2014年广西柳州市中考数学试卷及答案

合集下载

2014年柳州中考数学说明

2014年柳州中考数学说明

2014年柳州中考数学说明2014年柳州市初中毕业升学考试学科说明数学一、考试目的初中毕业升学考试是义务教育阶段的终结性考试,目的是全面、准确地反映初中毕业生在学科学习方面所达到的水平。

考试结果既是衡量学生是否达到初中毕业标准的重要依据,也是普通高中招生录取的重要依据之一。

二、命题指导思想认真贯彻党的十八大精神,以科学发展观为指导,全面贯彻党的教育方针,贯彻落实国家和广西教育规划纲要精神。

考试应有利于贯彻新课改理念,全面推进素质教育;有利于检查初中教学质量,促进义务教育均衡发展,全面提高教育教学质量;有利于推动课程改革,减轻学生的过重学业负担,促使教师转变教学方式、学生转变学习方式,培养学生的创新精神和实践能力;有利于考试评价制度改革和高一级学校选拔合格的具有学习潜能的新生。

三、命题基本原则(一)导向性原则。

有利于全面实施素质教育,推进城乡公平教育,促进教育均衡发展;有利于继续推进基础教育课程改革,促进教师转变教学方式和学生转变学习方式;有利于培养学生正确的人生观和价值观;有利于初高中教学的衔接,为学生在高中阶段的学习打好基础。

(二)基础性原则。

以学科课程标准为依据,认真达到学习目标的要求;内容要以课程教材作为基础材料,符合学生的实际,加强对学生必备的基础知识、基本方法和基本技能的考查,体现基础性、教育公平和均衡发展要求。

(三)科学性原则。

严格按照规定的程序和要求组织命题,试题内容科学,符合考生的认知水平,难易适当;试卷结构科学、合理,形式规范,具有较高信度、效度和良好的区分度。

(四)注重能力立意。

要在考查学生掌握必要知识的基础上,加强考查学生对知识与技能、过程与方法的理解和掌握情况,联系学生的社会生活实际和科技发展需要的数学知识,考查学生灵活运用基础知识、方法和技能分析问题、解决实际问题的能力,尤其注重考查学生的探究能力和实践能力。

(五)教育性原则。

发挥试题的教育功能,坚持立德树人,加强社会主义核心价值体系教育导向,增强学生社会责任感,关注人与自然、社会的和谐发展。

广西柳州市2014年中考数学二模试卷及答案

广西柳州市2014年中考数学二模试卷及答案

新世纪教育网精选资料 版权全部 @新世纪教育网2014 年九年级教课质量抽测(五月)数学(考试时间 120 分钟,满分 120 分)注意事项:1. 答题前,考生先将自己的学校、姓名、准考据号、考场、座号填写在答题卡指定地点,将条形码正确粘贴在答题卡的条形码地区内。

21 世纪教育网版权全部2. 选择题一定使用 2B 铅笔填涂;非选择题一定使用 0. 5 毫米黑色笔迹的署名笔书写。

字体工整,笔迹清楚。

3. 请依据题号次序在各题目的答题卡地区内作答,高出答题地区书写的答案无效。

4. 在底稿纸、试题卷上答题无效。

一、选择题(本大题满分 36 分,每题 3 分 . 在以下各题的四个备选答案中,只有一个是正确的,请在答题卷上把你以为正确的答案的字母代号按要求用 2B 铅笔涂黑) 【根源: 21·世纪·教育·网】1. - 2 的相反数是A. -2B. 21D.1C.222. 2014 年 3 月 5 日,李克强总理在政府工作报告中指出: 2013 年全国城镇新增就业人数约 13 100000 人,创历史新高,将数字 13 100 000用科学计数法表示为 21·世纪 *教育网A. 13.1 106B. 1.31 10 7C. 1.31 108D. 0.131 108 3. 以下运算正确的选项是A. a 2a 2 3a 3B. a 2 a 3 a 6C. (a 3 )2 a 5D. a 6 a 2 a 44. 某几何体的三视图以下图,则该几何体是A. 圆柱B. 圆锥C. 长方体D. 三棱柱 5. 小月的讲义夹里放了大小同样的试卷共 12 页,此中语文 5 页、数学 4 页、英语 3 页,她随机地从讲义夹中抽出 1 页,抽出的试卷恰巧是数学试卷的概率是 www-2-1-cnjy-comA.1B.1C.1D.56 4 3 126. 在以下图案中,是中心对称图形的是7. 甲、乙、丙、丁四位选手各射击 10 次,每人的均匀成绩都是 9.3 环,方差以下表: 选手甲 乙2方差(环 )0.0350.016丙 丁0.0220.025则这四位选手中,成绩发挥最稳固的是A.甲B.乙C.丙D. 丁8. 如图表示一圆柱形输水管的横截面,暗影部分为有水部分,假如OA. 4cmB. 3cmC. 2cmD. 1cm9. 已知对于 x 的一元二次方程 mx 2 2x 1 0 有两个不相等的实数根,则 m 的取值范围是A. m1B. m 1C. m1且 m 0D. m 1且 m 010. 某种商品的进价为 800 元,销售标价为 1200 元,后出处于该商品积压,商铺准备打折销售,要保证收益率不低于 5%,该种商品最多可打 2-1-c-n-j-yA.9折B. 8折C.7折D.6折 11.圆锥的底面半径是 1,侧面积是 2π,则这个圆锥的侧面睁开图的圆心角的度数为A. 180°B. 150°C. 120°D. 60° 21*cnjy*com12. 如图:直线 y2x 5 分别于 x 轴, y 轴交于点 C 、D ,与反比率函数y3x 的图像交于点 A 、B ,过点 A 作 AEy 轴于点 E, 过 点B 作BFx 轴于点 F,连结 EF 、 OA 、 OB.以下结论 ① AD=BC②EF ∥AB③四边形 AEFC 是平行四边形 ④S △ AOD =S确的个数是△BOC ,此中正A. 1B. 2C. 3D.4 【来源: 21cnj*y.co*m 】二、填空题(本大题满分 18 分,每题 3 分,请将答案填在答题第 12题卷上,在试卷上答题无效)13. 函数 y1 中,自变量 x 的取值范围是 _________.x 214.如图,为抄近路踩踏草坪是一种不文明的现象.请你用数学知识解说出现这一现象的原由: ___________________. 15. 分解因式: 2a 24a 2___________________________..化简:( + 1) ÷x21的结果为 _________.第 14题161x x17. 如图,第一个图中两个正方形以下图搁置,将第一个图改变地点后获取第二个图,两图暗影部分的面积 相等,则该图可考证的一个初中数学公式为_____________.教育名师】【出处: 21第 17题18. 如图,在平面直角坐标系 xOy 中,点 A(1, 0),B(2,0),正六边形 ABCDEF 沿x 轴正方向无滑动转动,当点 D 第一次落在 x 轴上时,点 D 的坐标为 : ;在运动过程中,点 A 的纵坐标的最大值是;保持上述运动过程,经过(201,4 3 )的正六边形的极点是 。

2014广西壮族自治区玉林市、防城港市中考数学试题及答案(Word解析版)

2014广西壮族自治区玉林市、防城港市中考数学试题及答案(Word解析版)

2014广西玉林市、防城港市中考数学试卷满分:120分,考试时间:120分钟。

一、单项选择题(共12小题,每小题3分,满分36分)B.B两次都摸到白球的概率是:=9.(3分)(2014•玉林)x1,x2是关于x的一元二次方程x﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的是结论是()使=成立,则+=成立,则∴∴的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()B∴y ××=,高为(×x x 二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2014•玉林)3的倒数是.的倒数是.)在第 二 象限.析:则这一天气温的极差是9℃.16.(3分)(2014•玉林)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.=故答案为∠ABC,则梯形ABCD的周长是7+.AD=,BD ,=+18.(3分)(2014•玉林)如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A和第二象限的点C 分别在双曲线y =1k x和y =2k x 的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①AM CN =12k k ;②阴影部分面积是12(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是 ①④ (把所有正确的结论的序号都填上).=OM |k ON ,所以有=|k |k()=(|k|k ON,∴=正|k|k=(本题考查了反比例函数的综合题:熟练掌握反比例函数的图象、反比例函数19.(6分)(2014•玉林)计算:(﹣2)2﹣•+(sin60°﹣π)0.×+20.(6分)(2014•玉林)先化简,再求值:﹣,其中x=﹣1.解:原式=﹣==﹣时,原式=可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是90°.22.(8分)(2014•玉林)第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?×⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.C,∴=,即=24.(9分)(2014•玉林)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%))分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.BAM)根据同角的余角相等求出∠对应边成比例可得=,根据相似三角形对应边成比例可得,从而得到=,∴2,∴=,,∴=,∴=26.(12分)(2014•玉林)给定直线l:y=kx,抛物线C:y=ax+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.x ,﹣,∴),∴顶点(﹣,﹣=,解得.==,解得.==xx,﹣x===﹣(﹣x)=。

(2014年中考真题)广西自治区桂林市中考数学试卷(有答案)

(2014年中考真题)广西自治区桂林市中考数学试卷(有答案)

2014年广西省桂林市中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2014广西省桂林市,1,3分)2014的倒数是( ) A .12014 B.-12014C.|2014|D.-2014【答案】A 。

2.(2014广西省桂林市,2,3分)如图。

已知AB ∥CD ,∠1=56°,则∠2的度数是( ) A.34° B.56° C.65° D.124° 【答案】B 。

3.(2014广西省桂林市,3,3分)下列各式中,与2a 是同类项的是( )A .3aB .2abC .-3a 2D .a 2b 【答案】A 。

4.(2014广西省桂林市,4,3分)在下面的四个几何体中,同一几何体的主视图与俯视图相同的是( )DAC【答案】D 。

5.(2014广西省桂林市,5,3分)在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点坐标为( )A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3) 【答案】B 。

6.(2014广西省桂林市,6,3分)一次函数y=kx+b (k ≠0)的图像如图所示,则下列结论正确的是( )A .k=2B .k=3C .b=2D .b=3 【答案】D.7.(2014广西省桂林市,7,3分)下列命题中,是真命题的是( )A .等腰三角形都相似B .等边三角形都相似C .锐角三角形都相似D .直角三角形都相似 【答案】B 。

8.(2014广西省桂林市,8,3分)两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为() A.外离 B.外切 C.相交 D.内切 【答案】A 。

9.(2014广西省桂林市,9,3分)下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】C 。

10.(2014广西省桂林市,10,3分)一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球。

2014年广西省玉林市、防城港市中考数学试卷附详细答案(原版+解析版)

2014年广西省玉林市、防城港市中考数学试卷附详细答案(原版+解析版)

2014年广西玉林市、防城港市中考数学试卷一、单项选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•玉林)下面的数中,与﹣2的和为0的是()2.(3分)(2014•玉林)将6.18×10﹣3化为小数的是()3.(3分)(2014•玉林)计算(2a2)3的结果是()4.(3分)(2014•玉林)下面的多项式在实数范围内能因式分解的是()5.(3分)(2014•玉林)如图的几何体的三视图是()A.B.C.D.6.(3分)(2014•玉林)下列命题是假命题的是()7.(3分)(2014•玉林)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()8.(3分)(2014•玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A . B . C . D .9.(3分)(2014•玉林)x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的是结论是( )10.(3分)(2014•玉林)在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是( )11.(3分)(2014•玉林)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC 的顶点都在格点上.设定AB 边如图所示,则△ABC 是直角三角形的个数有( )12.(3分)(2014•玉林)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )..二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2014•玉林)3的倒数是.14.(3分)(2014•玉林)在平面直角坐标系中,点(﹣4,4)在第象限.15.(3分)(2014•玉林)下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是℃.16.(3分)(2014•玉林)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.17.(3分)(2014•玉林)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是.18.(3分)(2014•玉林)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).三、解答题(共8小题,满分66分。

广西柳州市2014年中考数学试卷及答案(word解析版)

广西柳州市2014年中考数学试卷及答案(word解析版)

2014 年广西柳州市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3 分,满分36分)1.(3 分)(2014?柳州)如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()解答:解:从正面看,左边是个正方形,右边是个矩形,故选:A .点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)(2014?柳州)在所给的,0,﹣1,3 这四个数中,最小的数是()A.B.0C.﹣1 D.3考点:有理数大小比较.分析:要解答本题可根据正数大于0,0 大于负数,可得答案.解答:解:﹣1<0< < 3.故选:C.点评:本题考查了有理数比较大小,正数大于0,0 大于负数是解题关键.3.(3 分)(2014?柳州)下列选项中,属于无理数的是()A.2 B.πC.D.﹣2考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无限不循环小数,故选:B .点评:本题考查了无理数,无理数是无限不循环小数.4.(3分)(2014?柳州)如图,直线l∥OB,则∠ 1的度数是(5.(3 分)(2014?柳州)下列计算正确的选项是( )A . ﹣1=B . ( ) 2=5 C . 2a ﹣ b=abD .=:分式的加减法;实数的运算;合并同类项. :计算题.:A 、原式利用平方根定义化简,计算即可得到结果;B 、原式利用平方根定义化简, 计算即可得到结果;C 、原式不能合并,错误;D 、原式利用同分母分式的加法法则计算得到结果,即可做出判断. 解答:解:A 、原式 =2﹣1=1;故选项错误;B 、原式 =5,故选项正确;C 、原式不能合并,故选项错误;D 、原式 = ,故选项错误.故选 B .点评:此题考查了分式的加减法,以及实数的运算,熟练掌握运算法则是解本题的关键.考点 :平行线的性质.分析: 根 据两直线平行,同位角相等解答. 解答:解 :∵直线 l ∥OB ,∴∠ 1=60°.故选 D .点评:本题考查平行线的性质,熟记性质是解题的关键.A . 120°B . 30C . 40°D .60°6.( 3分)( 2014?柳州)如图,直角坐标系中的五角星关于 y 轴对称的图形在( ) 考点 :轴对称的性质. 分析:根据轴对称的性质作出选择.解答:解:如图所示,直角坐标系中的五角星关于 y 轴对称的图形在第一象限.点评:本 题考查了轴对称的性质.此题难度不大,采用了 “数形结合 ”的数学思想.7.(3 分)(2014?柳州)学校 “清洁校园 ”环境爱护志愿者的年龄分布如图,那么这些志愿者 年龄的众数是( )A .12岁B .13 岁C .14岁D .15 岁 考点 :条形统计图;众数. 分析:根据众数的定义,就是出现次数最多的数,据此即可判断. 解答:解:众数是 14 岁.故选 C .点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解 决问题的关键.条形统计图能清楚地表示出每个项目的数据.8.( 3分)( 2014?柳州)如图,当半径分别是 5和 r 的两圆⊙ O 1和⊙O 2 外切时,它们的圆 心距 O 1O 2=8,则⊙ O 2 的半径 r 为( )B . 第二象限C . 第三象限D .第四象限A .第一象限A.12 B.8 C.5 D.3考点 :圆与圆的位置关系.分析:根 据两圆外切时,圆心距 =两圆半径的和求解.解答:解 :根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是 8﹣ 5=3.故选 D .点评:本题考查了圆与圆的位置关系,注意:两圆外切,圆心距等于两圆半径之和.考点 :多 边形.分析:根据菱形的对角线互相垂直即可判断.解答: 解 :菱形的对角线互相垂直,而长方形、平行四边形、直角梯形的对角线不一定互相 垂直.故选 C .点评: 本题考查了长方形、平行四边形、菱形、直角梯形的性质.常见四边形中,菱形与正 方形的对角线互相垂直.10.(3 分)(2014?柳州)如图,正六边形的每一个内角都相等,则其中一个内角 α的度数考点 :多边形内角与外角.分析:多 边形的内角和可以表示成( n ﹣2)?180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为 x ,故又可表示成 6x ,列方程可求解. 解答:解 :设这个正六边形的每一个内角的度数为 x ,则 6x= ( 6﹣ 2)?180°, 解得 x=120 °.故这个正六边形的每一个内角的度数为 120 °. 故答案选: B .点评:本 题考查根据多边形的内角和计算公式求多边形的内角的度数, 解答时要会根据公式进行正确运算、变形和数据处理.2211.( 3分)( 2014?柳州)小兰画了一个函数 y=x +ax+b 的图象如图,则关于 x 的方程 x +ax+b=0 的解是( )9. B . 120°C .60°D .30°A .考点:抛物线与 x 轴的交点. 考点 :列表法与树状图法. 专题 :计算题.分析:根据题意列出表格,得出所有等可能的情况数,找出至少有一个灯泡发光的情况数, 即可求出所求的概率. 解答:解 :列表如下:灯泡 1 发光 灯泡 1 不发光A .无解 C .x=﹣4 D . x=﹣ 1 或 x=40.5,当合上开关时,至B . 0.5C .0.75D .0.95B . x A . 0.灯泡2 发光(发光,发光)(不发光,发光)灯泡2 不发光(发光,不发光)(不发光,不发光)所有等可能的情况有4 种,其中至少有一个灯泡发光的情况有 3 种,则P= =0.75 .故选C.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(共6小题,每小题3分,满分18 分)13.(3分)(2014?柳州)3的相反数是﹣3 .考点:相反数.分析:此题依据相反数的概念求值.相反数的定义:只有符号不同的两个数互为相反数,0 的相反数是0.解答:解:3 的相反数就是﹣3.点评:此题主要考查相反数的概念.14.(3分)(2014?柳州)如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x < y(用“> 或“<”填空).考点:不等式的定义.分析:由图知1号同学比2 号同学矮,据此可解答.解答:解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.点评:本题主要考查了不等式的定义,仔细看图是解题的关键.如图,等腰梯形ABCD 的周长为16,BC=4 ,CD=3 ,则AB= 5考点:等腰梯形的性质.∴ AD=BC ,∵ BC=4 ,∴ AD=4 ,∵ CD=3 ,等腰梯形ABCD 的周长为16,∴ AB=16 ﹣3﹣4﹣4=5,故答案为5.点评:本题考查了等腰梯形的性质,是基础知识要熟练掌握.16.(3 分)(2014?柳州)方程﹣1=0 的解是x= 2考点:解分式方程.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:去分母得:2﹣x=0 ,解得:x=2 ,经检验x=2 是分式方程的解.故答案为:2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(3 分)(2014?柳州)将直线y= x 向上平移7 个单位后得到直线y= x+7.考点:一次函数图象与几何变换.分析:直接根据“上加下减”的原则进行解答.解答:解:由“上加下减”的原则可知,将直线y= x 向上平移7 个单位所得直线的解析式为:= x+7 .故答案为:7.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.18.(3 分)(2014?柳州)如图,在△ABC 中,分别以AC,BC 为边作等边△ACD 和等边△BCE .设△ ACD 、△BCE、△ABC 的面积分别是S1、S2、S3,现有如下结论:22①S1:S2=AC 2:BC2;②连接AE ,BD ,则△ BCD ≌△ ECA;2③若AC ⊥BC ,则S1?S2= S3 .其中结论正确的序号是①②③ .考点:全等三角形的判定与性质;等边三角形的性质.分析:① 根据相似三角形面积的比等于相似比的平方判断;② 根据SAS 即可求得全等;③ 根据面积公式即可判断.解答:① S1:S2=AC 2:BC2正确,解:∵△ ADC 与△ BCE 是等边三角形,∴△ ADC∽△ BCE,22∴ S1:S2=AC 2:BC2.② △BCD ≌△ ECA 正确,证明:∵△ ADC 与△ BCE 是等边三角形,∴∠ ACD= ∠BCE=60 °∴∠ ACD+ ∠ACB= ∠BCE+∠ACD ,即∠ ACE= ∠DCB,在△ ACE 与△ DCB 中,,∴△ BCD≌△ ECA (SAS).2③ 若AC ⊥BC ,则S1?S2= S3 正确,解:设等边三角形ADC 的边长=a,等边三角形BCE 边长=b,则△ADC 的高= a,S32= a2b2,∴ S1?S2= S32.点评:本题考查了三角形全等的判定,等边三角形的性质,面积公式以及相似三角形面积的比等于相似比的平方.三、解答题(共8 小题,满分66分)19.(6 分)(2014?柳州)计算:2×(﹣5)+3.考点:有理数的乘法;有理数的加法.分析:根据异号两数相乘得负,并把绝对值相乘,可得积,再根据有理数的加法,可得答案.解答:解:原式=﹣10+3=﹣7.点评:本题考查了有理数的乘法,先算有理数的乘法,再算有理数的加法,注意运算符号.20.(6 分)(2014?柳州)一位射击运动员在10次射击训练中,命中靶的环数如图.请你根据图表,完成下列问题:)补充完成下面成绩表单的填写:2)求该运动员这10 次射击训练的平均成绩.考点:折线统计图;统计表;算术平均数.分析:根据折线统计图中提供的信息,补全统计表;(2)求出该运动员射击总环数除以10 即可.解答:解:(1)由折线统计图得出第一次射击环数为:8,第二次射击环数为:9,第三次射击环数为:7,故答案为:8,9,7.点评:本题主要考查了折线统计图及统计表和平均数,解题的关键是能从折线统计图中正确找出数据.21.(6 分)(2014?柳州)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?考点 : 二元一次方程组的应用.分析: 设 大苹果的重量为 xg ,小苹果的重量为 yg ,根据图示可得:大苹果的重量 =小苹果 50g ,大苹果 +小苹果 =300g+50g ,据此列方程组求解.解答: 解 :设大苹果的重量为 xg ,小苹果的重量为 yg , 由题意得, ,解得: .答:大苹果的重量为 200g ,小苹果的重量为 150g .点评:本题考查了二元一次方程组的应用,解答本题的关键是根据图形,找出等量关系,列 方程组求解.22.(8分)(2014?柳州)如图,在 △ABC 中, BD ⊥ AC ,AB=6 ,AC=5 ,∠A=30 °.① 求 BD 和 AD 的长;② 求 tan ∠ C 的值.考点 :解直角三角形;勾股定理.专题 : 计算题.分析:(1)由 BD ⊥AC 得到∠ ADB= ∠ADC=90 °,在 Rt △ADB 中,根据含 30 度的直角三 角形三边的关系先得到 BD= AB=3 ,再得到 AD= BD=3 ;( 2)先计算出 CD=2 ,然后在 Rt △ADC 中,利用正切的定义求解. 解答: 解:(1)∵BD ⊥AC ,∴∠ ADB= ∠ ADC=90 °,在 Rt △ADB 中, AB=6 ,∠ A=30 °,∴ BD= AB=3 ,∴ AD= BD=3 ;(2)CD=AC ﹣AD=5 ﹣3 =2 ,在Rt△ADC 中,tan∠C= = = .点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了含30 度的直角三角形三边的关系.23.(8 分)(2014?柳州)如图,函数y= 的图象过点A(1,2).(1)求该函数的解析式;(2)过点A 分别向x 轴和y 轴作垂线,垂足为B 和C,求四边形ABOC 的面积;(3)求证:过此函数图象上任意一点分别向x 轴和y 轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.考点:待定系数法求反比例函数解析式;反比例函数系数k 的几何意义.分析: (1)将点A 的坐标代入反比例函数解析式,即可求出k 值;(2)由于点A 是反比例函数上一点,矩形ABOC 的面积S=|k| .(3)设图象上任一点的坐标(x ,y),根据矩形的面积公式,可得出结论.解答:解:(1)∵函数y= 的图象过点A (1,2),∴将点A 的坐标代入反比例函数解析式,得2= ,解得:k=2 ,∴反比例函数的解析式为y= ;(2)∵点A 是反比例函数上一点,∴矩形ABO C 的面积S=AC ?AB=|xy|=|k|=2 .(3)设图象上任一点的坐标(x,y),∴过这点分别向x 轴和y 轴作垂线,矩形面积为|xy|=|k|=2 ,∴矩形的面积为定值.点评:点评:本题主要考查了待定系数法求反比例函数解析式和反比例函数y= 中k 的几何意义,注意掌握过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.24.(10分)(2014?柳州)如图,在△ABC 中,∠BAC 的角平分线AD 交BC 于E,交△ABC 的外接圆⊙ O 于D.(1)求证:△ABE ∽△ ADC ;(2)请连接BD ,OB ,OC ,OD ,且OD 交BC于点F,若点F恰好是OD 的中点.求证:四边形OBDC 是菱形.考点:相似三角形的判定与性质;菱形的判定;圆周角定理.专题:证明题.分析:(1)根据圆周角定理求出∠ B=∠D,根据相似三角形的判定推出即可;(2)根据垂径定理求出OD⊥BC,根据线段垂直平分线性质得出OB=BD ,OC=CD ,根据菱形的判定推出即可.解答:证明:(1)∵∠ BAC 的角平分线AD ,∴∠ BAE= ∠CAD ,∵∠ B=∠ D,∴△ ABE ∽△ ADC ;(2)∵∠ BAD= ∠CAD ,∴弧BD=弧CD,∵ OD 为半径,∴ DO⊥ BC ,∵F为OD 的中点,∴ OB=BD ,OC=CD ,∵ OB=OC ,∴ OB=BD=CD=OC ,∴四边形OBDC 是菱形.点评:本题考查了相似三角形的判定,圆周角定理,垂径定理,菱形的判定,线段垂直平分线性质的应用,主要考查学生的推理能力.25.(10 分)(2014?柳州)如图,正方形ABCD 的边长为l,AB 边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ ⊥AB 的延长线于点Q.1)求线段PQ 的长;2)问:点P 在何处时,△PFD∽△ BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE ,∠ DPE=90 °,又由正方形ABCD 的边长为l,易证得△ ADP ≌△ QPE ,然后由全等三角形的性质,求得线段PQ 的长;(2)易证得△DAP ∽△ PBF,又由△ PFD∽△ BFP,根据相似三角形的对应边成比例,可得证得PA=PB ,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠ DPE=90°,∴∠ APD+ ∠QPE=90°,∵四边形ABCD 是正方形,∴∠ A=90 °,∴∠ ADP+ ∠ APD=90 °,∴∠ ADP= ∠QPE,∵EQ⊥AB ,∴∠ A= ∠Q=90°,在△ADP 和△QPE 中,,∴△ ADP≌△ QPE(AAS ),∴ PQ=AD=1 ;(2)∵△ PFD ∽△ BFP,∴,∴,∵∠ ADP= ∠EPB,∠CBP=∠A,∴△ DAP∽△ PBF,∴,∴,∴,∴,∴ PA=PB ,∴ PA= AB =∴当PA= 时,△ PFD∽△ BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.26.(12 分)(2014?柳州)已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2 与y 轴相交于点P,与二次函数图象交于不同的两点A (x1,y1),B (x2,y2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x 取值范围在﹣1< x<3 时,请写出其函数值y 的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y 轴上,必存在定点G,使△ABG 的内切圆的圆心落在y 轴上,并求△ GAB 面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.2即:设一元二次方程ax +bx+c=0 的两根为x1,x2,则:x1+x2=﹣,x1?x2=能灵活运用这种关系,有时可以使解题更为简单.2例:不解方程,求方程x2﹣3x=15 两根的和与积.2解:原方程变为:x2﹣3x ﹣15=0元二次方程的根与系数有关系:x1+x2=﹣,x1?x2==﹣15.考点:二次函数综合题;完全平方公式;根与系数的关系;待定系数法求一次函数解析式;二次函数的图象;待定系数法求二次函数解析式;三角形的内切圆与内心.专题:压轴题.分析:(1)设二次函数解析式为y=ax2+1,由于点(﹣1,)在二次函数图象上,把该点2的坐标代入y=ax2+1,即可求出a,从而求出二次函数的解析式.(2)先分别求出x= ﹣1,x=0 ,x=3 时y的值,然后结合图象就可得到y 的取值范围.(3)由于△ABG 的内切圆的圆心落在y轴上,因此GP平分∠ AGB .过点A 作GP的对称点A ′,则点A ′必在BG 上.由于点A(x1,y1)、B(x2,y2)在直线y=kx+2 上,从而可以得到点A 的坐标为(x1,kx1+2)、A′的坐标为(﹣x1,kx1+2)、B 的坐标为(x2,kx 2+2).设直线BG 的解析式为y=mx+n ,则点G 的坐标为(0,n).由于点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG 上,可用含有k、x1、x2 的代数式表示n.由于A、B 是直线y=kx+2 与抛物线y= x1 2 3 4+1的交点,由根与系数的关系可得:x1+x2=4k,x1?x2=﹣4.从而求出n=0,即可证出:在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG 的内切圆的圆心落在y 轴上.由S△ABG=S△APG+S△BPG,可以得到5△ABG =x 2﹣解答:(1)解:由于二次函数图象的顶点坐标为(0,1),2因此二次函数的解析式可设为y=ax 2+1 .2∵抛物线y=ax 2+1过点(﹣1,),∴ =a+1 .解得:a= .∴二次函数的解析式为:y= x2+1.(2)解:当x=﹣1时,y= ,当x=0 时,y=1 ,当x=3 时,y= ×32+1= ,结合图1可得:当﹣1<x<3 时,y的取值范围是1≤y< .(3)① 证明:∵△ ABG 的内切圆的圆心落在y 轴上,∴ GP 平分∠ AGB .∴直线GP 是∠ AGB 的对称轴.过点A 作GP 的对称点A′,如图2,则点A ′一定在BG 上.∵点A 的坐标为(x1,y1),∴点A ′的坐标为(﹣x1,y1).∵点A (x1,y1)、B (x2,y2)在直线y=kx+2 上,∴ y1=kx1+2,y2=kx 2+2.∴点A′的坐标为(﹣x1,kx1+2)、点B 的坐标为(x2,kx2+2).设直线BG 的解析式为y=mx+n ,则点G 的坐标为(0,n).∵点A ′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG 上,x1= =4 ,所以当k=0 时,S△ABG 最小,最小值为4.解得:2∵ A(x1,y1),B(x2,y2)是直线y=kx+2 与抛物线y= x2+1 的交点,∴x1、x2是方程kx+2= x2+1即x2﹣4kx﹣4=0 的两个实数根.∴由根与系数的关系可得;x1+x2=4k ,x1?x 2= ﹣4.∴ n= =﹣2+2=0.∴点G 的坐标为(0,0).∴在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG 的内切圆的圆心落在y 轴上.② 解:过点A 作AC ⊥ OP,垂足为C,过点B 作BD ⊥OP,垂足为D,如图2,∵直线y=kx+2 与y 轴相交于点P,∴点P 的坐标为(0,2).∴ PG=2 .∴ S△ABG=S△APG+S△ BPG= PG?AC+ PG?BD= PG?(AC+BD )= ×2 ×(﹣x1+x2)12=x2﹣x1==4 .∴当k=0 时,S△ ABG最小,最小值为4.∴△ GAB 面积的最小值为4.≡1点评:本题考查了用待定系数法求二次函数及一次函数的解析式、二次函数的图象、三角形的内切圆、根与系数的关系、完全平方公式等知识,综合性比较强,有一定的难度.分析:关于x 的方程x* 2+ax+b=0 的解是抛物线y=x 2+ax+b 与x 轴交点的横坐标.解答:解:如图,∵函数y=x 2+ax+b的图象与x 轴交点坐标分别是(﹣1,0),(4,0),2∴关于x 的方程x +ax+b=0 的解是x= ﹣1 或x=4.2y=ax +bx+c (a,b,c 是常数,a≠0)2与x 轴的交点坐标,令y=0 ,即ax2+bx+c=0 ,解关于x 的一元二次方程即可求得交点横坐标.12.(3 分)(2014?柳州)如图,每个灯泡能否通电发光的概率都是少有一个灯泡发光的概率是()分析:根据等腰梯形的性质可得出AD=BC ,再由BC=4 ,CD=3 ,得出AB 的长.解答:解:∵四边形ABCD 为等腰梯形,=4 .。

柳州中考数学试题及答案

柳州中考数学试题及答案

柳州中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.3B. √2C. 0.33333...D. 1/3答案:B2. 一个长方形的长是宽的两倍,如果宽为x,则长为:A. 2xB. x/2C. x^2D. x+2答案:A3. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A4. 下列哪个选项不是单项式?A. 3x^2B. -5yC. 7D. x^2 + 3x5. 如果一个角的补角是120°,那么这个角的度数是:A. 60°B. 30°C. 90°D. 120°答案:B6. 一个等腰三角形的底角是45°,那么顶角的度数是:A. 90°B. 45°C. 60°D. 30°答案:A7. 一个二次函数y=ax^2+bx+c的顶点坐标是(1,-4),则a的值是:A. -1B. 1C. 0D. 4答案:A8. 下列哪个选项是二次根式?A. √4B. √(-1)C. √xD. √(x^2)答案:C9. 一个数列的前三项是2,4,8,那么这个数列的第四项是:B. 32C. 64D. 128答案:A10. 一个圆的半径是5cm,那么这个圆的面积是:A. 25π cm^2B. 50π cm^2C. 75π cm^2D. 100π cm^2答案:C二、填空题(每题4分,共20分)11. 一个直角三角形的两直角边长分别是3cm和4cm,那么斜边的长度是_______cm。

答案:512. 如果一个数的立方是-8,那么这个数是______。

答案:-213. 一个等差数列的前三项是1,4,7,那么这个数列的公差是______。

答案:314. 一个扇形的圆心角是60°,半径是10cm,那么这个扇形的面积是_______cm^2。

答案:50π/315. 一个函数y=kx+b的图象经过点(2,3)和(4,7),那么k的值是______。

2014年广西柳州市中考数学调研试卷(2月份)

2014年广西柳州市中考数学调研试卷(2月份)

2014年广西柳州市中考数学调研试卷(2月份)一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,错选、不选或多选均得0分).3.(3分)(2006•盐城)已知:如图,l1∥l2,∠1=50°,则∠2的度数是()4.(3分)(2013•柳州模拟)根式的值是().C D.8.(3分)(2013•柳州模拟)不等式组的解集在数轴上可以表示为().C D.遇到给她送资料的妈妈,接过资料后,小英加速向学校赶去.能反映她离家距离s与骑车时间t的函数关系图象大.C D.11.(3分)(2009•莱芜)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()12.(3分)(2011•聊城)如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为()13.(3分)(2011•南昌)计算:﹣2﹣1=_________.14.(3分)(2012•海南)分解因式:x2﹣1=_________.15.(3分)(2013•柳州模拟)国家统计局初步核算,2012年中国国内生产总值(GDP)约为520000亿元.将“520000亿元”用科学记数法表示为_________亿元.16.(3分)(2013•柳州模拟)用一个半径为5cm,面积为15πcm2的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为_________cm.17.(3分)(2013•柳州模拟)我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线分别为6cm和8cm的菱形,它的中点四边形的两条对角线长之和是_________cm.18.(3分)(2013•柳州模拟)如图,在Rt△ABC中,∠C=90°,AC=BC=60cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP′为菱形,则t的值为_________.三、解答题(满分66分.解答应写必要的文字说明、演算步骤或推理过程).19.(6分)(2013•柳州模拟)计算:(﹣2)2+2×3+.20.(6分)(2013•柳州模拟)解分式方程:.21.(6分)(2010•宁德)如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是: _________ ,并给予证明. 22.(8分)(2011•仙桃)五月石榴红,枝头鸟儿歌.一只小鸟从石榴树上的A 处沿直线飞到对面一房屋的顶部C 处.从A 处看房屋顶部C 处的仰角为30°,看房屋底部D 处的俯角为45°,石榴树与该房屋之间的水平距离为米,求出小鸟飞行的距离AC 和房屋的高度CD .23.(8分)(2011•仙桃)为迎接市教育局开展的“创先争优”主题演讲活动,某校组织党员教师进行演讲预赛.学校(1)参赛教师共有 _________ 人;(2)如果将各组的组中值视为该组的平均成绩,请你估算所有参赛教师的平均成绩;(3)成绩落在第一组的恰好是两男两女四位教师,学校从中随机挑选两位教师参加市教育局组织的决赛.通过列表或画树状图求出挑选的两位教师是一男一女的概率. 24.(10分)(2013•柳州模拟)2013年最新个人所得税税率表(个税起征点3500元)公民全月工薪不超过3500元 (1)李工程师的月工薪为9000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过11000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围(取整数范围);若不能,请说明理由.25.(10分)(2013•柳州模拟)如图,已知:⊙C的圆心C在x轴上,AB是⊙C的直径,⊙C与y轴交于D、E两点,且∠ACD=∠FDO.(1)求证:直线FD是⊙C的切线;(2)若OC:OA=1:2,DE=4,求直线FD的解析式.26.(12分)(2010•眉山)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=+bx+c经过B点,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.2014年广西柳州市中考数学调研试卷(2月份)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,错选、不选或多选均得0分).2.(3分)(2013•柳州模拟)下列几何体的三视图中,左视图是圆的是()3.(3分)(2006•盐城)已知:如图,l1∥l2,∠1=50°,则∠2的度数是()4.(3分)(2013•柳州模拟)根式的值是()32.C D.8.(3分)(2013•柳州模拟)不等式组的解集在数轴上可以表示为().C D.9.(3分)(2011•仙桃)小英早上从家里骑车上学,途中想到社会实践调查资料忘带了,立刻原路返回,返家途中遇到给她送资料的妈妈,接过资料后,小英加速向学校赶去.能反映她离家距离s与骑车时间t的函数关系图象大.C D.11.(3分)(2009•莱芜)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()12.(3分)(2011•聊城)如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为()二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2011•南昌)计算:﹣2﹣1=﹣3.14.(3分)(2012•海南)分解因式:x2﹣1=(x+1)(x﹣1).15.(3分)(2013•柳州模拟)国家统计局初步核算,2012年中国国内生产总值(GDP)约为520000亿元.将“520000亿元”用科学记数法表示为 5.2×105亿元.16.(3分)(2013•柳州模拟)用一个半径为5cm,面积为15πcm2的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为3cm.S=S=S=17.(3分)(2013•柳州模拟)我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线分别为6cm和8cm的菱形,它的中点四边形的两条对角线长之和是10cm.EF=GH=BD=3cm EF=18.(3分)(2013•柳州模拟)如图,在Rt△ABC中,∠C=90°,AC=BC=60cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC 沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP′为菱形,则t的值为20.AC=60cm AP=t(例定理得到=,即AC=60=AP=(,解得三、解答题(满分66分.解答应写必要的文字说明、演算步骤或推理过程).19.(6分)(2013•柳州模拟)计算:(﹣2)2+2×3+.20.(6分)(2013•柳州模拟)解分式方程:.21.(6分)(2010•宁德)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:AE=AF或∠EDA=∠FDA,并给予证明.22.(8分)(2011•仙桃)五月石榴红,枝头鸟儿歌.一只小鸟从石榴树上的A处沿直线飞到对面一房屋的顶部C 处.从A处看房屋顶部C处的仰角为30°,看房屋底部D处的俯角为45°,石榴树与该房屋之间的水平距离为米,求出小鸟飞行的距离AC和房屋的高度CD.CAE=,即CE=3+3+23.(8分)(2011•仙桃)为迎接市教育局开展的“创先争优”主题演讲活动,某校组织党员教师进行演讲预赛.学校(1)参赛教师共有25人;(2)如果将各组的组中值视为该组的平均成绩,请你估算所有参赛教师的平均成绩;(3)成绩落在第一组的恰好是两男两女四位教师,学校从中随机挑选两位教师参加市教育局组织的决赛.通过列表或画树状图求出挑选的两位教师是一男一女的概率.=24.(10分)(2013•柳州模拟)2013年最新个人所得税税率表(个税起征点3500元)公民全月工薪不超过3500元(1)李工程师的月工薪为9000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过11000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围(取整数范围);若不能,请说明理由.25.(10分)(2013•柳州模拟)如图,已知:⊙C的圆心C在x轴上,AB是⊙C的直径,⊙C与y轴交于D、E两点,且∠ACD=∠FDO.(1)求证:直线FD是⊙C的切线;(2)若OC:OA=1:2,DE=4,求直线FD的解析式.DE=2;=2y=kx+2,x+2.26.(12分)(2010•眉山)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=+bx+c经过B点,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.y=x=+m ×(﹣=﹣x+4 =5××××x(﹣t+4,﹣(t+4+=+<t=﹣t+4=的坐标为(,参与本试卷答题和审题的老师有:workholic;wdxwwzy;MMCH;sd2011;gbl210;Linaliu;zhangCF;HJJ;gsls;caicl;hbxglhl;HLing;lantin;sjzx;星期八;lanyan;CJX;zcx;lanchong;zhjh(排名不分先后)菁优网2014年3月4日。

广西柳州市中考数学试卷(含答案解析)

广西柳州市中考数学试卷(含答案解析)

广西柳州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的.每小题选对得3分,选错,不选或多选均得0分)1.(3分)(2015•柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()考点:简单几何体的三视图.分析:根据几何体的俯视图的概念:俯视图是从上向下看得到的图形进行解答即可得到答案.解答:解:根据俯视图的概念可知,几何体的俯视图是A图形,故选:A.点评:本题考查的是几何体的三视图,掌握主视图、左视图和俯视图分别是从前向后、从左向右和从上向下看所得的图形是解题的关键,2.(3分)(2015•柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元考点:有理数的加减混合运算;有理数大小比较.专题:应用题.分析:根据存折中的数据进行解答.解答:解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.点评:本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.3.(3分)(2015•柳州)某学校小组5名同学的身高(单位:cm)分别为:147,151,152,156,159,则这组数据的中位数是()A.147 B.151 C.152 D.156考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:由于此数据已经按照从小到大的顺序排列了,发现152处在第3位.所以这组数据的中位数是152,故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4.(3分)(2015•柳州)如图,图中∠α的度数等于()A.135°B.125°C.115°D.105°考点:对顶角、邻补角.分析:根据邻补角互补解答即可.解答:解:∠α的度数=180°﹣45°=135°.故选A.点评:此题考查邻补角定义,关键是根据邻补角互补分析.5.(3分)(2015•柳州)下列图象中是反比例函数y=﹣图象的是()考点:反比例函数的图象.分析:利用反比例函数图象是双曲线进而判断得出即可.解答:解:反比例函数y=﹣图象的是C.故选:C.点评:此题主要考查了反比例函数的图象,正确掌握反比例函数图象的形状是解题关键.6.(3分)(2015•柳州)如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为()A.60°B.70°C.80°D.90°考点:圆周角定理.专题:计算题.分析:利用直径所对的圆周角为直角判断即可.解答:解:∵BC是⊙O的直径,∴∠A=90°.故选D.点评:此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.7.(3分)(2015•柳州)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是()A.25% B.50% C.75% D.85%考点:可能性的大小.分析:抛一枚质地均匀的硬币,有两种结果,正面朝上,每种结果等可能出现,从而可得出答案.解答:解:抛一枚质地均匀的硬币,有正面朝上、反面朝上两种结果,故正面朝上的概率=.故选:B.点评:本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)(2015•柳州)如图,点A(﹣2,1)到y轴的距离为()A.﹣2 B.1C.2D.考点:点的坐标.分析:根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.解答:解:点A的坐标为(﹣2,1),则点A到y轴的距离为2.故选C.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.9.(3分)(2015•柳州)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.x y D.4x考点:同类项.分析:根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.解答:解:与2xy是同类项的是xy.故选C.点评:此题考查同类项,关键是根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.10.(3分)(2015•柳州)如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:由三角形的外角性质得,∠1=130°﹣60°=70°.故选D.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.11.(3分)(2015•柳州)如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0D.x>4考点:抛物线与x轴的交点.分析:利用当函数值y>0时,即对应图象在x轴上方部分,得出x的取值范围即可.解答:解:如图所示:当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选:B.点评:此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键.12.(3分)(2015•柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.分析:根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.解答:解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.点评:本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2015•柳州)计算:a×a=a2.考点:同底数幂的乘法.分析:根据同底数幂的乘法计算即可.解答:解:a×a=a2.故答案为:a2.点评:此题考查同底数幂的乘法,关键是根据同底数幂的乘法法则计算.14.(3分)(2015•柳州)如图,△ABC≌△DEF,则EF=5.考点:全等三角形的性质.分析:利用全等三角形的性质得出BC=EF,进而求出即可.解答:解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.点评:此题主要考查了全等三角形的性质,得出对应边是解题关键.15.(3分)(2015•柳州)直线y=2x+1经过点(0,a),则a=1.考点:一次函数图象上点的坐标特征.分析:根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.解答:解:∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为:1.点评:本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.16.(3分)(2015•柳州)如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sinB=.考点:锐角三角函数的定义;勾股定理.分析:根据锐角三角函数定义直接进行解答.解答:解:∵在Rt△ABC中,∠C=90°,AB=13,AC=7,∴sinB==.故答案是:.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.17.(3分)(2015•柳州)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为﹣3.考点:一元二次方程的解.分析:将x=1代入方程得到关于m的方程,从而可求得m的值.解答:解:将x=1代入得:1+2+m=0,解得:m=﹣3.故答案为:﹣3.点评:本题主要考查的是方程的解(根)的定义,将方程的解(根)代入方程得到关于m的方程是解题的关键.18.(3分)(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为.考点:相似三角形的判定与性质;矩形的性质.专题:应用题.分析:设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.解答:解:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴=,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴=,解得:x=,则EH=.故答案为:.点评:此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.三、解答题(本大题共8小题,满分66分)19.(6分)(2015•柳州)计算:+.考点:分式的加减法.分析:根据分式的加法计算即可.解答:解:+==1.点评:此题考查分式的加减法,关键是根据同分母的分式相加减的运算分析.20.(6分)(2015•柳州)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?考点:一元一次方程的应用;数轴.分析:设蜗牛还需要x分钟到达B点.根据路程=速度×时间列出方程并解答.解答:解:设蜗牛还需要x分钟到达B点.则(6+x)×=5,解得x=4.答:蜗牛还需要4分钟到达B点.点评:本题考查了数轴和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(6分)(2015•柳州)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.考点:勾股定理;三角形中位线定理.分析:(1)直接利用勾股定理得出BD的长即可;(2)利用平行线分线段成比例定理得出BD=AE,进而求出即可.解答:解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3;(2)延长CB,过点A作AE⊥CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=AE,∴AE=6,即BC边上高的长为6.点评:此题主要考查了勾股定理以及平行线分线段成比例定理,得出BD=AE是解题关键.22.(8分)(2015•柳州)如图,这是某校初三年级同学们最喜爱的一项课外运动调查结果扇形图,但负责画此图的同学忘记了最喜爱篮球运动的人生.(1)请你求出图中的x值;(2)如果该年级最喜爱跳绳运动的同学有144人,那么这个年级共有多少人?考点:扇形统计图;用样本估计总体.分析:(1)根据有理数的减法,可得答案;(2)根据喜爱跳绳的同学除以跳绳的圆心角所占的比例,可得答案.解答:解:(1)x=360°﹣70°﹣65°﹣50°﹣96°=79°;(2)这个年级共有144÷=570人.点评:本题考查的是扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(8分)(2015•柳州)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?考点:待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;二次函数的最值.分析:(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.解答:解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k),=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+当k=3时,S有最大值.S最大值=.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.24.(10分)(2015•柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C 出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?考点:平行四边形的判定与性质;勾股定理的逆定理;直角梯形.专题:动点型.分析:(1)已知AD∥BC,添加PD=CQ即可判断以PQDC为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.解答:解:(1)当PQ∥CD时,四边形PDCB是平行四边形,此时PD=QC,∴12﹣2t=t,∴t=4.∴当t=4时,四边形PQDC是平行四边形.(2)过P点,作PE⊥BC于E,DF⊥BC,∴DF=AB=8.FC=BC﹣AD=18﹣12=6.①当P Q⊥BC,则BE+CE=18.即:2t+t=18,∴t=6;②当QP⊥PC,∴PE=4,CE=3+t,QE=12﹣2t﹣(3+t)=9﹣3t,∴16=(3+t)(9﹣3t),解得:t=,③情形:当PC⊥BC时,因∠DCB<90°,此种情形不存在.∴当t=3或时,△PQC是直角三角形.点评:此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.25.(10分)(2015•柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.考点:切线的性质;平行四边形的性质.分析:(1)根据弦切角定理和圆周角定理证明∠ABC=∠ACB,得到答案;(2)作AF⊥CD于F,证明△AEH≌△AEF,得到EH=EF,根据△ABH≌△ACF,得到答案.解答:证明:(1)∵AD与△ABC的外接圆⊙O恰好相切于点A,∴∠ABE=∠DAE,又∠EAC=∠EBC,∴∠DAC=∠ABC,∵AD∥BC,∴∠DAC=∠ACB,∴∠ABC=∠ACB,∴AB=AC;(2)作AF⊥CD于F,∵四边形ABCE是圆内接四边形,∴∠ABC=∠AEF,又∠ABC=∠ACB,∴∠AEF=∠ACB,又∠AEB=∠ACB,∴∠AEH=∠AEF,在△AEH和△AEF中,,∴△AEH≌△AEF,∴EH=EF,∴CE+EH=CF,在△ABH和△ACF中,,∴△ABH≌△ACF,∴BH=CF=CE+EH.点评:本题考查的是切线的性质和平行四边形的性质以及全等三角形的判定和性质,运用性质证明相关的三角形全等是解题的关键,注意圆周角定理和圆内接四边形的性质的运用.26.(12分)(2015•柳州)如图,已知抛物线y=﹣(x2﹣7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x﹣h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.考点:二次函数综合题.专题:综合题.分析:(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,﹣x2+x﹣3).根据NP=AB=列出方程(x﹣)2+(﹣x2+x﹣3)2=()2,解方程得到点P坐标,再计算得出PM2+PN2=MN2,根据勾股定理的逆定理得出∠MPN=90°,然后利用切线的判定定理即可证明直线MP是⊙N的切线.解答:(1)解:∵y=﹣(x2﹣7x+6)=﹣(x2﹣7x)﹣3=﹣(x﹣)2+,∴抛物线的解析式化为顶点式为:y=﹣(x﹣)2+,顶点M的坐标是(,);(2)解:∵y=﹣(x2﹣7x+6),∴当y=0时,﹣(x2﹣7x+6)=0,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=﹣3,∴C(0,﹣3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==3.设直线BC的解析式为y=kx+b,∵B(6,0),C(0,﹣3),∴,解得,∴直线BC的解析式为:y=x﹣3,令x=,得y=×﹣3=﹣,∴R点坐标为(,﹣);(3)证明:设点P坐标为(x,﹣x2+x﹣3).∵A(1,0),B(6,0),∴N(,0),∴以AB为直径的⊙N的半径为AB=,∴NP=,即(x﹣)2+(﹣x2+x﹣3)2=()2,化简整理得,x4﹣14x3+65x2﹣112x+60=0,(x﹣1)(x﹣2)(x﹣5)(x﹣6)=0,解得x1=1(与A重合,舍去),x2=2,x3=5(在对称轴的右侧,舍去),x4=6(与B重合,舍去),∴点P坐标为(2,2).∵M(,),N(,0),∴PM2=(2﹣)2+(2﹣)2=,PN2=(2﹣)2+22==,MN2=()2=,∴PM2+PN2=MN2,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线.点评:本题是二次函数的综合题,其中涉及到二次函数的图象与性质、待定系数法求一次函数的解析式、轴对称﹣最短路线问题以及切线的判定等知识,综合性较强,难度适中.第(3)问求出点P 的坐标是解题的关键.。

广西柳州市中考数学真题试题(含解析)

广西柳州市中考数学真题试题(含解析)

广西柳州市中考数学真题试题一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣202.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3.00分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84° B.60° C.36° D.24°9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2= °.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是.15.(3.00分)不等式x+1≥0的解集是.16.(3.00分)一元二次方程x2﹣9=0的解是.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC 的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.22.(8.00分)解方程=.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B (﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.【分析】根据主视图的画法解答即可.【解答】解:主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.【点评】本题考查几何体的三视图画法.根据主视图是从几何体正边看得到的图形解答是关键.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.【分析】利用概率公式计算即可得.【解答】解:∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:7000000000=7×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3.00分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.【分析】首先利用勾股定理计算出AB长,再计算sinB即可.【解答】解:∵∠C=90°,BC=4,AC=3,∴AB=5,∴sinB==,故选:A.【点评】此题主要考查了锐角三角函数,关键是正确计算出AB的长.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84° B.60° C.36° D.24°【分析】直接利用圆周角定理即可得出答案.【解答】解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【分析】根据“实际售价=原售价×”可得答案.【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.【点评】本题主要考查列代数式,解题的关键是掌握代数式的书写规范及实际问题中数量间的关系.10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%【分析】根据扇形统计图直接反映部分占总体的百分比大小,可知学生成绩在60≤x<69之间的占53.3%.【解答】解:由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.【点评】本题考查了扇形统计图的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2a)•(ab)=2a2b.故选:B.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2= 46 °.【分析】根据平行线的性质,得到∠1=∠2即可.【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).【点评】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.15.(3.00分)不等式x+1≥0的解集是x≥﹣1 .【分析】根据一元一次不等式的解法求解不等式.【解答】解:移项得:x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(3.00分)一元二次方程x2﹣9=0的解是x1=3,x2=﹣3 .【分析】利用直接开平方法解方程得出即可.【解答】解:∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+负的场数=8;胜的积分+平的积分=14,把相关数值代入即可.【解答】解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.【点评】本题考查了列二元一次方程组,根据总场数和总分数得到相应的等量关系是解决本题的根据.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DC A=30°,AC=,AD=,则BC 的长为 5 .【分析】作辅助线,构建直角三角形,先根据直角三角形30度角的性质和勾股定理得:AE=,CE=,及ED的长,可得CD的长,证明△BFD∽△BCA,列比例式可得BC的长.【解答】解:过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD==,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BF=,∴BC=+=5,故答案为:5.【点评】本题考查了相似三角形的性质和判定、直角三角形30度角的性质及勾股定理,熟练运用勾股定理计算线段的长是关键.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.【分析】先化简,再计算加法即可求解.【解答】解:2+3=4+3=7.【点评】考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.20.(6.00分)如图,AE 和BD 相交于点C ,∠A=∠E ,AC=EC .求证:△ABC ≌△EDC .【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ).【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m .【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.22.(8.00分)解方程=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x ﹣4=x ,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.【分析】(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=2【点评】本题主要考查菱形的性质,能够利用勾股定理求出BO的长是解题关键.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B (﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.【分析】(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,即可得出结论;(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.【点评】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【分析】(1)求出A、B、C的坐标,利用两根式求出抛物线的解析式即可;(2)求出直线AH的解析式,根据方程即可解决问题;(3)首先求出⊙H的半径,在HA上取一点K,使得HK=,此时K(﹣,﹣),由HQ2=HK•HA,可得△QHK∽△AHQ,推出==,可得KQ=AQ,推出AQ+QE=KQ+EQ,可得当E、Q、K 共线时,AQ+QE的值最小,由此求出点E坐标,点K坐标即可解决问题;【解答】解:(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x﹣),把C(0,﹣3)代入得到a=,∴抛物线的解析式为y=x2+x﹣3.(2)在Rt△AOC中,tan∠OAC==,∴∠OAC=60°,∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y=x﹣1,由题意P(m,m2+m﹣3),H(m,m﹣1),F(m,0),∵FH=PH,∴1﹣m=m﹣1﹣(m2+m﹣3)解得m=﹣或(舍弃),∴当FH=HP时,m的值为﹣.(3)如图,∵PF是对称轴,∴F(﹣,0),H(﹣,﹣2),∵AH⊥AE,∴∠EAO=60°,∴EO=OA=3,∴E(0,3),∵C(0,﹣3),∴HC==2,AH=2FH=4,∴QH=CH=1,在HA上取一点K,使得HK=,此时K(﹣,﹣),∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,可得△QHK∽△AHQ,∴==,∴KQ=AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值==.【点评】本题考查二次函数综合题、一次函数的应用、一元二次方程、圆的有关知识、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。

中考柳州数学试卷真题答案

中考柳州数学试卷真题答案

中考柳州数学试卷真题答案题目:中考柳州数学试卷真题答案【正文开始】2.(10分)已知等差数列的首项是8,公差是3,求这个等差数列的前10项的和。

解析:根据等差数列的性质,第n项可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

已知a1 = 8,d = 3,代入公式可得:a10 = 8 + (10-1)3 = 8 + 27 = 35在等差数列中,前n项和可以表示为:Sn = (n/2)(a1 + an)。

已知a1 = 8,a10 = 35,代入公式可得:S10 = (10/2)(8 + 35) = 5(43) = 215所以,这个等差数列的前10项的和为215。

3.(10分)已知等差数列的前6项的和为30,且首项与公差的乘积为4,求这个等差数列的公差和首项。

设等差数列的首项为a1,公差为d。

已知公式:Sn = (n/2)(a1 + an),表示等差数列的前n项和。

由题意可知,已知的条件是前6项和为30,即S6 = 30。

代入公式可得:S6 = (6/2)(a1 + a6) = 3(a1 + a1+5d) = 6a1 + 15d又已知条件是首项与公差的乘积为4,即a1d = 4。

将此条件代入前面的等式中,得到:6a1 + 15d = 6a1 + 15(a1d/ a1) = 6a1 + 15(a1*4/a1) = 6a1 + 60 = 6(a1 + 10)由此可得:S6 = 6(a1 + 10) = 30解得:a1 + 10 = 5,即a1 = -5又已知a1d = 4,代入a1 = -5可得:-5d = 4,解得d = -4/5所以,这个等差数列的首项为-5,公差为-4/5。

5.(10分)已知等差数列的前n项和Sn = 300,公差d = 7,求n的值。

已知等差数列的前n项和可以表示为:Sn = (n/2)(a1 + an)。

由等差数列的求和公式可得:Sn = (n/2)(a1 + a1 + (n-1)d) = (n/2)(2a1 + (n-1)d) = n(a1 + (n-1)d/2)代入已知条件:Sn = 300,d = 7,得到:n(a1 + (n-1)d/2) = 300由题目未给出首项a1的具体数值,所以无法直接求解n的值。

柳州市中考数学试题及答案

柳州市中考数学试题及答案

柳州市中考数学试题及答案1. 单项选择题:1) 在平行四边形ABCD中,若∠ACD和∠ABC的度数之和等于130°,则∠DAC的度数为()。

A. 50°B. 60°C. 70°D. 80°2) 已知等差数列{a_n}的通项公式为an=3n-1,若a_m=35,则a_n=8时,n-m=()。

A. 3B. 4C. 5D. 63) 某商品原价为130元,现在打8.5折出售,则现价为()。

A. 80元B. 100元C. 110.5元D. 112.5元4) 若a.b表示将实数a和b连接成的数字,则2.75×6=()。

A. 134.5B. 16.5C. 225D. 24505) 若正方形的周长为40cm,则其面积为()。

A. 10 cm²B. 100 cm²C. 160 cm²D. 400 cm²2. 解答题:1) 某数的150%等于120,该数是多少?解:设该数为x,根据题意得方程1.5x=120,解得x=80,因此该数为80。

2) 已知等差数列{a_n}的前4项依次为-3,0,3,6,求数列的通项公式。

解:设该等差数列的首项为a,公差为d,根据题意可得方程组: a+d=-3a+2d=0a+3d=3解以上方程组可得a=3,d=3,因此该等差数列的通项公式为a_n=3n-6。

3. 计算题:1) 一块长方形地块,长为75m,宽为60m,面积是多少平方米?解:该长方形地块的面积为75m×60m=4500m²。

2) 小明去商场购买一件原价为200元的商品,打折后需要支付的价格是多少?解:打折后的价格为200元×0.85=170元。

4. 应用题:某校有2000名学生,其中男生占总人数的40%,女生占剩下的人数的60%。

已知男生中目前学习音乐的学生占男生的25%。

现在将一部分男生和一部分女生组成合唱团,为了增加女生的比例,计划从学习音乐的男生中选出60人,再从女生中选出n人,使合唱团男生和女生人数相等。

广西壮族自治区贺州市2014年广西中考数学试卷及参考答案

广西壮族自治区贺州市2014年广西中考数学试卷及参考答案

(1) 求证:BO⊥CO; (2) 求BE和CG的长. 26. 二次函数图象的顶点在原点O,经过点A(1,
);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)
求二次函数的解析式;
(2) 点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP; (3) 当△FPM是等边三角形时,求P点的坐标. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
的统计图.
(1) 在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为 %; (2) 将条形统计图补充完整; (3) 若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工? 23. 马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带 上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度. 24. 如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在 它的北偏西55°方向上.
A . 12 B . 15 C . 12 D . 15 10. 已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+ 在同一坐标系内的大致图象是( )
与反比例函数y=
A.
B.
C.
D.
11. 如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE= ,CE=1.则 的长是( )
(1) 求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);

广西来宾市2014年中考数学真题试题(解析版)

广西来宾市2014年中考数学真题试题(解析版)

广西来宾市2014年中考数学真题试题(解析版)一、选择题(本大题共有12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求.)1.在下列平面图形中,既是轴对称图形又是中心对称图形的是()【考点】1.中心对称图形;2.轴对称图形.2.去年我市参加中考人数约17700人,这个数用科学记数法表示是()A. 1.77×102B. 1.77×104C. 17.7×103D. 1.77×105【考点】科学记数法—表示较大的数.3.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形【答案】C.【解析】试题分析:设这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是6.故选C.【考点】多边形内角与外角.4.数据5,8,4,5,3的众数和平均数分别是()A. 8,5 B. 5,4 C. 5,5 D. 4,5【考点】1.众数;2.算术平均数.5.下列运算正确的是()A.(﹣a3)2=a5 B.(﹣a3)2=﹣a5 C.(﹣3a2)2=6a4 D.(﹣3a2)2=9a4【考点】幂的乘方与积的乘方.6.正方形的一条对角线长为4,则这个正方形的面积是()A. 8 B.C.D. 16【答案】A.【解析】试题分析:∵正方形的一条对角线长为4,∴这个正方形的面积=12×4×4=8.【考点】正方形的性质.7.函数y=x的取值范围是()A. x≠3 B. x≥3 C. x>3 D. x≤38.将分式方程122x x=-去分母后得到的整式方程,正确的是()A. x﹣2=2x B. x2﹣2x=2x C. x﹣2=x D. x=2x﹣49.顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形【考点】1.正方形的判定;2.三角形中位线定理;3.菱形的性质.10.已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是()A. x2﹣6x+8=0 B. x2+2x﹣3=0 C. x2﹣x﹣6=0 D. x2+x﹣6=011.不等式组的解集在数轴上表示正确的是()【答案】D.【解析】试题分析:解得﹣3<x≤4,故选D.【考点】1.解一元一次不等式组;2.在数轴上表示不等式的解集.12.将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)【考点】1.关于原点对称的点的坐标;2.坐标与图形变化-平移.二、填空题:本大题共6小题,每小题3分,共18分13.的倒数是.【考点】因式分解-运用公式法.15.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是cm2(结果保留π).【答案】60π.【解析】试题分析:直接利用圆柱体侧面积公式求出即可.试题解析:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).【考点】几何体的表面积.16.某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有名学生.【考点】用样本估计总体.17.如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为.【考点】解直角三角形.18.如图,点A、B、C均在⊙O上,∠C=50°,则∠OAB=度.【答案】40.【解析】试题分析:由∠C=50°求出∠AOB的度数,再根据等腰三角形的性质和三角形的内角和定理,即可求得答案.试题解析:∵∠C=50°,∴∠AOB=2∠C=100°,∵OA=OB,∴∠OAB=∠OBA=180100402︒-︒=︒.【考点】圆周角定理.三、解答题:本大题共7小题,满分66分,解答应写出文字说明、证明过程或演算步骤.19.(1)计算:(﹣1)2014﹣|﹣|+﹣(﹣π)0;(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.【考点】1.实数的运算;2.整式的混合运算—化简求值;3.零指数幂.20.某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.00根据所给信息,回答下列问题:(1)本次调查的样本容量是;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有19 人;(3)根据上表的数据补全直方图;(4)如果跳绳次数达到130次以上的3人中有2名女生和一名男生,学校从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率(要求用列表法或树状图写出分析过程).【答案】(1)50;(2)19;(3)补图见解析;(4)23.【解析】(4)根据题意画树状图如下:共有6种情况,恰好抽中一男一女的有4种情况,则恰好抽中一男一女的概率是42 63 .【考点】1.频数(率)分布直方图;2.频数(率)分布表;3.列表法与树状图法.21.如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规左图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,ADB CBD BO DODOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEO≌△BFO(ASA ), ∴DE=BF.【考点】1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质. 22.一次函数y 1=﹣x ﹣1与反比例函数y 2=的图象交于点A (﹣4,m ). (1)观察图象,在y 轴的左侧,当y 1>y 2时,请直接写出x 的取值范围; (2)求出反比例函数的解析式.【答案】(1)x <﹣4;(2)y 2=﹣4x. 【解析】【考点】反比例函数与一次函数的交点问题.23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【考点】一元一次不等式的应用.24.如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.(1)直接写出AE与BC的位置关系;(2)求证:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半径长.【答案】(1) AE⊥BC.(2)证明见解析;(3).【解析】∴AE⊥BC.(2)如图1,∵BF与⊙O相切,∴∠ABF=90°.∴∠CBF=90°﹣∠ABE=∠BAE.∵∠BAF=2∠CBF.∴∠BAF=2∠BAE.∴∠BAE=∠CAE.∴∠CBF=∠CAE.∵CG⊥BF,AE⊥BC,∴∠CGB=∠AEC=90°.∵∠CBF=∠CAE,∠CGB=∠AEC,∴△BCG∽△ACE.,.∵∠AFB=60°,∠ABF=90°,∴∠BAF=30°.∵∠ADB=90°,∠BAF=30°,∴AB=2BD.∵∠BAE=∠CAE,∠AEB=∠AEC,∴∠ABE=∠ACE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,BD=r.∵∠ADB=90°,r.∴DC=AC﹣AD=2r(2+3.∴⊙O的半径长为.【考点】圆的综合题.25.如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.△PEO 相似,根据相似三角形对应边成比例求出PE ,然后写出点P 的坐标即可;②点C 是直角顶点时,同理求出PF ,再求出PE ,然后写出点P 的坐标即可;③点P 是直角顶点时,利用勾股定理列式求出OC ,然后根据直角三角形斜边上的中线等于斜边的一半可得PD=12OC ,再分点P 在OC 的上方与下方两种情况写出点P 的坐标即可.试题解析:(1)把点A (1,0)和B (4,0)代入y=ax 2+bx+2得, 2016420a b a b ++=⎧⎨++=⎩,∴OE PE DE OE=, 即52512PE =, 解得PE=254,【考点】二次函数综合题.。

2014年广西来宾市中考数学试卷(含答案和解析)2014年广西来宾市中考数学试卷(含答案和解析)

2014年广西来宾市中考数学试卷(含答案和解析)2014年广西来宾市中考数学试卷(含答案和解析)

2014年广西来宾市中考数学试卷一、选择题:本大题共有12小题,每小题3份,共36分.在每小题给出的四个选项中只有一项是符合题目要求.1.(3分)(2014•来宾)在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)(2014•来宾)去年我市参加中考人数约17700人,这个数用科学记数法表示是()A.1.77×102B.1.77×104C.17.7×103D.1.77×1053.(3分)(2014•来宾)如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形4.(3分)(2014•来宾)数据5,8,4,5,3的众数和平均数分别是()A.8,5 B.5,4 C.5,5 D.4,55.(3分)(2014•来宾)下列运算正确的是()A.(﹣a3)2=a5B.(﹣a3)2=﹣a5C.(﹣3a2)2=6a4D.(﹣3a2)2=9a46.(3分)(2014•来宾)正方形的一条对角线长为4,则这个正方形的面积是()A.8B.4C.8D.167.(3分)(2014•来宾)函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤38.(3分)(2014•来宾)将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣49.(3分)(2014•来宾)顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形10.(3分)(2014•来宾)已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是()A.x2﹣6x+8=0 B.x2+2x﹣3=0 C.x2﹣x﹣6=0 D.x2+x﹣6=011.(3分)(2014•来宾)不等式组的解集在数轴上表示正确的是()A.B.C.D.12.(3分)(2014•来宾)将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)二、填空题:本大题共6小题,每小题3分,共18分13.(3分)(2014•来宾)的倒数是_________.14.(3分)(2014•来宾)分解因式:25﹣a2=_________.15.(3分)(2014•来宾)一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是_________cm2(结果保留π).16.(3分)(2014•来宾)某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有_________名学生.17.(3分)(2014•来宾)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为_________.18.(3分)(2014•来宾)如图,点A、B、C均在⊙O上,∠C=50°,则∠OAB=_________度.三、解答题:本大题共7小题,满分66分,解答应写出文字说明、证明过程或演算步骤.19.(12分)(2014•来宾)(1)计算:(﹣1)2014﹣|﹣|+﹣(﹣π)0;(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.20.(8分)(2014•来宾)某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70<x<90 90<x<110 110≤x<130 130≤x<150 150≤x<170人数823 16 2 1根据所给信息,回答下列问题:(1)本次调查的样本容量是_________;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有_________人;(3)根据上表的数据补全直方图;(4)如果跳绳次数达到130次以上的3人中有2名女生和一名男生,学校从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率(要求用列表法或树状图写出分析过程).21.(8分)(2014•来宾)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规左图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.22.(8分)(2014•来宾)一次函数y1=﹣x﹣1与反比例函数y2=的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;(2)求出反比例函数的解析式.23.(8分)(2014•来宾)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?24.(10分)(2014•来宾)如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.(1)直接写出AE与BC的位置关系;(2)求证:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半径长.25.(12分)(2014•来宾)如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.2014年广西来宾市中考数学试卷参考答案与试题解析一、选择题:本大题共有12小题,每小题3份,共36分.在每小题给出的四个选项中只有一项是符合题目要求.1.(3分)(2014•来宾)在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形的概念与中心对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、既是轴对称图形又是中心对称图形,故本选项正确;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2014•来宾)去年我市参加中考人数约17700人,这个数用科学记数法表示是()A.1.77×102B.1.77×104C.17.7×103D.1.77×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将17700用科学记数法表示为:1.77×104.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•来宾)如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形考点:多边形内角与外角.专题:方程思想.分析:n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.解答:解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是6.故选C.点评:考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.4.(3分)(2014•来宾)数据5,8,4,5,3的众数和平均数分别是()A.8,5 B.5,4 C.5,5 D.4,5考点:众数;算术平均数.分析:根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.解答:解:∵5出现了2次,出现的次数最多,∴众数是5;这组数据的平均数是:(5+8+4+5+3)÷5=5;故选C.点评:此题考查了众数和平均数,众数是一组数据中出现次数最多的数,注意众数不止一个.5.(3分)(2014•来宾)下列运算正确的是()A.(﹣a3)2=a5B.(﹣a3)2=﹣a5C.(﹣3a2)2=6a4D.(﹣3a2)2=9a4考点:幂的乘方与积的乘方.分析:根据积的乘方等于每一个因式分别乘方,再把所得的幂相乘,可得答案案.解答:解:A、B、(﹣a3)2=a6,故A、B错误;C、(﹣3a2)2=9a4,故C错误;D、(﹣3a2)2=9a4,故D正确;故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每一个因式分别乘方,再把所得的幂相乘.6.(3分)(2014•来宾)正方形的一条对角线长为4,则这个正方形的面积是()A.8B.4C.8D.16考点:正方形的性质.分析:根据正方形的面积等于对角线乘积的一半列式计算即可得解.解答:解:∵正方形的一条对角线长为4,∴这个正方形的面积=×4×4=8.故选A.点评:本题考查了正方形的性质,熟记利用对角线求面积的方法是解题的关键.7.(3分)(2014•来宾)函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤3考点:函数自变量的取值范围.分析:根据二次根式有意义的条件,即根号下大于等于0,求出即可.解答:解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.点评:此题主要考查了函数变量的取值范围,此题是中考考查重点,同学们应重点掌握,特别注意根号下可以等于0这一条件.8.(3分)(2014•来宾)将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4考点:解分式方程.专题:常规题型.分析:分式方程两边乘以最简公分母x(x﹣2)即可得到结果.解答:解:去分母得:x﹣2=2x,故选A点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)(2014•来宾)顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形考点:正方形的判定;三角形中位线定理;菱形的性质.分析:根据三角形的中位线定理以及菱形的性质即可证得.解答:解:∵E,F是中点,∴EH∥BD,同理,EF∥AC,GH∥AC,FG∥BD,∴EH∥FG,EF∥GH,则四边形EFGH是平行四边形.又∵AC⊥BD,∴EF⊥EH,∴平行四边形EFGH是矩形.故选B.点评:本题主要考查了矩形的判定定理,正确理解菱形的性质以及三角形的中位线定理是解题的关键.10.(3分)(2014•来宾)已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是()A.x2﹣6x+8=0 B.x2+2x﹣3=0 C.x2﹣x﹣6=0 D.x2+x﹣6=0考点:根与系数的关系.分析:首先设此一元二次方程为x2+px+q=0,由二次项系数为1,两根分别为2,﹣3,根据根与系数的关系可得p=﹣(2﹣3)=1,q=(﹣3)×2=﹣6,继而求得答案.解答:解:设此一元二次方程为x2+px+q=0,∵二次项系数为1,两根分别为﹣2,3,∴p=﹣(2﹣3)=1,q=(﹣3)×2=﹣6,∴这个方程为:x2+x﹣6=0.故选:D.点评:此题考查了根与系数的关系.此题难度不大,注意若二次项系数为1,x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2.11.(3分)(2014•来宾)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得﹣3<x≤4,故选:D.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.(3分)(2014•来宾)将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)考点:关于原点对称的点的坐标;坐标与图形变化-平移.分析:首先利用平移变化规律得出P1(1,3),进而利用关于原点对称点的坐标性质得出P2的坐标.解答:解:∵点P(﹣2,3)向右平移3个单位得到点P1,∴P1(1,3),∵点P2与点P1关于原点对称,∴P2的坐标是:(﹣1,﹣3).故选;C.点评:此题主要考查了关于原点对称点的性质以及点的平移规律,正确把握坐标变化性质是解题关键.二、填空题:本大题共6小题,每小题3分,共18分13.(3分)(2014•来宾)的倒数是2.考点:倒数.分析:根据倒数的定义可直接解答.解答:解:∵×2=1,∴的倒数是2.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.(3分)(2014•来宾)分解因式:25﹣a2=(5﹣a)(5+a).考点:因式分解-运用公式法.分析:利用平方差公式解答即可.解答:解:25﹣a2,=52﹣a2,=(5﹣a)(5+a).点评:本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.15.(3分)(2014•来宾)一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是60πcm2(结果保留π).考点:几何体的表面积.分析:直接利用圆柱体侧面积公式求出即可.解答:解:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).故答案为:60π.点评:此题主要考查了圆柱体侧面积求法,正确根据圆柱体侧面积公式是解题关键.16.(3分)(2014•来宾)某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有160名学生.考点:用样本估计总体.分析:先求出随机抽取的40名学生中成绩达到108分以上的所占的百分比,再乘以640,即可得出答案.解答:解:∵随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达108分以上,∴九年级640名学生中这次模拟考数学成绩达108分以上的约有640×=160(名);故答案为:160.点评:此题考查了用样本估计总体,用到的知识点是总体平均数约等于样本平均数.17.(3分)(2014•来宾)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为4.考点:解直角三角形.分析:根据cosB=及特殊角的三角函数值解题.解答:解:∵cosB=,即cos30°=,∴AB===4.故答案为:4.点评:本题考查了三角函数的定义及特殊角的三角函数值,是基础知识,需要熟练掌握.18.(3分)(2014•来宾)如图,点A、B、C均在⊙O上,∠C=50°,则∠OAB=40度.考点:圆周角定理.分析:由∠C=50°求出∠AOB的度数,再根据等腰三角形的性质和三角形的内角和定理,即可求得答案.解答:解:∵∠C=50°,∴∠AOB=2∠C=100°,∵OA=OB,∴∠OAB=∠OBA==40°.故答案为:40.点评:此题考查了圆周角定理,用到的知识点是圆周角定理、等腰三角形的性质、三角形的内角和定理,注意数形结合思想的应用.三、解答题:本大题共7小题,满分66分,解答应写出文字说明、证明过程或演算步骤.19.(12分)(2014•来宾)(1)计算:(﹣1)2014﹣|﹣|+﹣(﹣π)0;(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.考点:实数的运算;整式的混合运算—化简求值;零指数幂.分析:(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可化简代数式,根据代数式求值的方法,可得答案.解答:解:(1)原式=1﹣+2﹣1=;(2)原式=4x2﹣5,把x=﹣2代入原式,得=4×(﹣2)2﹣5=11.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(8分)(2014•来宾)某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70<x<90 90<x<110 110≤x<130 130≤x<150 150≤x<170人数823 16 2 1根据所给信息,回答下列问题:(1)本次调查的样本容量是50;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有19人;(3)根据上表的数据补全直方图;(4)如果跳绳次数达到130次以上的3人中有2名女生和一名男生,学校从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率(要求用列表法或树状图写出分析过程).考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法.分析:(1)根据图表给出的数据可直接得出本次调查的样本容量;(2)把调查中每分钟跳绳次数达到110次以上(含110次)的人数加起来即可;(3)根据图表给出的数据可直接补全直方图;(4)根据题意画出树状图,得出抽中一男一女的情况,再根据概率公式,即可得出答案.解答:解:(1)本次调查的样本容量是:8+23+16+2+1=50;故答案为:50;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有人数是:16+2+1=19(人);故答案为:19;(3)根据图表所给出的数据补图如下:(4)根据题意画树状图如下:共有6种情况,恰好抽中一男一女的有4种情况,则恰好抽中一男一女的概率是=.点评:此题考查了条形统计图和频数(率)分布直方图,用到的知识点是样本容量、概率公式,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(8分)(2014•来宾)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规左图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.考点:作图—基本作图;线段垂直平分线的性质;矩形的性质.分析:(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.解答:解:(1)答题如图:(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.点评:本题考查了基本作图及全等三角形的判定与性质,了解基本作图是解答本题的关键,难度中等.22.(8分)(2014•来宾)一次函数y1=﹣x﹣1与反比例函数y2=的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;(2)求出反比例函数的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先观察函数图象得到在y轴的左侧,当x<﹣4时,一次函数图象都在反比例函数图象上方,即有y1>y2;(2)先根据一次函数解析式确定A点坐标,然后把A点坐标代入y2=可计算出k的值,从而得到反比例函数解析式.解答:解:(1)在y轴的左侧,当y1>y2时,x<﹣4;(2)把点A(﹣4,m)代入y1=﹣x﹣1得m=﹣×(﹣4)﹣1=1,则A点坐标为(﹣4,1),把A(﹣4,1)代入y2=得k=﹣4×1=﹣4,所以反比例函数的解析式为y2=﹣.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.23.(8分)(2014•来宾)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?考点:一元一次不等式的应用.专题:应用题.分析:(1)根据甲乙两厂家的优惠方式,可表示出购买桌椅所需的金额;(2)令甲厂家的花费大于乙厂家的花费,解出不等式,求解即可确定答案.解答:解:(1)甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x;(2)由题意,得:1680+80x>1920+64x,解得:x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.点评:本题考查了一元一次不等式的知识,注意将实际问题转化为数学模型,利用不等式的知识求解.24.(10分)(2014•来宾)如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.(1)直接写出AE与BC的位置关系;(2)求证:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半径长.考点:圆的综合题;角平分线的性质;等腰三角形的判定;含30度角的直角三角形;勾股定理;圆周角定理;切线的性质;相似三角形的判定.专题:综合题.分析:(1)由AB为⊙O的直径即可得到AE与BC垂直.(2)易证∠CBF=∠BAE,再结合条件∠BAF=2∠CBF就可证到∠CBF=∠CAE,易证∠CGB=∠AEC,从而证到△BCG∽△ACE.(3)由∠F=60°,GF=1可求出CG=;连接BD,容易证到∠DBC=∠CBF,根据角平分线的性质可得DC=CG=;设圆O的半径为r,易证AC=AB,∠BAD=30°,从而得到AC=2r,AD=r,由DC=AC﹣AD=可求出⊙O的半径长.解答:解:(1)如图1,∵AB是⊙O的直径,∴∠AEB=90°.∴AE⊥BC.(2)如图1,∵BF与⊙O相切,∴∠ABF=90°.∴∠CBF=90°﹣∠ABE=∠BAE.∵∠BAF=2∠CBF.∴∠BAF=2∠BAE.∴∠BAE=∠CAE.∴∠CBF=∠CAE.∵CG⊥BF,AE⊥BC,∴∠CGB=∠AEC=90°.∵∠CBF=∠CAE,∠CGB=∠AEC,∴△BCG∽△ACE.(3)连接BD,如图2所示.∵∠DAE=∠DBE,∠DAE=∠CBF,∴∠DBE=∠CBF.∵AB是⊙O的直径,∴∠ADB=90°.∴BD⊥AF.∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,∴CD=CG.∵∠F=60°,GF=1,∠CGF=90°,∴tan∠F==CG=tan60°=∵CG=,∴CD=.∵∠AFB=60°,∠ABF=90°,∴∠BAF=30°.∵∠ADB=90°,∠BAF=30°,∴AB=2BD.∵∠BAE=∠CAE,∠AEB=∠AEC,∴∠ABE=∠ACE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,BD=r.∵∠ADB=90°,∴AD=r.∴DC=AC﹣AD=2r﹣r=(2﹣)r=.∴r=2+3.∴⊙O的半径长为2+3.点评:本题考查了切线的性质、圆周角定理、相似三角形的判定、角平分线的性质、30°角所对的直角边等于斜边的一半、勾股定理等知识,有一定的综合性.连接BD,证到∠DBC=∠CBF是解决第(3)题的关键.25.(12分)(2014•来宾)如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)把点A、B的坐标代入函数解析式,解方程组求出a、b的值,即可得解;(2)根据抛物线解析式求出对称轴,再根据平行四边形的对角线互相平分求出点C的横坐标,然后代入函数解析式计算求出纵坐标,即可得解;(3)设AC、EF的交点为D,根据点C的坐标写出点D的坐标,然后分①点O是直角顶点时,求出△OED 和△PEO相似,根据相似三角形对应边成比例求出PE,然后写出点P的坐标即可;②点C是直角顶点时,同理求出PF,再求出PE,然后写出点P的坐标即可;③点P是直角顶点时,利用勾股定理列式求出OC,然后根据直角三角形斜边上的中线等于斜边的一半可得PD=OC,再分点P在OC的上方与下方两种情况写出点P的坐标即可.解答:解:(1)把点A(1,0)和B(4,0)代入y=ax2+bx+2得,,解得,所以,抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∵四边形OECF是平行四边形,∴点C的横坐标是×2=5,∵点C在抛物线上,∴y=×52﹣×5+2=2,∴点C的坐标为(5,2);(3)设OC、EF的交点为D,∵点C的坐标为(5,2),∴点D的坐标为(,1),①点O是直角顶点时,易得△OED∽△PEO,∴=,即=,解得PE=,所以,点P的坐标为(,﹣);②点C是直角顶点时,同理求出PF=,所以,PE=+2=,所以,点P的坐标为(,);③点P是直角顶点时,由勾股定理得,OC==,∵PD是OC边上的中线,∴PD=OC=,若点P在OC上方,则PE=PD+DE=+1,此时,点P的坐标为(,),若点P在OC的下方,则PE=PD﹣DE=﹣1,此时,点P的坐标为(,),综上所述,抛物线的对称轴上存在点P(,﹣)或(,)或(,)或(,),使△OCP是直角三角形.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,平行四边形的对角线互相平分的性质,相似三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,难点在于(3)根据直角三角形的直角顶点分情况讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年广西柳州市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•柳州)如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()A.B.C.D.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,左边是个正方形,右边是个矩形,故选:A.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)(2014•柳州)在所给的,0,﹣1,3这四个数中,最小的数是()A.B.0C.﹣1 D.3考点:有理数大小比较.分析:要解答本题可根据正数大于0,0大于负数,可得答案.解答:解:﹣1<0<<3.故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.3.(3分)(2014•柳州)下列选项中,属于无理数的是()A.2B.πC.D.﹣2考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无限不循环小数,故选:B.点评:本题考查了无理数,无理数是无限不循环小数.4.(3分)(2014•柳州)如图,直线l∥OB,则∠1的度数是()A.120°B.30°C.40°D.60°考点:平行线的性质.分析:根据两直线平行,同位角相等解答.解答:解:∵直线l∥OB,∴∠1=60°.故选D.点评:本题考查平行线的性质,熟记性质是解题的关键.5.(3分)(2014•柳州)下列计算正确的选项是()A.﹣1=B.()2=5 C.2a﹣b=ab D.=考点:分式的加减法;实数的运算;合并同类项.专题:计算题.分析:A、原式利用平方根定义化简,计算即可得到结果;B、原式利用平方根定义化简,计算即可得到结果;C、原式不能合并,错误;D、原式利用同分母分式的加法法则计算得到结果,即可做出判断.解答:解:A、原式=2﹣1=1;故选项错误;B、原式=5,故选项正确;C、原式不能合并,故选项错误;D、原式=,故选项错误.故选B.点评:此题考查了分式的加减法,以及实数的运算,熟练掌握运算法则是解本题的关键.6.(3分)(2014•柳州)如图,直角坐标系中的五角星关于y轴对称的图形在()A.第一象限B.第二象限C.第三象限D.第四象限考点:轴对称的性质.分析:根据轴对称的性质作出选择.解答:解:如图所示,直角坐标系中的五角星关于y轴对称的图形在第一象限.故选:A.点评:本题考查了轴对称的性质.此题难度不大,采用了“数形结合”的数学思想.7.(3分)(2014•柳州)学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是()A.12岁B.13岁C.14岁D.15岁考点:条形统计图;众数.分析:根据众数的定义,就是出现次数最多的数,据此即可判断.解答:解:众数是14岁.故选C.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.8.(3分)(2014•柳州)如图,当半径分别是5和r的两圆⊙O1和⊙O2外切时,它们的圆心距O1O2=8,则⊙O2的半径r为()A.12 B.8C.5D.3考点:圆与圆的位置关系.分析:根据两圆外切时,圆心距=两圆半径的和求解.解答:解:根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是8﹣5=3.故选D.点评:本题考查了圆与圆的位置关系,注意:两圆外切,圆心距等于两圆半径之和.9.(3分)(2014•柳州)在下列所给出的4个图形中,对角线一定互相垂直的是()A.长方形B.平行四边形C.菱形D.直角梯形考点:多边形.分析:根据菱形的对角线互相垂直即可判断.解答:解:菱形的对角线互相垂直,而长方形、平行四边形、直角梯形的对角线不一定互相垂直.故选C.点评:本题考查了长方形、平行四边形、菱形、直角梯形的性质.常见四边形中,菱形与正方形的对角线互相垂直.10.(3分)(2014•柳州)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°考点:多边形内角与外角.分析:多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为x,故又可表示成6x,列方程可求解.解答:解:设这个正六边形的每一个内角的度数为x,则6x=(6﹣2)•180°,解得x=120°.故这个正六边形的每一个内角的度数为120°.故答案选:B.点评:本题考查根据多边形的内角和计算公式求多边形的内角的度数,解答时要会根据公式进行正确运算、变形和数据处理.11.(3分)(2014•柳州)小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解B.x=1 C.x=﹣4 D.x=﹣1或x=4考点:抛物线与x轴的交点.分析:关于x的方程x2+ax+b=0的解是抛物线y=x2+ax+b与x轴交点的横坐标.解答:解:如图,∵函数y=x2+ax+b的图象与x轴交点坐标分别是(﹣1,0),(4,0),∴关于x的方程x2+ax+b=0的解是x=﹣1或x=4.故选:D.点评:本题考查了抛物线与x轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.12.(3分)(2014•柳州)如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()A.0.25 B.0.5 C.0.75 D.0.95考点:列表法与树状图法.专题:计算题.分析:根据题意列出表格,得出所有等可能的情况数,找出至少有一个灯泡发光的情况数,即可求出所求的概率.解答:解:列表如下:灯泡1发光灯泡1不发光灯泡2发光(发光,发光)(不发光,发光)灯泡2不发光(发光,不发光)(不发光,不发光)所有等可能的情况有4种,其中至少有一个灯泡发光的情况有3种,则P==0.75.故选C.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2014•柳州)3的相反数是﹣3.考点:相反数.分析:此题依据相反数的概念求值.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.解答:解:3的相反数就是﹣3.点评:此题主要考查相反数的概念.14.(3分)(2014•柳州)如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y(用“>”或“<”填空).考点:不等式的定义.分析:由图知1号同学比2号同学矮,据此可解答.解答:解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.点评:本题主要考查了不等式的定义,仔细看图是解题的关键.15.(3分)(2014•柳州)如图,等腰梯形ABCD的周长为16,BC=4,CD=3,则AB=5.考点:等腰梯形的性质.分析:根据等腰梯形的性质可得出AD=BC,再由BC=4,CD=3,得出AB的长.解答:解:∵四边形ABCD为等腰梯形,∴AD=BC,∵BC=4,∴AD=4,∵CD=3,等腰梯形ABCD的周长为16,∴AB=16﹣3﹣4﹣4=5,故答案为5.点评:本题考查了等腰梯形的性质,是基础知识要熟练掌握.16.(3分)(2014•柳州)方程﹣1=0的解是x=2.考点:解分式方程.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2﹣x=0,解得:x=2,经检验x=2是分式方程的解.故答案为:2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(3分)(2014•柳州)将直线y=x向上平移7个单位后得到直线y=x+7.考点:一次函数图象与几何变换.分析:直接根据“上加下减”的原则进行解答.解答:解:由“上加下减”的原则可知,将直线y=x向上平移7个单位所得直线的解析式为:y=x+7.故答案为:7.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.18.(3分)(2014•柳州)如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3,现有如下结论:①S1:S2=AC2:BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1•S2=S32.其中结论正确的序号是①②③.考点:全等三角形的判定与性质;等边三角形的性质.分析:①根据相似三角形面积的比等于相似比的平方判断;②根据SAS即可求得全等;③根据面积公式即可判断.解答:①S1:S2=AC2:BC2正确,解:∵△ADC与△BCE是等边三角形,∴△ADC∽△BCE,∴S1:S2=AC2:BC2.②△BCD≌△ECA正确,证明:∵△ADC与△BCE是等边三角形,∴∠ACD=∠BCE=60°∴∠ACD+∠ACB=∠BCE+∠ACD,即∠ACE=∠DCB,在△ACE与△DCB中,,∴△BCD≌△ECA(SAS).③若AC⊥BC,则S1•S2=S32正确,解:设等边三角形ADC的边长=a,等边三角形BCE边长=b,则△ADC的高=a,△BCE的高=b,∴S1=a a=a2,S2=b b=b2,∴S1•S2=a2b2=a2b2,∵S3=ab,∴S32=a2b2,∴S1•S2=S32.点评:本题考查了三角形全等的判定,等边三角形的性质,面积公式以及相似三角形面积的比等于相似比的平方.三、解答题(共8小题,满分66分)19.(6分)(2014•柳州)计算:2×(﹣5)+3.考点:有理数的乘法;有理数的加法.分析:根据异号两数相乘得负,并把绝对值相乘,可得积,再根据有理数的加法,可得答案.解答:解:原式=﹣10+3=﹣7.点评:本题考查了有理数的乘法,先算有理数的乘法,再算有理数的加法,注意运算符号.20.(6分)(2014•柳州)一位射击运动员在10次射击训练中,命中靶的环数如图.请你根据图表,完成下列问题:(1)补充完成下面成绩表单的填写:射击序次 1 2 3 4 5 6 7 8 9 10成绩/环8 10 7 9 10 7 10(2)求该运动员这10次射击训练的平均成绩.考点:折线统计图;统计表;算术平均数.分析:根据折线统计图中提供的信息,补全统计表;(2)求出该运动员射击总环数除以10即可.解答:解:(1)由折线统计图得出第一次射击环数为:8,第二次射击环数为:9,第三次射击环数为:7,故答案为:8,9,7.(2)运动员这10次射击训练的平均成绩:(8+9+7+8+10+7+9+10+7+10)÷10=8.5(环).点评:本题主要考查了折线统计图及统计表和平均数,解题的关键是能从折线统计图中正确找出数据.21.(6分)(2014•柳州)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?考点:二元一次方程组的应用.分析:设大苹果的重量为xg,小苹果的重量为yg,根据图示可得:大苹果的重量=小苹果+50g,大苹果+小苹果=300g+50g,据此列方程组求解.解答:解:设大苹果的重量为xg,小苹果的重量为yg,由题意得,,解得:.答:大苹果的重量为200g,小苹果的重量为150g.点评:本题考查了二元一次方程组的应用,解答本题的关键是根据图形,找出等量关系,列方程组求解.22.(8分)(2014•柳州)如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan∠C的值.考点:解直角三角形;勾股定理.专题:计算题.分析:(1)由BD⊥AC得到∠ADB=∠ADC=90°,在Rt△ADB中,根据含30度的直角三角形三边的关系先得到BD=AB=3,再得到AD=BD=3;(2)先计算出CD=2,然后在Rt△ADC中,利用正切的定义求解.解答:解:(1)∵BD⊥AC,∴∠ADB=∠ADC=90°,在Rt△ADB中,AB=6,∠A=30°,∴BD=AB=3,∴AD=BD=3;(2)CD=AC﹣AD=5﹣3=2,在Rt△ADC中,tan∠C===.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了含30度的直角三角形三边的关系.23.(8分)(2014•柳州)如图,函数y=的图象过点A(1,2).(1)求该函数的解析式;(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义.分析:(1)将点A的坐标代入反比例函数解析式,即可求出k值;(2)由于点A是反比例函数上一点,矩形ABOC的面积S=|k|.(3)设图象上任一点的坐标(x,y),根据矩形的面积公式,可得出结论.解答:解:(1)∵函数y=的图象过点A(1,2),∴将点A的坐标代入反比例函数解析式,得2=,解得:k=2,∴反比例函数的解析式为y=;(2)∵点A是反比例函数上一点,∴矩形ABO C的面积S=AC•AB=|xy|=|k|=2.(3)设图象上任一点的坐标(x,y),∴过这点分别向x轴和y轴作垂线,矩形面积为|xy|=|k|=2,∴矩形的面积为定值.点评:本题主要考查了待定系数法求反比例函数解析式和反比例函数y=中k的几何意义,注意掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.24.(10分)(2014•柳州)如图,在△ABC中,∠BAC的角平分线AD交BC于E,交△ABC 的外接圆⊙O于D.(1)求证:△ABE∽△ADC;(2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.考点:相似三角形的判定与性质;菱形的判定;圆周角定理.专题:证明题.分析:(1)根据圆周角定理求出∠B=∠D,根据相似三角形的判定推出即可;(2)根据垂径定理求出OD⊥BC,根据线段垂直平分线性质得出OB=BD,OC=CD,根据菱形的判定推出即可.解答:证明:(1)∵∠BAC的角平分线AD,∴∠BAE=∠CAD,∵∠B=∠D,∴△ABE∽△ADC;(2)∵∠BAD=∠CAD,∴弧BD=弧CD,∵OD为半径,∴DO⊥BC,∵F为OD的中点,∴OB=BD,OC=CD,∵OB=OC,∴OB=BD=CD=OC,∴四边形OBDC是菱形.点评:本题考查了相似三角形的判定,圆周角定理,垂径定理,菱形的判定,线段垂直平分线性质的应用,主要考查学生的推理能力.25.(10分)(2014•柳州)如图,正方形ABCD的边长为l,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE,∠DPE=90°,又由正方形ABCD的边长为l,易证得△ADP≌△QPE,然后由全等三角形的性质,求得线段PQ的长;(2)易证得△DAP∽△PBF,又由△PFD∽△BFP,根据相似三角形的对应边成比例,可得证得PA=PB,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠DPE=90°,∴∠APD+∠QPE=90°,∵四边形ABCD是正方形,∴∠A=90°,∴∠ADP+∠APD=90°,∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,在△ADP和△QPE中,,∴△ADP≌△QPE(AAS),∴PQ=AD=1;(2)∵△PFD∽△BFP,∴,∵∠ADP=∠EPB,∠CBP=∠A,∴△DAP∽△PBF,∴,∴,∴PA=PB,∴PA=AB=∴当PA=时,△PFD∽△BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.26.(12分)(2014•柳州)已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1,y1),B(x2,y2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax2+bx+c=0的两根为x1,x2,则:x1+x2=﹣,x1•x2=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x2﹣3x=15两根的和与积.解:原方程变为:x2﹣3x﹣15=0∵一元二次方程的根与系数有关系:x1+x2=﹣,x1•x2=∴原方程两根之和=﹣=3,两根之积==﹣15.考点:二次函数综合题;完全平方公式;根与系数的关系;待定系数法求一次函数解析式;二次函数的图象;待定系数法求二次函数解析式;三角形的内切圆与内心.专题:压轴题.分析:(1)设二次函数解析式为y=ax2+1,由于点(﹣1,)在二次函数图象上,把该点的坐标代入y=ax2+1,即可求出a,从而求出二次函数的解析式.(2)先分别求出x=﹣1,x=0,x=3时y的值,然后结合图象就可得到y的取值范围.(3)由于△ABG的内切圆的圆心落在y轴上,因此GP平分∠AGB.过点A作GP 的对称点A′,则点A′必在BG上.由于点A(x1,y1)、B(x2,y2)在直线y=kx+2上,从而可以得到点A的坐标为(x1,kx1+2)、A′的坐标为(﹣x1,kx1+2)、B的坐标为(x2,kx2+2).设直线BG的解析式为y=mx+n,则点G的坐标为(0,n).由于点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG上,可用含有k、x1、x2的代数式表示n.由于A、B是直线y=kx+2与抛物线y=x2+1的交点,由根与系数的关系可得:x1+x2=4k,x1•x2=﹣4.从而求出n=0,即可证出:在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG的内切圆的圆心落在y轴上.由S△ABG=S△APG+S△BPG,可以得到S△ABG=x2﹣x1==4,所以当k=0时,S△ABG最小,最小值为4.解答:(1)解:由于二次函数图象的顶点坐标为(0,1),因此二次函数的解析式可设为y=ax2+1.∵抛物线y=ax2+1过点(﹣1,),∴=a+1.解得:a=.∴二次函数的解析式为:y=x2+1.(2)解:当x=﹣1时,y=,当x=0时,y=1,当x=3时,y=×32+1=,结合图1可得:当﹣1<x<3时,y的取值范围是1≤y<.(3)①证明:∵△ABG的内切圆的圆心落在y轴上,∴GP平分∠AGB.∴直线GP是∠AGB的对称轴.过点A作GP的对称点A′,如图2,则点A′一定在BG上.∵点A的坐标为(x1,y1),∴点A′的坐标为(﹣x1,y1).∵点A(x1,y1)、B(x2,y2)在直线y=kx+2上,∴y1=kx1+2,y2=kx2+2.∴点A′的坐标为(﹣x1,kx1+2)、点B的坐标为(x2,kx2+2).设直线BG的解析式为y=mx+n,则点G的坐标为(0,n).∵点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG上,∴.解得:.∵A(x1,y1),B(x2,y2)是直线y=kx+2与抛物线y=x2+1的交点,∴x1、x2是方程kx+2=x2+1即x2﹣4kx﹣4=0的两个实数根.∴由根与系数的关系可得;x1+x2=4k,x1•x2=﹣4.∴n==﹣2+2=0.∴点G的坐标为(0,0).∴在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG的内切圆的圆心落在y轴上.②解:过点A作AC⊥OP,垂足为C,过点B作BD⊥OP,垂足为D,如图2,∵直线y=kx+2与y轴相交于点P,∴点P的坐标为(0,2).∴PG=2.∴S△ABG=S△APG+S△BPG=PG•AC+PG•BD=PG•(AC+BD)=×2×(﹣x1+x2)=x2﹣x1====4.∴当k=0时,S△ABG最小,最小值为4.∴△GAB面积的最小值为4.点评:本题考查了用待定系数法求二次函数及一次函数的解析式、二次函数的图象、三角形的内切圆、根与系数的关系、完全平方公式等知识,综合性比较强,有一定的难度.。

相关文档
最新文档