最新结构力学经典考研复习笔记-强力推荐-吐血推荐
龙驭球《结构力学 》(第4版)笔记和课后习题(含考研真题)详
真题)详
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
教材
复习
笔记
复习
结构
知识
分析
力学
书
真题 笔记
构造
第版
名校
几何
习题
第章
真题
受力
内容摘要
本书是龙驭球主编的《结构力学Ⅰ》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓 缩学科精华。本书每章的复习笔记在参考了国内名校名师讲授该教材的课堂笔记的基础上对该章的重难点进行了 整理。因此,本书的内容几乎浓缩了该教材的所有知识精华。(2)详解课后习题,巩固重点难点。本书参考大量 相关辅导资料,对龙驭球主编的《结构力学Ⅰ》(第4版)的课后习题进行了详细的分析和解答,并对相关重要知 识点进行了延伸和归纳。(3)精编考研真题,培养解题思路。本书精选详析了部分名校近年来的相关考研真题, 这些高校均以该教材作为考研参考书目。所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真 题的命题风格和难易程度,并检验自己的复习效果。说明:由于本辅导书图表公式较多、篇幅较长,为方便读者 阅读,特将本辅导书分为上(1~4章)、中(5~7章)、下(8~10章)三册,本书为上册。
Байду номын сангаас
目录分析
1.2课后习题详解
1.1复习笔记
1.3名校考研真题 详解
2.2课后习题详解
2.1复习笔记
2.3名校考研真题 详解
3.2课后习题详解
3.1复习笔记
龙驭球《结构力学》笔记和课后习题(含真题)详解(绪 论)【圣才出品】
第1章绪论1.1 复习笔记一、结构力学的学科内容和教学要求1.结构建筑物、工程设施中承受和传递荷载而起骨架作用的部分。
从几何尺寸上可分为:杆件结构、板壳结构、实体结构三类。
2.结构力学研究内容(1)结构力学的研究对象,主要是杆件结构。
(2)结构力学的研究任务,是根据力学原理研究在外力和其他外界因素作用下的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的组成规律。
(3)结构力学的研究方法,包含理论分析、实验研究和数值计算三个方面。
3.能力培养包括分析能力、计算能力、自学能力、表达能力。
二、结构的计算简图和简化要点1.结构的计算简图计算中需要寻求一个简化的图形来代替实际结构,这个图就称为结构的计算简图。
它的确定原则:(1)从实际出发反应结构的主要受力特征;(反映实际)(2)分清主次,略去细节,以便于计算。
(简化计算)2.简化要点(1)结构体系,常略去次要空间约束,简化为平面结构计算。
(2)杆件用轴线简化,杆件间的连接区用结点表示,杆长用结点间距离表示,荷载作用点也转移到轴线上。
(3)杆件间的连接区,根据实际情况简化为铰接点或刚结点。
(4)结构和基础连接,一般简化为滚轴支座、铰支座、定向支座、固定支座。
(5)材料性质,一般简化为连续、均匀、各向同性、完全弹性或弹塑性的材料。
(6)荷载,均简化为作用在杆件轴线上,分为集中荷载和均布荷载。
三、杆件、杆件结构、荷载的分类1.杆件通常分为梁、拱、桁架、刚架、组合结构。
2.杆件结构根据空间特性,分为平面结构和空间结构;根据计算特性,分为静定结构、超静定结构。
3.荷载根据作用时间,分为恒载和活载;根据作用性质,分为静力荷载和动力荷载。
1.2 名校考研真题详解本章暂未编辑名校考研真题,若有最新真题会及时更新。
龙驭球《结构力学Ⅰ》(第4版)考研复习笔记及考研真题精选(答案详解)
(2)结构力学的主要研究内容(见表1-1-3)表1-1-3结构力学的主要研究内容3能力培养(见表1-1-4)表1-1-4结构力学教学中的能力培养二、结构的计算简图和简化要点计算中忽略不重要的细节、保留基本特点、需要寻求一个简化的图形来代替实际结构,这个图就称为结构的计算简图。
它的确定原则及简化要点见表1-1-5。
表1-1-5结构的计算简图和简化要点三、杆件、杆件结构、荷载的分类(见表1-1-6)表1-1-6杆件、杆件结构、荷载的分类名校考研真题说明:本部分从指定龙驭球主编的《结构力学》(第3版)为考研参考书目的名校历年考研真题中挑选最具代表性的部分,并对其进行了详细的解答。
所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。
如需更多专业课资料,可转识库学习网进行查看。
一、判断题1.当不考虑杆件轴向变形时,图11-1(a)所示单跨超静定梁与图11-1(b)所示单跨超静定梁完全等效。
()[湖南大学2006年研]图11-1【答案】对查看答案二、选择题1.以下叙述正确的是()。
[国防科技大学2004年研]A.静定结构在支座位移作用下,既产生位移又产生内力B.超静定结构只有在荷载作用下才产生内力C.静定结构的全部内力和范例可以由平衡条件位移确定D.一平衡力系作用于静定结构的某一部分时,仅该部分有内力,结构的其余部分内力为零【答案】C查看答案三、计算题1.绘制图11-2(a)所示结构弯矩图形状;已知图11-2(b)结构弯矩图,绘制其荷载图;不经过计算,绘制图11-2(c)所示结构弯矩图。
[武汉科技大学2009研](a)(b)(c)图11-2解:(1)图11-2(a)为对称结构,由对称结构的性质绘制弯矩图,如下图题11-3(a)所示。
(2)图11-2(b),自右向左进行分析。
悬臂端有弯矩,则端部有一集中力偶.横杆弯矩图有尖端,则在尖端位置有一集中力作用,竖杆弯矩斜率保持不变,则刚结点有水平荷载作用,绘制荷载图,如下图题11-3(b)所示。
结构力学考研复习笔记
平面杆件结构和荷载的分类
(三)按作用位置的变化情况分类 1.固定荷载:作用位置固定不变的荷载,如所有恒载、屋楼面均布活荷载、风载、雪载等。 2.移动荷载:在荷载作用期间,其位置不断变化的荷载,如吊车荷载、火车、汽车等。 (四)按作用性质分类 1. 静力荷载: 荷载不变化或变化缓慢, 不会是结构产生显著的加速度, 可忽略惯性力的影响。 2.动力荷载:荷载(大小、方向、作用线)随时间迅速变化,使结构发生不容忽视的惯性力。 例如锤头冲击锻坯时的冲击荷载、地震作用等。 §1-4 结构力学的学习方法 一、课程定位:土建工程专业的一门主要技术基础课,在专业学习中有承上启下的作用 二、学习方法 1.注意理论联系实际,为后续专业课的学习打基础 2.注意掌握分析方法与解题思路 3.注意对基本概念和原理的理解,多做习题
1 1
1 1 1
2
2
(3)W<0,自由度数目<约束数目,体系具有多余约束(可能是几何可变体系,也可能是超静 定结构) 注:W≤0 是体系几何不变的必要条件。 §2-2 无多余约束的几何不变体系的组成规则 一、一点与一刚片 1.规则一:一个点与一个刚片之间用两根不在同一条直线上的链杆相连, 组成无多余约束的几 何不变体系。 2.结论:二元体规则 (1)二元体:两根不在同一条直线上的链杆联接一个新结点的装置。 (2)二元体规则:在一已知体系中增加或减少二元体,不改变原体系的几何性质。 注:利用二元体规则简化体系,使体系的几何组成分析简单明了。 二、两刚片规则 1.规则二:两个刚片用一个单铰和杆轴不过该铰铰心的一根链杆相连,组成无多余约束的几 何不变体系。 2.推论:两个刚片用不全交于一点也不全平行的三根链杆相连,组成无多余约束的几何不变 体系。 三、三刚片规则 1.规则三:三个刚片用不全在一条直线上的三个单铰(可以是虚铰)两两相连,组成无多余 约束的几何不变体系。 2.铰接三角形规则:平面内一个铰接三角形是无多余约束的几何不变体系。 注意:以上三个规则可互相变换。之所以用以上三种不同的表达方式,是为了在具体的几何 组成分析中应用方便,表达简捷。 四、瞬变体系的概念 1.瞬变体系的几何组成特征:在微小荷载作用下发生瞬间的微小刚体几何变形,然后便成为 几何不变体系。 2.瞬变体系的静力特性:在微小荷载作用下可产生无穷大内力。因此,瞬变体系或接近瞬变 的体系都是严禁作为结构使用的。 注:瞬变体系一般是总约束数满足但约束方式不满足规则的体系,是特殊的几何可变体系。
北京市考研土木工程复习资料结构力学重点公式速记
北京市考研土木工程复习资料结构力学重点公式速记【北京市考研土木工程复习资料-结构力学重点公式速记】1500字一、引言结构力学是土木工程中的重要学科之一,它研究力学原理在工程结构中的应用。
掌握结构力学的重要公式是考研复习的关键之一。
本文将为大家总结北京市考研土木工程复习资料中的结构力学重点公式,并提供速记技巧,帮助大家更好地复习和记忆。
二、受力分析1. 静力平衡:ΣF=02. 力的分解:F_x = F·cosθ, F_y = F·sinθ3. 力矩平衡:ΣM=04. 支反力计算:ΣF_x=0, ΣF_y=0, ΣM=0三、悬臂梁1. 悬臂梁的最大弯矩:M_max = F·l2. 悬臂梁的最大挠度:δ_max = (F·l^3)/(3·E·I)3. 悬臂梁的自振频率:f = (1/2π)·√(E·I/(m·l^3))四、简支梁1. 简支梁的最大弯矩:M_max = F·l/22. 简支梁的最大挠度:δ_max = (5·F·l^4)/(384·E·I)3. 简支梁的自振频率:f = (1/2π)·√(E·I/(m·l^3))五、梁的切线方向剪力和正交方向弯矩1. 切线方向剪力公式:V = dM/dx2. 正交方向弯矩公式:M = -EI(d^2v/dx^2)六、柱1. 柱的临界压力:P_cr = π^2·E·I/(K·l_r^2)七、悬链线1. 悬链线的切线方向张力公式:T = w·cosh(x/h)2. 悬链线的法向方向张力公式:H = w·sinh(x/h)八、杆件1. 杆件的弯曲刚度:EI = ∑(A_i·E_i·l_i^3)2. 杆件的最大挠度:δ_max = (5·F·l^4)/(384·E·∑(A_i·L_i^3))3. 杆件的自振频率:f = (1/2π)·√(E·∑(A_i·L_i^3)/(m·l^3))九、结构稳定性1. 结构的稳定条件:ΣN_c·sinθ_c=0, ΣN_c·cosθ_c=M, ΣN_c=02. 梁的屈曲临界力:P_cr = π^2·E·I/(l_r^2)3. 柱的屈曲临界力:P_cr = π^2·E·A/(l_r^2)十、总结通过对北京市考研土木工程复习资料中结构力学重点公式的总结和速记技巧的介绍,相信大家能够更加高效地进行复习和记忆。
考研结构力学知识点梳理
考研结构力学知识点梳理第一章结构的几何构造分析1.瞬变体系:本来是几何可变,经微小位移后,又成为几何不变的体系,成为瞬变体系。
瞬变体系至少有一个多余约束。
2.两根链杆只有同时连接两个相同的刚片,才能看成是瞬铰。
3.关于无穷远处的瞬铰:(1)每个方向都有且只有一个无穷远点,(即该方向各平行线的交点),不同方向有不同的无穷远点。
(2)各个方向的无穷远点都在同一条直线上(广义)。
(3)有限点都不在无穷线上。
4.结构及和分析中的灵活处理:(1)去支座去二元体。
体系与大地通过三个约束相连时,应去支座去二元体;体系与大地相连的约束多于4个时,考虑将大地视为一个刚片。
(2)需要时,链杆可以看成刚片,刚片也可以看成链杆,且一种形状的刚片可以转化成另一种形状的刚片。
5.关于计算自由度:(基本不会考)(1)W>0,则体系中缺乏必要约束,是几何常变的。
(2)若W=0,则体系具有保证几何不变所需的最少约束,若体系无多余约束,则为几何不变,若有多余约束,则为几何可变。
(3)W<0,则体系具有多与约束。
W≤0是保证体系为几何不变的必要条件,而非充分条件。
若分析的体系没有与基础相连,应将计算出的W减去3.第二章静定结构的受力分析1.静定结构的一般性质:(1)静定结构是无多余约束的几何不变体系,用静力平衡条件可以唯一的求得全部内力和反力。
(2)静定结构只在荷载作用下产生内力,其他因素作用时,只引起位移和变形。
(3)静定结构的内力与杆件的刚度无关。
(4)在荷载作用下,如果仅靠静定结构的某一局部就可以与荷载维持平衡,则只有这部分受力,其余部分不受力。
(5)当静定结构的一个内部几何不变部分上的荷载或构造做等效变换时,其余部分的内力不变。
(6)静定结构有弹性支座或弹性结点时,内力与刚性支座或刚性节点时一样。
解放思想:计算内力和位移时,任何因素都可以分别作用,分别求解,再线性叠加,以将复杂问题拆解为简单情况处理。
2.叠加院里的应用条件是:用于静定结构内力计算时应满足小变形,用于位移计算和超静定结构的内力计算时材料还应服从胡克定律,即材料是线弹性的。
结构力学经典考研复习笔记-强力推荐-吐血推荐
结构力学经典考研复习笔记-强力推荐-吐血推荐第一章绪论一、教学内容结构力学的基本概念和基本学习方法。
二、学习目标•了解结构力学的基本研究对象、方法和学科内容。
•明确结构计算简图的概念及几种简化方法,进一步理解结构体系、结点、支座的形式和内涵。
•理解荷载和结构的分类形式。
在认真学习方法论——学习方法的基础上,对学习结构力学有一个正确的认识,逐步形成一个行之有效的学习方法,提高学习效率和效果。
三、本章目录§1-1 结构力学的学科内容和教学要求§1-2 结构的计算简图及简化要点§1-3 杆件结构的分类§1-4 荷载的分类§1-5 方法论(1)——学习方法(1)§1-6 方法论(1)——学习方法(2)§1-7 方法论(1)——学习方法(3)§1-1 结构力学的学科内容和教学要求1. 结构建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称结构。
例如房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等。
从几何的角度,结构分为如表1.1.1所示的三类:表1.1.1 结构的分类(2) 变形的几何连续条件。
(3) 应力与变形间的物理条件(本构方程)。
利用以上三方面进行计算的,又称为“平衡-几何”解法。
采用虚功和能量形式来表述时候,则称为“虚功-能量”解法。
随着计算机的进一步发展和应用,结构力学的计算由过去的手算正逐步由计算机所代替,本课程的特点是将结构力学求解器集成到网络中,主要利用求解器进行计算和画图。
3. 课程教学中的能力培养(1) 分析能力•选择结构计算简图的能力:将实际结构进行分析,确定其计算简图。
•进行力系平衡分析和变形几何分析的能力:对结构的受力状态进行平衡分析,对结构的变形和位移状态要进行几何分析。
这两方面的分析能力是结构分析的两个看家本领,要在反复运用中加以融会贯通,逐步提高,力求达到能正确、熟练、灵活运用的水平。
结构力学考研知识点归纳
结构力学考研知识点归纳结构力学是土木工程专业研究生入学考试的重要科目之一,它主要研究建筑结构在外力作用下的内力、变形和稳定性问题。
以下是结构力学考研的一些关键知识点归纳:基本概念和原理- 力的基本概念:力的三要素(大小、方向、作用点)。
- 静力学基本定理:平衡条件、力矩平衡等。
- 材料力学性质:弹性模量、泊松比、屈服强度等。
静定结构分析- 静定梁的内力分析:弯矩、剪力、轴力的计算。
- 静定桁架的内力分析:节点法、截面法。
- 三铰拱和悬索结构的内力分析。
超静定结构分析- 力法、位移法和弯矩分配法的原理和应用。
- 连续梁和框架结构的分析。
- 影响线的概念及其应用。
稳定性分析- 临界载荷的确定方法。
- 欧拉公式及其应用。
- 稳定性与结构形式、材料特性的关系。
能量方法- 虚功原理和最小势能原理。
- 莫尔定理和卡斯特拉诺定理。
- 能量方法在结构分析中的应用。
矩阵位移法- 局部坐标系和全局坐标系的建立。
- 刚度矩阵的组装和边界条件的处理。
- 结构的自由振动分析。
非线性问题- 材料非线性:塑性变形、破坏。
- 几何非线性:大变形问题。
- 接触非线性问题的处理方法。
结构动力分析- 单自由度和多自由度系统的振动分析。
- 地震作用下的结构响应分析。
- 随机振动和疲劳分析。
结构优化设计- 结构优化的基本概念和方法。
- 拓扑优化、形状优化和尺寸优化。
- 优化设计在实际工程中的应用。
结束语结构力学作为一门应用广泛的学科,其知识点繁多且相互关联。
考研复习时,不仅要掌握上述知识点,还要注重理论与实践的结合,通过大量的练习来加深理解。
希望以上的归纳能够帮助考生们更系统地复习结构力学,为考研做好充分的准备。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第2章 平面体系的机动分析【圣才出品】
相当于三刚片规则。同理,两刚片规则中链杆仍然可以看作一个刚片。因此三个基本组成
规则实质上只是同一个规则。
5.何谓瞬变体系?为什么土木工程中要避免采用瞬变和接近瞬变的体系? 答:(1)瞬变体系的定义 瞬变体系是指经微小位移后由几何可变转化为几何不变的体系,瞬变体系是一种几何 可变体系。 (2)在土木工程的实际中,由于材料变形,瞬变体系一经受力即偏离原有位置,而 内力通常也很大,甚至可能导致体系的破坏。同时,瞬变体系的位移只是理论上为无穷小, 实际上在很小的荷载作用下也会产生很大的位移。因此,土木工程中要பைடு நூலகம்免采用瞬变和接
二、平面体系的计算自由度 ★★★★★ 1.自由度和约束(见表 2-1-2)
表 2-1-2 自由度和约束
2.平面体系的计算自由度(见表 2-1-3) 表 2-1-3 平面体系的计算自由度
2 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平 台
三、几何不变体系的基本组成规则(见表 2-1-4) ★★★★★ 表 2-1-4 几何不变体系的基本组成规则
9 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平
台
近瞬变的体系,以保证结构的安全和正常使用。
6.试小结机动分析的一般步骤和技巧。 答:(1)机动分析的一般步骤 ①一般先考察体系的计算自由度。如果 W>0,已表明体系是几何可变的;如果 W≤0,进一步做组成分析。 ②运用几何组成的基本规则做几何组成分析。 (2)机动分析的一般技巧 ①对于较复杂的体系,宜先把能直接观察出的几何不变部分当作刚片。 ②以地基或刚片为基础按二元体或两刚片规则逐步扩大刚片范围。 ③拆除二元体使体系的组成简化,以便进一步用基本的组成规则去分析它们。
考研结构力学的知识点梳理
第一章结构的几何构造分析1 •瞬变体系:本来是几何可变,经微小位移后,又成为几何不变的体系,成为瞬变体系。
瞬变体系至少有一个多余约束。
2.两根链杆只有同时连接两个相同的刚片,才能看成是瞬较。
3.关于无穷远处的瞬较:(1)每个方向都有且只有一个无穷远点,(即该方向各平行线的交点),不同方向有不同的无穷远点。
(2)各个方向的无穷远点都在同一条直线上(广义)。
(3)有限点都不在无穷线上。
4.结构及和分析中的灵活处理:(1)去支座去二元体。
体系与大地通过三个约束相连时,应去支座去二元体;体系与大地相连的约束多于4个时,考虑将大地视为一个刚片。
(2)需要时,链杆可以看成刚片,刚片也可以看成链杆,且一种形状的刚片可以转化成另一种形状的刚片。
5.关于计算自由度:(基本不会考)(1),则体系中缺乏必要约束,是几何常变的。
(2)若,则体系具有保证几何不变所需的最少约束,若体系无多余约束,则为几何不变,若有多余约束,则为几何可变。
(3),则体系具有多与约束。
是保证体系为几何不变的必要条件,而非充分条件。
若分析的体系没有与基础相连,应将计算出的W减去3.第二章静定结构的受力分析1.静定结构的一般性质:(1)静定结构是无多余约束的几何不变体系,用静力平衡条件可以唯一的求得全部内力和反力。
(2)静定结构只在荷载作用下产生内力,其他因素作用时,只引起位移和变形。
(3)静定结构的内力与杆件的刚度无关。
(4)在荷载作用下,如果仅靠静定结构的某一局部就可以与荷载维持平衡,则只有这部分受力,其余部分不受力。
(5)当静定结构的一个内部几何不变部分上的荷载或构造做等效变换时,其余部分的内力不变。
(6)静定结构有弹性支座或弹性结点时,内力与刚性支座或刚性节点时一样。
解放思想:计算内力和位移时,任何因素都可以分别作用,分别求解,再线性叠加,以将复杂问题拆解为简单情况处理。
2.叠加院里的应用条件是:用于静定结构内力计算时应满足小变形,用于位移计算和超静定结构的内力计算时材料还应服从胡克定律,即材料是线弹性的。
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解
更多资料请关注微信公众号《精研学习网》查找资料
第1章绪论
1.1复习笔记
本章作为《结构力学》的开篇章节,对结构力学进行了概括性的介绍,包括结构力学的研究对象、研究内容、研究方法以及对相关能力的培养,突出了结构力学在土木工程高等教育中的重要性,最后对所需的学习方法进行了归纳,旨在帮助培养正确、有效的学习思路与方法,并将这种学习方法运用到其他学科以及生活中去。
一、结构力学的学科内容和教学要求
1结构
结构是指建筑物、工程设施中承受和传递重力或外力而起骨架作用的部分,如砖木结构、钢筋混凝土结构。
从几何角度上可分为杆件结构、板壳结构、实体结构三类(见表1-1-1),杆件结构是结构力学的主要研究对象。
表1-1-1结构的分类
2结构力学研究内容
(1)力学的分类
通常力学主要分为固体力学和流体力学,其中固体力学包括结构力学、理论力学、材料力学,以及弹塑性力学,这几类力学各司其职(见表1-1-2)。
表1-1-2固体力学的分类
(2)结构力学的主要研究内容(见表1-1-3)
表1-1-3结构力学的主要研究内容
3能力培养(见表1-1-4)
表1-1-4结构力学教学中的能力培养
二、结构的计算简图和简化要点
计算中忽略不重要的细节、保留基本特点、需要寻求一个简化的图形来代替实际结构,这个图就称为结构的计算简图。
它的确定原则及简化要点见表1-1-5。
表1-1-5结构的计算简图和简化要点
三、杆件、杆件结构、荷载的分类(见表1-1-6)
表1-1-6杆件、杆件结构、荷载的分类。
(完整版)结构力学笔记
第一章绪论1、不论设计任何结构都要经过正确的计算,才能达到安全、经济和合乎使用要求的目的。
2、活动铰支座、铰支座、固定支座和定向支座3、杆件结构的结点,通长可分为铰结点、刚结点、组合结点三种。
4、铰结点上的铰结端可以自由相对转动,因此,受荷载作用时:铰结点上个杆间夹角可以改变,与受荷前的夹角不同;各杆的铰结端不产生弯矩。
铰结点:被连接的杆件在连接处不能相对移动,但可以相对转动,可以传递力,但不能传递力矩。
木屋架的结点比较接近与铰结点。
5、刚结点上各杆的刚结端不能相对转动,即认为刚结点是一个刚体,各杆均刚结与此刚体上,因此,受荷后:刚结点上各杆间的夹角不变,各杆的刚结端旋转同一个角度;各杆的刚结端一般产生弯矩。
刚结点:被链接的杆件在连接处既不能相对移动,又不能相对转动,既可以传递力也可以传递力矩。
现浇混凝土结点通常属于这类情形。
6、若在同一个结点上,某些杆间相互刚结,而另一些杆间相互铰结,则称为组合结点或半铰结点。
7、铰结点上的铰称为完全铰或全铰。
组合结点上的铰则称为非完全铰或半铰。
8、实际结构情况复杂,往往不能考虑所有因素去做严格计算,而需去掉次要因素,以简化图式来代替,这种用以计算的简化图式,叫做结构的计算简图或计算模型。
9、确定计算简图的原则是:保证设计上需要的足够精度;使计算尽可能简单。
10、常见杆件结构类型梁(多跨静定梁、连续梁)、拱、桁架、钢架。
第二章平面体系的几何组成分析1、在不考虑材料应变的条件下,几何形状和位置都不能改变的体系称为几何不变体系。
在原来位置上可以运动,而发生微量位移后不能继续运动的体系,叫做瞬变体系。
可以发生非微量位移的体系称为常变体系。
常变体系和瞬变体系统称为可变体系,均不能作为建筑结构,只有几何不变体系才能用作建筑结构。
由于瞬变体系能产生很大的内力,所以不能用作建筑结构。
2、自由度:是体系运动时可以独立改变的几何参数的数目。
即确定体系位置所需的独立坐标的数目。
3、点的自由度:在平面内点的自由度等于2.4、刚片:几何不变的平面物体叫刚片。
天大《结构力学-1》学习笔记一
天⼤《结构⼒学-1》学习笔记⼀主题:《结构⼒学-1》学习笔记学习时间:整学期《结构⼒学-1》学习笔记⼀——绪论教学内容:⼀、绪论,结构⼒学的研究对象,荷载的分类,节点及⽀座的分类,结构的计算简图及分类⼆、⼏何组成分析的⽬的,⾃由度的概念,平⾯体系⾃由度的计算公式。
平⾯⼏何不变体系的基本组成规律及其运⽤。
瞬变体系的特征。
体系的⼏何组成与静定性的关系。
难点:平⾯⼏何体系的判断。
重点:平⾯⼏何体系的组成分析。
要求:⼏何不变体系的基本组成规则及应⽤教学⽬的要求:1、掌握:结构⼒学的研究对象,荷载的分类,节点及⽀座的分类,结构的计算简图及分类;平⾯⼏何不变体系的基本组成规律及其运⽤。
体系的⼏何组成与静定性的关系。
2、熟悉:⼏何组成分析的⽬的,⾃由度的概念,瞬变体系的特征。
体系的⼏何组成与静定性的关系。
3、了解:平⾯体系⾃由度的计算公式。
绪论1.1 结构⼒学的研究对象、任务和学习⽅法⼀、研究对象1、研究对象:结构⼒学以结构为研究对象。
(1)住宅、⼚房等⼯业民⽤建筑物;(2)涵洞、隧道、堤坝、挡⼟墙等构筑物;(3)桥梁、轮船、潜⽔艇、飞⾏器等结构物。
2、结构:承受荷载⽽起⾻架作⽤的部分称为⼯程结构,简称结构。
⼆、结构⼒学的任务1、研究结构的组成规律:保证结构能够承受荷载⽽不致发⽣相对运动;探讨结构的合理形式,以便有效地利⽤材料,充分发挥其性能。
2、计算结构在荷载、温度变化、⽀座移动等外部因素作⽤下的内⼒:为结构的强度计算提供依据,以保证结构满⾜安全和经济要求。
3、计算结构在荷载、温度变化、⽀座移动等外部因素作⽤下的变形和位移:为结构的刚度计算提供依据,以保证结构不致发⽣超过规范限定的变形⽽影响正常使⽤。
4、研究结构的稳定计算:确定结构丧失稳定性的最⼩临界荷载,以保证结构处于稳定的平衡状态⽽正常⼯作。
5、研究结构在动⼒荷载作⽤下动⼒特性。
三、结构⼒学与相关课程的关系1、“理⼒”、“材⼒”是“结构⼒学”的先修课。
结构力学重难点完美复习资料
第二章结构的几何构成分析
]
1、首先必须深刻理解几个基本概念,这几个概念层层递进。
●几何不变体系:不计材料应变情况下,体系的位置和形状不变。
在几何构成分析中与荷载无关,各个杆件都是刚体。
●刚片:形状不变的物体,也就是刚体。
在几何构成分析中,刚片的选取非常重要,也非常灵活,可大可小,小至一根杆,大至地基基础,皆可视为刚片。
第6章力法
1、关于算超静定结构的前提。教材上提到用公式确定结构的超静定次数,建议大家不用此方法,还是利用几何构成分析来确定超静定次数和多余约束,因为那两个公式并不太好应用,容易出错,即使算出了超静定次数,还是要利用几何构成分析来确定多余约束。
●判断超静定次数的基本原则:
4、多跨静定梁
基本部分:结构中不依赖于其它部分而独立与地基形成几何不变的部分
附属部分:结构中依赖基本部分的支承才能保持几何不变的部分
分析顺序:应先附属部分,后基本部分。
&
荷载在基本部分上,只基本部分受力,附属部分不受力;
荷载在附属部分上,除附属部分受力外,基本部分也受力。
Eg:
eg.
-
剪力大小:由弯矩图斜率或杆段平衡条件;
●对称结构受非对称荷载作用,可将荷载分成对称和反对称两组(除非荷载分解很复杂),再利用对称性计算。
4、力法计算超静定结构的标准步骤
大家在深刻理解力法的基本原理和典型方程后,一定会觉得力法是非常标准化、模式化、程序化的一种方法,不论用力法计算何种型式的超静定结构(在荷载作用下),都可分为以下标准的五大步(以弯曲变形体系为例):
,
5、对称性的利用
对称结构在是指几何尺寸、支座、杆件刚度都关于某根轴线对称的结构,结构力学中对称结构是较常见的,在前面静定结构的分析中已处理过对称静定结构的内力和变形,细心的同学可能已总结过它们的特点,现在对荷载作用下的对称超静定结构,最好利用对称性简化力法的计算。
结构力学复习笔记
结构⼒学复习笔记第⼀章绪论§1-1 结构和结构的分类⼀、结构⼯程中的桥梁、隧道、房屋、挡⼟墙、⽔坝等⽤以⽀承荷载和维护⼏何形态的⾻架部分称之为结构⼆、结构分类1. 杆系结构——杆件长度l远⼤于横截⾯尺⼨b、h。
钢结构梁、柱2. 板壳结构——厚度远⼩于其长度与宽度的结构3. 实体结构——长、宽、⾼三个尺⼨相近的结构§1-2 结构⼒学的内容和学习⽅法⼀、结构⼒学课程与其他课程的关系结构⼒学是理论⼒学和材料⼒学的后续课程。
理论⼒学研究的是刚体的机械运动(包括静⽌和平衡)的基本规律和刚体的⼒学分析。
材料⼒学研究的是单根杆件的强度、刚度和稳定性问题。
⽽结构⼒学则是研究杆件体系的强度、刚度和稳定性问题。
因此,理论⼒学和材料⼒学是学习结构⼒学的重要的基础课程,为结构⼒学提供⼒学分析的基本原理和基础。
同时,结构⼒学⼜为后续的弹性⼒学(研究板壳结构和实体结构的强度、刚度和稳定性问题)以及混凝⼟结构、砌体结构和钢结构等专业课程提供了进⼀步的⼒学知识基础。
因此,结构⼒学课程的学习在⼟⽊⼯程的房建、结构、道路、桥梁、⽔利及地下⼯程各专业的学习中均占有重要的地位。
⼆、结构⼒学的任务和学习⽅法结构⼒学的任务包括以下⼏个⽅⾯:(1)研究结构的组成规律、合理形式以及结构计算简图的合理选择;(2)研究结构内⼒和变形的计算⽅法,以便进⾏结构强度和刚度的验算;(3)研究结构的稳定性以及在动⼒荷载作⽤下结构的反应。
结构⼒学的学习⽅法:先修课,公式,定理,概念,作业研究性学习:结合⼯程实际思考问题1. 研究对象由细长杆件构成的体系—平⾯杆系结构。
如:梁、桁架、刚架、拱及组合结构等。
2. 研究内容平⾯杆件体系的⼏何构造分析;讨论结构的强度、刚度、稳定性、动⼒反应以及结构极限荷载的计算原理和计算⽅法等。
⼏何构造分析主要是讨论⼏何不变体系的组成规律,因为只有⼏何不变体系才能作为结构来使⽤。
强度计算在于保证结构物使⽤中的安全性,并符合经济要求。
结构力学笔记_复习题_考试题重点
绪论S1 . 结构力学的内容和任务一.对象结构:承受并传递荷载的骨架部分结构分为:杆系结构,板壳结构,实体结构二.任务研究结构的刚度,强度,稳定性的计算原理和计算方法三·内容结构组成;内力,位移,临界力计算.S2 . 杆件结构的计算简图计算简图: 在结构分析当中用来代替实际结构的计算模型(图形)确定计算简图的原则:1.能反映实际结构的主要力学特性;2.分析计算尽可能简便简化内容: 1.杆件的简化: 杆件杆件的轴线2.结点的简化: 刚结点铰结点半铰结点(组合结点)3.支座的简化: 固定铰支座可动较支座固定端支座滑动支座(定向支座)4.体系的简化: 空间结构平面结构5.荷载的简化: 集中力、集中力偶、分布荷载S3 . 杆件结构的类型第一章杆件体系的几何组成分析本章假定:所有杆件均为刚体S1-1 基本概念一.几何不变体系几何可变体系几何可变体系不能作为建筑结构结构必须是几何不变体系本章目的:判定一个体系是否能作为结构结构是如何构造的S1. 几何组成分析S1-1 基本概念一.几何不变体系几何可变体系二.二. 刚片几何形状不能变化的平面物体三.自由度确定体系位置所需的独立坐标数几何不变体系的自由度一定等于零或者小于零几何可变体系的自由度一定大于零四.约束(联系) 能减少自由度的装置五.计算自由度六.多余约束必要约束计算自由度小于零一定不变吗?计算自由度小于零一定有多余约束S1-2 无多余约束的几何不变体系的组成规则一.三刚片规三刚片以不在一条直线上的三铰两两相联,构成无多余约束的几何不变体系.二.两刚片规则两刚片以一铰及不通过该铰的一个链杆相联,构成无多余约束的几何不变体系.两刚片以不相互平行,也不相交于一点的三个链杆相连,构成无多余约束的几何不变体系.三.二元体规则二元体:在一个体系上用两个不共线的链杆连接一个新结点的装置.在一个体系上加减二元体不影响原体系的机动性质.S1-3 几何组成分析举例例1: 对图示体系作几何组成分析解: 三刚片三铰相连,三铰不共线,所以该体系为无多余约束的几何不变体系.例2: 对图示体系作几何组成分析解:该体系为无多余约束的几何不变体系.方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分例3: 对图示体系作几何组成分析解: 该体系为无多余约束的几何不变体系.方法2: 利用规则将小刚片变成大刚片.例4: 对图示体系作几何组成分析解: 该体系为瞬变体系.方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 例5: 对图示体系作几何组成分析解: 该体系为常变体系. 方法4: 去掉二元体.例6: 对图示体系作几何组成分析解: 该体系为无多余约束几何不变体系.方法5: 从基础部分(几何不变部分)依次添加. 例7: 对图示体系作几何组成分析解: 该体系为有一个多余约束几何不变体系.练习: 对图示体系作几何组成分析练习: 对图示体系作几何组成分析练习: 对图示体系作几何组成分析练习: 对图示体系作几何组成分析几何组成思考题几何组成分析的假定和目的是什麽?何谓自由度?系统自由度与几何可变性有何联系?不变体系有多余联系时,使其变成无多余联系几何不变体系是否唯一? 瞬变体系有何特点?可变体系时如何区分瞬变还是常变? 瞬铰和实际铰有何异同?无多余联系几何不变体系组成规则各有什麽限制条件?不满足条件时可变性如何? 按组成规则建立结构有哪些组装格式?组装格式和受力分析有无联系? 如何确定计算自由度?对体系进行组成分析的步骤如何? 作业:1-1 (b)试计算图示体系的计算自由度解:1-1 (c)试计算图示体系的计算自由度1-2 (a)试分析图示体系的几何组成1321138-=-⨯-⨯=W 由结果不能判定其是否能作为结构 或110222531-=-⨯-⨯+⨯=W 13240328=-⨯-⨯=W 或: 131216=-⨯=W 解由结果可判定其不能作为结构从上到下依次去掉二元体或从基础开始依次加二元体.几何不变无多余约束1-2 (d)试分析图示体系的几何组成依次去掉二元体. 几何常变体系 1-2 (f)试分析图示体系的几何组成有一个多余约束的几何不变体系1-2 (g)试分析图示体系的几何组成1-2 (k)试分析图示体系的几何组成有一个多余约束的几何不变体系三铰体系有无穷远铰的情况: 1. 有一个无穷远铰:三杆不平行不变 平行且等长常变 平行不等长瞬变常变体系 成2. 有两个无穷远铰:四杆不平行不变平行且各自等长常变平行不等长瞬变3. 有三个无穷远铰:各自等长常变否则瞬变1-2 (j)试分析图示体系的几何组成瞬变体系1-2 (L)试分析图示体系的几何组成几何不变无多余约束例: 试分析图示体系的几何组成瞬变体系练习:试分析图示体系的几何组成几何不变无多余约束刚结点:一个单刚结点相当于三个约束.单刚结点与其它约束的关系:复刚结点:连接N刚片复刚结点相当于N-1个单刚结点.固定端支座:例: 计算图示体系的计算自由度并作几何组成分析有三个多余约束的几何不变体系 练习:试分析图示体系的几何组成无多余约束几何不变体系有两个多余约束的几何不变体系1-4 体系的几何组成与静力特征的关系 一. 无多余约束的几何不变体系是静定结构静定结构:由静力平衡方程可求出所有内力和约束力的体系.二. 有多余约束的几何不变体系是超静定结构超静定结构:由静力平衡方程不能求出所有内力和约束力的体系.333434-=-⨯-⨯=W 333333-=-⨯-⨯=W 错 0331=-⨯=W 333232-=-⨯-⨯=W q三.瞬变体系不能作为结构瞬变体系的主要特性为:1.可发生微量位移,但不能继续运动2.在变形位置上会产生很大内力3.在原位置上,一般外力不能平衡4.在特定荷载下,可以平衡,会产生静不定力5.可产生初内力.四. 常变体系是机构第二章静定结构受力分析静定结构受力分析几何特性:无多余联系的几何不变体系静力特征:仅由静力平衡条件可求全部反力内力求解一般原则:从几何组成入手,按组成的相反顺序进行逐步分析即可本章内容:静定梁;静定刚架;三铰拱;静定桁架;静定组合结构;静定结构总论学习中应注意的问题:多思考,勤动手。
土木工程考研复习资料推荐结构力学重点整理
土木工程考研复习资料推荐结构力学重点整理结构力学是土木工程考研中的重要科目之一,掌握好结构力学的知识对考生来说至关重要。
本文将为大家整理一些优秀的考研复习资料,帮助大家高效备考结构力学。
一、《结构力学》教材推荐1.《结构力学》(第一卷)- 蒋宗礼、颜世钧、王竺著该教材是国内权威的结构力学教材之一,内容全面且详细,对结构力学的基本理论、方法和应用进行了系统讲解。
适合初学者理解结构力学的基础知识。
2.《高级结构力学》- 冯家祺、庄汉清著该教材是对结构力学的拓展和深入,主要介绍结构动力学、结构振动、屈曲理论等高级内容,适合已掌握结构力学基础知识的考生深入学习和提高自己的专业水平。
二、结构力学教学视频1.中国大学MOOC结构力学课程中国大学MOOC平台上有多门结构力学课程可供选择,其中包括清华大学、哈尔滨工业大学等著名院校的优秀教学资源。
这些课程由资深教师讲解,内容系统全面,通过观看教学视频可以更加直观地了解结构力学的理论知识。
2.相关网站视频资源除了中国大学MOOC平台,一些知名的视频网站如B站、优酷等也有一些高质量的结构力学课程视频资源。
考生可以根据自己的学习方式和喜好选择适合自己的视频资源。
三、参考书推荐1.《结构力学习题集》(第四版)- 清华大学该题集是考研期间进行结构力学习题练习的重要参考书,它包含了大量的习题和详细的解答,可以帮助考生巩固和提高对结构力学知识的理解和应用能力。
2.《结构力学解题方法与例解》- 皮特·巴莱和E.哈格这本书对结构力学中的一些常见问题进行了详细解释和解答,对考生理解和掌握结构力学知识,以及解题方法的掌握都有很大帮助。
四、电子资料推荐1.《结构力学考研辅导课件》这是一套结构力学考研辅导专用的电子课件,通过图文并茂的方式介绍结构力学的基本理论、公式和计算方法,包含了大量例题和详细解析,对考生复习和自测有很大的帮助。
2.结构力学相关论坛和博客在一些土木工程相关的论坛和博客上,考生也可以找到许多结构力学领域的学习资源,如学习笔记、考研经验分享等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论一、教学内容结构力学的基本概念和基本学习方法。
二、学习目标•了解结构力学的基本研究对象、方法和学科内容。
•明确结构计算简图的概念及几种简化方法,进一步理解结构体系、结点、支座的形式和内涵。
•理解荷载和结构的分类形式。
在认真学习方法论——学习方法的基础上,对学习结构力学有一个正确的认识,逐步形成一个行之有效的学习方法,提高学习效率和效果。
三、本章目录§1-1 结构力学的学科内容和教学要求§1-2 结构的计算简图及简化要点§1-3 杆件结构的分类§1-4 荷载的分类§1-5 方法论(1)——学习方法(1)§1-6 方法论(1)——学习方法(2)§1-7 方法论(1)——学习方法(3)§1-1 结构力学的学科内容和教学要求1. 结构建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称结构。
例如房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等。
从几何的角度,结构分为如表1.1.1所示的三类:表1.1.12. 结构力学的研究内容和方法结构力学与理论力学、材料力学、弹塑性力学有着密切的关系。
理论力学着重讨论物体机械运动的基本规律,而其他三门力学着重讨论结构及其构件的强度、刚度、稳定性和动力反应等问题。
其中材料力学以单个杆件为主要研究对象,结构力学以杆件结构为主要研究对象,弹塑性力学以实体结构和板壳结构为主要研究对象。
学习好理论力学和材料力学是学习结构力学的基础和前提。
结构力学的任务是根据力学原理研究外力和其他外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的几何组成规律。
包括以下三方面内容:(1) 讨论结构的组成规律和合理形式,以及结构计算简图的合理选择;(2) 讨论结构内力和变形的计算方法,进行结构的强度和刚度的验算;(3) 讨论结构的稳定性以及在动力荷载作用下的结构反应。
结构力学问题的研究手段包含理论分析、实验研究和数值计算,本课程只进行理论分析和数值计算。
结构力学的计算方法很多,但都要考虑以下三方面的条件:(1) 力系的平衡条件或运动条件。
(2) 变形的几何连续条件。
(3) 应力与变形间的物理条件(本构方程)。
利用以上三方面进行计算的,又称为“平衡-几何”解法。
采用虚功和能量形式来表述时候,则称为“虚功-能量”解法。
随着计算机的进一步发展和应用,结构力学的计算由过去的手算正逐步由计算机所代替,本课程的特点是将结构力学求解器集成到网络中,主要利用求解器进行计算和画图。
3. 课程教学中的能力培养(1) 分析能力•选择结构计算简图的能力:将实际结构进行分析,确定其计算简图。
•进行力系平衡分析和变形几何分析的能力:对结构的受力状态进行平衡分析,对结构的变形和位移状态要进行几何分析。
这两方面的分析能力是结构分析的两个看家本领,要在反复运用中加以融会贯通,逐步提高,力求达到能正确、熟练、灵活运用的水平。
•选择计算方法的能力:要了解结构力学中的各种计算方法的特点,具有根据具体问题选择恰当的计算方法的能力。
(2) 计算能力•具有对各种结构进行计算或确定计算步骤的能力。
•具有对计算结果进行定量校核或定性判断的能力。
•初步具有应用计算机计算的能力。
做题练习是学习结构力学的重要环节。
不做一定量的习题就很难对基本概念和方法有深入的理解和掌握,也很难培养较好的计算能力。
(3) 自学能力自学包含两个方面:消化已学知识、摄取新的知识。
§1-2 结构的计算简图及简化要点实际结构往往是很复杂的,进行力学计算以前,必须加以简化,用一个简化的图形来代替实际结构,这个图形称为结构的计算简图。
一、简化的原则(1)从实际出发——计算简图要反映实际结构的主要性能。
(2)分清主次,略去细节——计算简图要便于计算。
二、简化的要点1. 结构体系的简化一般的结构都是空间结构。
但是,当空间结构在某一平面内的杆系结构承担该平面内的荷载时,可以把空间结构分解成几个平面结构进行计算。
本课程主要讨论平面结构的计算。
当然,也有一些结构具有明显的空间特征而不宜简化成平面结构。
2. 杆件的简化在计算简图中,结构的杆件总是用其纵向轴线代替。
3. 杆件间连接的简化结构中杆件相互连接的部分称为结点,结点通常简化为铰结点或刚结点。
铰结点是指相互连接的杆件在连接处不能相对移动,但可相对转动,即:可传递力,但不能传递力矩。
刚结点是指相互连接的杆件在连接处不能相对移动,也不能相对转动,既可传递力,又能传递力矩。
4. 结构与基础间连接的简化结构与基础的连接区简化为支座。
按受力特征,通常简化为:(1) 滚轴支座:只约束了竖向位移,允许水平移动和转动。
提供竖向反力。
在计算简图中用支杆表示。
(2) 铰支座:约束竖向和水平位移,只允许转动。
提供两个反力。
在计算简图中用两根相交的支杆表示。
(3) 定向支座:只允许沿一个方向平行滑动。
提供反力矩和一个反力。
在计算简图中用两根平行支杆表示。
(4) 固定支座:约束了所有位移。
提供两个反力也一个反力矩。
5. 材料性质的简化在土木、水利工程中结构所用的建筑材料通常为钢、混凝土、砖、石、木料等。
在结构计算中,为了简化,对组成各构件的材料一般都假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的。
上述假设对于金属材料在一定受力范围内是符合实际情况的。
对于混凝土、钢筋混凝土、砖、石等材料则带有一定程度的近似性。
至于木材,因其顺纹和横纹方向的物理性质不同,故应用这些假设时应予注意。
6. 荷载的简化作用在实际结构上的荷载形式比较多,简化比较复杂,但根据其分布情况大致可简化为集中荷载和分布荷载两大类。
§1-3 杆件结构的分类结构的分类实际上是计算简图的分类。
1. 梁梁是一种受弯构件,其轴线通常为直线,既可以是单跨,也可以是多跨(图1-1a、b)。
图1-1a图1-1b2. 拱拱是一种杆轴为曲线且在竖向力作用下,会产生水平反力的结构(图1-2a、b)。
图1-2a图1-2b3. 桁架桁架是由若干个直杆组成,所有结点都为铰结点(图1-3)。
图1-3图1-44. 刚架刚架由直杆组成,其结点通常为刚结点(图1-4)。
5. 组合结构组合结构是桁架和梁或刚架组合在一起的结构(图1-5)。
图1-5§1-4 荷载的分类一、按作用时间的久暂荷载可分为恒载和活载。
恒载是长期作用与结构上的不变荷载,如结构的自重、安装在结构上的设备重量等,这种荷载的大小、方向、作用位置是不变的。
活载是建筑物在施工和使用期间可能存在的可变荷载,如吊车荷载、结构上的人群、风、雪等荷载。
二、按荷载的作用范围荷载可分为集中荷载和分布荷载。
荷载的作用面积相对于总面积是微小的,作用在这个面积上的荷载,可以简化为集中荷载。
分布作用在一定面积或长度上的荷载,可简化为分布荷载,如风、雪、自重等荷载。
三、按荷载作用的性质荷载可分为静力荷载和动力荷载。
静力荷载的数量、方向和位置不随时间变化或变化极其缓慢,不使结构产生显著的加速度,因而可以忽略惯性力的影响。
动力荷载是随时间迅速变化或在短暂时间内突然作用或消失的荷载,使结构产生显著的加速度。
车辆荷载、风荷载和地震荷载通常在设计中简化为静力荷载,但在特殊情况下要按动力荷载考虑。
四、按荷载位置的变化荷载可分为固定荷载和移动荷载。
作用位置固定不变的荷载为固定荷载。
如风、雪、结构自重等。
可以在结构上自由移动的荷载称为移动荷载。
如吊车梁上的吊车荷载、公路桥梁上的汽车荷载就是移动荷载。
荷载的确定,常常是比较复杂的,荷载规范总结了设计经验和科学研究的成果,供设计时应用。
但在不少情况下,设计者要深入现场,结合实际情况进行调查研究,才能对荷载作出合理的确定。
§1-5 方法论(1)——学习方法(1)学习要讲究方法,要学会,更要会学。
下面是在结构力学的教学和科研过程中产生的一些想法,主要从加、减、问、用和创新五个方面展开讨论。
一、会加1.勤于积累摄取和积累知识是培养能力的基础,也是研究创新的基础。
“才须学也。
非学无以广才,非志无以成学”(诸葛亮)。
要有集腋成裘、积土成山的志趣。
2.融会贯通要把知识连成一片,互相沟通,左右联系,前后呼应,融会贯通。
在数学语言和力学语言之间要会翻译:把抽象的数学公式翻译成具体生动的物理概念;把直观的力学思路翻译成严密的数学程序。
3.用心梳理积累知识要用心梳理,使之条理化,成为一个脉络清晰、有主有次、有目有纲的知识网。
4.落地生根把别人的、书本上的知识变成自己的,化他为己,这样的知识才是牢靠的,生了根的。
把新学来的知识融化在自己已有的知识结构上,把“故”作为“新”的基地,使“新”在“故”上生根发芽成长。
二、会减1. 概括的能力把一章内容概括成三言两语,对一门课理出它的主要脉络,写人能勾出特征,画龙会点睛。
2. 简化的能力盲目简化——不分主次,乱剪乱砍。
合理简化——分清主次,剪枝留干。
选取结构计算简图是结构力学的基本功。
不会简略估算、定性判断,是很危险的。
3. 统帅驾驭的能力学习积累的知识,要形成一个知识系统,要培养提纲挈领、统帅全局的能力,达到纲举目张、灵活驾驭的目的。
4. 弃形取神的能力在力学学习和科学研究中要培养由表入里、弃形取神的能力:•个别到一般:舍弃千差万别的个性和特殊性,摘取其中的共性和普遍性。
•具体到抽象:舍弃不同问题的具体性,提炼为一般原理的抽象性。
•现象到规律:舍弃现象的表面形态,洞察出深藏的本质和内在的规律。
•温故到创新:拆除旧观念的篱笆,标新立异,另辟新路,开拓新途径和新领域。
§1-6 方法论(1)——学习方法(2)三、会问1. 多问出智慧学习中要多问,多打几个问号。
“?”像一把钥匙,一把开启心扉和科学迷宫的钥匙。
2. 要会问学习中提不出问题是学习中最大的问题。
发现了问题是好事,抓住了隐藏的问题是学习深化的表现。
3. 要追问重要的问题要抓住不放,要层层剥笋,穷追紧逼,把深藏的核心问题解决了,才能达到“柳暗花明”的境界。
4. 要问自己四、会用学而时习之,学习=学+习。
什么是“习”,通常把“习”理解为复习;更准确些,应把“习”理解为用,理解为实践。
“用”是“学”的继续、深化和检验。
与“学”相比,“用”有更丰富的内涵:•多面性:把知识应用于解决各式各样的问题,把单面的知识化为多方面的知识。
•综合性:处理问题时,要综合应用多种方法和知识。
分门别类地学,综合优选地用。
•反思性:正面学,反面用。
计算是由因到果,校核时由果到因。
•跳跃性:循规蹈矩地学,跳跃式地用。
•灵活性:用能生巧。
•牢固性:反复用过的知识是牢固的,久经难忘。
•悟性:学习可以获得言传的知识,应用可以体验难以言传的悟性。
•检验性:学来的知识是真懂、半懂还是不懂,考几道题就分辨出来了。