中的气孔 对CO2气体保护焊过程来说.焊缝金属中的气孔可 能由于下述三种情况造成: ①焊丝中脱氧元素含量不足: 当焊丝金属中含脱氧元素不足时,焊接过程中就会 有较多的FeO溶于熔池金属中。随后在熔池冷凝时就会 发生如下的化学反应:
当熔池金属冷凝过快时,生成的CO气体来不及完全 从熔池中逸出,从而成为CO气孔。通常这类气孔常出现 在焊缝根部与表面,且多呈针尖状。 由此可见,为了防止生成CO气孔,对于焊丝的化学 成分应要求含碳量低和有足够数量的脱氧元素,以避免焊 接过程中Fe被大量氧化.以及FeO和C在熔池中产生化学 反应。
(2)二氧化碳气体保护焊的冶金特点
1)焊接过程合金元素的氧化与脱氧
生成FeO会使WM产生气孔及夹渣等缺陷。 其次,氧化生成SiO2与MnO减少了焊缝中Si、Mn的含量, 使焊缝金属的力学性能降低。 碳同氧化合生成的CO气体会增大金属飞溅,且可能 在焊缝金属中生成气孔。 另外,碳的大量烧损,也要降低焊缝金属的力学性能。
(2)二氧化碳气体保护焊的冶金特点
1)焊接过程合金元素的氧化与脱氧
一般常用的脱氧元素有Al、Ti、Si、Mn等。 在A1、Ti、Si、Mn四种元素中,各自单独作用时其脱氧 效果并不理想。 实践证明,用Si、Mn联合脱氧时其效果最好, 如目前最常用的H08Mn2SiA焊丝,就是采用Si、Mn联合 脱氧的焊丝。
C02气体保护焊金属飞溅问题之所以突出,是与这种焊接 方法的冶金特性及工艺特性有关的。因为引起金属飞溅的 因素很多,如冶金反应中生成了CO气体;作用在焊丝电 极斑点上的压力过大;不正常的熔滴过渡及焊接参数的选 择不当等,均可引起飞溅。 因此,要减少飞溅,需要根据实际情况进行具体分析,采 取有针对性的措施。 目前一种极少飞溅的CO2焊的新技术、新设备已成熟地 应用于实际生产。
chapter3 焊丝的加热熔化及熔滴过渡PPT课件

如果重力Fg>表面张力F σ,熔滴将过渡到熔池中去。
2R 4r3g
3
r 3 R3 2•源自gR223如果采用同样直径的焊丝,即R一定,由于表面张力 系数和密度不同,其熔滴形态也不同。 越大,则过渡的熔滴越细。
24
(三)电磁力
电磁力是具有方向和大小的矢量,设作用在单位体 积上的力Fm(N/m3) ,则有公式: Fm=J*B J——电流密度(A/m2) B——磁力线密度(Wb/m2)
/ m/min
熔 化 速 度 (
)
焊接电流/A 铝焊丝熔化速度与电流的关系
7
电弧电压对熔化速度的影响作用不大。当电流 一定时,即使弧长(电弧电压)改变,焊条熔化 速度几乎不会发生变化。特别是电弧电压较高时, 电弧电压对焊丝熔化速度影响不大。在弧压较低 的范围内,弧压变小,焊丝的熔化速度会增加。
8
铝焊丝熔化速度与焊接电流及电弧电压(电弧长度)的关系 9
原因二:
气体混合成份影响熔滴的过渡形式,过渡形式又影响
着熔滴的加热及焊丝的熔化。
13
3、电阻热的影响
考虑焊丝电阻热和端面电弧热
共同作用时的温度分布曲线示意
图。 横坐标:离导电嘴端面的距离。 电弧端面
ABC是电阻热决定的温升曲线 (50S以前),电弧端面的温升只
有CS=580C
DEF是由电弧端面热传导决定的
温升曲线。
曲线AGF是由ABC和DEF合成的,
表示焊丝的实际温度分布。
已知电弧端面的总的温度
A
HS=1535C 则:FS=1535-580=955C
P
导电嘴端面
导电嘴端面
H 1500C
G F 1000C
EC 500C
熔滴短路过渡频率对CO2焊接过程稳定性的影响

关键词 : C 焊 O
稳定性
熔滴短路过渡频率
中图 分 类号 : T A 6 G 0
0 前
言
来 检测 和评 估 焊 接 过 程 的稳 定 性 。学 者 Ga rd等人
则提 出在不 同的焊接条 件下 电弧 声波 展 示 出迥 异 的特 性, 因此可 以利 用声波信 号 判断 焊接 过程 稳定 性 , 并进 而识别 出导致 焊接缺 陷的工艺参 数 。
们发现 根据静力 平衡理论 或 电磁 收缩 失稳 理 论计 算 的
弧 能量分配 等 等 , 而这 些 指 标仅 能 在 有 限 的范 围 内体
现 短路过 渡过 程 的稳 定 性 , 此设 计 的控制 方 法 适 用 据 面窄 , 其实 际效果往 往难 以令人满 意 。
例如 , 路 过 渡焊 接 时 , 了稳 定 焊接 过 程 , 是 短 为 总 希 望熔滴越 小 、 渡越 快 越 好 ,过 渡频 率 , 般认 为熔 滴过 渡 频 率 与 短 路过 渡 一 过 程稳定性 乃 至 最终 焊 接 质量 成 正 比例关 系 , 因此 传 统 生产实践 中 , 常常将 熔 滴 短 路过 渡 频 率 作 为 衡量 短
’
21 0 0年 第 1 2期 3 3
基 金 项 目 :国 家 自然 科 学基 金 资 助 项 目(0 70 3 5 5 57 ) 5 3 55 , 0 70 7
助设备
r
蜉搭 试验研究
≤ 20 0
&
试验研究 t 掳 蜉
熔 滴 短路 过 渡 频 率 对 C O2焊 接 过 程 稳 定 性 的 影 响
电子 科 技 大 学机 械 电子 工程 学 院 ( 成都 市 6 13 ) 17 1 向远鹏
气体保护焊

2012-12-19 21
2012-12-19 7
熔化极气体保护焊焊丝直径的选择
。 焊丝直径的选择,要多方面加以考虑。 从焊接熔敷效率的角度考虑,应根据焊接电流,电流密度, 选择焊丝直径。在许可的范围内,尽可能地选用大直径的焊丝, 大的焊接电流,以获得尽可能高的的生产效率。 从产品结构,焊缝尺寸的角度考虑,应根据结构特点,焊接 位置,焊缝尺寸,选择适当的焊丝直径。如全位置的焊接,就应 该使用较细的焊丝直径, 特别要注意,由于轻型结构钢板较薄,焊接尺寸较小,作为 轻型结构制作的主要问题,为了控制焊接变形,要避免使用过大 的焊丝直径。 由于对轻轻型结构的认识不够,根据重钢制作的经验,采用 过大的焊丝直径,去焊较小的焊脚,结果肯定是不理想的。
2012-12-19 16
滴状过渡形式
滴状过渡有轴向和非轴向两种形式:
手弧焊、富氩混合气体保护焊时,熔滴在脱 离焊条(丝)前处于轴向(下垂)位置(平焊 时),脱离焊条(丝)后也沿焊条(丝)轴向 落入熔池的过渡形式称为轴向滴状过渡。
在多原子气氛中(CO2、N2、H2),阻碍熔 滴过渡的力大于熔滴的重力,熔滴在脱离焊丝 之前就偏离焊丝轴线,甚至上翘,在脱离焊丝 之后,熔滴不沿焊丝轴向过渡,形成飞溅,称 为熔滴非轴向滴状过渡。
电弧物理 课件 第四章 焊丝的熔化和熔滴的过渡

主讲教师:黄健康
第四章 焊丝的熔化和熔滴 的过渡
电弧焊时,焊丝(或焊条)的末端在电弧的高 温作用下加热熔化,熔化的液体金属达到一定程度 便以一定的方式脱离焊丝末端,过渡到熔池中去。 这个过程称为熔滴过渡。焊接过程中,焊丝的加热、 熔化及熔滴过渡会直接影响到焊缝质量和焊接生产 率。本章将讲述焊丝的加热与熔化、熔滴上的作用 力、熔滴过渡的主要形式以及熔滴过渡过程中产生 的飞溅。
5.焊丝材料的影响 焊丝材料不同,电阻率也不同,所产生的电阻 热不同,因而对熔化速度的影响也不同。不锈钢 电阻率较大,会加快焊丝的熔化速度,尤其是伸 出长度较长时影响更为明显。 材料不同还会引起焊丝熔化系数的不同。铝合金 因电阻率小,焊丝熔化速度与电流成线性关系。 但是焊丝越细,熔化速度与电流关系曲线斜率越 大,说明熔化系数随焊丝直径变小而增大,与电 流无关 。不锈钢电阻率较大,产生的电阻热较大, 因而焊丝熔化速度与电流不成线性关系,随着电 流增大,曲线斜率增大,说明熔化系数随电流增 加而增大,并且随焊丝伸出长度增加而增加。
根据第二章中的可知,单位时间内阴极区和 阳极区的产热量如果分别用电功率PK和PA表示, 计算公式如下: PK=I(UK-UW-UT) (4-1) PA=I(UA+UW+UT) (4-2) 在通常电弧焊的情况下,弧柱的平均温度为 6000K左右,UT<1V;当焊接电流密度较大时,UA 近似为零,故上两式可简化为: PK=I(UK-UW) (4-3) PA= IUW (4-4) 这是熔化极电弧焊熔化焊丝的主要热源。
4.2.3 电弧力
电弧中的电磁收缩力、等离子流力、斑点压 力对熔滴过渡都有不同的影响。需要指出的是, 电流较小时住往是重力和表面张力起主要作用; 电流Байду номын сангаас大时,电弧力对熔滴过渡起主要作用。 1.电磁收缩力 作用在熔滴上的电磁力通常可分解为径向和 轴向两个分力。
熔化极氩弧焊的溶滴过渡作业

熔化极氩弧焊的溶滴过渡作业1.熔化极氩弧焊的特点(1)由于用焊丝作为为电极,克服了钨极氩弧焊钨极的熔化和烧损的限制,焊接电流可大大提高,焊缝厚度大,焊丝熔敷速度快,所以一次焊接的焊缝厚度显著增加。
(2)使用自动焊接或半自动焊接,具备较低的冲压生产率,并提升了劳动条件。
(3)不仅能焊薄板也能焊厚度,特别适用于中等和大厚度焊件和焊接。
2.熔融极氩弧焊的熔滴过渡形式当采用短路过渡或颗粒过渡焊接时,由于飞溅较严重,电弧复燃困难,焊件金属融化不良及容易产生焊缝缺陷,所以熔化极氩弧焊一般不采用短路过渡或颗粒过渡形式,而多采用喷射过渡形式。
3.熔融极氩弧焊设备熔化极半自动氩弧焊设备主要是由焊接电源、供气系统、送丝机构、控制系统、半自动焊枪、冷却系统等部分组成。
熔化极自动氩弧焊设备与半自动焊设备相比,多了一套行走机构,并且通常将送丝机构与焊枪安装在焊接小车或专用的焊接机头上,这样可使送丝机构更为简单可靠。
4.熔融极氩弧焊的应用领域:1.mig焊几乎可以焊接所有的金属材料,主要用于焊接铝、镁、铜、锌钛及其合金,以及不锈钢。
2.盛氩混合气体维护的mag焊接可以冲压碳钢和某些低合金钢,在建议相对较低的情况下也可以冲压不锈钢。
无法冲压铝、镁、铜、锌钛等难水解的金属及其合金。
3.广泛应用于汽车制造、工程机械、化工设备、矿山设备、机车车辆、船舶制造、电站锅炉等行业。
二、熔融极氩弧焊的熔滴过渡阶段熔滴过渡形态有粗滴过渡、射滴过渡、射流过渡、亚射流过渡、短路过渡等。
应用领域广为的就是箭几滴过渡阶段、射流过渡阶段和亚射流过渡阶段。
形成条件:一般是mig焊铝时或钢焊丝脉冲焊时出现,电流必须达到射滴过渡临界电流原理:制约熔滴过渡阶段的力主要就是焊丝与熔滴间的表面张力。
斑点压力促进作用在熔滴表面各个部位,其制约熔滴过渡阶段的促进作用减少。
过渡的推动力是作用在熔滴上的电磁收缩力。
熔滴的尺寸显著增大,吻合于焊丝直径,熔滴沿焊丝轴向过渡阶段。
焊接的过渡方式

影响熔化极氩弧焊焊缝成形的因素影响熔化极氩弧焊焊缝成形的因素熔化极氩弧焊是得用氩气或富氩气体作为保护介质,以燃烧于焊丝工件之间的电弧作为热源的电弧焊。
利用氩气或氩气与氦气的混合气体作保护气体时,称熔化级惰性气体保护焊,简称MIG(Metal Inert Gas Welding)焊;利用氩气+氧气,氩气+二氧化碳,或氩气+二氧化碳+氧气等作保护气体时,称活性气体保护焊,简称MAG(Metal Active Gas Welding)焊。
一,熔化极氩弧焊熔滴过渡对焊缝成形的影响MIG焊熔滴过渡形态可以分为短路过渡,喷射过渡,亚射流过渡,脉冲过渡等,依据材质,焊件尺寸,焊接姿势而使用。
1.短路过渡MIG焊熔滴短路过程与二氧化碳电弧焊熔滴短路过渡是相同的,也是使用较细的焊丝在低电压,小电流下产生的一种可得用的熔滴过渡方式,区别在于MIG焊熔滴短路过渡是在更低的电压下进行并且过渡过程稳定,飞溅少,适合进行薄板高速焊接或窨位置焊缝的焊接。
其特点是采用小电流和低电压焊接时,熔滴在未脱离焊丝端头前就与熔池直接接触,电弧瞬时熄灭短路,熔滴在短路电流产生的电磁收缩力用液体金属的表面张力作用下过渡到熔池中。
短路过渡形式的电弧稳定,飞溅较小,成形良好,不过熔深较浅。
2.喷射过渡MIG焊接熔滴喷射过渡主要用于中等厚度和大厚度板水平对接和水平角接。
MIG电弧能够产生熔滴喷射过渡的原因是电弧形态比较扩展。
MIG焊一般采用焊丝为阳极,而把焊丝接负或采用交流的较少。
其原因有两项,一是要充分利用电弧对母材的清理作用,另一原因是为了使熔滴细化,并且能形成平稳过渡。
在小电流时,由于电磁拘束力小,熔滴主要受重力的作用而产生过渡,其颗粒较焊丝直径更大。
这种焊接过渡工艺形成的焊缝易出现熔合不良,未焊透,余高过大等缺陷,因此在实际焊接中一般不用。
当增大电流后,电极前端被削成尖状,熔滴得以细颗粒化,这时的熔滴过渡形态称作“喷射过渡”。
1)射滴过渡射滴过渡时的电弧是钟罩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
熔化极CO2焊接过程熔滴过渡
成型二班
一、实验目的
通过实验了解CO2气体保护焊设备的组成,熟悉CO2气体保护操作过程和焊接规范调整方法,对几种典型熔滴过渡的形成条件及其对焊缝成形和焊接飞溅的影响有更深入的了解。
二、概述
在熔化极气体保护电弧焊接方法中,惰性气体保护焊(MIG焊)和二氧化碳气体保护焊(CO2焊)占有重要地位。
在熔化极电弧焊过程中,焊丝端部金属受热熔化形成熔滴,并在多种力联合作用下向熔池过渡。
熔滴过渡(Metal Transfer)对焊接过程稳定性、焊缝成形、焊接飞溅等有显著影响。
在不同的弧焊工艺条件下,化极气体保护焊熔滴过渡呈现不同的形式:
自由过渡一一熔滴经电弧空间飞行至熔池,焊丝端部与熔池不发生直接接触;
接触过渡一一焊丝端部熔滴与熔池表面发生触进而过渡;
在细丝小电流低电压CO2焊接过程中,短路过渡是典型的熔滴过渡方式,属于接触过渡类型。
短路过渡CO2焊接的规范参数参见表2-1和图2-1。
在焊接过程中,不断重复燃弧、短路、液桥收缩和熔滴过渡、电弧复燃几个阶段,如图2-2所示。
当电弧电压较高时,焊丝端部熔化后不能接融到熔池形成短路,熔滴长大,电弧力的作用使熔滴产生大滴排斥过渡。
表2-1 低碳钢CO焊短路过渡焊接规范参数
序号焊丝直径/mm 电弧电压/V 焊接电流/A
1 0.8 18 100-110
2 1.2 19 120-135
3 1.6 20 140-180
三、实验系统
1)熔化极气体保护电弧焊设备
熔化极气体保护电弧焊接实验系统由弧焊电源、送丝机构、供气系统、焊枪、防止被焊工件的移动工作台等几部分组成,如图2-3所示。
选用全数字熔化极气体保护电弧焊机(可焊材料:碳钢、不锈钢;适用直径:12/1.4/1.6mm;弧焊电源输出特性:恒压;输出电压可调范围17-41V;额定输出电流:500A)。
图2-3 熔化极气体保护电弧焊基本装置示意图
2)弧焊过程波形/数据采集系统
波形采集系统如图2-4所示。
实验者可以从示波器面上直接实时观察熔滴过渡的波形,也可用计算机存储过渡电压电流参数,离线观察。
图2-4 熔化极电弧焊接过程波形采集系统原理示意图
四、实验内容
1)了解熔化极气体保护电弧焊接设备的构成以及熔滴过渡波形检测系统工作原理。
2)按照表2-2给定的规范进行焊接,观察和铯康焊接过程中有关数据和、波形,如电弧电压、焊接电流和电弧电压波形等。
3)实际比较不同形式熔滴过渡的形成条件以及熔滴过渡对焊缝成形和焊接飞溅的影响。
表2-2 焊接电流保持基本不变、变换焊接电压
电压16V 18V 20V 24V 26V 30V 电流120A 120A 120A 120A 120A 120A 频率 4.16 4.16 4.16 4.16 4.16 3.57
五、实验仪器设备及材料
1)YD-500SV C02气体护焊机1台
2)计算机数据采集系统;计算机及相应的软硬件
3)TDS3012B数字式示波器1台
4)φ1.2mmH08Mn2Si焊丝
5)CO2气体1瓶,预热减压流量计1只
六、实验步骤
1)根据本实验思考题,查阅相关参考资料,预习实验内容,指定实验计划。
2)认真读本实验安全操作注意事项并切实执行。
3)熟悉实验設备和采集系玩,了解技术原理和操作规程,将波形采集系统按照图2-4接好线。
4)按照制定的计划进行熔化极CO2,弧焊实验过焊接系统调整规范参数并记录表观显示值,通过数字示波器观察和存储焊接电流和焊接电压波形。
5)在实验中注意观察比较不同焊接过程产生的飞溅状况,焊后注意了解认识熔滴过渡对焊缝成形的影响规律。
七、安全操作注意事项
1)实验前应预先了解实验仪器设备结构和安全操作要领。
2)实验中必须谨慎操作,注意避免触电等安全事故发生。
3)燃弧焊接时必须佩带焊接面罩并穿好工作服装,、以免弧光刺伤眼睛和灼烧皮肤。
八、实验报告要求
1)总结熔化极C02弧焊实验数据,并分析指出焊接规范参数对熔短路过渡频率计焊接过程稳定性的影响。
大电流区和小电流区飞溅都较小,而介于两者之间则飞溅率较大。
所以选择电流时应避开飞溅率较高的电流区域。
电流选择好后再匹配适当的电压,以保证飞溅量最小
2)比较不同熔滴过渡方式对焊缝成形和焊接飞溅的影响。
细粒自由过渡时产生飞溅的原因有二:其一,是由冶金反应引起的飞溅,焊接过程中CO2 在电弧高温作用下,易分解为一氧化碳和氧,使电弧气氛具有很强的氧化性。
熔滴和熔池中的碳氧化成CO,CO在焊接条件下不溶于金属,也不与金属发生反应,在电弧高温作用下,体积急速膨胀,压力迅速增大,使熔滴和熔池金属产生爆破,从而产生大量飞溅。
短路电流增长速度过快,会使液态小桥处的液体金属在电磁收缩力的作用下急剧收缩。
随着电流的增加和短路小桥直径的减小,短路小桥被高速增长的电流急剧加热(焦耳-愣次热),进而导致液态小桥急剧膨胀汽化发生爆炸。
由于短路小桥在熔滴下方,爆炸力排斥熔滴向熔池过渡,引起较多的细颗粒金属飞溅
九、思考题
1)熔化极CO2焊接方法的特点和适用范围。
1)焊接生产率高。
由于焊接电流密度较大,电弧热量利用率较高,以及焊后不需清渣,因此提高了生产率。
CO2焊的生产率比普通的焊条电弧焊高2~4倍。
2)焊接成本低。
CO2气体来源广,价格便宜,而且电能消耗少,故使焊接成本降低。
通常CO2焊的成本只有埋弧焊或焊条电弧焊的40%~50%3)焊接变形小。
由于电弧加热集中,焊件受热面积小,同时CO2气流有较强的冷却作用,所以焊接变形小,特别适宜于薄板焊接。
4)焊接品质较高。
对铁锈敏感性小,焊缝含氢量少,抗裂性能好。
5)适用范围广。
可实现全位置焊接,并且对于薄板、中厚板甚至厚板都能焊接。
6)操作简便。
焊后不需清渣,且是明弧,便于监控,有利于实现机械化和自动化焊接
O2焊主要用于焊接低碳钢及低合金钢等黑色金属。
对于不锈钢,由于焊缝金属有增碳现象,影响抗晶间腐蚀性能。
所以只能用于对焊缝性能要求不高的不锈钢焊件。
此外,CO2焊还可用于耐磨零件的堆焊、铸钢件的焊补以及电铆焊等方面
2)几种典型熔滴过渡形成机理和工艺条件。
短路过度:使受电弧热熔化的消耗电极(焊条)前端与母材熔池短路,边重复进行燃弧,短
路熔滴边过渡的形态叫短路过渡式,这种形式在CO2焊接与MIG焊接的小电流,低电压区焊接时尤为显著,被应用于熔深较浅的薄板焊接。
电极前端的熔融部分逐渐变成球状并增大形成熔滴,与母材熔池里的熔融金属相接触,借助于表面张力向母材过渡。
自由过渡:焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩短拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。
喷射过渡:熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式,称为喷射过渡,喷射过渡可分为射滴过渡和射流过渡两种形式。
熔化极电弧焊弧长自动控制和焊接规范参数调节原理。
电弧电压反馈自动调节又称为均匀调节。
当弧长波动而引起焊接规范偏离原来的稳定值时,是利用电弧电压作为反馈量,并通过一个专门的自动调节装置,强迫送丝速度发生变化。
例如:弧长增加,电弧电压就增大。
通过反馈使送丝速度相应的增加,从而强迫使弧长恢复到原来的长度,以保持焊接规范参数稳定
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。