二苯甲酰基甲烷120-46-7

二苯甲酰基甲烷120-46-7
二苯甲酰基甲烷120-46-7

二苯基甲烷二异氰酸酯

二苯基甲烷二异氰酸酯(MDI): MDI和TDI都是生产聚氨酯的原料,可互为替代使用。但MDI毒性比TDI低,同时MDI形成的聚氨酯产品的模塑性相对较好。 MDI化学名称:二苯基甲烷二异氰酸酯 产品分类:纯MDI、聚合MDI、液化MDI、改性MDI等。 物理性质: 纯MDI:常温下为白色到微黄色晶体,储藏温度为5度以下,保质期为三个月,包装一般为225或240公斤铁桶充氮包装(槽车充氮为10天保质期)。 聚合MDI:棕褐色透明液体,常温保存,保质期两年,包装一般为250公斤铁桶充氮包装。 现有技术:目前全球流行的MDI生产方法基本是以苯胺为原料,经光气法以后再还原形成粗品的MDI产品,再经分馏装置,分离出纯MDI和聚合MDI。 最新技术:由于光气其巨大的危害性,所以许多工厂都在积极研制新的合成工艺以取代光气法生产,如碳酸二甲酯法,但是目前这些方法还只是在小试车间内有成功的案例,根本无法应用于大规模的生产。 化学性质: 【中文名称】4,4`-二苯基甲烷二异氰酸酯;亚甲基双(4-苯基异氰酸酯);二苯甲烷-4,4`-二异氰酸酯 本品有毒,刺激眼睛、粘膜,空气中允许浓度为0.02E-6。 【性状】白色或浅黄色固体。 【溶解情况】溶于苯、甲苯、氯苯、硝基苯、丙酮、乙醚、乙酸乙酯、二恶烷等。 【用途】本品的初级品广泛用于聚氨酯涂料,此外,还用于防水材料、密封材料、陶器材料等;用本品制成的聚氨酯泡沫塑料,用作保暖(冷)、建材、车辆、船舶的部件;精制品可制成汽车车挡、缓冲器、合成革、非塑料聚氨酯、聚氨酯弹性纤维、无塑性弹性纤维、博膜、粘合剂等。 【制备或来源】以苯胺为原料,与甲醛反应,在酸性溶液中缩合,用碱中和,然后蒸馏,可制得二氨基二苯甲烷,然后与碳酰氯反应可制得,再精馏精制。 【其他】 本品含有异氰酸酯基(-N=C=O),在合成树脂或涂料过程中,与涂料或树脂中的羟基起反应而固化。 MDI是4,4'二苯基甲烷二异氰酸酯(纯MDI),含有一定比例纯MDI与多苯基多亚甲基多异氰酸酯的混合物(聚合MDI)以及纯MDI与聚合MDI的改性物的总称,是生产聚氨酯最重要的原料,少量MDI应用于除聚氨酯外的其它方面。聚氨酯既有橡胶的弹性,又有塑料的强度和优异的加工性能,尤其是在隔热、隔音、耐磨、耐油、弹性等方面有其它合成材料无法比拟的优点,是继聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯和ABS后第六大塑料,已广泛应用于国防、航天、轻工、化工、石油、纺织、交通、汽车、医疗等领域,成为经济发展和人民生活不可缺少的新兴材料。 市场主要供应商: 欧美企业:巴斯夫、拜耳、亨斯迈、陶氏等 日韩企业:NPU、三井、锦湖三井等 国内企业:烟台万华和跨国企业等 应用领域:

10-食品安全风险分析与评估-危害特性与过氧化苯甲酰风险评估

杨文建lingwentt@https://www.360docs.net/doc/3610173752.html, 南京财经大学食品学院

风险分析风险交流 风险管理 风险评估 风险描述暴露评估危害特性危害识别

危害特性描述:对危害因子(物质)进行定性或定量评估。 ◆确定起因(危害物质)-效应(有害作用)关系的存在与否。 ◆在确定关系的基础上,建立剂量-效应关系(数学模型)。 对人类摄入的微生物病原体的数量、有毒化学物剂量或者其他危害物的量与人体发生不良反应的可能性之间用数学模型进行描述,即摄入危害物质与发生不良影响的可能性的数学关系。

通常利用毒理学或流行病学数据来进行主要效应的剂量-反应关系分析和数学模型的模拟。 通过剂量-反应模型可以获得每日允许摄入量ADI、每日可耐受摄入量(TDI)、急性参考量(ARfD)。 剂量-反应关系评价:是描述暴露评估的前提, ↓ 用数学模型描述:危害特征描述的一个主要部分。

剂量-反应关系分析 剂量概念 在毒理学研究中,涉及到外部剂量、内部剂量、有效剂量3个概念。 ①给予剂量/外部剂量/作用剂量 在一定的途径、频率下,给予实验动物或人的外源化学物质或微生物的数量。常指暴露量或摄入量。 注意:微生物的剂量评估比较难 a:在食品中分布随机;b:在食品或宿主中繁殖;

剂量-反应关系分析 ②内部剂量/吸收剂量 是指外源化学物或微生物与机体接触后,机体获得的剂量或外部剂量被吸收浸入体内循环或被感染能存活的量。 化学物:代谢动力学研究; 微生物:影响因素很多。 ③靶剂量/组织剂量/有效剂量 指机体吸收外源化学物或感染微生物后,分布并出现在特定器官的有效剂量。

4,4'-二仲丁氨基二苯基甲烷的合成研究

4,4'-二仲丁氨基二苯甲烷的合成研究 邱小勇龚树华罗善锴 (深圳市飞扬实业有限公司,广东,深圳,518300) 摘要:以4,4’-二氨基二苯基甲烷和丁酮为原料,加氢条件下合成4,4'-二仲丁氨基二苯甲烷。研究了催化剂,原料摩尔比,反应温度,反应压力,反应时间等不同因素对产物收率的影响。结果表明:以钯/氢型沸石为催化剂,4,4’-二氨基二苯基甲烷和丁酮的摩尔比为1:5,反应温度135℃左右,反应压力4MPa,反应时间6h,4,4’-二氨基二苯基甲烷转化率可达100%,选择性99.9%。 关键词:4,4'-二仲丁氨基二苯甲烷;4,4’-二氨基二苯基甲烷;丁酮;扩链剂;N-烷基化 Synthesis of 4,4'-Methylene-bis[N-sec-butylaniline] QIU Xiao-yong, GONG Shu-hua, Lu shan-kai (Shenzhen Feiyang Chemical Co., Ltd, Guangdong Shenzhen 518300, China) Abstract: 4,4'-Methylene-bis[N-sec-butyl aniline] was synthesized with methyl ethyl ketone and 4,4'-Methylenedianiline as the raw materials under the H2pressure .The effects of synthesis conditions such as the kind of catalyst, the mole ratio of raw materials, the reaction temperature, the reaction pressure, and the reaction time etc were studied. The GC data(normalization method) showed a 100% conversion of 4,4'-Methylenedianiline, and 99.9% yield of 4,4'-Methylene-bis[N-sec-butylaniline] was obtained when the catalyst was Pb/HM, the mole ratio of methyl ethyl ketone and4,4'-Methylenedianiline was 5.5:1, the reaction temperature is about 135℃, the reaction pressure is 4MPa and the reaction time is 6h. Key words: 4,4'-Methylene-bis[N-sec-butyl aniline]; 4,4'-Methylenedianiline; methyl ethyl ketone; chain extender 4,4'-二仲丁氨基二苯甲烷属N,N'-二烷基亚甲基二苯胺,是液态的芳香芳香族二仲胺,主要用于聚氨酯弹性体的扩链剂和聚脲喷涂扩链剂。4,4'-二仲丁氨基二苯甲烷的制备属于芳胺的N-烷基化,本文以4,4’-二氨基二苯基甲烷和丁酮为原料,丁酮既作为原料,也作为溶剂,在氢气气氛下进行加氢还原,生成4,4'-二仲丁氨基二苯甲烷。该反应绿色环保,无副反应,原子利用率高,仅有少量废水生成,无废气,反应条件温和,且后处理过程容易。

工作场所空气有毒物质测定第 132 部分:甲苯二异氰酸酯、二苯基甲烷二异氰酸酯和异佛尔酮二异氰酸酯

ICS13.100 C 52 中华人民共和国国家职业卫生标准 GBZ/T 300.132—2017 代替 GBZ/T 160.67—2004 工作场所空气有毒物质测定 第132部分:甲苯二异氰酸酯、二苯基甲烷二异氰酸酯和异佛尔酮二异氰酸酯 Determination of toxic substances in workplace air—Part 132: Toluene diisocyanate, diphenylmethane diisocyanate and isophorone diisocyanate 2017-11-09发布2018-05-01实施

前言 本部分为GBZ/T 300的第132部分。 本部分按照GB/T 1.1—2009给出的规则起草。 本部分由GBZ/T 160.67—2004《工作场所空气有毒物质测定异氰酸酯类化合物》中分出,单独成为本部分,并做了如下主要修改: ——修改了标准名称; ——删除了二苯基甲烷二异氰酸酯的分光光度法; ——增加了待测物的基本信息; ——改进了空气采样和标准系列浓度的表达; ——补充了样品空白要求和方法性能指标。 本部分中的主要起草单位和主要起草人: ——甲苯二异氰酸酯和二苯基甲烷二异氰酸酯的溶液吸收-气相色谱法 主要起草单位:北京市疾病预防控制中心。 主要起草人:杜欢永、宋景平、季永平。 ——异佛尔酮二异氰酸酯的溶剂洗脱-高效液相色谱法 主要起草单位:华中科技大学同济医学院公共卫生学院。 主要起草人:蒋芸、张招弟、秦春华。 本部分所代替标准的历次版本发布情况为: ——GB 16234—1996 附录A; ——GBZ/T 160.67—2004。

22000ta抗氧化剂生产项目环境影响报告书

22000t/a抗氧化剂生产项目环境影响报告书 (报批稿) 建设单位:湖南金域新材料有限公司 评价单位:湖南润美环保科技有限公司 2019年3月

目录 概述 (1) 1总则 (10) 1.1 编制依据 (10) 1.2项目区环境功能属性 (12) 1.3评价标准 (13) 1.4评价因子识别与筛选 (18) 1.5评价工作等级及评价范围 (19) 1.6评价内容及评价重点 (24) 1.7环境保护目标 (25) 2 项目概况 (28) 2.1 项目基本情况 (28) 2.2 建设内容和产品方案 (28) 2.3主要经济技术指标 (31) 2.4主要原辅材料及生产设备 (33) 2.5储运工程 (44) 2.6公用及辅助工程 (44) 2.7平面布局 (46) 3工程分析 (47) 3.1施工期工程分析及污染源分析 (47) 3.2生产工艺 (49) 3.3物料平衡及水量平衡分析 (66) 3.4 污染源分析 (87) 4区域环境特征及环境现状调查 (106) 4.1环境概况 (106) 4.2湖南岳阳绿色化工产业园概况 (110) 4.3与本项目排放污染物有关的其他在建、已批复项目污染源调查 (117) 5环境质量现状调查与评价 (118) 5.1大气环境质量现状调查与评价 (118) 5.2地表水环境质量现状调查与评价 (120)

5.3地下水环境质量现状调查与评价 (124) 5.4 声环境质量现状调查与评价 (126) 6环境影响预测与评价 (127) 6.1 运营期大气环境影响预测评价 (127) 6.2地表水环境影响分析 (161) 6.3地下水环境影响分析 (162) 6.4 声环境影响分析 (168) 6.5 固体废物环境影响分析 (170) 6.6施工期环境影响分析 (170) 7环境保护措施及技术经济可行性分析 (175) 7.1施工期环保措施 (175) 7.2运营期环保措施 (176) 8环境风险影响评价 (189) 8.1评价目的与重点 (189) 8.2环境风险识别 (189) 8.3风险源分析 (201) 8.4后果计算与分析 (208) 8.5风险计算和评价 (212) 8.6 环境风险防范措施 (214) 8.7 环境风险应急预案 (223) 8.8项目风险评价结论和建议 (226) 9 环境经济损益分析及总量控制 (228) 9.1环保投资可行性分析 (228) 9.2环境保护效益分析 (228) 9.3 环保支出及收入情况估算 (229) 9.4 环保投资与工程总投资的比例分析 (229) 9.5社会效益分析 (230) 9.6总量控制 (230) 10 环境管理与环境监测 (231) 10.1 环境管理 (231)

甲苯的来源 甲苯的毒性 甲苯的检测方法

甲苯系苯的同系物,亦名“甲基苯”、“苯基甲烷”,具有类似苯的芳香气味,沸点(常压)110.63℃,熔点-94.99℃。甲苯不溶于水,溶于乙醇、乙醚和丙酮。蒸气和空气形成爆炸性混合物,爆炸极限 1.2~7.0%(体积)。如甲苯溶解溴后,在光照条件下,甲基上的氢原子被溴原子取代(与甲烷相似)而在铁作催化剂条件下,苯基上的氢原子被溴原子取代(与苯相似);但甲苯分子中存在着甲基和苯基的相互影响,使得甲苯又具有不同于苯和甲烷的性质,如苯环上的取代反应(卤化、硝化等),甲苯比苯容易进行,甲苯分子中的甲基可以被酸性高锰酸钾溶液氧化。 家庭和写字楼里的苯主要来自建筑https://www.360docs.net/doc/3610173752.html,装饰中使用大量的化工原材料,如涂料,填料及各种有要溶剂等,都含有大量的有机化合物,经装修后挥发到室内。主要在以下几种装饰材料中较高: 油漆:苯化合物主要从油漆中挥发出来; 天那水、稀料:油漆涂料的添加剂中大量存在; 各种胶粘剂:一些家庭购买的沙发释放出大量的苯,主要原因是生产中使用了含苯高的胶粘剂; 防水材料:原粉加稀料配制成防水涂料,操作后15小时后https://www.360docs.net/doc/3610173752.html,检测,室内空气中苯含量超过国家允许最高浓度的14.7倍。 一些低档和假冒的涂料。 健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:对皮肤、粘膜有刺激性,对中枢神经系统有麻醉作用。 急性中毒:短时间内吸入较高浓度https://www.360docs.net/doc/3610173752.html,本品可出现眼及上呼吸道明显的刺激症状、眼结膜及咽部充血、头晕、头痛、恶心、呕吐、胸闷、四肢无力、步态蹒跚、意识模糊。重症者可有躁动、抽搐、昏迷。 慢性中毒:长期接触可发生神经衰弱综合征,肝肿大,女工月经异常等。皮肤干燥、皲裂、皮炎。 毒理学资料 毒性:属低毒类。 急性毒性:LD505000mg/kg(大鼠经口);LC5012124mg/kg(兔经皮);人吸入71.4g/m3,短时致死;人吸入3g/m3×1~8小时,急性中毒;人吸入0.2~0.3g/m3×8小时,中毒症状出现。 刺激性:人经眼:300ppm,引起刺激。家兔经皮:500mg,中度刺激。 亚急性和慢性毒性:大鼠、豚鼠吸入390mg/m3,8小时/天,90~127天,引起造血系统和实质性脏器改变。 致突变性:微核试验:小鼠经口200mg/kg。细胞遗传学分析:大鼠吸入5400µg/m3,16周(间歇)。 生殖毒性:大鼠吸入最低中毒浓度(TCL0):1.5g/m3,24小时(孕1~18天用药),致胚胎毒性和肌肉发育异常。小鼠吸入最低中毒浓度(TCL0):500mg/m3,24小时(孕6~13天用药),致胚胎毒性。 代谢和降解:吸收在体内的https://www.360docs.net/doc/3610173752.html,甲苯,80%在NADP(转酶II)的存在下,被氧化为苯甲醇,再在NAD(转酶I)的存在下氧化为苯甲醛,再经氧化成苯甲酸。然后在转酶A及三磷酸腺苷存在下与甘氨酸结合成马尿酸。所以人体吸收和甲苯16%-20%由呼吸道以原形呼出,80%以马尿酸形式经肾脏而被排出体外,所以人体接触甲苯后,2小时后尿

二氨基二苯甲烷安全技术说明书

二氨基二苯甲烷安全技术说明书 第一部分化学品及企业标识 化学品中文名:4,4,-二氨基二甲苯甲烷 化学品英文名:4,4’-metylene dianiline 序号:2443 第二部分成分/组成信息 纯品√混合物× 有害物成分浓度CAS No. 4,4’-亚甲基双苯胺≥98.5% 101-77-9 第三部分危险性概述 危险性类别:皮肤致敏物,类别1;生殖细胞致突变性,类别2致癌性,类别2;特异性靶器官毒性-一次接触,类别1;特异性靶器官毒性-反复接触,类别2*;危害水生环境-急性危害,类别2;危害水生环境-长期危害,类别2 侵入途径:吸入、食入、经皮吸收 健康危害:吸入、摄入或经皮肤吸收后对身体有害。有误服后引起急性黄疸的报道,也有经皮引起中毒性肝炎的报道。本品在体内可形成高铁血红蛋白,致发生紫绀。 环境危害:对环境有危害,对水体可造成污染。 燃爆危险:本品可燃,有毒。 第四部分急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗。就医。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。洗胃,导泄。就医。 第五部分消防措施 危险特性:遇明火、高热可燃。其粉体与空气可形成爆炸性混合物, 当达到一定浓度时, 遇火星会发生爆炸。受高热分解放出有毒的气体。 有害燃烧产物:一氧化碳、二氧化碳、氮氧化物。 灭火方法:消防人员须戴好防毒面具,在安全距离以外,在上风向灭火。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 第六部分泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘口罩,穿防毒服。不要直接接触泄漏物。小量泄漏:避免扬尘,小心扫起,运至废物处理场所处置。大量泄漏:收集回收或运至废物处理场所处置。 第七部分操作处置与储存

二苯甲烷二异氰酸酯

聚醚多元醇 聚醚多元醇(简称聚醚)是由起始剂(含活性氢基团的化合物)与环氧乙烷(EO)、环氧丙烷(PO)、环氧丁烷(BO)等在催化剂存在下经加聚反应制得。聚醚产量最大者为以甘油(丙三醇)作起始剂和环氧化物(一般是PO与EO并用),通过改变PO和EO的加料方式(混合加或分开加)、加量比、加料次序等条件,生产出各种通用的聚醚多元醇。

聚醚多元醇[1]是主链含有醚键(—R—O—R—),端基或侧基含有大于2个羟基(—OH)的低聚物。[2]是以低分子量多元醇、多元胺或含活泼氢的化合物为起始剂,-与氧化烯烃在催化剂作用下开环聚合而成。氧化烯烃主要是氧化丙烯(环氧丙烷),氧化乙烯(环氧乙烷),其中以环氧丙烷最为重要。多元醇起始剂有丙二醇、乙二醇等二元醇,甘油三羟甲基丙烷等三元醇及季戊、四醇、木糖醇、山梨醇、蔗糖等多元醇;胺类起始剂为二乙胺、二乙烯三胺等。 聚醚一般常用分子量为800~2000的丙二醇聚醚、分子量为400~4000的三羟甲基丙烷聚醚和端羟基的聚四氢呋喃。作为胶黏剂用的聚醚树脂应去掉聚合时残留下来的碱性催化剂,因为它们能催化异氰酸酯二聚,影响胶黏剂的质量。通常用酸来中和,使聚醚呈微弱酸性(不影响聚氨酯的反应)。制备聚氨酯胶黏剂所用的聚醚要求较为严格,除羟值、酸值外,要求含钾、钠离子量应少于10,含水量小于0.05%,否则有可能产生凝胶。用聚醚树脂配制的聚氨酯胶黏剂具有良好的耐水性,抗冲击性和低温性。 根据起始剂所含活性原子的数目可制得不同官能度的聚醚多元醇,在聚氨酯胶黏剂制备中最常用的聚醚是聚氧化丙烯二醇和聚氧化丙烯三醇,另外还有聚四氢呋喃二醇。

5、分散剂 聚醚在乳状液涂料中作分散剂。F68在醋酸乙烯乳液聚合时作乳化剂。L62、L64可作农药乳化剂,在金属切削和磨削中作冷却剂和润滑剂。在橡胶硫化时作润滑剂。 6、破乳剂 聚醚可用作原油破乳剂,L64、F68能有效地防止输油管道中硬垢的形成,以及用于次级油的回收。 7、造纸助剂 聚醚可用作造纸助剂,F68能有效地提高铜版纸的质量;也用作漂清助剂。 8、制备应用 聚醚多元醇系列产品主要用于制备硬质聚氨酯泡沫塑料,广泛应用于冰箱、冰柜、冷藏车、隔热板、管道保温等领域。制得的产品导热系数低,尺寸稳定好,也是配制组合聚醚的重要原料。聚醚多元醇的生产 在聚氨酯工业中,主要用于聚氨酯泡沫塑料,主要品种有聚氧化丙烯多元醇和聚四氢呋喃醚多元醇等。 编辑本段主要原料 使用三类原料,有机氧化物和呋喃类环状化合物等;起始剂;催化剂 有机氧化物和呋喃类环状化合物等--环氧丙烷、环氧乙烷、环氧氯丙烷、四氢呋喃等; 起始剂--含羟基的低分子化合物和含氨基或含羟基、氨基的低分子化合物。常用的有丙二醇、甘油、三羟甲基丙烷、乙二胺季戊四醇、木糖醇、三乙烯二胺、山梨醇、蔗糖、双酚A、双酚S、三(2-羟乙基)异氰酸酯、甲苯二胺等;使用芳香族或杂环系多元醇或多元胺起始剂时,会在聚醚多元醇结构中引入上述结构,它能使生成的聚氨酯材料具有较好的尺寸稳定性,耐热、耐燃。这类起始剂常用的有双酚A、双酚S、三(2-羟乙基)异氰酸酯、甲苯二胺等。起始剂品种的变化,可以合成不同官能度、不同化学结构和不同功能的聚醚多元醇,以适应聚氨酯制品的多样性变化和性能要求。 催化剂--阴离子型、阳离子型、金属络合型,聚氨酯工业中常用的是阴离子型催化剂的碱金属氢氧化物和阳离子催化剂的路易斯酸。前者用于制备低分子量的普通聚醚多元醇,后者用于制高分子量的聚醚多元醇及四氢呋喃开环共聚合特种聚醚多元醇。金属类络合催化剂用于合成超高分子量的聚醚多元醇,聚氨酯用聚醚多元醇的合成仅有少量应用。最常是氢氧化钾。

二苯基甲烷二异氰酸酯中文警示说明

二苯基甲烷二异氰酸酯 分子式:C 15H 10N 2O 2 分子量:250.24 理化特性 白色到淡黄色固体,或浅黄色液体。熔点≧38℃,相对于空气的蒸气密度为 3.24,相对于水的密度为 1.19,引燃温度≧220℃,闪点177-227℃,易溶于苯、甲苯、氯苯等有机溶剂,微溶于水,并缓慢发生反应。是聚氨酯材料、PU 泡沫原料之一。 可能产生的危害后果 急性中毒 吸入MDI 蒸气可造成呼吸道刺激,引发头痛、流鼻涕、喉痛、气喘、胸闷、呼吸困难以及肺功能衰退。高浓度接触可导致支气管炎、支气管痉挛和肺水肿。眼睛接触可造成眼结膜刺激和中度眼角膜混浊。皮肤接触可造成皮肤刺激、过敏和皮炎。食入,导致腹部痉挛,呕吐。 慢性中毒 长期接触可造成永久性的肺功能衰退、皮疹、过敏性反应。 职业病危害 防护措施 1.使用二苯基甲烷二异氰酸酯设备应密闭,不能密闭的应加强 通风排毒。 2.注意个人防护,穿戴防护用品。 3.严格遵守安全操作规程。 应急救治 措施 皮肤接触:立即脱去污染的衣着,用肥皂水冲洗。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道畅通。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮温水,禁止催吐。如果患者神志不清或痉挛,禁止饮入任何液态物质。立即就医。 泄漏应急 处理 隔离泄漏污染区,限制出入。消除所有点火源。建议应急处理人员戴防毒面具、橡皮手套,穿防化服。穿上适当的防护服前严禁接触破裂的容器和泄漏物。尽可能切断泄漏源。若少量液体泄漏,用蛭石、干砂、泥土吸附泄漏液体。若固体泄漏,小心扫起,逐次以少量加入大量水中,静置,稀释液放入废水处理系统。若大量泄漏,收容并回收。污染地面用含3-8%氨和2-7%的清洁剂冲洗。

二苯基甲烷二异氰酸酯MDI

二苯基甲烷二异氰酸酯 M D I Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

二苯基甲烷二异氰酸酯(MDI) 一、产品性质: 二苯基甲烷二异氰酸酯(MDI)分子式 C15H10N2O2。二苯甲烷二异氰酸酯简称MDI。有4,4'-MDI、2,4'-MDI、2,2'-MDI等异构体,应用最多的是4,4’-MDI。白色至淡黄色熔触固体,加热时有刺激性臭味。相对密度(50 ℃/4℃),熔点40~41℃,沸点156~158℃,粘度(50 ℃)4.9mPa·s,闪点(开口)202℃,折射率。溶于丙酮、四氯化碳、苯、氯苯、煤油、硝基苯、二氧六环等。有毒,蒸气压比TDI的低,对呼吸器官刺激性小,工作场所中8小时平均容许浓度为m3,短时间平均容许浓度为m3。二、应用领域与用途: 二苯基甲烷二异氰酸酯(MDI)作为一种重要的异氰酸酯,是生产聚氨酯最重要的原料之一。大部分MDI用于生产聚氨酯硬泡,也广泛应用于生产聚氨酯合成革及织物涂层、鞋底原液、聚氨酯粘合剂、聚氨酯涂料和聚氨酯弹性体等化工领域。,此外,还用于防水材料、密封材料、陶器材料等;用本品制成的聚氨酯泡沫塑料,用作保暖(冷)、建材、车辆、船舶的部件;精制品可制成汽车车挡、缓冲器、合成革、非塑料聚氨酯、聚氨酯弹性纤维、无塑性弹性纤维、博膜、粘合剂等。 三、生产方法: 目前国内外均采用液相光气法生产MDI,生产中使用氯气和剧毒的光气,同时副产大量HCl。其制造方法是过量苯胺在盐酸(或其他催化剂)催化作用下与甲醛反应,经缩合,转位反应生成胺类盐酸盐,经过中和、水洗和脱除余下苯胺精制得到二苯基甲烷二胺及

二苯基甲烷二异氰酸酯(纯MDI)产品介绍

二苯基甲烷二异氰酸酯(纯MDI)产品说明 二苯基甲烷二异氰酸酯 简称:MDI,国外也有简称MBI、MMDI(单体MDI)。 二苯基甲烷二异氰酸酯(MDI)一般有4,4’-、2,4’-和2,2’-MDI三种异构体,而以4,4’-MDI 为主,没有单独的2,4’-MDI和2,2’-MDI工业化产品。 分子式C15H10N2O2,相对分子质量250.25。 4,4’-MDI的CAS编号101-68-8;2,4’-MDI的CAS编号为5873-54-1;2,2’-MDI的CAS编号为2536-05-2。MDI异构体混合物的CAS编号为26447-40-5。 物化性能 一般的纯MDI主要是指4,4’-MDI,即含4,4’-二苯基甲烷二异氰酸酯99%以上的MDI,又称MDI-100,MDI以4,4’-MDI为主要成分,此外它还有少量2,4’-MDI和2,2’-MDI两种异构体,2,2’-的结构的MDI含量很小。 常温下它是白色至浅黄色固体,熔化后为无色至微黄色液体。加热时有刺激性臭味,可溶于苯、甲苯、氯苯、硝基苯、丙酮、乙醚、乙酸乙酯、二恶烷等。MDI在230℃以上蒸馏易分解、变质。贮存过程缓慢形成不熔化的二聚体,但低水平的二聚体(0.6%~0.8%)不影 2,4’-MDI的熔点范围19~21℃,沸点(0.67Kpa)106~107℃,蒸汽压3Pa. 高2,4’-MDI含量的MDI产品与4,4’-MDI相比,具有较低的反应活性和熔点。一般,当MDI中2,4’-异构体含量大于25%(质量分数)时,在常温下是液态,稍低温度仍会结晶。高2,4’-MDI含量的MDI产品最佳贮存温度是25~35℃。由高2,4’-MDI含量纯MDI产品制备的预聚体,因为无定型性质(低结晶性),其黏度比由4,4’-MDI制备的相同NCO含量预聚体的低。 特性及用途 二苯基甲烷二异氰酸酯(MDI)是用于聚氨酯树脂合成的一种重要的异氰酸酯。其分子结构中含有两个苯环,具有对称的分子结构,制得的聚氨酯弹性体具有良好的力学性能;MDI的反应活性比TDI大;MDI相对分子质量比TDI大,蒸汽压很低,挥发性较小,对人体的毒害相对较小。纯MDI主要应用于各类聚氨酯弹性体的制造,多用于生产热塑性聚氨酯弹性体、氨纶、PU革浆料、鞋用胶黏剂,也用于微孔弹性体材料(鞋底、实心轮胎、自结皮泡沫、汽车保险杠、内饰件等)、浇注型聚氨酯弹性体等的制造。 与纯4,4’-MDI相比,高2,4’-MDI含量的MDI产品具有较低的反应活性和熔点。由于2,4’-MDI与4,4’-MDI反应活性的差异,MDI-50为模塑制品的生产提供了更好的流动性能,该产品可广泛应用于各类聚氨酯弹性体制品、胶黏剂、涂料、汽车部件、内饰件的生产,并可作为TDI的替代品应用于软质聚氨酯泡沫的生产,可减轻环境污染,改善操作条件。

二苯基甲烷二异氰酸酯

二苯基甲烷二异氰酸酯(MDI)和多次甲基多苯基二异氰酸酯(PMPPI)的盐酸萘乙二胺分光光度法 1 原理 空气中的MDI和PMPPI用冲击式吸收管采集,水解后生成芳香族胺,经重氮化后,与盐酸萘乙二胺偶合生成紫红色,比色定量。 2 仪器 2.1 冲击式吸收管。 2.2 空气采样器,流量0~5L/min。 2.3 具塞比色管,25ml。 2.4 分光光度计。 3 试剂 实验用水为重蒸馏水。 3.1 盐酸,ρ20=1.18g/ml。 3.2 吸收液:临用前在600ml 水中加35ml 盐酸、22ml 冰乙酸和200ml 丙酮,再用水稀释至1000ml。 3.3 盐酸溶液,1.3mol/L:取11ml 盐酸,加水至100ml。 3.4 乙酸溶液,0.6mol/L:取3.5ml 乙酸,加水至100ml。 3.5 亚硝酸钠-溴化钠溶液:称取3g 亚硝酸钠和5g 溴化钠,溶于水并稀释至100ml。置冰箱内可保存7d。 3.6 氨基磺酸铵溶液,100g/L。 3.7 碳酸钠溶液,160g/L。 3.8 盐酸萘乙二胺溶液:称取1g 盐酸萘乙二胺于50ml水中,加入1ml 盐酸,盐

酸萘乙二胺溶解后,再加水至100ml。置冰箱内可保存5d。 3.9 标准溶液: 3.9.1 MDI标准溶液:于25ml 容量瓶中,加入5ml 丙酮,准确称量后,加入1~2 滴已精制的MDI,再准确称量,用丙酮稀释至刻度,由2 次称量之差计算溶液浓度,为标准贮备液。临用前,用吸收液稀释成3μg/ml MDI标准溶液。或用国家认可的标准溶液配制。 4.3.8.2 PMPPI标准溶液:准确称取0.1000g PMPPI,溶于22ml 冰乙酸中,溶解后,加入35ml 盐酸,用水稀释至1000ml。于15min 内,取 5.0ml 此溶液,用吸收液稀释至100ml,为5μg/ml PMPPI标准溶液。或用国家认可的标准溶液配制。 4 样品的采集、运输和保存 现场采样按照GBZ 159执行。 在采样点,用装有10.0ml 吸收液的冲击式吸收管,以3L/min 流量采集15min 空气样品。 采样后,封闭进出气口,直立置于清洁容器内运输和保存;在室温下避光可保存7d(MDI)或1d(PMPPI)。 5 分析步骤 5.1 对照试验:将装有10.0ml 吸收液的冲击式吸收管带至采样点,除不连接采样器采集空气样品外,其余操作同样品,作为样品的空白对照。 5.2 样品处理:用吸收管中的吸收液洗涤进气管内壁3次,将吸收液倒入具塞比色管中,用少量吸收液洗涤吸收管,洗涤液倒入具塞比色管中,并补足至10ml,混匀,供测定。若样品液中待测物的浓度超过测定范围,可用吸收液稀释后测定,计算时乘以稀释倍数。

二苯基甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)项目建设规范条件

附件 二苯基甲烷二异氰酸酯(MDI)、 甲苯二异氰酸酯(TDI)项目建设规范条件 为促进二苯基甲烷二异氰酸酯(MDI)和甲苯二异氰酸酯(TDI)行业结构调整和产业升级,严格新建项目建设标准,防止低水平重复建设,根据国家有关法律法规,按照“科学选址、技术先进、资源节约、安全环保”的可持续发展原则,制定本规范条件。 一、产业布局 (一)新建、扩建MDI、TDI项目应符合国家相关产业政策及发展规划,符合相关法律法规、城乡规划、生态环境规划和土地利用规划要求。 (二)新建、扩建MDI、TDI项目原则上应布局在依法合规设立、污染治理和安全环境风险防范设施齐全的化工园区内,并符合园区总体规划、产业发展规划和规划环评。 (三)新建、扩建MDI、TDI项目外部防护距离应符合相关国家标准或规范要求。严禁在依法设立的自然保护区、风景名胜区、饮用水水源保护区、重点水源涵养区、文化保护地、国家公园、生态保护红线和其他需要特别保护的区域内,以及土地利用总体规划确定的耕地和基本农田保护范围内新建、扩建MDI、TDI 项目。

(四)严禁在气体不宜扩散的地区和城市全年主导风向的上风向建设MDI、TDI项目。 (五)新建MDI项目优先选择在沿海地区布局,应对高含盐废水采取有效处置措施,确保达标排放。 二、装置规模和技术装备 (六)新建、扩建MDI、TDI项目应有自备或就近外协配套的一氧化碳、氢气和液氯制备装置;副产氯化氢应有效综合利用。 (七)新建、扩建MDI、TDI项目应采用先进可靠的硝化、氢化、光气合成、光气化、溶剂回收、分离精馏等系列工艺技术。 (八)MDI、TDI装置主要设备应满足安全、节能、环保和资源综合利用的相关标准或要求。对光气及光气化设备应采用防止泄漏和能够及时处置泄漏的双重安全措施,严格控制在线光气量。 (九)MDI、TDI装置生产过程应采用集散控制系统(DCS)、电气控制系统(ECS)、安全仪表系统(SIS)或过程控制系统(PCS)优化控制生产过程,在光气合成单元应设置在线分析仪,以及必要的安全监测监控、防护设施。鼓励企业建设智能工厂,利用信息化、智能化技术提升安全环保水平。 三、原料、能源消耗和产品质量 (十)新建、扩建MDI装置(含缩合、光气合成、光气化和分离等工序,不含氯化氢回收氯气)单位产品原料消耗应达到表1

N_N_4_4_二苯甲烷双马来酰亚胺_1_6_己二醇二丙烯酸酯的紫外光固化研究

N,N′24,4′2二苯甲烷双马来酰亚胺/1,62己二醇二丙烯 酸酯的紫外光固化研究3 韩 建 顾嫒娟 袁 莉 梁国正 (苏州大学材料与化学化工学部材料科学与工程系,苏州 215123) 摘要 制备了N,N′24,4′2二苯甲烷双马来酰亚胺(BDM)/1,62己二醇二丙烯酸酯(HDDA)体系,探讨了BDM/ HDDA体系实现UV固化的条件,研究了引发剂种类及其含量对BDM/HDDA体系光固化的反应性及热稳定性的影响。研究表明,2,4,62三甲基苯甲酰基2二苯基氧化磷(TP O)的综合引发效果要好于同类引发剂安息香乙醚和提氢型光引发剂二苯甲酮-三乙醇胺体系。 关键词 N,N′24,4′2二苯甲烷双马来酰亚胺 1,62己二醇二丙烯酸酯 光引发剂 紫外光固化 双马来酰亚胺是耐热型热固性树脂的典型代表,是制备高性能结构/功能材料最具竞争力的树脂之一。在国防军事、电子信息、交通运输等尖端工业领域中具有重要作用[1-4]。目前双马来酰亚胺固化方式为热固化,其最大的缺点是固化温度高、生产周期长[5],因此固化树脂的残余应力大,优异性能难以充分发挥。如何获得更好的固化工艺条件成为双马来酰亚胺改性研究的重要内容之一。 紫外光(UV)固化技术与其它固化方法相比具有固化速度快、生产效率高、材料物理力学性能好、污染小、节省能源、降低成本、满足户外等特殊要求的优点[6-11],因此,作为“面向21世纪的绿色工业新技术”,UV固化得到了学术界和工业界的广泛关注。研究者初步展开了N,N′24,4′2二苯甲烷双马来酰亚胺(BDM)/42羟丁基乙烯基醚(HBVE)体系的UV固化反应性的研究[12],研究结果表明,在适当的引发体系下,BDM/HBVE能进行UV固化。但是,由于BDM自身不能进行UV固化,所以,迄今没有更多的报道涉及这一课题。 笔者旨在探索双马来酰亚胺树脂实现UV固化的可能性,以期从根本上解决双马来酰亚胺热固化存在的问题。制备了BDM/1,62己二醇二丙烯酸酯(HDDA)体系,探讨了BDM/HDDA体系实现UV固化的条件,研究了引发剂种类及其含量对BDM/HD2 DA体系光固化的反应性及热稳定性的影响。 1 实验部分 1.1 主要原材料 BDM:西安双马新材料有限公司; HDDA:南京捷安化工公司; 2,4,62三甲基苯甲酰基2二苯基氧化磷(TP O):上海光固化研究所; 安息香乙醚、二苯甲酮、三乙醇胺:工业品,市售。 1.2 仪器 傅立叶变换红外光谱(FTI R)仪:N I COLET5700型,美国热电尼高力仪器公司; 热重(TG)分析仪:S DT Q600型,美国T A仪器公司; UV光固化仪:自制。 1.3 试样制备 (1)溶液制备 将BDM与HDDA按质量比1∶9倒入三口烧瓶中,在搅拌条件下于150℃共混1h后,即得到澄清透明的BDM/HDDA溶液。向BDM/HDDA溶液中加入不同的光引发剂,待光引发剂完全溶解后,即得到BDM/HDDA/引发剂体系溶液。 (2)BDM/HDDA体系的UV固化 取两块干净的玻璃片,其中玻璃片1的周围垫上厚度为1mm、宽度为1c m的玻璃片;玻璃片2附上PE保鲜膜。将配制好的BDM/HDDA/TP O溶液倒入玻璃片1上,将玻璃片2盖在上面,待完全展开,将其放入UV光固化仪固化,其UVA灯主波长365n m,功率400W。 1.4 性能测试 (1)FTI R测试:采用FTI R仪对体系反应前后进行测试。 (2)FTI R谱图分析 将TP O和安息香乙醚各称取10mg,分别用10 mL二甲基甲酰胺(DMF)溶液稀释,以DMF溶液为 3江苏省自然科学基金资助项目(BK2007506) 收稿日期:2009205213

4,4'-二氨基-3,3'-二氯二苯甲烷说明书

4,4'-二氨基-3,3'-二氯二苯甲烷化学品技术说明书 1、基本信息 中文名: 4,4'-二氨基-3,3'-二氯二苯甲烷 英文名: 4,4'-Methylene bis(2-chloroaniline) 分子结构: 分子式: C13H12Cl2N2 分子量: 267.15 物理化学性质 熔点: 102-107oC 沸点: 202oC(0.3TORR) 水溶性: <0.1G/100MLAT25oC 密度: 1.44 性质描述: 硫化剂MOCA (101-14-4)的性状: 1.白色至浅黄色疏松针状结晶,加热变黑色; 2.熔点101~104℃,相对密度1.44,熔融物相对密度1.26(107℃),闪点>230°F; 3.溶于稀酸、酮、醚、醇和芳香烃,微溶于水; 4.微有吸湿性; 5.有燃烧和爆炸危险,有毒。 安全信息 安全说明: S45:出现意外或者感到不适,立刻到医生那里寻求帮助(最好带去产品容器标签)。S53:避免暴露——使用前先阅读专门的说明。 S60:本物质残余物和容器必须作为危险废物处理。 S61:避免排放到环境中。参考专门的说明/ 安全数据表。 危险品标志: N:环境危险物质

T:有毒物质危险类别码: R22:吞咽有害。 R45:可能致癌。 危险品运输编号: UN2018 其他信息 产品应用: 硫化剂MOCA (101-14-4)可用作浇注型聚氨酯橡胶的硫化剂,聚氨酯涂料胶黏剂的交联剂,也可用作环氧树脂的固化剂。用作聚氨酯橡胶的硫化剂时,用量一般是预聚体中游离异氰酸基摩尔的85%~100%。 生产方法及其他: 1. 硫化剂MOCA (101-14-4)的生产方法: (1)先将邻氯苯胺溶于盐酸中,生成邻氯苯胺盐酸盐,再滴加甲醛进行缩合反应;待甲醛滴加完毕后,升温至回流,加入氢氧化钠溶液,进行中和反应体系的pH值为9~lO;然后经水洗,在酒精水溶液中溶解;最后进行重结晶、离心脱水、干燥,即得硫化剂MOCA (101-14-4)。 (2)每吨产品消耗邻氯苯胺1800kg,38%甲醛500kg。 2. 硫化剂MOCA (101-14-4)的包装:防水牛皮纸袋,内衬黑色塑料袋,为25kg装。纸板桶,内衬黑色塑料袋,分25kg,50kg装两种。其贮运:贮运时应注意密闭避光,注意防潮。 3. 硫化剂MOCA (101-14-4)的产品规格: 外观白色或浅黄色至微红色结晶 熔点/℃101~104 干燥失重/% ≤0.4

二苯甲酰甲烷生产建设项目可行性研究报告

二苯甲酰甲烷生产线建设项目可行性研究报告 中咨国联|出品 二〇二〇年八月

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目负责人 (1) 1.1.6项目投资规模 (1) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (2) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (4) 1.4 编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目市场分析 (8) 2.1建设地经济发展概况 (8) 2.2我国二苯甲酰甲烷行业发展状况分析 (8) 2.3我国二苯甲酰甲烷行业发展趋势分析 (9) 2.4市场小结 (10) 第三章项目建设的背景和必要性 (11) 3.1项目提出背景 (11) 3.2项目建设必要性分析 (12) 3.2.1有利于促进我国二苯甲酰甲烷工业快速发展的需要 (12) 3.2.2提升技术进步,满足二苯甲酰甲烷行业生产高品质产品的需要 (13) 3.2.4符合《中国制造2025》“三步走”实现制造强国战略目标 (13) 3.2.5提升我国二苯甲酰甲烷产品研发和技术创新水平的需要 (14) 3.2.6提升企业竞争力水平,有助于企业长远战略发展的需要 (14) 3.2.7增加当地就业带动产业链发展的需要 (15) 3.3项目建设可行性分析 (15) 3.3.1政策可行性 (15) 3.3.2技术可行性 (16) 3.3.3管理可行性 (16) 3.4分析结论 (17)

5种辅助稳定剂说明

3 辅助稳定剂 锌皂稳定剂对PVC 的稳定性较差,属于短效热稳定剂,而且容易出现“锌烧”现象(主要原因是产生的ZnCl2为强路易斯酸,具有催化脱氯化氢的作用),但具有初期着色性优良、耐候性强等优点。钙皂类热稳定剂属于长期热稳定剂,稳定性较差,着色性强,但无毒,具有优良的润滑性。Ca/Zn 复合稳定剂就是利用二者具有的协同效应,使其成为近年来复合稳定剂中最活跃的领域。为了提高其稳定性,在复配过程中通常要添加一些辅助稳定剂,如季戊四醇等多元醇、水滑石、亚磷酸酯、β-二酮和环氧大豆油等化合物来改善Ca/Zn 复合稳定剂的性能。 3.1 亚磷酸酯 亚磷酸酯是Ca/Zn 复合稳定剂中应用最广的辅助稳定剂,在复合稳定剂中是不可缺少的成份。用做辅助稳定剂的亚磷酸酯主要有亚磷酸三苯酯、亚磷酸三癸酯、亚磷酸三壬基苯酯、亚磷酸三辛酯等。对于软质PVC,亚磷酸酯一般与β-二酮、环氧大豆油等配合使用。亚磷酸酯具有增塑作用,不适用于硬质PVC;具有抗氧化能力,可以捕捉氯化氢,加成多烯烃,能大大提高PVC 稳定体系的稳定性能。在液体稳定剂中添加量一般为10%~35%(质 量分数),主要品种有亚磷酸苯二异辛酯、亚磷酸辛酯、亚磷酸二苯癸酯、亚磷酸二癸苯酯、亚磷酸三壬酯等。目前国内多数选用水解亚磷酸苯二异辛酯,它能有效地改善PVC 制品的着色、热稳定性、透明性、防结垢和耐候性等效果。亚磷酸酯是应用最广泛的辅助稳定剂,长期以来普遍用于钙锌无毒液体复合稳定剂应用中。最有效的是亚磷酸烷基/芳基酯。如日本Adeka -Argels 公司开发的Mark-1500 对稳定剂具有优良的初期着色性能。 3.2 环氧化合物 在环氧化合物中,传统上被用作辅助稳定剂是环氧大豆油。近年来的研究表明,双酚A 二缩水甘油醚、双酚F 二缩水甘油醚、酚醛树脂的缩水甘油醚、四苯基乙烷的缩水甘油醚、脂环族环氧树脂、偏苯三酸三缩水甘油酯、对苯二甲酸二环氧丙酯等都具有较高的稳定效率。环氧化物与氯化氢反应生成氯乙醇,在钙、锌等金属皂催化作用下,取代PVC 中不稳定的氯原子而发挥稳定作用。在静态稳定试验中,环氧化合物的作用是抑制PVC 变黄。单独使用效果不佳,与亚磷酸酯并用时,其稳定效果可明显改善。环氧类辅助热稳定剂一般有环氧大豆油、环氧亚麻籽油、环氧硬脂酸丁酯、辛酯等环氧类化合物等,它们与Ca/Zn体系配合使用有较高的协同作用,具有光稳定性和无毒之优点,适用于软质,特别是要暴露于阳光下的软质PVC制品,通常不用于硬质PVC制品,其缺点是易渗出。协同作用机理[6]可认为是降解产生的HCl被环氧基团和金属皂盐吸收,HCl浓度减小,降低了PVC的脱HCl速度(HCl对PVC 降解有催化作用),从而使PVC的热稳定性得到提高。另外,在Zn盐的催化下,环氧化合物还可以有效地取代烯丙基氯原子。 3.3 多元醇 作为Ca/Zn 复合体系的辅助稳定剂的多元醇主要有季戊四醇、二季戊四醇、聚乙烯醇、四羟甲基环己醇、二三羟甲基丙烷、卡必醇,以及山梨醇、甘露糖醇、木糖醇、麦芽糖醇、异麦芽糖醇、乳糖醇和它们的脱水、半脱水产物等,这类品种与β-二酮、环氧化合物、水滑石配合用于软质PVC 中时,具有极好的协同作用。需要注意的是多元醇尽管有良好的热稳定性,但部分品种由于其自身在加工过程中的脱水着色,仍有不足之处。新品种如菊粉、三(α-羟乙基)异氰脲酸酯可以克服上述缺陷。另外,多元醇易升华,在加工过程中升华物沉积在设备上,妨碍加工。为克服这些不足,现已开发了许多用脂肪酸部分酯化的多元醇,如日本推出的Tohtlixer-101,它是一种多元醇改性物,能较好地克服了一般多元醇的缺点,同Ca/Zn 稳定体系并用,表现出良好的光稳定性、加工性和贮存稳定性。多元醇可以螯合金属离子,防止氯化物催化降解,同时在金属皂的存在下,可以置换烯丙基氯,从而使PVC 稳定。此外,多元醇较多的羟基可以与金属离子形成无色的配位体,从而缓解了硬酯酸锌

相关文档
最新文档