高中数学解析几何中参数的取值范围
数学中简单易错的运算变形或方法整理

数学中简单易错的运算变形或方法整理珠海市一中平沙校区姜长良下面我会按照代数与几何及不同的章节分类,把我们各位朋友的经验进行整理,最终使它成为我们老师与学生的一个备忘录,为我们的教学严谨雪中送炭,为我们的教学思维锦上添花。
代数部分:一、函数方程不等式(多项式函数,分式函数,幂函数等)(1)定义域优先的原则;应该说老师在教学的时候,每一名老师在都和时候都能告诉学生这个原则,但是学生在做题的时候却总是想不到。
1。
无论是函数或是方程或是不等式,在研究的时候都要先考虑其中的未知数的取值范围。
如果忽视了这一点,就可能在解答的时候把范围扩大,从而造成错误。
2。
培养学生养成运用这个原则的习惯关键是我们老师应该首先养成,就算是对最简单的函数,甚至于定义域是R的函数,我们在解题的时候也应该强调,否则你的学生的思维就短少了严谨性。
3。
这一原则在数列、或其它公式中也适用。
当然数列是特殊的函数,可是这一点并不直接,更容易让人忽视。
这里就不一一列举了……(2)函数的定义中参数的取值范围;在高三的第一课时,我曾经给学生提出这样一个问题:请问:y=ax^2+bx+c是什么函数?多数学生回答是二次函数。
当我停顿一下再问时:有一部分学生不说是二次函数了。
回答当a不为0时,是二次函数,a是0的时候为一次函数。
我又追问,是一次函数?这回马上回答,当a为0但b不为0时,是一次函数,而当a与b都为0时,是常数函数。
其实,基本初等函数的定义都是用式子定义的,而其中的参数的取值范围是学生与老师最容易忽视的。
在应用的时候就更容易被忽视了。
(3)解方程时在方程的两边同时除以一个未知数;解方程时在方程的两边同时除以一个未知数例:解方程x^2=x解:方程两边同时除以x,得x=1。
所以,原方程的解为:x=1。
显然,丢了一个根x=0。
丢解的原因就是做除法的时候没有考虑除数是不是0。
在ΔABC中,acosA=bcosB判断三角形形状。
(用余弦定理就和13楼情况一样,用正弦定理也可能会漏解)带全称量词的命题否定不会写,比如“我们班同学都是男同学”---(假的)试着否定“我们班级同都不是男同学”---(也假)当然也就是反证法反设怎么写了。
浅谈解析几何中最值和参数范围问题的求解策略

浅谈解析几何中最值和参数范围问题的求解策略作者:陆爱莲来源:《教育教学科研》2013年第03期作者简介:陆爱莲,2002年毕业于广西师范大学数学教育专业,大学本科学历,理学学士,同年9月至今任教于马山中学,2008年12月获得中学一级教师资格。
积极参加教研教改活动,所撰写的论文多次在省、国家级论文评选中获二、三等奖。
【摘要】:解析几何中的最值和参数范围问题是高中数学的重要内容.其主要特点是综合性强,在解题中几乎处处涉及函数与方程、不等式、三角等内容.因此,在教学中应重视对数学思想、方法进行归纳提炼,如方程思想、函数思想、参数思想、数形结合的思想、对称思想、整体思想等思想方法,达到优化解题思维、简化解题过程的目的.本文通过对一些典型例题的分析和解答,归纳了解析几何中常见的解决最值和参数范围问题的思想方法,总结了解答典型例题的具体规律,并提供了一些常用的解题方法、技能与技巧。
【关键词】:解析几何最值问题参数范围求解策略解析几何中涉及最值和参数范围问题常有求面积、距离最值、参数范围问或与之相关的一些问题;求直线与圆锥曲线中几何元素的最值或与之相关的一些问题。
我们可以从两个方面来研究圆锥曲线的最值和参数范围问题,一方面用代数的方法研究几何,题中涉及较多数字计算与字母运算,对运算及变形的能力要求较高,用代数的方法解决几何;另一方面要善于从曲线的定义、性质等几何的角度思考,利用数形结合的思想解决问题。
一、代数法:借助代数函数求最值和参数取值范围的方法。
运用代数法时,先要建立“目标函数”,然后根据“目标函数”的特点灵活运用求最值。
常用的方法有: 1.配方法。
由于二次曲线的特点,所求“目标函数”的表达式常常和二次函数在某一个闭区间上的最值联系紧密,这时可对二次函数进行配方,并根据顶点的横坐标结合区间的端点确定所求函数的最值。
1、已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1。
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
高中数学专题---最值或取值范围问题

高中数学专题--- 最值或取值范围问题基本方法:最值或取值范围问题解题策略一般有以下几种:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质求解.(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数(自变量)的取值范围;②利用已知参数(自变量)的范围,求新参数(新自变量)的范围,解这类问题的核心是在两个参数(自变量)之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数(自变量)的取值范围; ④利用基本不等式求出参数(自变量)的取值范围;⑤利用函数的值域的求法,如导数法等,确定参数(自变量)的取值范围. 最值或取值范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数(自变量)的不等式,通过解不等式求出其范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.一、典型例题1. 已知抛物线2y x =和C :()2211x y ++=,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于A ,B 两点.求ABP ∆面积的最小值.2. 已知椭圆:C 2214y x +=,过点()0,3M 的直线l 与椭圆C 相交于不同的两点A ,B . 设P 为椭圆上一点,且OA OB OP λ+=(O 为坐标原点).求当AB <λ的取值x范围.二、课堂练习1. 已知椭圆C :2214x y +=,过点()4,0M 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅,求λ的取值范围.2. 已知A ,B 为椭圆Γ:22142x y +=的左,右顶点,若点()()000,0P x y y ≠为直线4x =上的任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.三、课后作业1. 已知椭圆22:143x y C +=,过点1,02⎛⎫ ⎪⎝⎭作直线l 与椭圆C 交于点,E F (异于椭圆C 的左、右顶点),线段EF 的中点为M .点A 是椭圆C 的右顶点.求直线MA 的斜率k 的取值范围.2. 已知抛物线2:4C y x =的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD 面积的最小值及此时直线AD 的方程.x3. 已知F 为椭圆2214x y +=的一个焦点,过点F 且不与坐标轴垂直的直线交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.。
高中数学求参数取值范围题型与方法总结归纳

参数取值问题的题型与方法一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。
例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。
解:原不等式即:4sinx+cos2x<45-a -a+5,要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。
f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3,∴45-a -a+5>3即45-a >a+2,上式等价于⎪⎩⎪⎨⎧->-≥-≥-2)2(4504502a a a a 或⎩⎨⎧≥-<-04502a a ,解得≤54a<8. 另解:a+cos2x<5-4sinx+45-a 即a+1-2sin 2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1],整理得2t2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。
设f(t)= 2t 2-4t+4-a+45-a 则二次函数的对称轴为t=1,∴f(x)在[-1,1]内单调递减。
∴只需f(1)>0,即45-a >a -2.(下同)例3.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,试求APPB的取值范围. 分析:本题中,绝大多数同学不难得到:AP PB =BAx x -,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.思路1: 从第一条想法入手,AP PB =BA x x -已经是一个关系式,但由于有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB 的斜率k . 问题就转化为如何将B A x x ,转化为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.解1:当直线l 垂直于x 轴时,可求得51-=PB AP ;当l与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l的方程为:3+=kx y ,代入椭圆方程,消去y得()045544922=+++kx x k,解之得 .4959627222,1+-±-=k k k x 因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.当>k 时,4959627221+-+-=k k k x ,4959627222+---=k k k x ,所以21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k =25929181k -+-.由 ()049180)54(22≥+--=∆k k , 解得952≥k ,所以51592918112-<-+-≤-k ,综上 511-≤≤-PB AP . 思路2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定k 的取值范围,于是问题转化为如何将所求量与k 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于21x x PB AP-=不是关于21,x x 的对称关系式。
高中数学第八章_平面解析几何

第八章⎪⎪⎪平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式名称 几何条件 方程 适用范围 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线 点斜式 过一点、斜率y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b=1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y22,此公式为线段P 1P 2的中点坐标公式.[小题体验]1.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°解析:选D 由倾斜角的取值范围知,只有当0°≤α+45°<180°,即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°,故选D.2.下列说法中正确的是( )A.y -y 1x -x 1=k 表示过点P 1(x 1,y 1),且斜率为k 的直线方程 B .直线y =kx +b 与y 轴交于一点B (0,b ),其中截距b =|OB | C .在x 轴和y 轴上的截距分别为a 与b 的直线方程是x a +yb =1D .方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示过点P 1(x 1,y 1),P 2(x 2,y 2)的直线解析:选D 对于A ,直线不包括点P 1,故A 不正确;对于B ,截距不是距离,是B 点的纵坐标,其值可正可负,故B 不正确;对于C ,经过原点的直线在两坐标轴上的截距都是0,不能表示为x a +yb =1,故C 不正确;对于D ,此方程为直线两点式方程的变形,故D 正确.故选D.3.(2018·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转90°,则所得到的直线l 2的方程为________________.解析:对于直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即x -y -2=0.答案:-2 x -y -2=01.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论. [小题纠偏]1.直线x cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎦⎤π6,π2∪⎣⎡⎦⎤π2,5π6 B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6解析:选B 设直线的倾斜角为θ,则tan θ=-33cos α, 又cos α∈[-1,1],所以-33≤tan θ≤33, 又0≤θ<π,且y =tan θ在⎣⎡⎭⎫0,π2和⎝⎛⎭⎫π2,π上均为增函数,故θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.故选B. 2.过点(5,10),且到原点的距离为5的直线方程是________. 解析:当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.若直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4解析:选C 因为直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.故倾斜角α的取值范围是⎣⎡⎭⎫π4,π2.2.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.解析:如图所示,结合图形,若l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角,k =0时,α=0,k>0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:[-1,1] ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π3.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,求1a +1b 的值. 解:∵k AB =0-2a -2=-2a -2,k AC =b -20-2=-b -22,且A ,B ,C 三点共线,∴k AB =k AC ,即-2a -2=-b -22,整理得ab =2(a +b ),将该等式两边同除以2ab 得1a +1b =12.[谨记通法]1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)方程法:若已知直线的方程为Ax +By +C =0(B ≠0),则l 的斜率k =-AB .考点二 直线的方程(重点保分型考点——师生共研)[典例引领]求适合下列条件的直线方程:(1)经过点(4,1),且在两坐标轴上的截距相等;(2)经过点(-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点(3,4),且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线方程在x ,y 轴上的截距均为a , 若a =0,即直线方程过点(0,0)和(4,1), ∴直线方程为y =14x ,即x -4y =0;若a ≠0,则设直线方程为x a +ya =1, ∵直线方程过点(4,1),∴4a +1a =1, 解得a =5,∴直线方程为x +y -5=0.综上可知,所求直线的方程为x -4y =0或x +y -5=0.(2)由已知,设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 即所求直线的方程为x -y +1=0或x +y -7=0.[由题悟法]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半的直线方程为________. (2)过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程为________. 解析:(1)由3x +y +1=0,得此直线的斜率为-3, 所以倾斜角为120°,从而所求直线的倾斜角为60°, 所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3), 即3x -y +6=0.(2)由题意可设直线方程为x a +yb =1,则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0. 答案:(1)3x -y +6=0 (2)x +y -3=0或x +2y -4=0 考点三 直线方程的综合应用(题点多变型考点——多角探明) [锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题. 常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数的几何意义相结合的问题; (3)由直线方程解决参数问题.[题点全练]角度一:与基本不等式相结合的最值问题1.过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程; (3)|PA |·|PB |的最小值及此时直线l 的方程. 解:(1)设直线l 的方程为y -1=k (x -2), 则可得A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ). ∵直线l 与x 轴,y 轴正半轴分别交于A ,B 两点, ∴⎩⎪⎨⎪⎧2k -1k >0,1-2k >0,得k <0. ∴S △AOB =12·|OA |·|OB |=12·⎝⎛⎭⎫2-1k ·(1-2k )=12⎝⎛⎭⎫4-1k-4k ≥12⎣⎡⎦⎤4+2 ⎝⎛⎭⎫-1k ·(-4k ) =4,当且仅当-1k=-4k ,即k =-12时,△AOB 的面积有最小值4,此时直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴截距之和为2-1k +1-2k =3-2k -1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+22,当且仅当-2k =-1k,即k =-22时等号成立. 故截距之和的最小值为3+22, 此时直线l 的方程为y -1=-22(x -2), 即x +2y -2-2=0.(3)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴|PA |·|PB |=1k 2+1·4+4k 2=2⎣⎡⎦⎤1-k +(-k )≥4, 当且仅当-k =-1k , 即k =-1时上式等号成立.故|PA |·|PB |的最小值为4,此时直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12. 角度三:由直线方程解决参数问题3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×(2-a )×2+12×(a 2+2)×2=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小,故a =12.[通法在握]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1). (2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围为[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k , ∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.一抓基础,多练小题做到眼疾手快1.(2019·金华一中模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π解析:选B 由直线方程可知斜率k =-1a 2+1,设倾斜角为α,则tan α=-1a 2+1,而-1≤-1a 2+1<0,∴-1≤tan α<0,又∵α∈[0,π),∴3π4≤α<π,故选B. 2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 解析:选B 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π. 3.(2018·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B .-13C .-32D.23解析:选B 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可得直线l 的斜率为-3-17+5=-13.4.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 2解析:选D 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.5.(2018·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________. 解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知, θ的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 二保高考,全练题型做到高考达标1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0D .x -y =0解析:选B 因为B (3,1),C (1,3), 所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A ,所以其直线方程为x -y +2=0.2.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2 解析:选A ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2, ∴直线l 的方程为y =3x +2,故选A.3.(2018·温州五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0的图象可能是( )解析:选B 当a >0,b >0时,-a <0,-b <0,选项B 符合.4.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[-2,2] B .(-∞,-2]∪[2,+∞) C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].5.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为( )A .2B .4C .8D .1解析:选B ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n ≥2+2 n m ·m n =4(当且仅当m =n =12时取等号), ∴1m +1n的最小值为4. 6.(2018·温州调研)已知三角形的三个顶点为A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:∵BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0. 答案:x +13y +5=07.若直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为________________.解析:由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧ x +3=0,y -1=0,可得⎩⎪⎨⎪⎧x =-3,y =1,∴M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求直线方程为2x +3y +12=0.答案:2x +3y +12=08.若圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是________.解析:由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9, ∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0, ∴a +3b =3(a >0,b >0). ∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号. 故1a +3b 的最小值是163.答案:1639.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.三上台阶,自主选做志在冲刺名校 1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________. 解析:y ′=-e x(e x +1)2=-1e x+1ex +2, 因为e x >0,所以e x +1ex ≥2e x ·1e x =2(当且仅当e x =1e x ,即x =0时取等号),所以e x +1ex +2≥4, 故y ′=-1e x +1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0), 则直线l 的方程为x a +yb =1. 因为l 过点P (3,2),所以3a +2b =1. 因为1=3a +2b ≥26ab ,整理得ab ≥24,所以S △ABO =12ab ≥12,当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4-k ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12)=12, 当且仅当-9k =4-k ,即k =-23时,等号成立.所以所求直线l 的方程为2x +3y -12=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.三种距离公式P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线Ax +By +C 1=0与Ax +By +C 2=0间距离 d =|C 1-C 2|A 2+B 21.(2018·金华四校联考)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( ) A .2 B .-3 C .2或-3D .-2或-3解析:选C ∵直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,∴2m =m +13≠4-2,解得m =2或-3.2.“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直,得(a +1)(a -1)+3a (a +1)=0,即4a 2+3a -1=0,解得a =14或-1,∴“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a+1)y -3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P 的坐标为(x,1-x ),x ∈R ,则动点P 的轨迹方程为________,它到原点距离的最小值为________.解析:设点P 的坐标为(x ,y ),则y =1-x ,即动点P 的轨迹方程为x +y -1=0.原点到直线x +y -1=0的距离为d =|0+0-1|1+1=22,即为所求原点到动点P 的轨迹的最小值.答案:x +y -1=0221.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( ) A .7B.172C .14D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172.考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( ) A .0 B .2 C .4D. 2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a ,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a 和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-a b +2,-a b -2,由-a b +2·⎝⎛⎭⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a+3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1);(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧ m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A.2 B.823 C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.2.直线3x +4y -3=0上一点P 与点Q (2,-2)的连线的最小值是________. 解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值, ∴|P Q |min =|3×2+4×(-2)-3|32+42=1.答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________. 解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 故所求直线l 的方程为x +3y -5=0或x =-1. 法二:当AB ∥l 时,有k =k AB =-13,∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P点的坐标为________.解析:法一:设P (a ,b ),则⎩⎨⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2,解得a =3,b =4.∴P 点的坐标为(3,4). 法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧x =3,y =4,则P 点的坐标为(3,4).答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________. 解析:法一:要使点A ,B 到直线l 的距离相等, 则AB ∥l ,或A ,B 的中点(2,4)在直线l 上. 所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32.法二:要使点A ,B 到直线l 的距离相等, 则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32.答案:-2或-32考点三 对称问题(题点多变型考点——多角探明) [锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称; (3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=02.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A (-1,-2)对称的直线l ′的方程为________.解析:法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3), 则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ), ∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 答案:2x -3y -9=0 角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解:(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. 角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′, 所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=03.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称, ∴⎩⎪⎨⎪⎧y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5),∴△ABC 周长的最小值为||A 1A 2=(4-0)2+(-5-7)2=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1,故选C.2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3)D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( ) A .6x +5y -1=0 B .5x +6y +1=0 C .5x -6y -1=0D .6x -5y -1=0解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0.4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a -2≠c -1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6.答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q |2的值为( )A.102B.10C .5D .10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直, ∴M 位于以P Q 为直径的圆上, ∵|P Q |=9+1=10, ∴|MP |2+|M Q |2=|P Q |2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722.3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q |的最小值为( )A.95 B.185 C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行,由题意可知|P Q |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q |的最小值为2910.4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎨⎧m =35,n =315,故m +n =345.5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,所以A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1). 所以BC 边所在直线方程为2x -y +3=0. 答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________. 解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=08.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210.答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎫x 0+52,y 0+12, 代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的。
例析解析几何中求解范围问题的常用不等关系

例析解析几何中求解范围问题的常用不等关系摘要:在教学体制改革的背景下,高中数学教学面临一些新变。
传统教学方法逐渐落后于时代发展的潮流,教师需要更新教学模式,创新教学体系。
解析几何是高中数学的重要组成部分,在探讨解析几何的求解范围时,经常要分析不等关系。
本文将具体探讨解析几何中求解范围问题的特点,以及解析几何中求解范围问题的常用不等关系,希望能为相关人士提供一些参考。
关键词:解析几何;求解范围;不等关系引言:高中学生面临一定的升学压力,每个学生都设定了升学目标,希望在高考中乘风破浪,成功考入自己的理想学校。
教师是学生的引导者,担任着为学生传道受业解惑的重要任务,只有发挥教师的引导作用,才能促进学生健康成长。
数学成绩直接关系着学生升学目标的实现,数学教师需要提升学生的学习能力,让学生掌握高效的数学学习技巧。
解析几何求解范围问题是高中数学的常见考点,教师应该将着眼点放在此处,攻克解析几何难点问题,帮助学生形成解题思路。
1解析几何中求解范围问题的特点1.1知识抽象性强与其他类型的数学知识相比,解析几何中求解范围问题更加抽象。
将数学公式、数学概念和数学模型问题与解析几何中求解范围问题进行对比分析,可以发现数学公式、概念模型问题等采用了形象通俗的语言表达方式,而解析几何中求解范围问题采用了抽象高深的语言表达方式[1]。
学生的认知能力有限,对抽象知识点的吸收能力比较弱,对具象知识点的吸收能力比较强,在面对抽象知识点时,学生难免会出现畏难情绪。
1.2逻辑要求性高学生之所以会在数学学习过程中遇到阻碍,是因为高中数学思维方式非常难把握。
解析几何中求解范围问题的知识体系非常庞杂,仅仅依靠一种思维模式很难解答数学问题。
在传统教学过程中,教师习惯对类型题目进行划分,对题目进行优化分解,看题目是否能够套用公式。
这种思维定式的解题方法明显不适用于高中数学,解析几何中求解范围问题对学生的逻辑能力提出考验。
在面对抽象化的数学语言时,学生很难对已知信息进行转换,致使解题效率较低,做题失误不断。
高中数学寒假专题复习资料第二讲解析几何新人教A版必修2(2021学年)

高中数学寒假专题复习资料第二讲解析几何新人教A版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学寒假专题复习资料第二讲解析几何新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学寒假专题复习资料第二讲解析几何新人教A版必修2的全部内容。
第二讲解析几何一.直线与圆1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0。
(2)范围:直线l倾斜角的取值范围是[0,π).2.斜率公式(1)直线l的倾斜角为α≠90°,则斜率k=tan_α。
(2)P1(x1,y1),P2(x2,y2)在直线l上,且x1≠x2,则l的斜率k=\f(y2-y1,x2-x1)。
3.直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0)不含直线x=x0斜截式y=kx+b不含垂直于x轴的直线不含直线x=x1(x1≠x2)两点式错误!=错误!和直线y=y1(y1≠y2)不含垂直于坐标轴和过原点的直截距式错误!+错误!=1线Ax+By+C=0,平面内所有直线都适用一般式A2+B2≠04.两条直线平行与垂直的判定(1)两条直线平行:①对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.②当直线l1,l2不重合且斜率都不存在时,l1∥l2。
(2)两条直线垂直:①如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2⇔k1·k2=-1。
②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l1⊥l2。
解析几何解读

解析几何解读解析几何是高考数学三大主干知识之一,从教材看包括平面上的直线和圆锥曲线两部分内容,要求几乎都是理解、分析、应用层面。
解析几何是数学中较为古典和经典的内容,对数学一般能力的要求比较高,因此,能否从总体上理解学科知识,体会数学思想方法,掌握基本问题的通性通法是考试能否取得好成绩的关键。
1.内容与结构教材中有这样一段话:平面解析几何研究的两个基本问题是(1)根据条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质。
无论是直线还是圆锥曲线,都是通过这两个问题的表述展开。
直线部分,通过点方向式、点法向式、两点式、点斜式、一般式等解决直线方程的确定问题。
通过两条直线的位置关系,定性定量(距离、角度)等的计算研究直线的性质。
圆锥曲线章节,先通过对直线和圆的问题,从一般的角度分析曲线与方程的关系,重新阐释解析几何的原理,然后利用统一的定点、距离、定值等表述提出圆锥曲线的几何描述,推导得出相应的圆、椭圆、双曲线、抛物线的标准方程,接着利用方程研究圆锥曲线的一些基本性质。
曲线的基本性质可以分为两类,一类为能表征单一曲线本身的特征量,如直线的斜率、倾斜角、方向向量、法向量、截距等;圆的圆心、半径;椭圆的焦点、顶点;双曲线的焦点、顶点、渐近线;抛物线的焦点、准线等。
第二类为直线与圆锥曲线关系的性质,是否有交点,位置关系,相交之后满足的一些平行、垂直、共点等性质和度量。
理科拓展内容包括参数方程与极坐标。
参数方程的基本原理是将一维的曲线与参数之间建立一一对应关系。
(曲线是点与实数对(x,y)建立一一对应),同样通过对参数的计算研究曲线的性质。
对常见的圆锥曲线,如何选择合适的参数可以与几何意义对应,在某些性质的研究中可简化计算。
极坐标是用另外的方式建立点与实数对(ρ,θ)之间建立对应。
因为x,y 都是距离的体现,而ρ,θ一个是距离,一个是角度,因此在解决解析几何问题涉及角度时,计算会方便很多。
当然,这两部分的要求相对简单,但要理解体会这个原理。
高中数学解析几何知识点总结大全

高中数学解析几何知识点大总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率. αtan =k(1).倾斜角为︒90的直线没有斜率。
(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)与直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+byax; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
(完整)高中数学解析几何双曲线性质与定义

双曲线双曲线是圆锥曲线的一种,即双曲线是圆锥面与平行于轴的平面相截而得的曲线。
双曲线在一定的仿射变换下,也可以看成反比例函数。
双曲线有两个定义,一是与平面上两个定点的距离之差的绝对值为定值的点的轨迹,二是到定点与定直线的距离之比是一个大于1的常数的点之轨迹。
一、双曲线的定义 ①双曲线的第一定义一动点移动于一个平面上,与该平面上两个定点F 1、F 2的距离之差的绝对值始终为一定值2a(2a 小于F 1和F 2之间的距离即2a<2c )时所成的轨迹叫做双曲线。
取过两个定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系。
设M(x ,y)为双曲线上任意一点,那么F1、F2的坐标分别是(-c ,0)、(c ,0).又设点M 与F1、F2的距离的差的绝对值等于常数2a 。
将这个方程移项,两边平方得:两边再平方,整理得:()()22222222a c a y a x a c -=--由双曲线定义,2c >2a 即c >a ,所以c 2-a 2>0.设222b a c =- (b >0),代入上式得:双曲线的标准方程:12222=-by a x两个定点F 1,F 2叫做双曲线的左,右焦点。
两焦点的距离叫焦距,长度为2c 。
坐标轴上的端点叫做顶点,其中2a 为双曲线的实轴长,2b 为双曲线的虚轴长。
实轴长、虚轴长、焦距间的关系:222b a c +=,②双曲线的第二定义与椭圆的方法类似:对于双曲线的标准方程:12222=-by a x ,我们将222b a c +=代入,可得:()ac ca x c x y =±±+22 所以有:双曲线的第二定义可描述为:平面内一个动点(x,y )到定点F (±c,0)的距离与到定直线l (ca x 2±=)的距离之比为常数()0ce c a a=>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双曲线的准线,常数e 是双曲线的离心率。
高中数学解题方法系列:解析几何中常见的最值求法

高中数学解题方法系列:解析几何中常见的最值求法最值问题是数学高考的热点,也是解析几何综合问题的重要内容之一。
圆锥曲线的最值问题几乎是高考的必考点,它融解析几何、函数、不等式等知识为一体,是综合试题考查的核心,对解题者有着相当高的能力要求,但其解法仍然有章可循,有法可依。
解析几何求最值常见类型之一是直接根据题意,利用几何关系或代数特征的几何意义求最值。
另一种类型是先根据条件列出所求目标的函数关系式,转化为前一类型或根据函数关系式的特征选用函数法、不等式法等求出它的最值。
本文从几个例子介绍解析几何最值问题的几种常见类型和方法。
一、结合“几何意义”求最值(一)两线段距离的最值问题这是圆锥曲线最值问题的基本方法,根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等问题来解。
例如:已知点F1,F2是双曲线的左右焦点,点A(1,4),P是双曲线右支上动点,则│PF1│+│PA│的最小值是多少。
解析:根据双曲线的定义,建立点A,P与两焦点之间的关系,发现两点之间线段最短。
即│PF1│+│PA│=│PF1│-│PF2│+│PA│+│PF2│=2a+│PA│+│PF2│≥4+│AF2│=9。
(二)特定代数式的最值问题因为一些数学概念如斜率、截距、两点距离等有特别的代数结构特征,可以根据这些表达式特征把所求的最值转化为平面上两点之间的距离、直线的截距或直线的斜率等问题来解。
例如:已知实数x,y满足方程x2-6x+y2+6=0。
求①的最大值;②y-x最小值;③x2+(y+2)2的最小值。
解析:①因为的几何意义是圆x2-6x+y2+6=0上的点(x,y)与定点(-1,0)连线的斜率,由数形结合算得最大值为。
②令y-x=b的几何意义是与圆x2-6x+y2+6=0有交点的平行直线系y=x+b在y轴上的截距,数形结合算得最小值为-3-。
③x2+(y+2)2的几何意义是圆x2-6x+y2+6=0上的点到定点(0,-2)的距离,数形结合算得最小值是-。
高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α直线l向上的方向与x轴正向所成的角叫做直线的倾斜角α,其范围为0≤α<180度。
2.斜率直线倾斜角α的正切值叫做这条直线的斜率,表示为k=tanα。
1)倾斜角为90度的直线没有斜率。
2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率。
当直线垂直于x轴时,其斜率不存在,因此在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k,则当x1≠x2时,k=(y1-y2)/(x1-x2);当x1=x2时,斜率不存在。
二、直线的方程1.点斜式已知直线上一点P(x,y)及直线的斜率k(倾斜角α),求直线的方程,可以用点斜式表示为y-y1=k(x-x1)。
需要注意的是,当直线斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程为y=kx+b。
特别地,斜率存在且经过坐标原点的直线方程为y=kx。
需要正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式若已知直线经过(x1,y1)和(x2,y2)两点,且(x1≠x2,y1≠y2),则直线的方程为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
需要注意的是,不能表示与x轴和y轴垂直的直线。
4.截距式若已知直线在x轴,y轴上的截距分别是a,b(a≠0,b≠0),则直线方程为xy/a + y/b = 1.需要注意的是,截距式方程不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
5.一般式任何一条直线方程均可写成一般式:Ax+By+C=0(A、B不同时为零)。
反之,任何一个二元一次方程都表示一条直线。
首先,我们需要指出直线方程的特殊形式可以化为直线方程的一般式,但一般式不一定能化为特殊形式,这取决于系数A、B、C是否为零。
高中数学必备知识点 解析几何中求参数取值范围的5种常用方法

一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.解: 设A,B坐标分别为(x1,y1),(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a 的取值范围是()A a<0B a≤2C 0≤a≤2D 0<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0)由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是()A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0),则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选(C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得(k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
高考数学常见解析几何中的一些最值问题

关于最值——常见解析几何中的一些最值问题摘要:有关解析几何中的最值问题,在中学数学中较为常见,相对高中数学的其他分科如代数、立体几何、三角中的最值问题,它亦占据了相当的比重,以下将从具体的实例出发,分析并介绍几种比较典型的解题方法,找出一般的解题程序与技巧。
关键词:最值;函数解析式;二次函数;自变量;已知量引言:中学数学的最值问题遍及代数、三角、立体几何及解析几何各学科中,在生产实践当中也有广泛的应用,也是历届各类考试的热点。
学习如何利用一定的数学方法来解决这类问题,能够提高分析问题和解决问题的能力,也是进一步为学习高等数学中的最值问题打下基础。
下面将针对解析几何中的最值问题,作出几种具体分类讨论:一、利用二次函数的知识求最值关于二次函数: y=ax 2+bx+c (a≠0),x ∈R当x=-ab 2时,y=a b ac 442-为最值。
当a>0时,有y min当a<0时,有y max但通常二次函数有相应的定义域,自变量x 的具体取值X 围有所不同,讨论最值的方式也有所不同。
主要有两种情况:1、x ∈R ,当a>0,则有y min =ab ac 442- 当a<0,则有y max =ab ac 442- 2、当x 定义在闭区间,即x ∈[a ,b](a,b 为常数),则应当看对称轴x=-ab 2 是否在此区间,如果x 在此区间,则函数同时有最大值与最小值,如果x 不在此区间,则函数的最大值与最小值必定分别取在该区间两个端点上(具体由函数单调性决定)。
当x 定义在一个含参数的闭区间即∈x [t, t+a](t 为参数,a 为常数)时,需要对参数进行讨论。
例1.1 已知二次函数y=x 2-x 2sec α+αα2cos 22sin 2+(α为参数,cos α≠0) ①求证此抛物线系的顶点轨迹为双曲线。
②求抛物线y=x 2+2x+6到上述双曲线的渐近线的最短距离。
分析:由于该二次函数y 的定义域为R ,所以这道题应归结于上述类别1。
解析几何中求参数取值范围的方法

解析几何中求参数取值范围的方法作者:罗奕辰来源:《环球市场信息导报》2017年第23期几何中的求解参数取值范围是高中数学学习中需要重点掌握的知识点,这不论是在平常的考试或者是高考中都占有较大的比分值。
本文从数形结合、建立不等式、几何图形的性质以及函数与方程思想四个方面对几何中求参数取值范围进行了一定的分析,以期为广大高中生提供参考。
解析几何在高中的学习知识中,涉及的范围广,且大部分具有难度性,所以学生在学习参数取值这方面的知识有一定的困难性。
这类问题考查的综合知识点强,给解题带来了很多困难。
所通过对几何中参数取值范围的解答进行归纳和总结,找出其中的方法对问题进行解决,从而激发学生的学习思维,掌握解题技巧,提高数学成绩。
数形结合求参数取值范围数与形在一定条件下是可以转化的,这也是数学中比较常见的解题方法。
以这样的方式可以使较为抽象的数学题变得更加浅显易懂,利于我们快速的掌握几何中参数取值范围。
在求解中,其基本思路就是数形的结合,重点把握点、线、面三者的性质和关系。
例如:在F(0)可以转化为3/2*sinθ+1/cosθ+2,所以将F(θ)可看为两个点,分别为A (cosθ,sin θ)和B(-2,-1),且线的斜率是3/2倍,求K的取值范围?解题分析:利用三角函数的解题思路,数形结合的即可进行解答。
首先将A(cosθ,sinθ)看做是一个单位圆,且为单位圆X2+Y2=1上的动点,B(-2,-1)为单位圆外的一点,进行作图即可得出。
如图1所示,得出当K的取值范围在[K BA1,K BA2],kBA1等于0,假设出直线方程BA2为:y+1=k(x+2),最后结果K的是4/3,且在区域为[0,2]时,K的取值范围为[0,4/3]。
对于数形这类知识点的解答,其基本思路一定要明确已知的条件,从题中的条件和结论出发,运用圆的公式和定理进行表达,画出相符合的图形,最后得出确定的答案。
建立不等式求参数取值范围几何题中出现的不等式称之为几何不等式,可以利用题中设定的不等式关系,根据相关公式运用不等式求参数的取值范围。
高中数学平面解析几何练习题(含解析)

高中数学平面解析几何练习题(含解析)一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0-D .(][),20,-∞-+∞2.过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x =B .24y x =-C .212=-x yD .212x y =3.过 ()()1320A B --,,,两点的直线的倾斜角是( )A .45︒B .60︒C .120D .1354.已知()3,3,3A ,()6,6,6B ,O 为原点,则OA 与BO 的夹角是( ) A .0B .πC .π2D .2π35.已知抛物线2:4C y x =与圆22:(1)4E x y -+=交于A ,B 两点,则||AB =( )A .2B .C .4D .6.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为( )A .3B .4C .5D .1127.动点P ,Q 分别在抛物线24x y =和圆228130+-+=x y y 上,则||PQ 的最小值为( )A .B C D 8.直线2360x y +-=关于点(1,1)对称的直线方程为( ) A .3220x y -+= B .2370x y ++= C .32120x y --=D .2340x y +-=9.已知椭圆2222:1()0x c bb y a a +>>=的上顶点为A ,左、右焦点分别为12,F F ,连接2AF 并延长交椭圆C 于另一点B ,若12:7:3F B F B =,则椭圆C 的离心率为( )A .14B .13C .12D 10.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题11.直线2310x y -+=与5100x y +-=的夹角为________.12.已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 13.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 14.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.三、解答题15.已知△ABC 底边两端点(0,6)B 、(0,6)C -,若这个三角形另外两边所在直线的斜率之积为49-,求点A 的轨迹方程.16.已知1F 、2F 是椭圆()2222:10x yC a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F △的面积为9,求实数b 的值.17.已知圆C :22120x y Dx Ey +++-=关于直线x +2y -4=0对称,且圆心在y 轴上,求圆C 的标准方程.18.已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ λ⋅+⋅为定值?若存在,求出λ的值;若不存在,说明理由.参考答案:1.B【分析】根据圆的一般式变形为标准式,进而可得参数范围. 【详解】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+, 由该曲线表示圆, 可知25100a a +>, 解得0a >或2a <-, 故选:B. 2.C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C 3.D【分析】根据两点坐标求出直线的斜率,结合直线倾斜角的范围即可得出结果. 【详解】由已知直线的斜率为 ()03tan 1018021k αα--===-≤<--,,所以倾斜角135α=. 故选:D. 4.B【分析】求出OA 和BO ,利用向量关系即可求出.【详解】因为()3,3,3A ,()6,6,6B ,则()3,3,3OA =,()6,6,6BO =---, 则3cos ,1OA BO OA BO OA BO⨯⋅<>===-⋅,所以OA 与BO 的夹角是π. 故选:B. 5.C【分析】先联立抛物线与圆求出A ,B 横坐标,再代入抛物线求出纵坐标即可求解.【详解】由对称性易得A ,B 横坐标相等且大于0,联立()222414y xx y ⎧=⎪⎨-+=⎪⎩得2230x x +-=,解得123,1x x =-=,则1A B x x ==,将1x =代入24y x =可得2y =±,则||4AB =. 故选:C. 6.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案. 【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m=,解得4m =. 记抛物线的准线为l ,作PN l ⊥于N ,作BAl 于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+=,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A. 7.B【分析】设2001,4P x x ⎛⎫⎪⎝⎭,根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设2001,4P x x ⎛⎫⎪⎝⎭,圆化简为22(4)3x y +-=,即圆心为(0,4)所以点P 到圆心的距离d = 令20t x =,则0t ≥, 令21()1616f t t t =-+,0t ≥,为开口向上,对称轴为8t =的抛物线, 所以()f t 的最小值为()812f =,所以min d所以||PQ的最小值为min d =故选:B 8.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,以(2,2)x y --代换原直线方程中的(,)x y 得()()223260x y -+--=,即2340x y +-=.故选:D. 9.C【分析】根据椭圆的定义求得12,F B F B ,在1ABF 中,利用余弦定理求得22cos F AF ∠,在12AF F △中,再次利用余弦定理即可得解.【详解】解:由题意可得122F B F B a +=, 因为12:7:3F B F B =, 所以1273,55F B a F B a ==, 因为A 为椭圆的上顶点,所以12AF AF a ==,则85AB a =,在1ABF 中,22222211221644912525cos 82225a a a AF AB BF F AF AF ABa a +-+-∠===⨯⨯,在12AF F △中,122212121222cos F F AF AF A F A F A F F =+∠-, 即222224c a a a a =+-=,所以12c a =,即椭圆C 的离心率为12. 故选:C.10.A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A 11.4π##45︒ 【分析】根据直线方程可得各直线斜率,进而可得倾斜角之间的关系,从而得夹角. 【详解】直线2310x y -+=的斜率123k ,即倾斜角α满足2tan 3α=, 直线5100x y +-=的斜率215k =-,即倾斜角β满足1tan 5β=-,所以()12tan tan 53tan 1121tan tan 153βαβαβα----===-+⎛⎫+-⨯ ⎪⎝⎭, 所以34βαπ-=,又两直线夹角的范围为0,2π⎡⎤⎢⎥⎣⎦,所以两直线夹角为4π,故答案为:4π. 12.【分析】将圆C 一般方程化为标准方程,先求圆心到直线的距离,再由圆的弦长公式即可解出k 的值.【详解】解:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1;圆心()1,0-到直线y kx =,由弦长为1可得1=,解得k =故答案为:13.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒===22(2)(3)13x y -+-=; (2)若圆过A B D 、、三点, 设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过 A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程 为25y x =-+,联立得47,33x y r ==⇒,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =, 线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=. 故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.14.1y =或247250x y ++=或4350x y --=【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l , 易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上, 在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y , 则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=, 综上,切线方程为1y =或247250x y ++=或4350x y --=. 故答案为:1y =或247250x y ++=或4350x y --=.15.()22108136x y x +=≠【分析】设(,)A x y ,利用斜率的两点式列方程并整理可得轨迹方程,注意0x ≠. 【详解】设(,)A x y 且0x ≠,则22663649AB ACy y y k k x x x -+-=⋅==-, 整理得:A 的轨迹方程()22108136x y x +=≠. 16.3b =【分析】由题意以及椭圆的几何性质列方程即可求解. 【详解】因为12PF PF ⊥,所以1290F PF ∠=︒, 所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=, ()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅, 1212192F PF S PF PF =⋅=△, 所以2244490c a =-⨯=,所以2449b =⨯.所以3b =; 综上,b =3.17.22(2)16x y +-=. 【分析】由题设知圆心(,)22D EC --,且在已知直线和y 轴上,列方程求参数D 、E ,写出一般方程,进而可得其标准方程. 【详解】由题意知:圆心(,)22D EC --在直线x +2y -4=0上,即-2D -E -4=0. 又圆心C 在y 轴上,所以-2D=0. 由以上两式得:D =0, E =-4,则224120x y y +--=, 故圆C 的标准方程为22(2)16x y +-=.18.(1)2211222x y ⎛⎫+-= ⎪⎝⎭ (2)存在,1λ=【分析】(1)①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,利用点差法求解; ②当直线l 不存在斜率时,易知()0,0M ,验证即可;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,与椭圆方程联立,结合韦达定理,利用数量积运算求解; ②当直线l 不存在斜率时,直线l 的方程为:0x =,易得(P、(0,Q ,验证即可.【详解】(1)解:①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,则应用点差法:22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式联立作差得:12121212()()()()042x x x x y y y y -+-++=, ∴()()()()121200121212121212002122PQ PQ PQ OM y y y y y y y y y y k k k k x x x x x x x x x x -+-+=⋅=⋅=⋅=⋅=--+-+, 又∵001PQ MA y k k x -==, ∴0000112y y x x -⋅=-,化简得22000220x y y +-=(00x ≠), ②当直线l 不存在斜率时,()0,0M ,综上,无论直线是否有斜率,M 的轨迹方程为2211222x y ⎛⎫+-= ⎪⎝⎭;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩并化简得:22(21)420k x kx ++-=,∴0∆>恒成立,∴122421k x x k +=-+,122221x x k ⋅=-+,又AP ()11,x k x =⋅,AQ ()22,x k x =⋅,OP ()11,1x k x =⋅+,OQ ()22,1x k x =⋅+,∴AP AQ OP OQ λ⋅+⋅()()()22121212111k x x k x x k x x λ=+⋅⋅++⋅⋅+++,()()()222222211222141212121k k k k k k λλλ-+++++=-+=-+++, 若使AP AQ OP OQ λ⋅+⋅为定值, 只需()222121λλ++=,即1λ=,其定值为3-, ②当直线l 不存在斜率时,直线l 的方程为:0x =,则有(P、(0,Q , 又AP ()1=,AQ ()0,1=,OP (=,OQ (0,=, ∴2λλ⋅+⋅=--AP AQ OP OQ ,当1λ=时,AP AQ OP OQ λ⋅+⋅也为定值3-, 综上,无论直线是否有斜率,一定存在一个常数1λ=, 使AP AQ OP OQ λ⋅+⋅为定值3-.。
高中数学 椭圆专题 弦长、面积与范围

石室中学高2020届解析几何专题
(弦长、面积与范围)
一、典型例题:
1.如图,直线y=kx+b与椭圆 交于A、B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
【答案】(1) (2) 或 .
5、 已知某椭圆的焦点是 . ,过点 并垂直于 轴的直线与椭圆的一个交点为 ,且 ,椭圆上不同的两点 , 满足条件:
成等差数列.
(Ⅰ)设P点的坐标为 ,证明: ;
(Ⅱ)求四边形ABCD的面积的最小值.
7. (选做).如图,在平面直角坐标系xOy中,已知椭圆 的离心率为 ,且右焦点F到左准线l的距离为3.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
5、 已知某椭圆的焦点是 . ,过点 并垂直于 轴的直线与椭圆的一个交点为 ,且 ,椭圆上不同的两点 , 满足条件:
成等差数列.
(I)求该椭圆方程;
(II)求弦 中点的横坐标;
(III)设弦 的垂直平分线的方程为 ,求 的取值范围.
6.已知椭圆 的左、右焦点分别为F1、F2.过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P.
因为AC与BD相交于点P,且AC的斜率为 ,
谈谈解答解析几何问题的三个办法

解析几何是高中数学中的重要模块,解析几何问题的分值在高考试卷中占比较大.解析几何问题的常见命题形式有:求曲线的方程、求曲线中线段的最值、求参数的取值范围、判断点的存在性等.解析几何问题对同学们的逻辑思维和运算能力有较高的要求.下面介绍三个解答解析几何问题的技巧,以帮助同学们简化问题,提高解题的效率.一、巧用参数法有些解析几何问题较为复杂,涉及了较多的变量,为了便于解题,我们可引入合适的参数,设出相关点的坐标、直线的斜率、方程、曲线的方程等,然后将其代入题设中进行运算、推理,再通过恒等变换,消去参数或求得参数的值,便可求得问题的答案.例1.已知过椭圆C :x 29+y 2=1左焦点F 1的直线交椭圆于M ,N 两点,设∠F 2F 1M =α(0≤α≤π).当α的值为何时,|MN |为椭圆C 的半长轴、半短轴长的等差中项?解:设过F 1的直线参数方程为:{x =-22+t cos α,y =t sin α,将其代入椭圆方程中可得()1+8sin 2αt 2-()42cos αt-1=0.则t 1+t 2=,t 1t 2=-11+8sin 2α,所以||MN =||t 1-t 2=()t 1+t 22-4t 1t 2=61+8sin 2α=2,可得sin 2α=14,解得α=π6或5π6.要求得|MN |,需知晓直线的方程,于是引入参数t 、α,设出直线MN 的参数方程,然后将其与椭圆的方程联立,构建一元二次方程,根据韦达定理和弦长公式求得|MN |,再根据等差中项的性质建立关系,求得α的值.运用参数法解题,只需引入参数,根据题意建立关系式,这样能有效地降低解题的难度.二、妙用射影性质射影性质是图形经过任何射影对应(变换)都不变的性质.若遇到涉及多条共线线段或平行线段的解析几何问题,我们可以巧妙利用射影性质来解题.首先根据题意画出相应的图形,然后在x 轴或y 轴上画出各条线段的射影,如此便可将问题中线段的长度、数量问题转化为x 轴或y 轴上的点或线段问题,进而简化运算.例2.已知椭圆的方程为x 224+y 216=1,点P 是直线l :x 12+y 8=1上的任意一点,OP 的延长线交椭圆于点R ,点Q 在OP 上,且||OQ ∙||OP =|OR |2,求点Q 的轨迹方程.解:设P (x p ,y p ),Q (x ,y ),R (x R ,y R )在x 轴上的射影分别为P 0,Q 0,R 0,由||OQ ∙||OP =|OR |2可得x ∙x P =x 2R ,①当点P 不在y 轴上时,设OP :y =kx ,由ìíîïïy =kx ,x 224+y 216=1,可得x 2R =483k 2+2,②由ìíîïïy =kx ,x 12+y 8=1,可得x P =243k +2,③由①②③可得:(x -1)252+(y -1)253=1(y ≠0).当点P 在y 轴上时,Q 点的坐标为(0,2),满足上式.所以点Q 的轨迹方程为(x -1)252+(y -1)253=1(y ≠0),该方程表示的是中心为(1,1),长轴长为10,短轴长为的椭圆(去除原点).找到P 、Q 、R 在x 轴上的射影,利用射影性质得到x ∙x P =x 2R ,然后通过联立方程求得x 、x P 、x 2R ,建立关系式,即可通过消元求得点Q 的轨迹方程.巧妙利用射影性质来解题,能有效简化运算,提升解题的效率.高双云图1思路探寻47探索探索与与研研究究三、建立极坐标系对于一些与线段长度有关的问题,我们可以结合图形的特征,建立极坐标系,通过极坐标运算来求得问题的答案.一般地,可将直角坐标系的原点看作极坐标系的原点,将直角坐标系的x 轴看作极坐标系的极轴,把线段用极坐标表示出来,这样便可将问题简化.以例2为例.图2解:以原点O 为极点,以Ox 轴的正半轴为极轴,建立如图2所示的极坐标系.则椭圆的极坐标方程为:ρ2=482+sin 2θ,直线l 的极坐标方程为:ρ=242cos θ+3sin θ,设P (ρP ,θ),Q (ρ,θ),R (ρR ,θ),因为||OQ ∙||OP =|OR |2,所以ρ∙ρP =ρ2R .即24ρ2cos θ+3sin θ=482+sin 2θ,可得ρ2()2+sin 2θ=4ρcos θ+6ρsin θ,而x =ρcos θ,y =ρsin θ,可得2x 2+3y 2-4x -6y =0(其中x ,y 不同为零),所以点Q 的轨迹是中心为(1,1),长轴长为10,短轴长为的椭圆(去除原点).建立极坐标系后,分别求出椭圆的极坐标方程和直线的极坐标方程,再根据极坐标方程表示出点P 、Q 、R 的坐标,并根据几何关系||OQ ∙||OP =|OR |2建立关系式,最后将其转化为标准方程即可.运用极坐标法解题,需熟练地将极坐标方程与普通方程进行互化.可见,利用参数法、射影性质、极坐标系法,都能巧妙地简化运算,提升解题的效率.相比较而言,参数法的适用范围较广,另外两个技巧具有一定的限制.同学们在解题时,可根据解题需求,引入参数、画出射影、建立极坐标系,这样便可让解题变得更加高效.本文系江苏省教育科学“十三五”规划2020年度重点自筹课题“新课标下提升高中生数学学习力的实践研究”(课题编号:B-b/2020/02/158)阶段研究成果.(作者单位:江苏省泰兴中学)在教学中,细心的教师会发现,教材中的很多习题具有一定的代表性和探究性,且其解法非常巧妙.对于此类习题,教师可以将其作为重要的教学资源,在课堂教学中引导学生对其进行深入的探究、挖掘,以便学生掌握同一类题目的通性通法,帮助他们提升学习的效率.本文主要对人教A 版选择性必修第二册《一元函数的导数及其应用》的一道课后习题进行了探究.一、对习题及其解法的探究人教A 版选择性必修第二册第99页的第12题:利用函数的单调性,证明下列不等式,并通过函数图象直观验证:(1)e x >1+x ,x ≠0;(2)ln x <x <e x ,x >0.证明:(1)设f (x )=e x -1-x ,∴f ′(x )=e x-1,∴f ′(x )=e x -1=0,∴x =0,∵f ′(x )>0,∴x >0,f ′(x )<0,∴x <0,∴函数f (x )在(0,+∞)为单调递增,在(-∞,0)为单调递减,∴函数在x =0处取得最小值,∴f (x )>f (0)=0,∴f (x )=e x -1-x >0,即e x >1+x .事实上,这个结论经常出现在很多试题中,不少教师在教学中也将该结论列为常用结论,并要求学生加以记忆.于是,笔者引导学生对该结论的背景和几何意义进行推导和探究.引理:(泰勒公式)若函数f (x )在包含x 0的某个区间[a ,b ]上具有n 阶导数,且在开区间(a ,b )上具有n +1阶导数,则对于闭区间[a ,b ]上的任意一点x =x 0,有f (x )=f (x 0)+f '(x 0)1!(x -x 0)+f ''(x 0)2!(x -x 0)2+f '''(x 0)3!(x -x 0)3+⋯+f n (x 0)n !(x -x 0)n +R n (x ).其中,f n (x 0)表示函数f (x )在x 0处的n 阶导数,上式称为函数f (x )在x =x 0处的泰勒公式,R n (x )称为泰勒公式的余项.特别地,当x 0=0时,若f (x )在x =0处n 阶连续可导,则称f (x )=周建韩丹娜48。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。
学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。
那么,如何构造不等式呢?本文介绍几种常见的方法:
一、利用曲线方程中变量的范围构造不等式
曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.
例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0)
求证:-a2-b2a ≤ x0 ≤ a2-b2a
分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.
解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 ?x2+x1 y2+y1
又∵线段AB的垂直平分线方程为
y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )
令y=0得 x0=x1+x22 ?a2-b2a2
又∵A,B是椭圆x2a2 + y2b2 = 1 上的点
∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a ∴ -a2-b2a ≤ x0 ≤ a2-b2a
例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.
分析:须通过题中条件建立夹角θ与变量S的关系,利用S的
范围解题.
解: 依题意有
∴tanθ=2S
∵12 < S <2 ∴1< tanθ<4
又∵0≤θ≤π
∴π4 <θ< p>
例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|
≥|a|,则a的取值范围是 ( )
A a<0
B a≤2
C 0≤a≤2
D 0<2< p>
分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.
解: 设Q( y024 ,y0) 由|PQ| ≥a
得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0
∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立
又∵ y02≥0
而 2+ y028 最小值为2 ∴a≤2 选( B )
二、利用判别式构造不等式
在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解. 例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L 与抛物线有公共点,则直线L的斜率取值范围是 ( )
A [-12 ,12 ]
B [-2,2]
C [-1,1]
D [-4,4]
分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0
解:依题意知Q坐标为(-2,0) , 则直线L的方程为y =
k(x+2)
由 得 k2x2+(4k2-8)x+4k2 = 0
∵直线L与抛物线有公共点
∴△≥0 即k2≤1 解得-1≤k≤1 故选 (C)
例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.
分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.
解:由 得 (k2-2)x2 +2kx+2 = 0
∵直线与双曲线的右支交于不同两点,则
解得 -2<-2< p>
三、利用点与圆锥曲线的位置关系构造不等式
曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
故可用这些关系来构造不等式解题.
例6已知椭圆2x2 + y2 = a2 (a>0)与连结两点A(1,2)、
B(2,3)的线段没有公共点,求实数a的取值范围.
分析:结合点A,B及椭圆位置,可得当AB两点同时在椭圆内或同时在椭圆外时符合条件.
解:依题意可知,当A、B同时在椭圆内或椭圆外时满足条件。
当A、B同时在椭圆内,则
解得a >17
当A、B同时在椭圆外,则
解得0<6< p>
综上所述,解得0<6 或a>17
例7若抛物线y2=4mx (m≠0)的焦点在圆(x-2m)2+(y-1)2=4的内部,求实数m的取值范围.
分析:由于焦点(m,0)在圆内部,则把(m,0)代入可得.
解:∵抛物线的焦点F(m,0)在圆的内部,
∴(m-2m)2+(0-1)2<4 即m2<3
又∵m≠0
∴-3 <0或0<3< p>
四、利用三角函数的有界性构造不等式
曲线的参数方程与三角函数有关,因而可利用把曲线方程转化为含有三角函数的方程,后利用三角函数的有界性构造不等式求解。
例8 若椭圆x2+4(y-a)2 = 4与抛物线x2=2y有公共点,
求实数a的取值范围.
分析: 利用椭圆的参数方程及抛物线方程,得到实数a与参数θ的关系,再利用三角函数的有界性确定a的取值情况.
解:设椭圆的参数方程为 (θ为参数)
代入x2=2y 得
4cos2θ= 2(a+sinθ)
∴a = 2cos2θ-sinθ=-2(sinθ+ 14 )2+ 178
又∵-1≤sinθ≤1,∴-1≤a≤178
例9 已知圆C:x2 +(y-1)2= 1上的点P(m,n),使得不等式m+n+c≥0恒成立,求实数c的取值范围
分析:把圆方程变为参数方程,利用三角函数的有界性,确定m+n的取值情况,再确定c的取值范围.
解:∵点P在圆上,∴m = cosβ,n = 1+sinβ(β为参数) ∵m+n = cosβ+1+sinβ = 2 sin(β+ π4 )+1
∴m+n最小值为1-2 ,
∴-(m+n)最大值为2 -1
又∵要使得不等式c≥-(m+n) 恒成立
∴c≥2 -1
五、利用离心率构造不等式
我们知道,椭圆离心率e∈(0,1),抛物线离心率e = 1,双曲线离心率e>1,因而可利用这些特点来构造相关不等式求解.
例10已知双曲线x2-3y2 = 3的右焦点为F,右准线为L,直线y=kx+3通过以F为焦点,L为相应准线的椭圆中心,求实数k的取值范围.
分析:由于椭圆中心不在原点,故先设椭圆中心,再找出椭圆中各量的关系,再利用椭圆离心率0<1,建立相关不等式关系求解.< p>
解:依题意得F的坐标为(2,0),L:x = 32
设椭圆中心为(m,0),则 m-2 =c和 m-32 = a2c
两式相除得: m-2m-32 = c2a2 = e2
∵0<1,∴0<1,解得m>2,
又∵当椭圆中心(m,0)在直线y=kx+3上,
∴0 = km+3 ,即m = - 3k ,
∴- 3k >2,解得-32 <0< p>
上面是处理解析几何中求参数取值范围问题的几种思路和求法,希望通过以上的介绍,能让同学们了解这类问题的常用求法,并能认真体会、理解掌握,在以后的学习过程中能够灵活运用。