第5章-1 曲线拟合(线性最小二乘法)讲解
曲线拟合 最小二乘法
曲线拟合最小二乘法
曲线拟合是指通过已知数据点来推导出一条函数曲线,使得该曲线尽
可能地贴近这些数据点。
而最小二乘法(Least Squares Method)是求解
这种拟合问题的一种常用方法。
最小二乘法的核心思想是尽量减小误差平方和。
假设已知的数据点为$(x_i, y_i)$,曲线函数为 $y=f(x)$,我们希望找到一组参数 $\theta$,使得 $f(x_i;\theta)$ 与 $y_i$ 的差距最小,即:
$$\min_{\theta}\sum_{i=1}^n [y_i - f(x_i;\theta)]^2$$。
这个式子被称为目标函数,也叫做残差平方和(RSS)。
通过对目标
函数进行求导,可以得到最优参数 $\theta^*$ 的解析解:
$$\theta^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T
\mathbf{y}$$。
其中,$\mathbf{X}$ 是一个 $n \times p$ 的矩阵,每一行代表一
个数据点的特征向量,$p$ 是曲线函数的参数个数。
$\mathbf{y}$ 是一
个 $n \times 1$ 的列向量,代表数据点的真实输出值。
最小二乘法在实际应用中有很广泛的应用。
例如,可以用它来构建多
项式回归模型、高斯过程回归模型等。
此外,在机器学习领域,最小二乘
法也被用于求解线性回归模型、岭回归模型等。
第五章 曲线拟合
)2
j 1
j 1 i0
对ak求偏导数(k=0,1…m)
ak
nm
2
(
ai
x
i j
j1 i0
y
j
)
x
k j
0
m
m
n
化简得
ai
xik j
y
j
x
k j
i0 j 1
j 1
n
n
记
x
k j
Sk
y
j
x
k j
Tk
j 1
j 1 m
aiSki Tk (k 0,1m)
i0
写成矩阵形式
S0 S1 S2 Sm S1 S2 S3 Sm1 S2 S3 S4 Sm2 Sm Sm1 Sm2 S mm
i1 j 1
i 1
用矩阵形式给出即: AT Ax ATb 法方程组
例
用最小二乘法解下列超定方程组的近似解
2x1 x2 1 8x1 4x2 0 2x1 x2 1 7x1 x2 8 4x1 3
解: A=
2 1 8 4 2 1 7 1 4 0
2 1
AT A
如何衡量接近程度?
最小二乘原理
一、什么是最小二乘原理
是衡量接近程度的一种方法
x x0 x1 xn 已知 y y0 y1 yn
设p(x) a0 a1x an xn
n
n
求a0 , a1,an 使 Ri2 (P(xi ) yi )2 最小。
io
i0
用最小二乘原理进行曲线拟合的方法称为最小二乘法。
这里(m<n),适当的选取 a0 , a`,am 使得
n
(a0 , a1,am ) [ p(x j ) y j ]2 为最小值 j 1
第5章-1 曲线拟合(线性最小二乘法)讲解
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62
曲线拟合问题最常用的解法
曲线拟合问题最常用的解法——线性最小二乘法的基本思路第一步:先选定一组函数 r 1(x), r 2(x), …r m (x), m<n, 令f(x)=a 1r 1(x)+a 2r 2(x)+ …+a m r m (x) (1) 其中 a 1,a 2, …a m 为待定系数。
第二步: 确定a 1,a 2, …a m 的准则(最小二乘准则): 使n 个点(x i ,y i ) 与曲线 y=f(x) 的距离δi 的平方和最小 。
记221211211(,,)[()][()](2)n nm i i i i i nmk k i i i k J a a a f x y a r x y δ======-=-∑∑∑∑问题归结为,求 a 1,a 2, …a m 使 J(a 1,a 2, …a m ) 最小。
线性最小二乘法的求解:预备知识超定方程组:方程个数大于未知量个数的方程组111122111122 ()m m n n nm m nr a r a r a y n m r a r a r a y +++=⎧⎪>⎨⎪+++=⎩ 即 Ra=y其中111112112,,m n n nm m n a y r r r R a y r r r a y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦超定方程一般是不存在解的矛盾方程组。
如果有向量a 使得211221()ni i im m i i r ar a r a y =+++-∑ 达到最小,则称a 为上述超定方程的最小二乘解。
线性最小二乘法的求解所以,曲线拟合的最小二乘法要解决的问题,实际上就是求以下超定方程组的最小二乘解的问题。
Ra=y (3)其中111111()(),,()()m n m n m n r x r x a y R a y r x r x a y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦定理:当R T R 可逆时,超定方程组(3)存在最小二乘解,且即为方程组 R T Ra=R T y的解:a=(R T R)-1R T y线性最小二乘拟合f(x)=a1r1(x)+ …+a m r m(x)中函数{r1(x), …r m(x)}的选取1. 通过机理分析建立数学模型来确定f(x);2. 将数据(x i,y i) i=1, …n 作图,通过直观判断确定f(x):用MATLAB作线性最小二乘拟合1. 作多项式f(x)=a1x m+ …+a m x+a m+1拟合,可利用已有程序:例对下面一组数据作二次多项式拟合xi 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1 yi 1.978 3.28 6.16 7.34 7.66 9.58 9.48 9.30 11.22123()f x a x a x a =++中 的123(,,)A a a a =使得:1121[()] iii f x y =-∑最小解法1.用解超定方程的方法211211111 1x x R x x ⎛⎫⎪=⎪ ⎪⎝⎭此时 1)输入以下命令:x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; R=[(x.^2)' x' ones(11,1)]; A=R\y'2)计算结果: A = -9.8108 20.1293 -0.03172()9.810820.12930.0317f x x x =-+-解法2.用多项式拟合的命令 1)输入以下命令: x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; A=polyfit(x,y,2) z=polyval(A,x);plot(x,y,'k+',x,z,'r') %作出数据点和拟合曲线的图形 2)计算结果: A = -9.8108 20.1293 -0.03172()9.810820.12930.0317f x x x =-+-用MATLAB 作非线性最小二乘拟合Matlab 的提供了两个求非线性最小二乘拟合的函数:lsqcurvefit 和lsqnonlin 。
最小二乘法与曲线拟合-PPT
量的矛盾方程组
0 + 1 1 + 2 12 + ⋯ + 1 = 1
其矩阵形式为
Ԧ =
0 + 1 2 + 2 22 + ⋯ +
其中
1
= 1
⋮
1
1
2
⋮
12
22
⋮
2
⋯
⋯
⋱
最小二乘法与曲线拟合
§5.0 问题的提出
如果实际问题要求解在[a,b]区间的每一点都“很
好地” 逼近f(x)的话,运用插值函数有时就要失败。
另外,插值所需的数据往往来源于观察测量,本身有
一定的误差。要求插值曲线通过这些本身有误差的点,
势必使插值结果更加不准确。
如果由试验提供的数据量比较大,又必然使得插值
不为零,从而有rankA=m+1。由引理2知,正则方程
组有唯一解。
证毕
四、最小二乘法拟合曲线的步骤
1..通过观察、分析得到拟合曲线的数学模型,或
根据经验公式确定数学模型。
2.将拟合曲线的数学模型转换为多项式。
3.写出矛盾方程组。
4.写出正则方程组。(可由多项式模型直接得到)
5.求解正则方程组,得到拟合曲线的待定系数。
多项式的次数过高而效果不理想。
从给定的一组试验数据出发,寻求函数的一个近似
表达式y=(x),要求近似表达式能够反映数据的基本
趋势而又不一定过全部的点(xi,yi),这就是曲线拟合
问题,函数的近似表达式y=(x)称为拟合曲线。本章
介绍用最小二乘法求拟合曲线。
§5.1 用最小二乘法求解矛盾方程组
《数值分析》第5章 曲线拟合与函数插值
例如用函数
y Aebx
(5.8)
去拟合一组给定的数据,其中 A和 b是待定参这数时. ,可以在 (5.8) 式两端取
对数,得
ln y ln A bx
记 y ln y,a ln A,则上式可写成 y a b. x这样,仍可用最小二乘法解出
和 a (从而b 也就确定了 和 A) ,于b 是得到拟合函数
区间 [a,b]上是存在的,但往往不知道其具体的解析表达式,只能通过观察、
测量或实验得到一些离散点上的函数值.
我们希望对这种理论上存在的函数用一个比较简单的表达式近似地给出整体 上的描述.
此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论 分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简 单函数,近似替代原来的函数.
图5-1 人口增长的线性模型
5.1.1 最小二乘问题
设人口 y 与年份 x之间的函数关系为
y a bx
(5.1)
其中 a和 b 是待定参数. 由图5-1可知, (xi , yi并) 不是严格地落在一条直线上,
因此,不论怎样选择 和 a,都b不可能使所有的数据点
(x均i ,满yi )足关系
式 (5.1) .
s0 10, s1 545, s2 29785, u0 18.09, u1 987.78
于是正规方程组为
10 545 a 18.09 545 29785 b 987.78
5.1.2 最小二乘拟合多项式
解得 a 0.570,4 b 0.02,27于是 A ea 1.76,90所求拟合函数为
21 91
441
a1
163
91 441 2275 a2 777
解得 a0 26.8,a1 14.08,57 a2 ,2因此所求拟合多项式为
第5章最小二乘法
24
线性参数正规方程的矩阵形式
又因
(5-21)
有 即 若令 则正规方程又可写成 若矩阵C是满秩的,则有
(5-22)
(5-22) (5-23)
Xˆ 的数学期望
因 可见 Xˆ 是X的无偏估计。
式中Y、X为列向量(n ×1阶矩阵和t×l阶矩阵)
其中矩阵元素Y1,Y2,…,Yn为直接量的真值,而 Xl,X2,…,Xn为待求量的真值。
41
n
前面已证明
2 i
/
2
是自由度为(n-t)的χ2变量。
i 1
根据χ2变量的性质,有
(5-39) 取
(5-40) 可以证明它是σ2的无偏估计量
因为
42
习惯上,式5-40的这个估计量也写成σ2,即 (5-41)
因而测量数据的标准差的估计量为 (5-43)
43
例5.3
• 试求例5.1中铜棒长度的测量精度。 已知残余误差方程为 将ti,li,值代人上式,可得残余误差为
34
(2)用表格计算给出正规方程常数项和系数
(3)给出正规方程 (4)求解正规方程组
解得最小二乘法处理结果为
35
四、最小二乘原理与算术平均值原理 的关系
为了确定一个量X的估计量x,对它进 行n次直接测量,得到n个数据
l1,l2,…,ln,相应的权分别为p1, p2,…,pn,则测量的误差方程为
(5-35)
共得k个方程,称正规方程,求此联立方程的解可得 出诸参数估计值 aˆ j (j=1,2,…,k)。
10
最小二乘法的几何意义
从几何图形上可看出,最小二乘法就是要在穿过各 观测点(xi,yi)之间找出这样一条估计曲线,使各观测 点到该曲线的距离的平方和为最小。
数值分析论文--曲线拟合的最小二乘法
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数值分析论文--曲线拟合的最小二乘法曲线拟合的最小二乘法姓名:徐志超学号:2019730059 专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:一种是两个观测量 x 与 y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是 x 与 y 之间的函数形式还不知道,需要找出它们之间的经验公式。
后一种情况常假设 x 与 y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y 的误差。
设 x 和 y 的函数关系由理论公式 y=f(x; c1, c2, cm)1 / 13(0-0-1)给出,其中 c1, c2, cm 是 m 个要通过实验确定的参数。
对于每组观测数据(xi, yi) i=1, 2,, N。
都对应于 xy 平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取m 组测量值代入式(0-0-1),便得到方程组yi=f (x;c1,c2,cm)(0-0-2)式中 i=1,2,, m.求 m 个方程的联立解即得 m 个参数的数值。
显然Nm 时,参数不能确定。
在 Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。
曲线拟合的最小二乘法讲解
实验三函数逼近与曲线拟合、问题的提出:函数逼近是指“对函数类A中给定的函数f(x),记作f(x)・A,要求在另一类简的便于计算的函数类B中求函数p(x)・A,使p(x)与f (x)的误差在某中度量意义下最小”函数类A通常是区间[a,b]上的连续函数,记作C[a,b],称为连续函数空间,而函数类B通常为n次多项式,有理函数或分段低次多项式等,函数逼近是数值分析的基础。
主要内容有:(1)最佳一致逼近多项式(2)最佳平方逼近多项式(3 )曲线拟合的最小二乘法实验要求:1、构造正交多项式;2、构造最佳一致逼近;3、构造最佳平方逼近多项式;4、构造最小二乘法进行曲线拟合;5、求出近似解析表达式,打印出逼近曲线与拟合曲线,且打印出其在数据点上的偏差;6、探讨新的方法比较结果。
三、实验目的和意义:1、学习并掌握正交多项式的MATLAB编程;2、学习并掌握最佳一致逼近的MATLAB实验及精度比较;3、学习并掌握最佳平方逼近多项式的MATLAB实验及精度比较;4、掌握曲线拟合的最小二乘法;5、最小二乘法也可用于求解超定线形代数方程组;6、探索拟合函数的选择与拟合精度之间的关系;四、算法步骤:1、正交多项式序列的生成{ \ ( X)}o •:设\ ( X)是[a,b]上首项系数数,如果多项式序列{ \ ( X)}o:满足关系式则称多项式序列{ \(X)}o:为在[a,b]上带权的n次正交多项式。
1 )输入函数「(x)和数据a,b;2) 分别求(x n, j(x)),C j (x), j(x))的内积;. . n 2 (X n,®j(X)), ,3) 按公式①;:o(X)=1, -(X) =X n j j(X)计算;:n(X),生成正交多项式;j鼻Wj(x),W j(x))流程图:开始a n=0的n次多项式,r(x)为[a,b]上权函;Q j秋A 0, jb(j, k)」(x) j(x) k(x)d(X> =a「(x)正交,称;:n (x)为[a,b]上带权「(x)cz>结束2、最佳一致逼近多项式f(x) C[a,b],若存在 R*(x) H n 使得.:(f,P ;^E n ,则称 P ; (x)是 f (x)在[a,b]上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。
第五章曲线拟合PPT课件
华南师范大学数学科学学院 谢骊玲
曲线拟合的概念
在科学和工程试验中,经常产生一组数据 (x1,y1),…,(xN,yN),如果所有的数值 {xk}, {yk} 有多位有效数字精度,则能用多项式插值; 若数据的精度不高,或者有试验误差,则 只能使用多项式拟合。
问题:如何找到一个经过数据点附近(不总是穿过) 的最佳逼近表达式?
线性最小二乘法(续2)
矩阵形式:构造矩阵F
f1(x1)
f1(x2 )
F
f1(x3 )
f1(xN )
f2 (x1) f2 (x2 ) f2 (x3 )
f2 (xN )
fM (x1)
f
M
(
x2
)
f
M
(
x3
)
fM (xN )
f1(x1)
则
F'
f2(x1)
f1(x2) f2(x2)
f1(x3) f2(x3)
华南师范大学数学科学学院 谢骊玲
多项式拟合
使用函数集合{fj(x)=xj-1}, j=1,…, M+1作线性最小 二乘,则得到的拟合函数f(x)为M阶多项式 f(x)=c1+c2x+c3x2+…+cM+1xM
使用最小二乘多项式拟合非线性数据的方法简单有 效,但如果数据不具有多项式特性,则求出的曲线可 能产生大的振荡。这种现象称为多项式摆动,它在高 阶多项式情况下更容易发生。由于这个原因,一般很 少使用超过6阶的多项式,除非已知被拟合的曲线是 真实的多项式。
几何意义是:数据点到曲线的垂直距离平方和最小
华南师范大学数学科学学院 谢骊玲
最小二乘拟合直线
定理5.1 设{(xk, yk)}kN1有N个点,其中横坐标{xk}是
曲线拟合的最小二乘法
一、曲线拟合是什么?曲线拟合也就是求一条曲线,使数据点均在离此曲线的上方或下方不远处, 它既能反映数据的总体分布,又不至于出现局部较大的波动, 能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小。
设函数y=f(x)在m个互异点的观测数据为求一个简单的近似函数φ(x),使之“最好”地逼近f(x),而不必满足插值原则。
这时没必要取φ(xi) = yi, 而要使i=φ(xi)yi 总体上尽可能地小。
这种构造近似函数的方法称为曲线拟合,称函数y=φ(x)为经验公式或拟合曲线。
如下为一个曲线拟合示意图。
清楚什么是曲线拟合之后,我们还需要了解一个概念——残差。
曲线拟合不要求近似曲线严格过所有的数据点,但使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到总体上尽可能地小。
若令(1-1)则为残向量(残差)。
“使(1-1)尽可能地小”有不同的准则(1)残差最大值最小(2)残差绝对值和最小(绝对值的计算比较麻烦)(3)残差平方和最小(即最小二乘原则。
计算比较方便,对异常值非常敏感,并且得到的估计量具有优良特性。
)二、最小二乘法是什么?个人粗俗理解:按照最小二乘原则选取拟合曲线的方法,称为最小二乘法。
百度百科:最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。
其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
三、求解最小二乘法(包含数学推导过程)我们以最简单的线性模型来解释最小二乘法。
什么是线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。
回归分析中,n个自变量,且因变量和自变量之间是线性关系,则称为一/多元线性回归分析。
曲线拟合--最小二乘法
曲线拟合--最小二乘法1:已知平面上四个点:(0,1)、(1,2.1)、(2,2.9)和(3,3.2),求出一条直线拟合这四个点,使得偏差平方和变为极小。
解:设直线方程为:0 1 0 01 2.1 1 2.12 2.9 4 5.83 3.2 9 9.6Sum=6 Sum=9.2 Sum=14 Sum=17.5 代入正规方程:,编程求解上方程组:>> eq1='14*A+6*B=17.5';>>eq2='6*A+4*B=9.2';>> [A,B]=solve(eq1,eq2,'A,B');>> disp(A)0.74>> disp(B)1.19所以直线方程为:2:已知数据如下表所示1 2 4 610 5 2 1试求(1)用抛物线拟合这些数据使得偏差平方和最小;(2)用型如的函数来拟合这些数据使得偏差平方和最小。
(3)比较这两种拟合结果。
解:(1)设抛物线方程为:1 10 1 1 1 10 102 5 4 8 16 10 20 4 2 16 64 256 8 326 1 36 216 1296 6 36 Sum=13 Sum=18 Sum=57 Sum=289 Sum=1569 Sum=34 Sum=98代入正规方程:得到系数A,B,C的方程组:编程求解上方程组:>>eq1='1569*A+289*B+57*C=98';>>eq2='289*A+57*B+13*C=34';>>eq3='57*A+13*B+4*C=18';>> [A,B,C]=solve(eq1,eq2,eq3,'A,B,C');>> disp(A); disp(B); disp(C)102/199-1048/1992848/199>> A=102/199; disp(A) 0.5126>> B=-1048/199; disp(B) -5.2663>> C=2848/199; disp(C) 14.3116所以得到抛物线的方程为:(2)设函数1 10 1 1 102 5 1/2 1/4 5/24 2 1/4 1/16 1/26 1 1/6 1/36 1/6Sum=13 Sum=18 Sum=23/12 Sum=193/144 Sum=79/6 得到系数A,B的方程组:编程求解上方程组:>> eq1='4*A+23*B/12=18';>>eq2='23*A/12+193*B/144=79/6';>> [A,B]=solve(eq1,eq2,'A,B');>> disp(A); disp(B)-160/243872/81>> A=-160/243; disp(A)-0.6584>> B=827/81; disp(B)10.2099所以得到的函数为:(3)比较(1)和(2)两种方法拟合的方程:编程画出抛物线的图像为:>> x=-2:0.1:12;>> y=0.5126*x.^2-5.2663*x+14.3116;plot(x,y);grid on(a)再编程画出的图像为:>> x=-2:0.1:12;>> y=-0.6584+10.2099*(x.^(-1));>> plot(x,y);grid on>> x=-1:0.01:1;>> y=-0.6584+10.2099*(x.^(-1));plot(x,y);grid on(b)比较两图像可知,图像(b)在点(0,0)处不连续。
线性最小二乘法
线性最⼩⼆乘法①前置知识:曲线拟合问题:已知⼀组⼆维数据,寻求⼀个函数(曲线)\(y=f(x)\)使\(f(x)\)在某种准则下与所有数据点最为接近,即曲线拟合得最好。
②线性最⼩⼆乘法:\(1.1\) 定义线性最⼩⼆乘法是解决曲线拟合最常⽤的⽅法,基本思路是,令:\[f(x)=a_1r_1(x)+a_2r_2(x)+...+a_mr_m(x), \]式中:\(r_k(x)\)为事先选定的⼀组线性⽆关的函数;\(a_k\)为待定系数。
\(1.2\) 拟合准则使\(y_i\)与\(f(x_i)\)的距离\(\delta_i\)的平⽅和最⼩\(1.3\) 系数确认记\[J(a_1,...,a_m)=\sum_{i=1}^n \delta_i^2=\sum_{i=1}^n [f(x_i)-y_i]^2, \]要使J最⼩,即令\(\frac{\partial J}{\partial a_j}=0(j=1,...,m)\),即:\[\sum_{i=1}^nr_j(x_i)[\sum_{k=1}^ma_kr_k(x_i)-y_i]=0,j=1,...,m, \]即:\[\sum_{k=1}^ma_k[\sum_{i=1}^n r_j(x_i)r_k(x_i)]=\sum_{i=1}^nr_j(x_i)y_i,j=1,...,m, \]记:\[R=\begin{bmatrix} r_1(x_1)& \cdots & r_m(x_1) \\ \vdots &\vdots& \vdots \\ r_1(x_n)& \cdots & r_m(x_n) \end{bmatrix} ,\]\[A=[a_1,\cdots,a_m]^T,Y=[y_1,\cdots,y_n]^T, \]则⽅程式可表⽰为:\[R^TRA=R^TY。
\]当\({r_1(x),\cdots,r_m(x)}\)线性⽆关时,R满秩,\(R^TR\)可逆,此时有唯⼀解:\[A=(R^TR)^{-1}R^TY \]1.4 实际意义在空间内,任意两个向量都可以组合成新的向量,我们不妨如下表⽰:\[a_1 x_1+a_2 x_2=b \Leftrightarrow A X=B \]对于拟合的向量\(y_i\),要使其与⽬标向量\(f(x_i)\)距离最⼩,即满⾜:\[\exists k\in N,\forall i \in N,|\vec {f(x_i)}-\vec y_i|\geq |\vec {f(x_k)}-\vec y_k| \]在此处,\(y_i=b\),\(f(x_i)\)对应的矩阵为\(AX\),故要满⾜距离最⼩,即使得\(\vec{b-AX}\)与\(\vec b\)所在平⾯正交,也就是使\(\vec{b-AX}\)与\(\vec b\)和\(\vec a\)都正交。
曲线拟合的最小二乘法原理及实现
曲线拟合的最小二乘法原理及实现
最小二乘法是一种用于拟合数据的常用方法,特别是在需要找到一条曲线或函数来最好地描述数据时。
它的基本思想是找到一条最适合数据的曲线,使得数据点与曲线之间的偏差最小。
具体来说,最小二乘法的原理是在给定一些数据点的情况下,通过最小化每个数据点到一条曲线或函数之间的垂直距离或水平距离来找到最适合这些数据的曲线或函数。
在实际应用中,可以使用最小二乘法来拟合各种类型的曲线,如线性、二次、三次、指数等。
下面是最小二乘法的基本步骤:
1.收集数据并确定要拟合的函数类型。
2.确定函数中的待定系数,例如线性函数中的截距和斜率,二次
函数中的二次项系数、一次项系数和截距等。
3.计算每个数据点到拟合曲线的垂直距离或水平距离。
4.通过最小化距离平方和来确定待定系数,例如线性函数中可以
使用公式(b-x)² + (c-y)² = 最小值,其中b和c是待定的截距和斜率。
5.求解方程组来确定待定系数,例如在线性函数中可以使用公式
b = ∑xiyi / ∑xi,
c = ∑xi² / ∑xi来计算截距和斜率。
6.使用确定的函数系数来绘制拟合曲线。
需要注意的是,最小二乘法可能不适用于所有类型的数据,并且可能需要使用其他曲线拟合方法来获得更好的结果。
在实际应用中,还需要考虑数据的准确性和可靠性,以及选择最适合数据类型的拟合方法。
曲线拟合的最小二乘法原理及实现
曲线拟合的最小二乘法原理及实现任务名称简介在数据处理和统计分析中,曲线拟合是一种常见的技术,旨在通过数学函数找到最佳拟合曲线,以尽可能准确地描述给定数据集的变化趋势。
在曲线拟合的过程中,最小二乘法是一种常用的数学方法,用于选择最佳拟合曲线。
本文将详细介绍最小二乘法的原理和实现方法。
最小二乘法原理最小二乘法是一种通过最小化误差平方和来拟合数据的方法。
其基本原理是将数据集中的每个数据点与拟合曲线上对应点的差值进行平方,然后将所有差值的平方相加,得到误差平方和。
最小二乘法的目标是通过调整拟合曲线的参数,使得误差平方和达到最小值。
假设我们有一个包含n个数据点的数据集,每个数据点的横坐标为x,纵坐标为y。
我们希望找到一个拟合曲线,可以通过曲线上的点与数据点的差值来评估拟合效果。
拟合曲线的一般形式可以表示为:y = f(x, β)其中,β为拟合曲线的参数,f为拟合曲线的函数。
最小二乘法的基本思想是选择适当的参数β,使得误差平方和最小化。
误差平方和可以表示为:S(β) = Σ(y - f(x, β))^2其中,Σ表示求和操作,拟合曲线上的点的横坐标为x,纵坐标为f(x, β)。
为了找到误差平方和的最小值,我们需要对参数β进行求解。
最常用的方法是对参数β求导数,令导数为0,从而得到参数的估计值。
求解得到的参数估计值就是使得误差平方和最小化的参数。
最小二乘法实现步骤最小二乘法的实现可以分为以下几个步骤:1.确定拟合曲线的函数形式。
根据数据的特点和拟合的需求,选择合适的拟合曲线函数,例如线性函数、多项式函数等。
2.建立误差函数。
根据选择的拟合曲线函数,建立误差函数,即每个数据点与拟合曲线上对应点的差值的平方。
3.求解参数估计值。
对误差函数求导数,并令导数为0,求解得到参数的估计值。
4.进行拟合曲线的评估。
通过计算误差平方和等指标来评估拟合曲线的质量,可以使用残差平方和、R方值等指标。
5.优化拟合结果(可选)。
根据评估的结果,如有必要可以调整拟合曲线的参数或选择其他拟合曲线函数,以得到更好的拟合效果。
曲线拟合 最小二乘法
曲线拟合的线性最小二乘法拟合是已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。
线性最小二乘法曲线拟合问题的提法是,已知一组(二维)数据,即平面上的n 个点(,),i i x y 1,2,,i n =⋅⋅⋅,i x 互不相同,寻求一个函数(曲线)()y f x =,使()f x 在某种准则下与所有数据点最为接近,即曲线拟合的最好。
线性最小二乘法是解决曲线拟合最常用的方法,基本思路是,令1122()()()(),m m f x a r x a r x a r x =++⋅⋅⋅+其中:()k r x 是事先选定的一组线性无关的函数;k a 是待定系数(1,2,,;k m =⋅⋅⋅)m n <。
拟合准则是使(1,2,,)i y i n =⋅⋅⋅与()i f x 的距离i δ的平方和最小,称为最小二乘准则。
1.系数k a 的确定 记[]221211(,,,)()nnm i i i i i J a a a f x y δ====-∑∑为求12,,,m a a a ⋅⋅⋅使J 达到最小,只需利用极值的必要条件0jJa ∂=∂(1,2,,)j m =⋅⋅⋅,得到关于12,,,m a a a ⋅⋅⋅的线性方程组11()[()]0,1,2,,n mjik kiii k r x a r x y j m ==-==∑∑,即111[()()](),1,2,,.m n nkjikijiik i i a r x r x r x y j m =====∑∑∑ (1.1)记1111()()()()m n m n n mr x r x R r x r x ⨯⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ [][]TT1212,,,,,,,m n A a a a Y y y y =⋅⋅⋅=⋅⋅⋅方程(1.1)可表为T T .R RA R Y = (1.2) 当{}12(),(),,()m r x r x r x ⋅⋅⋅线性无关时,R 列满秩,T R R 可逆,于是方程组(1.2)有唯一解()1TT .A R R R Y -=2.函数()k r x 的选取面对一组数据(,),1,2,,i i x y i n =⋅⋅⋅,用线性最小二乘法作曲线拟合时,首要的也是关键的一步是恰当地选取12(),(),,()m r x r x r x ⋅⋅⋅。
最小二乘法线性详细说明
利用最小二乘法计算出b, a得出回归方程即两个变 量之间的关系式。
计算 s ,并利用肖维涅准则判断有无粗差。
如果有粗差,剔除后重复①,②,③步骤计算。
如无粗差,计算b , a ,给出最后的回归方程。
26
〔例题〕
用伏安法测电阻,测量数据如表。问能否拟 合成线性关系曲线?若可以,试判断有无粗
只有相关系数 R≥ R时0 ,才能用线性回归方程
y=a+bx来描述数据的的分布规律。否则毫无 意义。
24
回归方程的精密度
根据统计理论还可以求出a和b的标准偏差分别 为:
b s
sx x
a b
xi2 n
xi2
s
nsxx
25
回归分析法的运算步骤
首先计算R,判断是否能拟合成线性曲线。 R≥ R0
b2 s11 s2 y s12 s1y
s s s 11 22
2 12
a y b1x1 b2 x 2
32
公式中:
s11
x2 1i
(
x1i)2 n
s22
x2 2i
(
x2i)2 n
s12
b=0,a= y , 从而得到y= y 的错误结论。这说明数据点
的分布不是线性,不能拟合为线性关系曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
误差平方和表达公式: Q=∑i=n(1y^i-yi)2
3:拟合1次曲线y=ax+b
根据公式: Q=∑i=n(1y^i-yi)2 因为y=ax+b 所以 Q= ∑(axi+b-yi) 2
根据最小二乘原理,为使Q有最小值,应满足如下式子:
Q a =0
Q =0 b
最后得到: a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
解得:a=1.1 b=-0.7
所以:线性拟合曲线函数为: y=1.1x-0.7
例2:试用二次曲线 y=ax2+bx+c 拟合下列数据:
-3
-2 -1 0
1
23
Yi 4
2
3 0 -1 -2 -5
求得方程组为:
196a 28b
28a
+28c=-7 =-39
+7c=1
解得: b =-39/28 a=-11/84 c=2/3
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
4:拟合2次曲线y=ax2+bx+c
分析:
误差平方和表达公式:
Q=∑(y^i-yi)2
因为y=ax2+bx+c 所以 Q= ∑(axi2+bxi+c -yi) 2
又根据:Q分别对a、b、c求偏导值为0,最后求得公式为:
∑xi4 a + ∑xi3 b + ∑xi2 c = ∑xi 2yi ∑xi3
a + ∑xi2 b + ∑xi c = ∑xi yi ∑xi2 a +
a=1/4 b=1/4 c=-1/4
Y=0.25x2+0.25x-0.25
Y=0.050035x2+0.972579
课堂练习:设给定的观测数据如下,求线性拟合函
数 y=ax2+bx+c。
xi 1
2
yi 0
2
34 25
答案:
求得方程组为:
354a+100b +30c=106 100a+30b+10c=30 30a+10b+4c=9
解得: a=0.25 b=0.25 c=-0.25
拟合曲线为: y=(-11x2-117x+56)/84
x
y
1.61 1.64
1.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62
1.68 1.71
1.58 1.63
练习1
根据左侧数据求拟合曲线函数:y=ax+b
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
∑xi b +n c = ∑yi
例1:设给定的观测数据如下,求线性拟合函数
y=ax+b。
xi 1 2 yi 0 2
34 5 25 4
解:
a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
xi平方和为:55 xi和为:15 xi乘yi和为:50 yi和为:13
代入公式,得到方程组为: 55a+15b=50 15a+5b=13
拟合曲线为: y=0.25x2+0.25x-0.25
课堂练习
设给定观测数据如下,求线性拟合函数 y=ax2+bx+c
上题答案
Xi4和354 Xi3和100 Xi2和=30 Xi和10 Xiyi和30 Yi和9
N=4
Xi2yi和106
354a+100b+30c=106 100a+30b+10c=30 30a+10b+4c=9