五年级奥数-最大最小问题
五年级奥数分册第38周 最大最小问题【优质】
第三十八周最大最小问题专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1,枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2,着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
例题1 把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?分析为了方便描述,我们把图中部分三角形注上字母,从图中可以看出:中心处D中填的数和三条边上的和没有关系,因此,应填最小的数1。
而三个角上的a、b、c六个三角形中的数都被用过两次,所以要尽可能填大数,即填11——16。
然后根据“三角形三边上7个小三角形内数的和相等”这一条件,就可以计算出这个和的最大值了。
(2+3+4+…+16+11+12+13+14+15+16)÷3=72练习一1,将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2,把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
3,将1——9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20。
例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?分析 3堆西瓜的总重量是42.5千克,要使最重的一堆尽可能轻些,另两堆就得尽可能重些。
根据42.5÷3=14千克……0.5千克可知:最重的一堆是14+0.5=14.5千克,即由6千克和8。
五年级奥数分册第38周 最大最小问题-名师版
第三十八周最大最小问题专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1,枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2,着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
例题1 把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?分析为了方便描述,我们把图中部分三角形注上字母,从图中可以看出:中心处D中填的数和三条边上的和没有关系,因此,应填最小的数1。
而三个角上的a、b、c六个三角形中的数都被用过两次,所以要尽可能填大数,即填11——16。
然后根据“三角形三边上7个小三角形内数的和相等”这一条件,就可以计算出这个和的最大值了。
(2+3+4+…+16+11+12+13+14+15+16)÷3=72练习一1,将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2,把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
3,将1——9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20。
例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?分析 3堆西瓜的总重量是42.5千克,要使最重的一堆尽可能轻些,另两堆就得尽可能重些。
根据42.5÷3=14千克……0.5千克可知:最重的一堆是14+0.5=14.5千克,即由6千克和8。
小学五年级奥数第38讲 最大最小问题(含答案分析)
第38讲最大最小问题一、专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1、枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
二、精讲精练例题1把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?练习一1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?练习二1、一把钥匙只能开一把锁。
现有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁。
最多要试开多少次才能配好全部钥匙和锁?2、如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。
那么年龄最大的最多是几岁?例题3 一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)练习三1、一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。
2、如下图,有两条垂直相交的线段AB、CD,交点为E。
已知DE=2CE,BE=3AE。
在AB和CD取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?例题4一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。
小学数学奥数基础教程(五年级)--18
小学数学奥数基础教程(五年级)本教程共30讲本教程共30讲最大最小同学们在学习中经常能碰到求最大最小或最多最少的问题,这一讲就来讲解这个问题。
例1两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?分析与解:将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,1×14=14;15=2+13,2×13=26;15=3+12,3×12=36;15=4+11,4×11=44;15=5+10,5×10=50;15=6+9,6×9=54;15=7+8,7×8=56。
由此可知把15分成7与8之和,这两数的乘积最大。
结论1如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。
特别地,当这两个数相等时,他们的乘积最大。
例2比较下面两个乘积的大小:a=57128463×87596512,b=57128460×87596515。
分析与解:对于a,b两个积,它们都是8位数乘以8位数,尽管两组对应因数很相似,但并不完全相同。
直接计算出这两个8位数的乘积是很繁的。
仔细观察两组对应因数的大小发现,因为57128463比57128460多3,87596512比87596515少3,所以它们的两因数之和相等,即57128463+87596512=57128460+87596515。
因为a的两个因数之差小于b的两个因数之差,根据结论1可得a>b。
例3用长36米的竹篱笆围成一个长方形菜园,围成菜园的最大面积是多少?分析与解:已知这个长方形的周长是36米,即四边之和是定数。
长方形的面积等于长乘以宽。
因为长+宽=36÷2=18(米),由结论知,围成长方形的最大的面积是9×9=81(米2)。
例3说明,周长一定的长方形中,正方形的面积最大。
例4两个自然数的积是48,这两个自然数是什么值时,它们的和最小?分析与解:48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。
五年级奥数分册第38周 最大最小问题【最佳】
第三十八周最大最小问题专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1,枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2,着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
例题1 把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?分析为了方便描述,我们把图中部分三角形注上字母,从图中可以看出:中心处D中填的数和三条边上的和没有关系,因此,应填最小的数1。
而三个角上的a、b、c六个三角形中的数都被用过两次,所以要尽可能填大数,即填11——16。
然后根据“三角形三边上7个小三角形内数的和相等”这一条件,就可以计算出这个和的最大值了。
(2+3+4+…+16+11+12+13+14+15+16)÷3=72练习一1,将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2,把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
3,将1——9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20。
例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?分析 3堆西瓜的总重量是42.5千克,要使最重的一堆尽可能轻些,另两堆就得尽可能重些。
根据42.5÷3=14千克……0.5千克可知:最重的一堆是14+0.5=14.5千克,即由6千克和8。
五年级奥数 第38讲 最大最小问题
第38讲最大最小问题一、专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1、枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
二、精讲精练例题1把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?练习一1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?练习二1、一把钥匙只能开一把锁。
现有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁。
最多要试开多少次才能配好全部钥匙和锁?2、如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。
那么年龄最大的最多是几岁?例题3 一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)练习三1、一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。
2、如下图,有两条垂直相交的线段AB、CD,交点为E。
已知DE=2CE,BE=3AE。
在AB和CD取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?例题4一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。
五年级奥数-最大公约数与最小公倍数
1.五年一班去划船,他们算了一下,如果增加一条船,正好每船坐6个,如果减少一条船,正好每船坐9人,这个班有多少人?2.有一个电子表,每走9分钟这一次灯,每到整点响一次铃,中午12点整,电子表既响铃又灯,请问下一次既响铃又亮灯是几点钟?3.两个整数的最小公倍数为140,最大公约数为4,且小数不能整除大数,求这两个数。
4.一个数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,此数最小是几?5.一次会餐提供三种饮料,餐后统计,三种饮料共用65瓶,平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料,请问参加会餐的有多少人?6.已知A与B的最大公约数为6,最小公倍数为84,且A×B=42,求B。
7.两个数的最大公约数为12,最小公倍数为180,且较大数不能被较小数整除,求这两个数,8.甲乙两数的最大公约数为75,最小公倍数为450,当这两个数分别为何值时,它们差最小。
9.已知A和B的最大公约数是31,且A×B=5766,求A和B。
10.有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问这个盘子里最少有多少个水果?11.有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?12.一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最小有多少枝?13.把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?14.把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?15.用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花?16.从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?17.在一根长100厘米的木棍上,自左到右每隔6厘米染一个红点,同时自右到左每隔5厘米染一个红点,染后沿红点将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?18.每筐梨,按每份两个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?19.现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?20.有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?21.有一个商店今年7月1日开业,有三个批发商从这个商店批货,甲每隔6天来一次,乙每隔8天来一次,丙每隔9天来一次,问这三个批发商在7月1日在碰面后,再过多少天他们还在这家商店碰面?到明年7月1日,他们一共碰面多少次?五年级奥数-最大公约数与最小公倍数(3)1.两个自然数的最大公约数是6,最小公倍数是72。
五年级下册数学专项训练 奥数第四讲 最大公约数和最小公倍数 _ 全国版 (含答案)
第四讲最大公约数和最小公倍数本讲重点解决与最大公约数和最小公倍数有关的另一类问题——有关两个自然数.它们的最大公约数、最小公倍数之间的相互关系的问题。
定理1 两个自然数分别除以它们的最大公约数,所得的商互质.即如果(a,b)=d,那么(a÷d,b÷d)=1。
证明:设a÷d=a1,b÷d=b1,那么a=a1d,b=b1d。
假设(a1,b1)≠1,可设(a1,b1)=m(m>1),于是有a1=a2m,b1=b2m.(a2,b2是整数)所以a=a1d=a2md,b=b1d=b2md。
那么md是a、b的公约数。
又∵m>1,∵md>d。
这就与d是a、b的最大公约数相矛盾.因此,(a1,b1)≠1的假设是不正确的.所以只能是(a1,b1)=1,也就是(a÷d,b÷d)=1。
定理2 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积.(证明略)定理3 两个数的公约数一定是这两个数的最大公约数的约数.(证明略)下面我们就应用这些知识来解决一些具体的问题。
例1 甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数.解法1:由甲数×乙数=甲、乙两数的最大公约数×两数的最小公倍数,可得36×乙数=4×288,乙数=4×288÷36,解出乙数=32。
答:乙数是32。
解法2:因为甲、乙两数的最大公约数为4,则甲数=4×9,设乙数=4×b1,且(b1,9)=1。
因为甲、乙两数的最小公倍数是288,则288=4×9×b1,b1=288÷36,解出b1=8。
所以,乙数=4×8=32。
答:乙数是32。
例2 已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?解:要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,a<b。
2021—2022学年五年级下册奥数专训题----最大最小问题(附答案)
2021—2022学年五年级下册奥数专训题----最大最小问题姓名:___________班级:___________考号:___________一、填空题1.将1,2,3,4,5,6六个数填入圆圈内,使三角形每条边的和相等,并且最大。
2.把1~8 分别填入下图的圆圈内,使每个大圆的五个数的和相等,并且最大。
二、解答题3.一次一把钥匙开一把锁,现有三把钥匙、三把锁,但不知道哪把钥匙开哪把锁。
问:最多要试多少次才知道哪把钥匙开哪把锁?4.有5位同学收集汽车票,他们共有3张1元、3张2元、2张5元和4张10元的车票,这五位同学每人的车票价钱数各不相同,问:收集汽车票价钱最多的同学最少收集了多少元的汽车票?5.4个人的年龄和是100岁,其中最小的17岁,且四人的年龄都不相同,那么年龄最大的最多是几岁?6.一把钥匙只能开一把锁,现有五把钥匙、五把锁,但不知道哪把钥匙开哪把锁。
问:最多要试开多少次才能配好全部的锁和钥匙?7.一个三位数除以39,商是a,余数是b(a,b都是整数)。
求a-b的最大值。
8.一次考试满分100分,5个同学平均得分92分,且各人得分是不相同的整数。
已知分数最少的80分。
那么第三名同学最少得多少分?9.有两条垂直相交的线段AB、CD,交点为E。
已知DE=3CE,BE=4AE,在AB、CD上取三点画三角形,问:怎样取三角形的面积最大?10.甲、乙、丙三同学移动7张桌子,由于桌子的远近关系,移动桌子所花的时间分别为4分钟、5分钟、6分钟、7分钟、8分钟、9分钟和10分钟。
现三人同时开始,至少要花多少时间全部移完?11.某大街两侧有三家大商店,从甲店经过乙店到丙店要走3000m,从乙店经过丙店到甲店要走3500m,从丙店经过甲店到乙店要走2500m。
哪两家的店距离最近?相距多远?12.在一次考试中小明的语文和数学平均成绩是96分,数学和英语的平均成绩是88分,语文和英语的平均成绩是86分。
【精品奥数】五年级下册数学思维训练讲义-第九讲 最大最小问题 人教版(含答案)
第九讲最大最小问题
第一部分:趣味数学
在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些
极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值
的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:
1,枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;
2,着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
第二部分:奥数小练
例题1 一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)
思维导航:除得65分的同学外,其余5位同学的总分是91×6-65=481分。
根据第三名同学得分要至少,也就说其他四人得分要尽量高,第一、第二名分别得100分和99分,而接近的三个不同分是93、94、95。
所以,第三名至少得95分。
练习一
1.一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。
2.如下图,有两条垂直相交的线段AB、CD,交点为E。
已知DE=2CE,BE=3AE。
在AB和CD 取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?
3.一次考试满分100分,5位同学平均分是90分,且各人得分是不相同的整数。
已知得分最少的人得了75分,那么,第三名同学至少得了多少分?。
五年级奥数举一反三第38讲 最大最小问题含答案
第38讲最大最小问题一、专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1、枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
二、精讲精练例题1把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?练习一1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?练习二1、一把钥匙只能开一把锁。
现有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁。
最多要试开多少次才能配好全部钥匙和锁?2、如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。
那么年龄最大的最多是几岁?例题3 一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)练习三1、一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。
2、如下图,有两条垂直相交的线段AB、CD,交点为E。
已知DE=2CE,BE=3AE。
在AB和CD取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?例题4一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。
五年级奥数分册第38周 最大最小问题-推荐
第三十八周最大最小问题专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1,枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2,着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
例题1 把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?分析为了方便描述,我们把图中部分三角形注上字母,从图中可以看出:中心处D中填的数和三条边上的和没有关系,因此,应填最小的数1。
而三个角上的a、b、c六个三角形中的数都被用过两次,所以要尽可能填大数,即填11——16。
然后根据“三角形三边上7个小三角形内数的和相等”这一条件,就可以计算出这个和的最大值了。
(2+3+4+…+16+11+12+13+14+15+16)÷3=72练习一1,将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2,把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
3,将1——9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20。
例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?分析 3堆西瓜的总重量是42.5千克,要使最重的一堆尽可能轻些,另两堆就得尽可能重些。
根据42.5÷3=14千克……0.5千克可知:最重的一堆是14+0.5=14.5千克,即由6千克和8。
五年级奥数专题九
五年级奥数专题九:最大公因数与最小公倍数练习一:1、一张长方形的纸,长7分米5厘米,宽6分米。
现在要把它裁成一块块正方形,而且正方形边长为整数,有几种裁法?如果要裁得的正方形面积最大,可以裁多少块?2、把1米3分米5厘米长,1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?3、一块长45厘米,宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?4、将一块长80米,宽60米的土地划分成面积相等的小正方形。
问:小正方形的面积最大是多少平方米?练习二:1、一个长方体木块,长2.7米,宽1.8分米,高1.5分米。
要把它切成大小相等的小正方体木块,不许有剩余,所切的正方体的棱长最大是多少分米?2、一个长方体木块,长4分米5厘米,宽3分米6厘米,高2分米4厘米。
要把它切成大小相等的小正方体木块,不许有剩余,所切的正方体的棱长最大是多少分米?3、有50个梨,75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?4、有3根钢管,它们的长度分别是240厘米,200厘米和480厘米,如果把它们截成同样长的小段,且不许有剩余。
每小段最长可以是多少厘米?练习三:1、一个数除200余4,除300余6,除500余10。
求这个数最大是多少?2、一个数除15064,除250余10,除350余14。
求这个数最大是多少?1、两个数的最大公约数是15,最小公倍数是90。
求这两个数分别是多少?2、两个数的最大公约数是9,最小公倍数是90。
求这两个数分别是多少?3、两个数的最大公约数是12,最小公倍数是60。
求这两个数的和是多少?4、两个数的和是52,它们的最大公约数是4,最小公倍数是144。
求这两个数分别是多少?练习二:1、两个自然数的积是360,最小公倍数是120,这两个数各是多少?2、求36和24的最大公约数和最小公倍数的乘积。
五年级奥数-第38讲 最大最小问题
第38讲最大最小问题一、专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1、枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
二、精讲精练例题1把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?练习一1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?练习二1、一把钥匙只能开一把锁。
现有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁。
最多要试开多少次才能配好全部钥匙和锁?2、如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。
那么年龄最大的最多是几岁?例题3 一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)练习三1、一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。
2、如下图,有两条垂直相交的线段AB、CD,交点为E。
已知DE=2CE,BE=3AE。
在AB和CD取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?例题4一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。
五年级奥数练习第38周 最大最小问题
第三十八周最大最小问题专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1,枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2,着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
例题1 把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?分析为了方便描述,我们把图中部分三角形注上字母,从图中可以看出:中心处D中填的数和三条边上的和没有关系,因此,应填最小的数1。
而三个角上的a、b、c六个三角形中的数都被用过两次,所以要尽可能填大数,即填11——16。
然后根据“三角形三边上7个小三角形内数的和相等”这一条件,就可以计算出这个和的最大值了。
(2+3+4+…+16+11+12+13+14+15+16)÷3=72练习一1,将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2,把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
3,将1——9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20。
例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?分析 3堆西瓜的总重量是42.5千克,要使最重的一堆尽可能轻些,另两堆就得尽可能重些。
根据42.5÷3=14千克……0.5千克可知:最重的一堆是14+0.5=14.5千克,即由6千克和8。
2022-2023学年小学五年级奥数(全国通用)测评卷21《最大和最小问题》(解析版)
【五年级奥数举一反三—全国通用】测评卷21《最大和最小问题》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共11小题,满分22分,每小题2分)1.(2分)A、B、C都是自然数,2160A B C++的最小可能值为()⨯⨯=,A B CA.48 B.32 C.39 D.28【解答】解:216022223335=⨯⨯⨯⨯⨯⨯⨯要使A B C++的和最小,那么A、B、C之间的差最小,所以,2160121215=⨯⨯++=12121539所以,A B C++的最小值为39.故选:C。
2.(2分)若36个连续奇数的和是2016,其中最大的一个是()A.91 B.93 C.95 D.97【解答】解:设最大的一个是x,则最小的一个是(361)270x x--⨯=-,+-⨯÷=(70)3622016x xx-⨯=(270)182016270112x-=x=91答:其中最大的一个是91.故选:A。
3.(2分)桌上有1~20的20张卡片,小明每次取出2张卡片,要求一张卡片的编号是另一张卡片的2倍多2,则小明最多取出()张卡片.A.12 B.14 C.16 D.18【解答】解:设另一张卡号是x,则:x+2220212202x+--x21822182x ÷÷9x又因为1x9218⨯=(张) 4、6、8即可以做为一倍量的数,也可以作为2倍量多2的数,∴即总共可以取出:183212-⨯=张;答:小明最多可以取出12张卡片.故选:A 。
4.(2分)由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是如图,搭这样的立体,最少用( )个这样的木块.A .4B .5C .6D .8【解答】解:根据题干分析可得,这个图形至少有小正方体:224+=(个),故选:A 。
5.(2分)在66⨯的方格表中,摆放写有的长方形,每个长方形恰好盖住2个方格,如果任意两个长方形之间没有公共边(可以有公共顶点),那么棋盘中摆放的长方形的方格内所有数之和最大是( )A .266B .304C .342D .380【解答】解:因为任意两个长方形之间没有公共边,所以每个长方形盖住的数字都是20和18,平均数为19,则所有数字之和是36219342÷⨯=,.故选:C 。
五年级奥数最大公因和最小公倍数
课题:最大公因数和最小公倍数专题简析1:最大公因数几个公有的因数叫这几个数的公因数,其中最大的一个公因数叫做这几个数的最大公因数;我们可以把自然数a、b的最大公因数记作a、b,如果a、b=1,则a、b互质;求几个数的的最大公因数可以用列举法、分解质因数法和断除法等方法;例1 求下面每组数的最大公因数;45和18 51和17 28和96 24、38和1860和36 180和240 72和60 60、36和72 例2 120的因数有多少个例3 一张长方形的纸,长7分米5厘米、宽6分米;现在要把它裁成一块块正方形,而且正方形边长为整厘米数,有几种裁法如果要使裁得的正方形面积最大,可以裁多少块例4 有三根小棒,长分别是12厘米,14厘米,16厘米,要把它们都裁成同样长的小棒,不许有剩余,每根小棒最长能有多少厘米例5 一个数除200余4;除300余6;除500余10.求这个数最大是多少举一反三1、将一块长80米、宽60米土地划分成面积相等的小正方形;问:小正方形的面积最大是多少2、一个长方体木块,长2.7米,宽18分米、高15分米;要把它切成大小相等的正方体木块,不许有剩余;、,正方体的棱长最大是多少分米3、一个数除150余6,除250余10,除350余14,这个数最大是多少4、有一个三角形花圃,三边的长度分别是56米、36米、24米;现在这三条边上等距离栽菊花,并且每两株菊花之间的距离尽量大;问:一共栽多少株菊花5、一块三角形地,要在三条边上按等距离插红旗三个顶点必须各插一面,要使插的面数最少,应该准备多少面红旗甲48米 72米乙 54米丙专题简析2:最小公倍数几个数公有的倍数叫做这几个数的公倍数,其中最小的一个公倍数,叫做这几个数的最小公倍数;自然数a、b的最小公倍数可以记作〔a、b〕,当a、b=1时,〔a、b〕=a×b;两个数的最大公因数和最小公倍数有着下列关系:最大公因数×最小公倍数=两数的积即a、b×〔a、b〕= a×b要解答求最小公倍数的问题,关键要根据题目中的已知条件,对问题作全面的分析,若要求的数对已知条件来说,是处于被除数的地位,通常就是求最小公倍数,解题时要避免和最大公因数问题混淆;例1 两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少例2两个自然数的积是360,最小公倍数是120,这两个数各是多少例3 三位朋友每人隔不同的天数到图书馆去看书,甲3天去一次,乙4天去一次,丙5天去一次;一个星期一,他们三人在图书馆相遇,至少再过多少天他们又在图书馆相遇相遇时是星期几例4 一块砖长20厘米,宽12厘米,厚6厘米;要堆成正方体至少需要这样的转多少块例5 有一个自然数,被10除余7,被7除余4,被4除余1.这个自然数最小是多少同步练习1、两个数的最大公因数是9,最小公倍数是90,求这两个数分别是多少2、已知两个数的积是3072,最大公因数是16,求这两个数;3、1路、2路和5路车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路车每隔20分钟发一辆;当这三种路线的车同时发车后,至少要经过多少分钟这三种路线的车有同时发车4、用长9厘米、宽6厘米、高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块5、一个数能被3、5、7整除,但被11除余1.这个数最少是多少6、插一排红旗共26面;原来每两面之间的距离是4米,现在改为5米;如果起点一面不移动,还可以有几面移动同步测试1、求下面各组数的最大公因数和最小公倍数;15和12 90和45 42和70 39和652、一块长方体木料,长72厘米,宽60厘米,高36厘米,请你把它锯成同样大小的正方体木块,且木块的体积要最大,木料又不能剩;算一算可以锯成几块3、排练团体操,要求队伍变成10行、15行、18行、24行时队伍能成为矩形,问至少要多少人参加排练4、将长、宽、高分别为6㎝、4㎝、8㎝的长方体积木,叠成最小的正方体,最少要积木多少块5、用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花6、在一根长100厘米的木棍上,自左至右每隔6厘米染上一个红点,同时自右至左每隔5厘米染上一个红点,染后沿红点将木棍逐段锯开,那么长度是1厘米的短木棍有多少根7、兄弟三人在外工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次,兄弟三人同时在十月一日回家,下一次三人再见面要再过多少天8、教师节那天,某校工会买了320个苹果、240个桔子、200个鸭梨,用来慰问退休的教职工;问用这些果品,最多可以分成多少份同样的礼物同样的礼物指的是每份礼物中苹果、桔子、鸭梨的个数彼此相等在每礼物中,苹果、桔子、鸭梨各多少个9、一张长方形的纸,长为96厘米,宽为60厘米,把它裁成同样大小且边长为整厘米数的正方形而无剩余,问至少可以裁多少张10、一块长方形地面,长120米,宽60米,要在它的四周和四角种树,每两棵之间的距离相等,最少要种树苗多少棵每相邻两棵之间的距离是多少米11、加工机器零件,要经过三道工序;第一道工序每个工人每小时完成3个,第二道工序每个工人每小时完成12个,第三道工序每个工人每小时完成5个,要使生产顺利进行,又不浪费人力、时间,三道工序至少各分配几人12、在一张长60厘米的纸条上,从左端起,先每隔3厘米画一个红点,在从左端起,每隔4厘米画一个红点;纸条的两端都不画;最后,纸条上共有多少个红点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大最小问题
专题简析:
在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:
1,枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;
2,着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
例1.把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?
变式训练
1.将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?
2.把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
3.将1——9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20。
例2.有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5
千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?
变式训练
1.一把钥匙只能开一把锁。
现有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁。
最多要试开多少次才能配好全部钥匙和锁?
2.如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。
那么年龄最大的最多是几岁?
3.五位同学捐款,他们捐的钱有3张1元的,4张2元的,3张5元的和3张10元的。
这五位同学捐款数各不相同,问:捐款最多的同学至少捐了多少元?
例3.一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)
变式训练
1.一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。
2.如下图,有两条垂直相交的线段AB、CD,交点为E。
已知DE=2CE,BE=3AE。
在AB和CD 取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?
3.一次考试满分100分,5位同学平均分是90分,且各人得分是不相同的整数。
已知得分最少的人得了75分,那么,第一名同学至少得了多少分?
例4.一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。
现由两个小组分别承包这两项工作,工时如下表(一种庄稼不割好、捆好,不准运输),这两组从开工到完工最少经过多少小时?
变式训练
1.三个老师为7位不同的扮演者化妆,这7位同学化妆需要的时间分别为8、12、14、17、18、23、30分钟。
如果三位老师化妆速度相同,问最少经过多少时间完成化妆任务?
2.甲、乙、丙三位同学为7棵树苗浇水,由于各棵树路程的远近关系,需浇水的时间分别为:4、5、6、6、8、9、9分钟。
现三人各自同时开始,至少几分钟全部浇完?
3.有五人来理发,按发型所用时间是10、12、15、22和24分钟。
由两位师傅同时为这五人理发,问怎样安排,使五人理发和等候的时间总和最少,最少是多少分钟?
例5.A、B、C是三个风景点,从A出发经过B到达C要走18千米,从A经过C到B要走16千米,从B经过A到C要走24千米。
相距最近的是哪两个风景点?它们之间相距多少千米?
变式训练
1.人民路两侧有三家大商店,从甲店经过乙店到丙店要走300米,从乙店经过丙店到甲店要走350米,从丙店经过甲店到乙店要走250米。
哪两家店之间的距离最近?相距多少米?
2.在期中测试中,小华语文和数学平均成绩是96分,数学和作文平均成绩是88分,语文和作文平均成绩是86分。
求小华的这三门功课哪门得分最高,是多少分?
3.十个参赛者的平均得分是82分,前6人的平均分是83分,后6人的平均分是80分。
那么第5个和第6个人的平均分是多少分?。