一次函数压轴题含答案
一次函数压轴题(含答案)
一次函数压轴题(含答案)如图,已知直线 $y=2x+2$ 与 $y$ 轴。
$x$ 轴分别交于$A$。
$B$ 两点,以 $B$ 为直角顶点在第二象限作等腰直角三角形 $\triangle ABC$。
1)求点 $C$ 的坐标,并求出直线 $AC$ 的关系式。
2)如图,在直线 $CB$ 上取一点 $D$,连接 $AD$,若$AD=AC$,求证:$BE=DE$。
3)如图,在(1)的条件下,直线 $AC$ 交 $x$ 轴于$M$,$P(,k)$ 是线段 $BC$ 上一点,在线段 $BM$ 上是否存在一点$N$,使直线$PN$ 平分$\triangle BCM$ 的面积?若存在,请求出点 $N$ 的坐标;若不存在,请说明理由。
考点:一次函数综合题。
分析:(1)如图,作 $CQ\perp x$ 轴,垂足为 $Q$,利用等腰直角三角形的性质证明 $\triangle ABO\cong \triangle BCQ$,根据全等三角形的性质求 $OQ$,$CQ$ 的长,确定$C$ 点坐标;2)同(1)的方法证明 $\triangle BCH\cong \triangle BDF$,再根据线段的相等关系证明 $\triangle BOE\cong \triangle DGE$,得出结论;3)依题意确定 $P$ 点坐标,可知 $\triangle BPN$ 中$BN$ 变上的高,再由 $\frac{1}{2}S_{\trianglePBN}=\frac{1}{2}S_{\triangle BCM}$,求 $BN$,进而得出$ON$。
解答:解:(1)如图,作$CQ\perp x$ 轴,垂足为$Q$。
因为 $\angle OBA+\angle OAB=90^\circ$,$\angleOBA+\angle QBC=90^\circ$,所以$\angle OAB=\angle QBC$。
又因为 $AB=BC$,$\angle AOB=\angle Q=90^\circ$,所以 $\triangle ABO\cong \triangle BCQ$。
一次函数压轴题(提高,有答案)
1.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(1,0),点B从点A出发,以每秒1个单位速度沿x轴正方向运动,过点B作y轴的平行线交直线y=于点C,点D在直线BC上,且BD=BA.连接AC,AD,记△ACD的面积为S,设运动时间为t秒.(1)填空:①设AB=t,则BD=,BC=(用含t的代数式表示);②当点D是线段BC的中点时,S=;(2)当S=时,求t的值;(3)当点D在线段BC上时,连接OD,直线OD与过点C且与OC垂直的直线交于点E,当△CDE是以DE 为腰的等腰三角形时,直接写出点C的坐标.2.如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(0,﹣3),点E(3,m)在直线y=2x上,将△AOB沿射线OE方向平移,使点O与点E重合,得到△CED(点A、B分别与点C,D对应),线段CE与y轴交于点F,线段AB,CD分别与直线y=2x交于点P,Q.(1)求点C的坐标;(2)如图②,连接AC,四边形ACQP的面积为(直接填空);(3)过点C的直线CN与直线y=2x交于点N,当∠NCE=∠POB时,请直接写出点N的坐标.3.如图1,A(﹣4,0).正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由.4.如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE =S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.5.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α=45°,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,请直接写出点P的坐标;若不能,试说明理由.6.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y=﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.(1)直接写出直线BD的解析式为,S△ABC=;(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.7.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.8.如图所示,平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且AB=2,AO:BO=2:;(1)求直线AB解析式;(2)点C为射线AB上一点,点D为AC中点,连接DO,设点C的横坐标为t,△BDO的面积为S,求S 与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当点C在第一象限时,连接CO,过D作DE⊥CO于E,在DE的延长线上取点F,连接OF、AF,且OF=OD,当∠DF A=30°时,求S的值.9.如图,直线y=﹣x+4与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO 方向向点O匀速运动,点E是点B以Q为对称中心的对称点,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连结PQ,设P,Q两点运动时间为t秒(0<t≤1.5).(1)直接写出A,B两点的坐标.(2)当t为何值时,PQ∥OB?(3)四边形PQBO面积能否是△ABO面积的;若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△APQ为直角三角形?(直接写出结果)10.在平面直角坐标系中,O为坐标原点,直线y=x+4分别交y轴和x轴于点A、B两点,点C在x轴的正半轴上,AO=2OC,连接AC.(1)如图1,求直线AC的解析式;(2)如图2,点P在线段AB上,点Q在BC的延长线上,满足:AP=CQ,连接PQ交AC于点D,过点P 作PE⊥AC于点E,设点P的横坐标为t,△PQE的面积为S,求S与t的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,PQ交y轴于点M,过点A作AN⊥AC交QP的延长线于点N,过点Q作QF∥AC交PE的延长线于点F,若MN=DQ,求点F的坐标.11.在平面直角坐标系xOy中,对于图形G和图形M,它们关于原点O的“中位形”定义如下,图形G上的任意一点P,图形M上的任意一点Q,作△OPQ平行于PQ的中位线,由所有这样的中位线构成的图形,叫图形G和图形M关于原点O的“中位形”.已知直线y=x+b分别与x轴,y轴交于A、B,图形S是中心为坐标原点,且边长为2的正方形.(1)如图1,当b=2时,点A和点B关于原点O的“中位形”的长度是(请直接写出答案);(2)如图2,若点A和点B关于原点O的“中位形”与图形S有公共点,求b的取值范围;(3)如图3,当b=﹣6时,图形S沿直线y=x平移得到图形T,若图形T和线段AB关于原点O的“中位形”与原来的的图形S没有公共点,请直接写出图形T的中心的横坐标t的取值范围.12.如图1,在平面直角坐标系中,直线AC:y=﹣3x+3与直线AB:y=ax+b交于点A,且B(﹣9,0).(1)若F是第一象限位于直线AB上方的一点,过F作FE⊥AB于E,过F作FD∥y轴交直线AB于D,D 为AB中点,其中△DFF的周长是12+4,若M为线段AC上一动点,连接EM,求EM+MC的最小值,此时y轴上有一个动点G,当|BG﹣MG|最大时,求G点坐标;(2)在(1)的情况下,将△AOC绕O点顺时针旋转60°后得到△A′OC',如图2,将线段OA′沿着x轴平移,记平移过程中的线段OA′为O′A″,在平面直角坐标系中是否存在点P,使得以点O′,A″,E,P为顶点的四边形为菱形,若存在,请求出点P的坐标,若不存在,请说明理由.13.如图,在平面直角坐标系xOy中,点A是一次函数y=3x﹣20与y=﹣x+12的交点,过点A分别作x,y轴的垂线段,垂足分别是B和C,动点P和Q以1个单位/秒的速度,分别从点C和B出发,沿线段CA和BO 方向,向终点A和O运动,设运动时间为t秒.(1)证明:无论运动时间t(0<t<8)取何值,四边形OP AQ始终为平行四边形;(2)当四边形OP AQ为菱形时,请求出此时PQ的长及直线PQ的函数解析式;(3)当OP满足2≤OP≤5时,连接PQ,直线PQ与y轴交于点M,取线段AC的中点N,试确定三角形MNP的面积S与运动时间t之间的函数关系,并求出S的取值范围.14.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.15.如图,已知直线AB与正比例函数y=kx(k≠0)的图象交于点A(5,5),与x轴交于点B与y轴交于点C (0,).点P为直线OA上的动点,点P的横坐标为t,以点P为顶点,作长方形PDEF,满足PD∥x轴,且PD=1,PF=2.(1)求k值及直线AB的函数表达式;并判定t=1时,点E是否落在直线AB上,请说明理由;(2)在点P运动的过程中,当点F落在直线AB上时,求t的值;16.对于平面直角坐标系xOy中的点A和点P,若将点P绕点A逆时针旋转90°后得到点Q,则称点Q为点P 关于点A的“垂链点”,图1为点P关于点A的“垂链点”Q的示意图.(1)已知点A的坐标为(0,0),点P关于点A的“垂链点”为点Q;①若点P的坐标为(2,0),则点Q的坐标为.②若点Q的坐标为(﹣2,1),则点P的坐标为.(2)如图2,已知点C的坐标为(1,0),点D在直线y=x+1上,若点D关于点C的“垂链点”在坐标轴上,试求出点D的坐标.(3)如图3,已知图形G是端点为(1,0)和(0,﹣2)的线段,图形H是以点O为中心,各边分别与坐标轴平行的边长为6的正方形,点M为图形G上的动点,点N为图形H上的动点,若存在点T(0,t),使得点M关于点T的“垂链点”恰为点N,请直接写出t的取值范围.17.如图,存平面直角坐标系中,直线AC与x轴交手点C,与y轴交于点A,OA=,OC=OA,分别以OA,OC力作矩形OABC,直线OD:y=x交AB于点D,交直线AC于点H.(1)求直线AC的解析式及点H的坐标;(2)如图2,P为直线OD上一动点,E点,F点为直线AC上两动点(E在上,F在下),满足EF=,当(3)如图3,将△AHD绕着点O顺时针旋转α(0°≤α≤60°),记旋转后的三角形为△A′H′D′.线段A′H′所在的直线交直线AC于点M(M不与A、C重合),交x轴于点N,在平面内是否存在一点Q,使得以C,M,N,Q四点形成的四边形为菱形?若存在,直接写出Q点的坐标;若不存在,请说出理由.18.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y=4x+1互为“互助直线”;材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=;(2)直线y=﹣2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(3)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣1)到直线y=ax+b的直角距离.19.如图,直线y=x+6与y轴交于点A,与x轴交于点B,点E为线段AB的中点,∠ABO的平分线BD 与y轴相交于点D,A、C两点关于x轴对称.(1)一动点P从点E出发,沿适当的路径运动到直线BC上的点F,再沿适当的路径运动到点D处.当P的运动路径最短时,求此时点F的坐标及点P所走最短路径的长;(2)点E沿直线y=3水平向右运动得点E',平面内是否存在点M使得以D、B、M、E'为顶点的四边形为菱形,若存在,请直接写出点E′的坐标;若不存在,请说明理由.20.若两个一次函数与x轴的交点关于y轴对称,则称这两个一次函数为“对心函数”,这两个与x轴的交点为“对心点”.(1)写出一个y=2x+6的对心函数:,这两个“对心点”为;(2)直线l1,经过点A(﹣1,0)和B(0,﹣3),直线l1的“对心函数”直线l2与y轴的交点D位于点(0,1)的上方,且直线l1与直线l2交于点E,点C为直线l2的“对心点”,点G是动直线l2上不与C重合的一个动点,且BG=BA,试探究∠ABG与∠ECA之间的数量关系,并说明理由;(3)如图,直线l3:y=x+2与其“对心函数”直线l4的交点F位于第一象限,M.N分别为直线l3、l4的“对心点”,点P为线段MF上一点(不含端点),连接NP;一动点H从N出发,沿线段NP以1单位/秒的速度运动到点P,再沿线段PF以单位/秒的速度运动到点F后停止,点H在整个运动过程中所用最短时间为6秒,求直线l4的解析式.21.如图,在平面直角坐标系中,矩形OABC的边OA、OC的边分别在y轴、x轴正半轴上,OA=6,OC=8,点P从点O出发以每秒2个单位长度的速度向终点C运动,点P不与点O重合,以OP为边在OC上方作正方形OPEF,设正方形OPEF与△AOC的重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒).(1)直线AC所在直线的解析式是;(2)当点E落在线段AC上时,求t的值;(3)在点P运动的过程中,求S与t之间的函数关系式;(4)设边OC的中点为K,点C关于点P的对称点为C′,以KC′为边在OC上方作正方形KC′MN,当正方形KC′MN与△ABC重叠部分图形为三角形时,直接写出t的取值范围.(提示:根据P点的运动,可在草纸上画出正方形KC′MN与△ABC重叠部分图形为不同图形的临界状态去研究)22.在平面直角坐标系中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形“.如图为点A,C的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).(1)点E(2,4),F(3,2),G(4,0)中,能够成为点M,P的“极好菱形“的顶点的是;(2)若点M,P的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标;(3)如果四边形MNPQ是点M,P的“极好菱形”.①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为12,且与直线y=x+b有公共点时,请写出b的取值范围.23.在平面直角坐标系中,四边形OABC是菱形,点A坐标为(3,4),直线AC交y轴于点D,AB边交y轴于点E.(1)如图1,求直线AC解析式;(2)如图2,点F从点C出发沿射线CA运动,点F的横坐标为m,△FOD面积为S,求S与m的函数关系式,并写出自变量取值范围;(3)如图3,在(2)的条件下,当∠OFD+∠ABD=∠FDO时,求点F坐标.24.图1,在平面直角坐标系xOy中,直线l1,l2都经过点A(﹣6,0),它们与y轴的正半轴分别相交于点B,C,且∠BAO=∠ACO=30⁰(1)求直线l1,l2的函数表达式;(2)设P是第一象限内直线l1上一点,连接PC,有S△ACP=24.M,N分别是直线l1,l2上的动点,连接CM,MN,MP,求CM+MN+NP的最小值;(3)如图2,在(2)的条件下,将△ACP沿射线P A方向平移,记平移后的三角形为△A′C′P′,在平移过程中,若以A,C',P为顶点的三角形是等腰三角形,请直接写出所有满足条件的点C′的坐标.25.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:距离地面高度(千米)012345所在位置的温度(℃)201482﹣4(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?26.如图1,已知平行四边形ABCD,BC∥x轴,BC=6,点A的坐标为(1,4),点B的坐标为(﹣3,﹣4),点C在第四象限,点P是平行四边形ABCD边上的一个动点.(1)若点P在边CD上,BC=CP,求点P的坐标;(2)如图2,若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=﹣x+1上,求点P的坐标;(3)若点P在边AB,AD,BC上,点E是AB与y轴的交点,如图3,过点P作y轴的平行线PF,过点E 作x轴的平行线E,它们相交于点F,将△PEF沿直线PE翻折,当点F的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)27.如图,直线y=﹣2x+b分别于x轴、y轴交于A、B两点,与直线y=kx交于点C(2,4),平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,直线l分别交直线AB、直线OC于点D、E,以DE为边向左侧作正方形DEFG,当直线l经过点A时停止运动,设直线l的运动时间为t(秒).(1)b=,k=;(2)设线段DE的长度为d(d>0),求d与t之间的函数关系式;(3)当正方形DEFG的边GF落在y轴上,求出t的值;(4)当0≤t<2时,若正方形DEFG和△OCB重叠部分面积为4,则t的值为.28.如图,在平面真角坐标系中,点A的坐标是(﹣,0),点B的坐标是(0,1).点B和点C关于原点对称.点P是直线AB位于y轴右侧部分图象上一点,连接CP,已知S△BPC=S△ABC,(1)求直线AC的解析式;(2)如图2,△AOC沿着直线AC平移得△A′O′C′,平移后的点A′与点C重合点F为直线AC上的一动点,当PF+FC′的值最小时,请求出PF+FC′的最小值及此时点F的坐标;(3)如图3,将△PBC沿直线P A翻折得△PBG,点N为平面内任意一动点,在直线P A上是否存在点M,使得以点M、N、P、G为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.29.在平面直角坐标系xOy中,中心为点C,正方形的各边分别与两坐标轴平行,点P是与C不重合的点,点P 关于正方形的仿射点Q的定义如下:设射线CP交正方形的边于点M,若射线CP上存在一点Q,满足CP+CQ =2CM,则称Q为点P关于正方形的仿射点.图1为点P关于正方形的仿射点Q的示意图.(1)如图2当正方形的中心为原点O,边长为2时.①判断点F(2,0),H(3,3)关于该正方形的仿射点存在的是,对于存在的点,直接写出其仿射点的坐标为;②若点P在直线y=﹣x+3上,且点P关于该正方形的仿射点Q存在,则点P的横坐标的取值范围是;(2)若正方形的中心C在x轴上,边长为2,直线y=﹣x+2与x轴、y轴分别交于点A、B,若线段AB上存在点P,使得点P关于该正方形的仿射点Q存在,并使Q所有仿射点在正方形的内部或边上,直接写出正方形的中心C的横坐标的取值范围是.30.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)点A(2,1)的“伴随点”A′的坐标为.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)在(2)的条件下,点C在函数y=kx+3的图象上,点D是点C关于原点的对称点,点D的“伴随点为D'.若点C在第一象限,且CD=DD',直接写出此时“伴随点”D′的坐标,31.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.32.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于C.(1)如图1若直线AB的解析式:y=﹣2x+12①求点C的坐标;②求△OAC的面积;(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,是探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.33.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C 点的横坐标为1.(1)如图1,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标;(2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形?若存在,求出N点的坐标;若不存在,请说明理由.34.已知:如图,在平面直角坐标系中,O为坐标原点.直线AB:y=mx+8m(m≠0)交x轴负半轴于A,交y 轴正半轴于B,直线BC:y=nx+2n(n≠0)交x轴负半轴于C,且∠OAB=2∠OBC.(1)求m、n的值;(2)点P(t,0)是x轴上一动点,过P作y轴的平行线,交AB于Q,交BC于R,设QR=d,求d与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,当点P在线段OA上,且d=9时,作点Q关于y轴的对称点T,连接CT,过B作BH⊥CT于H,在直线AB上取点M,过M作MN∥OH交直线BC于点N,若以O、H、M、N为顶点的四边形是平行四边形,求点N的坐标.35.如图,在平面直角坐标系中,O为坐标原点,直线y=kx﹣3k与y轴交于点A,与x轴交于点B,OA=OB.(1)求直线AB的解析式;(2)点C在第二象限,AC∥x轴,连接OC,将线段OC绕着点C逆时针旋转90°得到线段CD,连接OD 交线段AB于点E,设点C的横坐标为t,点E的纵坐标为m,求m与t的函数关系式;(3)在(2)的条件下,连接AD、BD,过点C作CF⊥BD于点F,交AD于点G,若CG=DE,求点E的坐标.36.【感知】如图①,在平面直角坐标系中,点C的坐标为(0,0.5),点A的坐标为(1,0),将线段CA绕着点C按逆时针方向旋转90°至线段CB,过点B作BM⊥y轴,垂足为点M,易知△AOC≌△CMB,得到点B的坐标为(0.5,1.5).【探究】如图②,在平面直角坐标系中,点A的坐标为(1,0),点C的坐标为(0,m)(m>0),将线段CA绕着点C按逆时针方向旋转90°至线段CB(1)求点B的坐标.(用含m的代数式表示)(2)直接写出点B所在直线对应的函数表达式.【拓展】如图③,在平面直角坐标系中,点A的坐标为(1,0),点C在y轴上,将线段CA绕着点C按逆时针方向旋转90°至线段CB,连结BO、BA,则BO+BA的最小值为.37.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.38.如图1,已知直线l:y=﹣2x+4交y轴于点A,交x轴于点B,点C(﹣3,0),D是直线l上的一个动点.(1)求点B的坐标,并求当S△BCD=S△BOA时点D的坐标;(2)如图2,以CD为边在CD上方作正方形CDEF,请画出当正方形CDEF的另一顶点也落在直线上的图形,并求出此时D点的坐标;(3)当D点在l上运动时,点F是否也在某个函数图象上运动?若是请直接写出该函数的解析式:若不在,请说明理由.39.在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.40.平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K(﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.1.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(1,0),点B从点A出发,以每秒1个单位速度沿x轴正方向运动,过点B作y轴的平行线交直线y=于点C,点D在直线BC上,且BD=BA.连接AC,AD,记△ACD的面积为S,设运动时间为t秒.(1)填空:①设AB=t,则BD=t,BC=t+(用含t的代数式表示);②当点D是线段BC的中点时,S=2;(2)当S=时,求t的值;(3)当点D在线段BC上时,连接OD,直线OD与过点C且与OC垂直的直线交于点E,当△CDE是以DE 为腰的等腰三角形时,直接写出点C的坐标.【解答】解:(1)①AB=BD=t,则点B(t+1,0),则点C(t+1,t+),则BC=t+,故答案为:t,t+;②当点D是线段BC的中点时,则2t=(t+1),解得:t=2,S=CD×AB=2×2=2,故答案为:2;(2)点D(t+1,|t|),×(t++|t|)×t=,解得:t=﹣2或(不合题意的值已舍去);(3)C(t+1,t+),点D(t+1,t),∵CE⊥OC,则设直线CE的表达式为:y=﹣x+b,将点C的坐标代入上式并解得:b=(t+1),即直线CE的表达式为:y=﹣x+(t+1)…①,同理直线OD的表达式为:y=x…②,联立①②并解得:x=,故点E[,],①当DE=CD时,tan∠DOB==tanα,则cosα=,DE=(x E﹣x D)÷cosα=,CD=t+﹣t=t+=DE=,整理得:17t2+10t﹣7=0,解得:t=或﹣1(舍去﹣1),故点C(,);②当DE=CE时,由等腰三角形“三线合一”知:y E=(y C+y D),即=(t++t),化简得:t2+t﹣12=0,解得:t=3或﹣4(舍去﹣4),故点C(4,);综上,点C的坐标为:(,)或(4,).2.如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(0,﹣3),点E(3,m)在直线y=2x上,将△AOB沿射线OE方向平移,使点O与点E重合,得到△CED(点A、B分别与点C,D对应),线段CE 与y轴交于点F,线段AB,CD分别与直线y=2x交于点P,Q.(1)求点C的坐标;(2)如图②,连接AC,四边形ACQP的面积为24(直接填空);(3)过点C的直线CN与直线y=2x交于点N,当∠NCE=∠POB时,请直接写出点N的坐标.【解答】解:(1)点E(3,m)在直线y=2x上,则m=6,故点E(3,6),CE=AO=4,故点C(﹣1,6);(2)根据图象的平移知,四边形ACQP的面积等于▱AOEC的面积,即S四边形ACQP=S▱AOEC=AO×y C=4×6=24,故答案为:24;(3)由直线y=2x得:tan∠POB=,当∠NCE=∠POB时,tan∠NCE=tan∠POB=,①当点N在CE上方时,则CN的表达式为:y=x+b,将点C的坐标代入上式并解得:b=,故直线CN的表达式为:y=x+,将上式与y=2x联立并解得:x=,y=,故点N(,);②当点N在CE下方时,直线CN的表达式是:y=﹣x+,同理可得:点N(,);综上,点N的坐标为:(,)或(,).3.如图1,A(﹣4,0).正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由.【解答】解:(1)如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,则OH=2,EH=2,故点E(﹣2,2),∠EOM=30°,OM==,设EF的函数表达式为:y=kx+,将点E的坐标代入上式并解得:k=,故直线EF的表达式为:y=x+;(2)射线OQ与OA的夹角为α(α为锐角,tanα=).无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,则OE=3a,则(a)2+(3a)2=42,解得:a2=,OE=3a,正方形OEFG的面积=(3a)2=;(3)设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有=或=.在Rt△AOP中,∠APO=45°,OP=OA=4,。
八上期末复习《一次函数》压轴题含答案解析
一次函数综合题选讲及练习例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是,BC=.(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM 的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP 时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。
(压轴题)初中数学八年级数学上册第四单元《一次函数》测试卷(包含答案解析)(3)
一、选择题1.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到 2.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( )A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 3.在平面直角坐标系中,一次函数1y x =-的图象是( ) A . B . C . D . 4.如图,已知直线3:3l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ,…,按此作法继续下去,则点2020A 的坐标为( )A .()0,2020B .()0,4040C .()20200,2D .()20200,4 5.已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( ) A . B . C . D . 6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A .B .C .D .8.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③ 9.一次函数y=3x ﹣6的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1 2 3 4 … 水池中水量/3m 48 46 44 42 … A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m12.已知A 、B 两地相距810千米,甲车从A 地匀速前往B 地,到达B 地后停止.甲车出发1小时后,乙车从B 地沿同一公路匀速前往A 地,到达A 地后停止.设甲乙两车之间的距离为y(千米),甲车出发的时间为x (小时),y 与x 的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F 的坐标为(9,540);③图中a 的值是13.5;④当甲乙两车相遇时,两车相遇地距A 地的距离为360千米.其中正确的结论是( )A .①②③B .①②④C .②③④D .①③④二、填空题13.若一次函数(1)2=-+-y m x m 的图象经过第二、三、四象限,则m 的取值范围是_______.14.在平面直角坐标系xOy 中,直线y =﹣34x +3分别与x 轴、y 轴交于点A 、B ,将△AOB 沿过点A 的直线折叠,使点B 落在x 轴的负半轴上,记作点C ,折痕与y 轴交于点D ,则直线AD 的解析式为_____.15.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 16.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________. 17.已知函数2(1)3k y k x =-+是一次函数,则k =_________.18.若式子23x x +-有意义,则x 的取值范围为______. 19.甲、乙两车分别从,A B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 地的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地,设两车行驶的时间为()x h ,两车之间的距离为()y km ,y 与x 之间的函数关系如图所示,则,A C 两地相距________千米.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C .(1)求点C 的坐标;(2)求△OBC 的面积.22.一辆汽车的油箱中现有汽油60升,汽车行驶时正常的耗油量为0.1升/千米.油箱中的油量y (升)随行驶里程x (千米)的变化而变化.(假定该汽车不加油,能工作至油量为零)(1)求y 关于x 的函数表达式(2)利用图象说明,当行驶里程超过400千米后油箱内的汽油量23.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第一象限,斜靠在两条坐标轴上,且点A (0,3),点C (1,0),BE ⊥x 轴于点E ,一次函数y x b =+经过点B ,交y 轴于点D .(1)求证△AOC ≌△CEB ;(2)求B 点坐标;(3)求ABD S ∆24.某地区的电力资源缺乏,未能得到较好的开发.该地区一家供电公司为了居民能节约用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图象如图所示.(1)月用电量为50度时,应交电费多少元?(2)当100x ≥时,求y 与x 之间的函数关系式;(3)月用电量为150度时,应交电费多少元?25.甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.26.剧院举行新年专场音乐会,成人票每张20元,学生票每张5元,剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),付款总金额为y (元),分别表示这两种方案; (2)请计算并确定出最节省费用的购票方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一次函数图象平移规律,直接判断即可.【详解】解:∵一次函数图象向上平移m (m>0)个单位,常数项增加m ,∴函数y =2x 的图像向上平移1个单位可以得到y =2x +1的图像,故选:C .【点睛】本题考查了一次函数图象平移的规律,解题关键是掌握一次函数图象平移的规律:上加下减常数项,左加右减自变量.2.A解析:A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子:(1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.3.A解析:A【分析】先确定一次函数解析式中k 与b 的符号,然后再利用一次函数图象及性质即可解答.【详解】解:一次函数y=1-x其中k=-1,b=1其图象为:.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数的图象与性质是解答本题的关键. 4.D解析:D【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2020坐标即可.【详解】解:∵直线l 的解析式为y =, ∴直线l 与x 轴的夹角为30.∵AB x 轴,∴30ABO ∠=︒.∵1OA =,∴2OB =.∴1A B ⊥直线l ,130BAO ∠=︒, ∴124A O OB ==,∴()10,4A .同理可得()20,16A ,…∴2020A 的纵坐标为20204,∴()202020200,4A .故选D .【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A 、A 1、A 2、A 3…的点的坐标是解决本题的关键. 5.D解析:D【详解】∵正比例函数y kx =,且y 随x 的增大而减少,0k .∴< 在直线2y x k =+中,200k ><,,∴函数图象经过一、三、四象限.故选D .6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是:y=kt+b ,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12×4×(6-x)=-2x+12(0<x<6),∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.8.B解析:B【分析】由图象经过第一,二,三象限,可得k>0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k>0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.9.B解析:B【分析】分析:根据一次函数y=kx+b (k≠0,b 为常数)的性质可知,k>0时,y 随x 的增大而增大;b <0时,直线与y 轴相交于负半轴,据此即可判断一次函数所过象限.详解:∵一次函数y=3x−6中,3>0,−6<0,∴一次函数图象过一、三、四象限,故函数图象不过第二象限,故选B.点睛:此题考查一次函数的性质,直线y=kx+b (k≠0,b 为常数)图象时一条经过(-b k ,0)和(0,b )的直线.k 的正负决定直线的倾斜方向,k>0时,y 随x 的增大而增大,k<0时,y 随x 的增大而减小;b 的正负决定直线与y 轴交点的位置:b <0时,直线与y 轴相交于负半轴,b>0时,直线与y 轴相交于正半轴,b=0时,直线过原点.由此即可判断直线经过的象限,【详解】请在此输入详解!10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可; 【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.12.D解析:D【分析】通过对运动过程及函数图象的分析可得:CD 段为甲车提前出发的1小时,即可求解甲车速度;DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米即可求出乙车速度,逐一判断即可求解.【详解】解:由图象可知CD 段为甲车提前出发的1小时,可得甲车速度为81075060km/h -=, DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米, ∴乙车的速度为7506090km/h 5-=,故①正确; 此时两车距A 地的距离为606360⨯=,故④正确; ∴甲车到达B 地时对应时间为810=13.5h 60, 乙车到达A 地时对应时间为81011090+=, ∴图中a 的值是13.5,故③正确;点F 的坐标为(10,600),故②错误;综上,正确的结论有①③④,故选:D .本题考查一次函数的应用,根据图象与题干分析出每一段的状态是解题的关键.二、填空题13.【分析】由一次函数经过第二三四象限可得:m -1<0m -2<0将两个不等式联立解不等式组即可【详解】由题意得:解得:m<1故答案为:m<1【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系解析:1m <【分析】由一次函数经过第二、三、四象限可得:m -1<0,m -2<0,将两个不等式联立,解不等式组即可.【详解】由题意得:1020m m -<⎧⎨-<⎩, 解得:m <1.故答案为:m <1.【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系,掌握不等式组的解法,熟记一次函数图像与系数的关系是解题关键.14.y =﹣【分析】分别将x=0y=0代入直线y=-x+3中求出与之对应的yx 值由此即可得出点BA 的坐标根据折叠的性质结合勾股定理可求出AC 的长度进而可得出点C 的坐标设OD=m 则CD=BD=3-m 在Rt △解析:y =﹣1433x +【分析】分别将x=0、y=0代入直线y=-34x+3中求出与之对应的y 、x 值,由此即可得出点B 、A 的坐标,根据折叠的性质结合勾股定理可求出AC 的长度,进而可得出点C 的坐标,设OD=m ,则CD=BD=3-m ,在Rt △COD 中利用勾股定理可求出m 的值,进而可得出点D 的坐标,则可求出答案.【详解】解:如图,当x =0时,y =﹣34x +3=3, ∴点B 的坐标为(0,3), 当y =0时,有﹣34x +3=0, 解得:x =4,∴点A 的坐标为(4,0).由折叠性质可知,△ABD ≌△ACD ,∴AC =AB ,BD =CD .在Rt △AOB 中,AB 22OA OB +5,∴AC =5,∴OC =AC ﹣OA =5﹣4=1,∴点C 的坐标为(﹣1,0).设OD =m ,则CD =BD =3﹣m ,在Rt △COD 中,OC 2+OD 2=CD 2,即12+m 2=(3﹣m )2,解得:m =43, ∴OD =43, ∴点D 的坐标为(0,43). 设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0)、D (0,43)代入y =kx +b , 4043k b b +=⎧⎪⎨=⎪⎩, 解得:1343k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD 的解析式为y =1433x -+. 故答案为:y =1433x -+. 【点睛】 本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及翻折变换,解题的关键是熟练掌握折叠的性质.15.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C (7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S 的最小值为2,最大值为3,解S =12|t ﹣3|×2﹣12|t ﹣3|×1=3,得t =9或﹣3,∵当S =2时,得t =7或﹣1,∴若S 的最小值为2,最大值为3,点C 的横坐标t 的取值范围为7≤t≤9或﹣3≤t≤﹣1; 故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.16.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.17.-1【分析】根据一次函数的定义即可求出k 的值【详解】解:∵是一次函数∴解得:;故答案为:【点睛】本题考查了一次函数的定义解题的关键是熟练掌握一次函数的定义进行解题解析:-1【分析】根据一次函数的定义,即可求出k 的值.【详解】解:∵2(1)3k y k x =-+是一次函数, ∴2110k k ⎧=⎨-≠⎩, 解得:1k =-;故答案为:1-.【点睛】本题考查了一次函数的定义,解题的关键是熟练掌握一次函数的定义进行解题. 18.x >-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x -3≠0再解即可【详解】由题意得:x+2≥0且x -3≠0解得:x >-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.19.300【分析】当x=0时y=300故此可得到AB两地的距离为3003小时后两车相遇从而可求得两车的速度之和然后依据5小时后两车的距离最大可知甲车到达B地用5小时从而可乙车的速度设甲乙两车出发后经过t解析:300【分析】当x=0时,y=300,故此可得到AB两地的距离为300,3小时后两车相遇,从而可求得两车的速度之和,然后依据5小时后两车的距离最大,可知甲车到达B地用5小时,从而可乙车的速度,设甲、乙两车出发后经过t小时同时到达C地,根据甲乙两车的路程相差300千米,列方程可求得t的值,最后根据乙的路程得到B、C之间的距离,则可得出A、C之间的距离.【详解】解:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100-60=40千米/小时,设甲、乙两车出发后经过t小时同时到达C地,依题意可得60t-40t=300,解得t=15,∴B,C两地的距离=40×15=600千米,∴A,C两地的距离=600-300=300千米.故答案为:300.【点睛】本题以行程问题为背景,主要考查了一次函数的应用,解决问题的关键是根据函数图象理解题意,求得两车的速度,并根据两车行驶路程的数量关系列出方程.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x的图象经过第一三象限可得:k-1>0则k>1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)16010=-+y x(2)小于20升【分析】(1)根据题意,可以写出y与x的函数关系式,并写出x的取值范围;(2)根据(1)中的函数解析式和画函数图象的方法,可以画出相应的函数图象,结合图象进行解答即可.【详解】解:(1)由题意可得,y=60-0.1x,当y=0时,0=60-0.1x,得x=600,即y与x的函数关系式为y=60-0.1x(0≤x≤600);(2)y=60-0.1x,列表:x0600y600所以,当行驶里程超过400千米后油箱内的汽油量小于20升.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)见解析;(2)B(4,1);(3)12【分析】(1)根据等腰直角三角形的性质,可得AC=BC,∠ACB=90°,根据余角的性质,可得∠OAC=∠BCE,根据AAS,可得答案;(2)根据全等三角形的性质,可得B点坐标;(3)先求得b的值,再根据三角形的面积公式,可得答案.【详解】(1)(1)证明:∵BE⊥CE∴∠BEC=90°∵△ABC是等腰直角三角形∴AC=BC,∠ACB=90°∴∠AOC=∠BEC=90°∵∠OAC + ∠ACO = 90°,∠ACO +∠BCE =90°,∴∠OAC =∠BCE .在Rt △AOC 和Rt △CEB 中,∠AOC =∠CEB∠OAC =∠BCEAC =BC∴△AOC ≌△CEB (AAS ).(2)∵△AOC ≌△CEB∴CE =AO =3,EB =OC =1∴B 点坐标(4,1)(3)将B 点坐标代入y =x +b 中可求b =-3∴D (0,-3)∴AD =6∴S △ABD =12AD•B x =12×6×4=12 【点睛】本题考查了一次函数综合题,利用余角的性质得出∠OAC=∠BCE 以及利用待定系数法求出b 值是解答本题的关键.24.(1)30元;(2) 1.480y x =-;(3)130元【分析】(1)求出0100x <≤时一次函数的解析式,即可求解;(2)当100x ≥时, y 与x 之间的函数关系式为y kx b =+,把点()()100,60,200,200代入求解即可;(3)把150x =代入解析式即可得到答案;【详解】 解:()10100x <≤时,35y x =月用电量为50度时,应交电费30元; ()2当100x ≥时,设y 与x 之间的函数关系式为y kx b =+,点()()100,60,200,200在函数y kx b =+的图象上,10060200200k b k b +=⎧∴⎨+=⎩解得 1.480k b =⎧⎨=-⎩, 即当100x ≥时,y 与x 之间的函数关系式为 1.480y x =-;()3当150x =时, 1.415080130y =⨯-=,即月用电量为150时,应交电费130元.【点睛】本题主要考查了一次函数的图象应用,准确分析计算是解题的关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入, 152520b k b =⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y 1=5x +60;y 2=4.5x +72;(2)当购买24张票时,两种优惠方案付款一样多;4≤x <24时,优惠方案1付款较少;x >24时,优惠方案2付款较少【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的学生票金额; 优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y 关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【详解】(1)按优惠方案1可得:y 1=20×4+(x -4)×5=5x +60,按优惠方案2可得:y 2=(5x +20×4)×90%=4.5x +72,(2)y1-y2=0.5x-12(x≥4),①当y1-y2=0时,得0.5x-12=0,解得x=24,∴当购买24张票时,两种优惠方案付款一样多;②当y1-y2<0时,得0.5x-12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案1付款较少.③当y1-y2>0时,得0.5x-12>0,解得x>24,∴当x>24时,y1>y2,优惠方案2付款较少.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.。
一次函数习题集锦(含答案)经典 新课标 压轴题 详解
数学八年级上册一次函数练习题 出题人:刘鸿英一、填空题(每小题3分,共24分) 1.正比例函数12y x =-中,y 值随x 的增大而 . 2.已知y=(k-1)x+k 2-1是正比例函数,则k = .3.若y+3与x 成正比例,且x=2时,y=5,则x=5时,y= . 4.直线y=7x+5,过点( ,0),(0, ).5.已知直线y=ax-2经过点(-3,-8)和12b ⎛⎫ ⎪⎝⎭,两点,那么a= ,b= . 6.写出经过点(1,2)的一次函数的解析式为 (写出一个即可). 7.在同一坐标系内函数112y x =+,112y x =-,12y x =的图象有什么特点 .8.下表中,y 是x 的一次函数,则该函数解析式为 ,并补全下表.x 2- 1- 0 1 2y26二、选择题(每小题3分,共24分)1.下列函数中是正比例函数的是( ) A .8y x=B .28y =C .2(1)y x =-D .(21)3xy +=-2.下列说法中的两个变量成正比例的是( ) A .少年儿童的身高与年龄 B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数y=|x |+3不是一次函数D .在y=kx+b(k 、b 都是不为零的常数)中, y-b 与x 成正比例 4.一次函数y=-x-1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.函数y=kx-2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( ) A .322y x =- B .122y x =- C .122y x =+ D .322y x =+7.若函数y=kx+b(k、b都是不为零的常数)的图象如图2所示,那么当y>0时,x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限三、解答题(共30分)1.(10分)某函数具有下列两条性质:(1) 它的图象是经过原点(0,0)的一条直线;(2) y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10分)已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.3.(10分)已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共22分)1.(11分)如图3,在边长为2的正方形ABCD的一边BC上的点P从B点运动到C点,设PB=x,梯形APCD 的面积为S.(1)写出S与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象.2.(11分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一次函数检测卷 出题人:刘鸿英一、选择题:1. 一次函数1-=x y 的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司的产品销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量( ) A. 小于3吨 B. 大于3吨 C. 小于4吨 D. 大于4吨3. 若正比例函数x m y )21(-=的图象经过点),(11y x A 和点),(22y x B ,当21x x <时,21y y >,则m 的 取值范围是( )A. 0<mB. 0>mC. 21<m D. 21>m 4. 结合正比例函数x y 4=的图象回答:当1>x 时,y 的取值范围是( )A. 1<yB.1≤x <4C. 4=yD. 4>y5. 若1-<m ,则下列函数:①)0(>=x xmy ;②1+-=mx y ;③mx y =; ④x m y )1(+=中,y 随x 的增大而增大的是( ) A. ①② B. ②③ C. ①③ D. ③④6. 两条直线b ax y +=1与a bx y +=2在同一坐标系中的图象可能是下图中的( )O x yA O x yB O x yC O xyD7.有一个装有进、出水管的容器,单位时间内进、出的水量都是一定. 已知容器的容积为600升,又知单开进水管10分钟可把空容器注满. 若同时打开进、出水管,20分钟可把满容器的水放完. 现已知容器内有水200升,先打开进水管5分钟,再打开出水管,两管同时开放,直至把容器中的水放完,则正确反映这一过程中容器中的水量Q (升)随时间t (分)变化的图象是( ))(365分钟t 升)(Q O 200 5005)(350分钟t 升)(Q O 200 5005)(365分钟t 升)(Q O 200 5005)(995分钟t 升)(Q O 2005005ABCD8.小明8.某天放学后,17时从学校出发,回家途中离家的路程 s(百米)与所走的时间t (分钟)之间的函数关系如图所示,那么这天 小明到家的时间为( )A. 17时15分B. 17时14分C. 17时12分D. 17时11分9.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时; (3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度; (5)甲、乙两人同时到达目的地其中符合图象描述的说法有( )A. 2个B. 3个C. 4个D. 5个 二、填空题:1. 如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.2. 在平面直角坐标系中,直线b kx y +=(k ,b 为常数k ≠0,b >0)可以看成是将直线kx y =沿y 轴向上平行移动b 个单位得到的,那么将直线kx y =沿x 轴向右平行移动m 个单位(m >0)得到的直线方程是____________.3. 大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连开往庄河,则汽车距庄河的路程s (千米)与行驶的速度t (小时)之间的函数关系式为_________________. 4. 若一次函数m x m y +-=)2(的图象经过第一、二、四象限,则m 的取值范围是________________. 三、解答题:1. 已知y 与2+x 成正比例,且1=x 时,6-=y .(1)求y 与x 之间的函数关系式;(2)若点)2,(a 在函数的图象上,求a 的值.0 3 6 8 8 1518t (分钟) s (百米) S (千米)18t (小时) 甲 乙 O 第10题图 0.5 1 2 2.52. 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例. 当x =20时,y =1600;当x =30时,y =2000. (1)求y 与x 之间的函数关系式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么没2名运动员需要支付多少元?3. 在我省环岛高速公路上,一辆轿车和一辆货车沿相同路线从A 地到B 地,所经过的路程y (千米)与时间x (小时)的函数关系如图所示,试根据图象回答下列问题: (1)货车比轿车早出发__________小时,轿车追上货车时行驶了__________千米,A 地到B 地的距离为_________千米. (2)轿车追上货车需要多小时? (3)轿车比货车早到多少时间?0 1 5 150 300 x (小时)y (千米) PD N M K FE 轿车 货 车 C参考答案一、1.减小2.1-3.174.57-,5 5.2,1-6.略(答案不惟一) 7.三条直线互相平行8.22y x =+,表格从左到右依次填2-,0,4 二、1.D 2.D 3.A 4.A 5.D6.A7.D8.B三、1.y x =-(答案不惟一) 2.(1)2y x =+ (2)43.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+ (2)图略; (3)4四、1.(1)4S x =-; (2)02x <<; (3)图略 2.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元参考答案基础达标验收卷 一、选择题:题号 1 2 3 4 5 6 7 8 9 答案BDDDAA ACC二、填空题:题号 12 34答案x y 21=)(m x k y -=t s 80160-=(0≤t ≤2) 2>m三、解答题:1. 解:(1)42--=x y ;(2)3-=a .2. 解:(1)80040+=x y ;(2)每名运动员需支付56元.3. 解:(1)1,150,300.(2)根据图象提供的信息,可知点M 为ON 的中点,MK ∥NE ,∴5.221==OE OK . ∴5.1=-=OC OK CK ,即轿车追上货车需1.5小时. (3)根据图象提供的信息,可知M 为CD 的中点,且MK ∥DF , ∴K 是CF 的中点. ∴CF =3. ∴431=+=+=CF OC OF . ∴145=-=-=OF OE EF ,即轿车比货车早到1小时.。
(压轴题)初中数学八年级数学上册第四单元《一次函数》测试(有答案解析)(1)
一、选择题1.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( ) A .B .C .D .2.一次函数y=2x-1的图象大致是( )A .B .C .D .3.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .4.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D .5.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .6.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,每min 的进水量和出水量是两个常数.容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象提供的信息,则下列结论错误的是( )A .第4min 时,容器内的水量为20LB .每min 进水量为5LC .每min 出水量为1.25LD .第8min 时,容器内的水量为25L7.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③8.一次函数y=kx+b ,当k >0,b <0时,它的图象是( )A .B .C .D .9.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .10.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④11.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( ) A .2B .0C .-1D .-212.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .二、填空题13.已知1(2)23k y k xk -=-+-是关于x 的一次函数,则这个函数的解析式是_______.14.如图,在平面直角坐标系中,Rt ABC 的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x 轴上有一点P ,使得PA+PB 的值最小,则点P 的坐标为______________15.声音在空气中传播的速度(/)y m s (简称声速)与气温x (℃)的关系如下表所示: 气温x /℃ 0 5 10 15 20 … 声速/(/)y m s331334337340343…照此规律可以发现,当气温x 为__________℃时,声速y 达到352/m s .16.已知函数1(1);24(1).x x y x x +≤⎧=⎨-+>⎩当函数值为-2时,自变量x 的值为__________. 17.将直线y =x 沿y 轴正方向平移2个单位后过点(1,a ﹣2),则a =_____. 18.如果一次函数y =x ﹣3的图象与y 轴交于点A ,那么点A 的坐标是_____. 19.正比例函数y =kx 的图象经过点(2,3),则k =______.20.在一次函数()15y m x =++中,y 随x 的增大而减小,则m 的取值范围是_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C . (1)求点C 的坐标; (2)求△OBC 的面积.22.如图,公路上有A 、B 、C 三站,一辆汽车在上午8时从离A 站10千米的P 地出发向C 站匀速前进,15分钟后离A 站20千米.(1)设出发x小时后,汽车离A站y千米,求y与x之间的函数关系式;(2)当汽车行驶到离A站150千米的B站时,接到通知要在中午12点前赶到离B站30千米的C站.汽车若按原速能否按时到达?请说明理由.23.如图,平面直角坐标系中,直线3944y x=-+与直线3922y x=+交于点B,与x轴交于点A.(1)求点B的坐标.(2)若点C在x轴上,且ABC是以AB为腰的等腰三角形,求点C的坐标.24.如图1,在平面直角坐标系xOy中,已知点A(0,3),B(2,3),OC=a.将梯形ABCO沿直线y=x折叠,点A落在线段OC上,对应点为E.(1)求点E的坐标;(2)①若BC//AE,求a的值,探究线段BC与AE的数量关系,说明理由.②如图2,若梯形ABCO的面积为2a,且直线y=mx将此梯形面积分为1∶2的两部分,求直线y=mx的解析式.25.某童装店以每件25元的价格购进某种品牌的童装若干件,销售了部分童装后,剩下的童装每件降价10元销售,全部售完.销售总额y(元)与销售量x(件)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前该童装的销售单价是元/件;(2)求降价后销售总额y(元)与销售量x(件)之间的函数关系式,并写出自变量的取值范围;(3)求该童装店这次销售童装盈利多少元?26.某技工培训中心有钳工20名、车工30名.现将这50名技工派往,A B两地工作,设派往A地x名钳工,余下的技工全部派往B地,两地技工的月工资情况如下表:钳工/(元/月)车工/(元/月)A地36003200B地32002800y x x 的取值范围;(2)根据预算,这50名技工的月工资总额不得超过155000元.当派往A地多少名钳工时,这些技工的月工资总额最大?月工资总额最大为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据正比例函数的性质可得出k>0,进而可得出-k<0,由1>0,-k<0利用一次函数图象与系数的关系,可找出一次函数y=x-k的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴﹣k<0.∴一次函数y =x ﹣k 的图象经过第一、三、四象限. 故选:B . 【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.2.B解析:B 【分析】根据一次函数的性质进行判断即可. 【详解】 解:∵k=2>0,∴直线y=2x-1经过第一、三象限; ∵b=-1,∴直线y=2x-1与y 轴的交点在x 轴下方, ∴直线y=2x-1经过第一、三、四象限, ∴B 选项符合题意. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.3.A解析:A 【分析】先根据正比例函数y=kx (k≠0)的增减性判断k 的符号,然后即可判断一次函数1y x k =+的大致图象. 【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而增大, ∴k >0,∴一次函数1y x k =+的图象经过一、三、二象限. 故选A . 【点睛】此题主要考查一次函数的图像和性质,熟练掌握一次函数的图象和性质是解题关键.4.D【分析】求出小汽车在AB、BC上运动时,MQ的表达式即可求解.【详解】解:设小汽车所在的点为点Q,①当点Q在AB上运动时,AQ=t,则MQ2=MA2+AQ2=1+t2,即MQ2为开口向上的抛物线,则MQ为曲线,②当点Q在BC上运动时,同理可得:MQ2=22+(1-t+2)2=4+(3-t)2,MQ为曲线;故选:D.【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.5.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.6.C解析:C【分析】根据选项依次求解,由图可知,第4min时,对应的容器内的水量为20L,从某时刻开始的4min内只进水不出水,在随后的8min内既进水又出水,可确定两段函数的关系式,即可求出每min 进水量为5L ,第8min 时容器内的水量为25L ,最后根据图像每分钟出水的量为3.75L . 【详解】A 项,由图可知,第4min 时,对应的容器内的水量y 为20L ,A 不符合题意;B 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx (k ≠0),通过图像过(4,20),解得k =5,所以每min 进水量为5L ,B 不符合题意;C 项,由B 项可知:每min 进水量为5L ,每分钟出水量=[(12-4)×5-(30-20)]÷(12-4)=3.75L ,C 符合题意;D 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx+b (k ≠0,k 、b 为常数),通过图像过(4,20),(12,30),解得k =54,b =15,所以第8min 时,容器内的水量为25L ,D 不符合题意; 故选C . 【点睛】此题考查了一次函数的实际应用和识图能力,解题时首先应正确理解题意,然后根据图像的坐标,利用待定系数法确定函数解析式,接着利用函数的性质即可解决问题.7.B解析:B 【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③ 【详解】解:∵图象过第一,第二,第三象限, ∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大, ∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数, ∴这部分图像的纵坐标y>b ,③正确, 故①③正确 故选:B . 【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.8.C解析:C 【解析】 试题根据题意,有k>0,b<0,则其图象过一、三、四象限;故选C.9.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C图像可得函数y=mx+n过一,二,三象限,故m>0,n>0,故y=nx+m也过一,二,三象限,故A,C错误;由B,D图像可得函数y=mx+n过一三四象限,故m>0,n<0,故y=nx+m过一,二,四象限,故B正确,D错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II卷(非选择题)请点击修改第II卷的文字说明10.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160>150,②不正确;当乙在B地停留1h时,甲前进80km,甲乙相距=160-80=80km,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键,11.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键. 12.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.二、填空题13.=-4-7【分析】根据一次函数的定义先求出k 的值然后求出一次函数的解析式【详解】解:∵是关于的一次函数∴解得:(负值已舍去);∴这个函数的解析式是:;故答案为:【点睛】本题考查了一次函数的定义解题的 解析:y =-4x -7【分析】根据一次函数的定义,先求出k 的值,然后求出一次函数的解析式.【详解】解:∵1(2)23k y k x k -=-+-是关于x 的一次函数,∴1120k k ⎧-=⎨-≠⎩,解得:2k =-(负值已舍去);∴这个函数的解析式是:47y x =--;故答案为:47y x =--.【点睛】本题考查了一次函数的定义,解题的关键是正确求出k 的值.14.(-20)【分析】作点B 关于x 轴的对称点D 连接AD 则AD 与x 轴交点即为点P 位置利用待定系数法求出AD 解析式再求出点P 坐标即可【详解】解:作点B 关于x 轴的对称点D 则点D 坐标为(0-4)连接AD 则AD 与解析:(-2,0)【分析】作点B 关于x 轴的对称点D ,连接AD ,则AD 与x 轴交点即为点P 位置,利用待定系数法求出AD 解析式,再求出点P 坐标即可.【详解】解:作点B 关于x 轴的对称点D ,则点D 坐标为(0,-4),连接AD ,则AD 与x 轴交点即为点P 位置.设直线AD 解析式为y=kx+b (k≠0),∵点A 、D 的坐标分别为(-3,2),(0,-4),∴324k b b -+=⎧⎨=-⎩ 解得24k b =-⎧⎨=-⎩ ∴直线AD 解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P 的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B 关于x 轴对称点D ,确定点P 位置是解题关键.15.35【分析】由题意观察图表数据可得气温每升高5℃音速增加3然后写出x 的表达式把音速y=352代入函数解析式求得相应的x 的值即可【详解】解:设函数解析式该函数图象经过点解得该解析式为:y=x+331当解析:35【分析】由题意观察图表数据可得气温每升高5℃,音速增加3,然后写出x 的表达式,把音速y=352代入函数解析式,求得相应的x 的值即可.【详解】解:设函数解析式y kx b =+该函数图象经过点()0331,,()5334, 3315334b k b =⎧∴⎨+=⎩解得35331k b ⎧=⎪⎨⎪=⎩ ∴该解析式为:y=35x+331, 当y=352时,352=35x+331, 解得x=35.即当声音在空气中的传播速度为352米/秒,气温是35℃.故答案为:35.【点睛】本题考查一次函数的应用.读懂题目信息答案,观察并发现气温每升高5℃,音速增加3是解题的关键. 16.或【分析】把代入计算求解即可【详解】解:代入可得:故答案为:或【点睛】本题主要考查了函数的概念和不等式的性质利用函数与函数值的等量关系代入函数值计算是解题的关键解析:3或3-【分析】把=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩计算求解即可. 【详解】解:=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩可得:21(1)224(1)x x x x -=+≤⎧⎨-=-+>⎩⇒3(1)3(1)x x x x =-≤⎧⎨=>⎩故答案为:3或3-【点睛】本题主要考查了函数的概念和不等式的性质,利用函数与函数值的等量关系代入函数值计算是解题的关键.17.5【分析】根据平移规律可得直线y =x 沿y 轴正方向平移2个单位后得y =x+2然后把(1a ﹣2)代入即可求出a 的值【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x+2根据题意将(1a ﹣2)代入解析:5【分析】根据平移规律可得,直线y =x 沿y 轴正方向平移2个单位后得y =x +2,然后把(1,a ﹣2)代入即可求出a 的值.【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x +2,根据题意,将(1,a ﹣2)代入,得:1+2=a ﹣2,解得:a =5,故答案为:5.【点睛】此题主要考查了坐标与图形变化-平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.18.(0﹣3)【分析】代入x=0求出与之对应的y 值进而可得出点A 的坐标【详解】解:当x =0时y =x ﹣3=﹣3∴点A 的坐标为(0﹣3)故答案为:(0﹣3)【点睛】本题考查一次函数图象上点的坐标特征牢记直线解析:(0,﹣3)【分析】代入x=0求出与之对应的y 值,进而可得出点A 的坐标.【详解】解:当x =0时,y =x ﹣3=﹣3,∴点A 的坐标为(0,﹣3).故答案为:(0,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题关键.19.【分析】将点(23)代入解析式即可求出答案【详解】将点(23)代入y=kx 中得2k=3解得k=故答案为:【点睛】此题考查了正比例函数求值已知点的坐标即可将点的坐标代入解析式求出参数解析:32【分析】将点(2,3)代入解析式即可求出答案.【详解】将点(2,3)代入y=kx 中,得2k=3,解得k=32, 故答案为:32. 【点睛】 此题考查了正比例函数求值,已知点的坐标即可将点的坐标代入解析式求出参数. 20.m <-1【分析】根据y 与x 的关系判断出k 的符号进而求得m 的取值范围【详解】∵随的增大而减小∴一次函数的比例系数k <0即m+1<0解得:m <-1故答案为:m <-1【点睛】本题考查一次函数的性质当k >0解析:m <-1【分析】根据y 与x 的关系,判断出k 的符号,进而求得m 的取值范围.【详解】∵y 随x 的增大而减小∴一次函数的比例系数k <0,即m+1<0解得:m <-1故答案为:m <-1.【点睛】本题考查一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,则反之.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩,一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)y=40x+10;(2)汽车若按原速不能按时到达【分析】(1)先求出汽车的速度,再根据路程=速度×时间求得关系式即可;(2)由(1)中函数关系式求出汽车到达C 站的时间即可得出结论.【详解】解:(1)由题意知汽车的速度为2010401560-=(千米∕时),∴y 与x 之间的函数关系式为y=40x+10;(2)当y=150+30=180时,由180=40x+10得:x=4.25,∵12﹣8=4(小时),且4<4.25,∴汽车若按原速不能按时到达.【点睛】本题考查一次函数的应用、解一元一次方程,掌握行程问题中的等量关系,建立函数模型是解答的关键.23.(1)(1,3)B -;(2)123(5,0),(2,0),(8,0)C C C --【分析】(1)联立两直线解析式构建二元一次方程组求解即可;(2)由题意易得点A 的坐标,然后分AB=AC 和AB=BC 两种情况结合等腰三角形的性质可进行分类求解.【详解】解:(1)由题意可联立解析式得:39443922y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:13x y =-⎧⎨=⎩, ∴(1,3)B -;(2)由直线3944y x =-+可令y=0得:(3,0)A , ①若A 为顶角顶点,如图所示:由(1)及两点距离公式可得, ∴22435AC AB ==+=,∴22OC =,38OC =,②若B 为顶角顶点,∴5BC BA ==,过点B 作BD ⊥x 轴于点D ,则有14C D AD ==,∴15OC =,∴综上所述:当△ABC 以AB 为腰的等腰三角形,则有123(5,0),(2,0),(8,0)C C C --.【点睛】本题主要考查等腰三角形的性质、勾股定理及一次函数的性质,熟练掌握等腰三角形的性质、勾股定理及一次函数的性质是解题的关键.24.(1)E (3,0);(2)①a=5,BC=AE ,理由见解析;②619y x =或1211y x =. 【分析】(1)由折叠的性质可知OE=OA ,由OA 的长即可确定出点E 的坐标;(2)①由平行四边形的性质可知EC=AB ,BC=AE ,结合OE 的长即可求得a 的值; ②根据梯形的面积公式以及梯形的面积可求得a 的值,从而可求得梯形的面积,由直线y =mx 将梯形面积分为1∶2两部分,可得分成的三角形面积有两种情况,然后根据三角形的面积公式可求直线y=mx 与直线BC 交点的纵坐标,利用待定系数法可得直线BC 的函数表达式,将交点的纵坐标分别代入即可求得直线y =mx 的解析式【详解】解(1)∵点A 坐标为(0,3),∴OA=3∵直线y=x 是第一象限的角平分线,点A 落在x 轴上,∴OE=OA=3,∴E (3,0)(2)①∵//BC AE , //AB CE∴四边形ABCE 是平行四边形∴CE =AB =2∴OC =OE +CE =5∴a =5∵四边形ABCE 是平行四边形∴BC=AE②如图2,由梯形面积可知,3(2)22a a += 解得:a=6,梯形面积为12∴由B(2,3),C(6,0),可得直线BC 的解析式为3942=-+y x 若直线y=m 1x 分△OCG 1的面积为梯形面积的13时,直线y=m 1x 与BC 交于点G 1,过G 1作G 1 H 1垂直于x 轴于点H 1∴△OCG 1的面积为4,OC=6,∴G 1 H 1=43 可得点G 1384(,)93 ∴619y x = 若直线y=m 2x 分△OCG 2的面积为梯形面积的23时,直线y=m 2x 与BC 的交于点G 2,过G 2作G 2 H 2垂直于x 轴于点H 2∴△OCG 2的面积为8,OC=6,∴G 2 H 2=83 可得点G 2228(,)93∴1211y x =由上可得619y x =或1211y x = 【点睛】 本题主要考查了一次函数解析式的求法,熟练掌握待定系数法,应用分类讨论思想是解决本题的关键25.(1)45 ;(2)35400y x =+(4055)x< ;(3)该童装店这次销售童装盈利950元.【分析】(1)根据函数图象中的数据,可以计算出降价前该童装的销售单价=降价前的销售总额÷降价前的销售量;(2)设降价后销售金额y (元)与销售量x (千克)之间的函数解析式为y kx b =+,由图像可知过点(40,1800),(55,2325),两点代入求出解析式,并写出自变量的取值范围; (3)根据函数图象中的数据和题目中的数据,可以计算出该童装店这次销售童装盈利=销售总额-进价单价×销售量.【详解】(1)由图可得:降价前该童装的销售单价是:1800÷40=45元/件,故答案为:45(2)设降价后销售金额y (元)与销售量x (件)之间的函数关系式为:y kx b =+, 由题意知,该函数过点(40,1800),(55,2325) 则:180040232555k b k b =+⎧⎨=+⎩, 解之得:35400k b =⎧⎨=⎩∴35400y x =+(4055)x< (3)该童装店这次销售童装盈利了: 2325-55×25=950(元)∴ 该童装店这次销售童装盈利950元.【点睛】本题考查了一次函数的应用,解答本题明确题意,利用一次函数的性质和数形结合的思想解答.26.(1)()400148000020y x x =+≤≤;(2)17名,154800元【分析】(1)根据50名技工的月工资总额y (元)=派往A 地x 名钳工月工资+派往B 地(20)x -名钳工月工资+派往B 地30名车工月工资,即可得出月工资总额y (元)与x 之间的函数表达式,并写出x 的取值范围;(2)根据月工资总额不得超过155000元先求出x 的取值范围,即确定y 的最大值,使他们的工资总额最高.【详解】解:(1)由题意可得,36003200(20)280030400148000y x x x =+-+⨯=+,即这50名技工的月工资总额y (元)与x 之间的函数表达式是()400148000020y x x =+≤≤;(2)∵月工资总额不得超过155000元.∴400148000155000x +≤ ∴352x ≤ 又∵k =400>0,∴∴当17x =时,y 取得最大值154800元,即当派往A 地17名钳工时,这些技工的月工资总额最大,?月工资总额最大为154800元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用函数的思想解答.。
八年级数学一次函数提高练习与常考题和培优难题压轴题(含解析)
一次函数提高练习与常考题和培优难题压轴题( 含解析)9小题)一.选择题(共1.函数的自变量x的取值范围是()A.x≤ 2 B.x≥ 2 且x≠3C.x≥2D.x≤ 2 且x≠32.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x 轴的交点是(﹣2,0)③由图象可知y 随x 的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2 平行的直线,其中正确说法有()A.5 个B.4 个C.3 个D.2 个3.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y 与x2x,那么自变量x的取值范围是()的函数关系式为y=20﹣A.x>0 B.0<x<10 C.0<x<5 D.5<x<104.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a5.一辆慢车以50 千米/小时的速度从甲地驶往乙地,一辆快车以75 千米/小时发,则的速度从乙地驶往甲地,甲、乙两地之间的距500 千米,两车同时出离为图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B. C .D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x 关于的一次函数y=mx+n 的图象如上图,则| n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤ 1 时,﹣1≤y≤7,则k b 的值为()A.10 B.21 C.﹣10 或2 D.﹣2或102+(1﹣2m)x +1(m 为常数)是一次函数,则m的值为9.若函数y=(2m+1)x()77页)第2页(共二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣b x+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a与b的大小关系是a b.(填“>”<“”或“=)”,且y随x的增大而减小,则m的值是.|m﹣2|13.已知正比例函数y=(1﹣m)x14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段A B最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,S与运动时间t(s)的函沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,⋯都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,⋯都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD 沿x轴向右平移m个单位.当点A落在MN上时,则m=.19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;2=OE2+A F2;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6 的图象分别与y 轴、x 轴交于点A、B,点P从点B出发,沿BA以每秒 1 个单位的速度向点 A 运动,当点P到达点A 时停止运动,设点P的运动时间为t 秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q 为y 轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t 为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线ADA D为一边向上作正方形ABCD.并以线段(1)填空:点B的坐标为,点C的坐标为.线DA 向上平移,直至正方形的(2)若正方形以每秒个单位长度的速度沿射顶点C落在y 轴上时停止运动.在运动过程中,设正方形落在y 轴右侧部分的面量t 的取值积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点 D 与点A 重合,将直尺沿AB方向平移,如图②.设平移0≤x≤10,直尺与直角三角形纸板重合部分的面积(即的长度为x cm,且满足图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、2+=0,C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO=;AD=;OC=;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=4°5,求点D的坐标.33.如图,?ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P 作x轴的垂线交x轴于点E,若S△PBE=,求此时点P的坐标.34.在平面直角坐标系x oy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非:常距离”,给出如下定义若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).,0),B为y轴上的一个动点,(1)已知点A(﹣①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.2﹣4=0 39.已知,如图,在平面直角坐标系中,点 A 、B 的横坐标恰好是方程x的解,点 C 的纵坐标恰好是方程x 2﹣4x+4=0 的解,点 P 从 C 点出发沿 y 轴正方向以 1 个单位/ 秒的速度向上运动,连P A 、PB ,D 为 AC 的中点.1)求直线 BC 的解析式;2)设点 P 运动的时间为 t 秒,问:当 t 为何值时, DP 与 DB 垂直且相等?3)如图 2,若 PA=AB ,在第一象限内有一动点 Q ,连Q A 、QB 、QP ,且∠PQA=60°, 问:当 Q 在第一象限内运动时,∠ APQ+∠ABQ 的度数和是否会发生改变?若不 变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从 M 地出发沿一条公路匀 速前往 N 地,设乙行驶的时间为 t (h ),甲乙两人之间的距离为 y (km ),y 与 t 的函数关系如图 1 所示,方成思考后发现了图 1 的部分正确信息,乙先出发 1h , 甲出发 0.5h 与乙相遇, ⋯ 请你帮助方成同学解决以下问题:(1)分别求出线段B C ,CD 所在直线的函数表达式;(2)当 20<y <30 时,求 t 的取值范围;(3)分别求出甲、乙行驶的路程S 甲、S 乙与时间 t 的函数表达式,并在图 2 所给 的直角坐标系中分别画出它们的图象.优难题压轴题数学初二一次函数提高练习与常考题和培( 含解析)参考答案与试题解析9小题)一.选择题(共1.(2016 春?重庆校级月考)函数的自变量x 的取值范围是()A.x≤ 2 B.x≥ 2 且x≠3C.x≥2D.x≤ 2 且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.3≠0,【解答】解:根据题意得:2﹣x≥0 且x﹣解得:x≤ 2 且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2016 春?南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x 轴的交点是(﹣2,0)③由图象可知y随x 的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2 平行的直线,其中正确说法有()A.5 个B.4 个C.3 个D.2 个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0 时,y=﹣x﹣2 中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y 随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2 与y=﹣x 的k 值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b 中,当k>0 时,y 随x 的增大而增大;当k<0 时,y 随x 的增大而减小.3.(2016 春?农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y 与x 的函数关系式为y=20﹣2x,那么自变量x 的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.4.(2012 秋?镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c 的符号,再根据直线越陡,则| k| 越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则| k| 越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0 时,图象经过一、三象限,y随x 的增大而增大;当k<0 时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则| k| 越大.5.(2016 春?重庆校级月考)一辆慢车以50 千米/小时的速度从甲地驶往乙地,一辆快车以75 千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500 千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B. C .D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春?浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春?无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣mm、n 的符号,然后由绝对值、【分析】根据一次函数图象与系数的关系,确定二次根式的化简运算法则解得即可.x的一次函数y=mx+n 的图象经过第一、二、四【解答】解:根据图示知,关于象限,∴m<0,n>0;∴| n﹣m| ﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.D.故选【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0 时,经过第一、二、四象限.8.(2015 秋?盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤ 1 时,﹣1≤y≤7,()则kb 的值为A.10 B.21 C.﹣10 或2 D.﹣2 或10解.【分析】由一次函数的性质,分k>0 和k<0 时两种情况讨论求【解答】解:由一次函数的性质知,当k>0 时,y 随x 的增大而增大,所以得,解得.即kb=10;当k<0 时,y 随x 的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.2+(1﹣2m)x+1(m为常数)9.(2015秋?西安校级月考)若函数y=(2m+1)x是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春?邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=﹣3.【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春?南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春?大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k (k为常数)上,则a与b的大小关系是a<b.(填“>”<“”或“=)”【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.|m﹣2|,且y随x 13.(2015春?建瓯市校级月考)已知正比例函数y=(1﹣m)x的增大而减小,则m的值是3.【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春?天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点.的坐标一定适合此函数的解析式是解答此题的关键15.(2015春?宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A (x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的是0≤a<.取值范围【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,负数.为非那么经过一三或一二三象限,那么此函数的常数项应【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象.限是解决本题的关键16.(2015秋?靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCPB C的长是2.t(s)的函数图象如图2所示,则的面积S与运动时间【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,D E=4,从而可求得DC=2,于是当点P在DE上时,三角形的面积不变,故此得到AC=2+2,从而可求得BC的长为2+.2)=4.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.出AD、DE的【点评】本题主要考查的是动点问题的函数图象,由函数图象判断.长度是解题的关键17.(2016春?盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,⋯都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,⋯都在同一条直点A2015的坐标是(a,a).线上,则【分析】根据题意得出直线B B1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.B1C,垂足为C,B1向x轴作垂线【解答】解:过由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60=°a,∴B1的坐标为:(a,a),∴点B1,B2,B3,⋯都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),⋯A n(a,).∴A2015(a,a).故答案为.,得出A 【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类点横纵坐标变化规律是解题关键.18.(2016春?泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春?武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋?兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.。
一次函数压轴题精选(含详细答案)
一次函数压轴题精选(含详细答案答案)1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG的坐标.折叠,点N恰好落在x轴上的点H处,求点G3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y 轴上,一次函数y=x+3的图象经过点B、C.第1页(共99页)的坐标为 ;(1)点C的坐标为的坐标为 ,点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.两题中任选一题作答,我选择 题.请从下列A、B两题中任选一题作答,我选择A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.5.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m>0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.8.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC 边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.9.如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)(1)当点P的坐标为(﹣1,0)时,求点D的坐标;(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;(3)连接OB交AD于点G,求证:AG=DG.10.如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程x 2﹣2x ﹣3=0的两个根(Ⅰ)试问:直线AC 与直线AB 是否垂直?请说明理由;(Ⅱ)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(Ⅲ)在(Ⅱ)的条件下,在直线BD 上寻找点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.11.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB=90°,CB=CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证△BEC ≌△CDA ;(2)模型应用:①已知直线y=x +4与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y=2x ﹣6上的一点,若△APD 是不以A 为直角顶点的等腰Rt △,请直接写出所有符合条件的点D 的坐标.12.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,3),点O(0,0)(1)过边OB上的动点D(点D不与点B,O重合)作DE丄OB交AB于点E,沿着DE折叠该纸片,点B落在射线BO上的点F处.①如图,当D为OB中点时,求E点的坐标;②连接AF,当△AEF为直角三角形时,求E点坐标;(2)P是AB边上的动点(点P不与点B重合),将△AOP沿OP所在的直线折叠,得到△AʹOP,连接BAʹ,当BAʹ取得最小值时,求P点坐标(直接写出结果即可).13.如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B 分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P 与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点Bʹ恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,在直角坐标系中,点A的坐标是(0,2),点C是x轴上的一个动点,当点C移动到点O时,得是等边三角形,当点始终保持△ACP是等边三角形,轴上移动时,始终保持△点C在x轴上移动时,到等边三角形AOB(此时点P与点B重合).(1)直线AB:y=mx+n与直线OB:y=kx相交于点B,不解关于x,y的方程组,请你求出它的解;(2)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;由此你发现什么结论?(3)求点C在x轴上移动时,点P所在函数图象的解析式.16.在平面直角坐标系中,直线y=﹣x+4交x轴,y轴分别于点A,点B,将△AOB绕坐标原点逆时针旋转90°得到△COD,直线CD交直线AB于点E,如图1:(1)求:直线CD的函数关系式;(2)如图2,连接OE,过点O作OF⊥OE交直线CD于点F,如图2,①求证:∠OEF=45°;②求:点F的坐标;(3)若点P是直线DC上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△DOC全等时,直接写出点P的坐标.17.已知,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,如图1,A,B坐标分别为(﹣2,0),(0,4),将△OAB绕O点顺时针旋转90°得△OCD,连接AC、BD交于点E.(1)求证:△ABE≌△DCE.(2)M为直线BD上动点,N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,求出所有符合条件的M点的坐标.(3)如图2,过E点作y轴的平行线交x轴于点F,在直线EF上找一点P,使△PAC的周长最小,求P点坐标和周长的最小值.18.平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为P A的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.19.如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45°.(1)求直线BC的解析式;(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,当点P在AB的延长线上运动时,过点O作OD⊥PC于D,交BC于点E,连接AE,当∠EAB=∠CPA时,在坐标轴上有点K,且KC=KP,求点K的坐标.20.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,1),交x 轴于点B,过点E(1,0)作x轴的垂线EF交AB于点D,点P从D出发,沿着射线ED的方向向上运动,设PD=n.(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)若以P为直角顶点,PB为直角边在第一象限作等腰直角△BPC,请问随着点P的运动,点C是否也在同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由.21.如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是边BC的中点,M是边AB的中点,连接EM,求证:AE=EF.(2)如图2,若点E在射线BC上滑动(不与点B,C重合).①在点E滑动过程中,AE=EF是否一定成立?请说明理由;②在如图所示的直角坐标系中,当点E滑动到某处时,点F恰好落在直线y=﹣2x+6上,求此时点F的坐标.22.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与,与 对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.23.如图,边长为1的正方形OABC的顶点O为坐标原点,为坐标原点,点点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.(1)当t=时,求直线DE的函数表达式:(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;(3)当OD 2+DE2取最小值时,求点E的坐标.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC 上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,直线OA的函数表达式为y=2x,直线AB的函数表达式为y=﹣3x+b,点B的坐标为.点P沿折线OA﹣AB运动,且不与点O和点B重合.设点P的横坐标为m,△OPB的面积为S.(1)请直接写出b的值.(2)求点A的坐标.(3)求S与m之间函数关系,并直接写出对应的自变量m的取值范围.(4)过点P作OB边的高线把△OPB分成两个三角形,当其中一个是等腰直角三角形时,直接写出所有符合条件的m的值.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足a 2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE有何关系?直接说出结论,不必说明理由.27.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B 的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.28.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,平面直角坐标系中,已知直线连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B;直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q.(1)求证:OB=OC;(2)当点C坐标为(0,3)时,求点Q的坐标;(3)当△OPC≌△ADP时,直接写出C点的坐标.29.如图1,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B 的直线交x轴负半轴与C,且OB:OC=3:1.(1)求直线BC的函数表达式;(2)直线EF:y=x﹣k(k≠0)交直线AB于E,交直线BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由.(3)如图2,P为x轴上A点右侧的一动点,以P为直角顶点,BP为一腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.30.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣8,0),点B的坐标是(0,n)(n>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为Pʹ(点Pʹ不在y轴上),连接PPʹ,PʹA,PʹC.设点P的横坐标为m.(1)若点P在第一象限,记直线AB与PʹC的交点为D.当PʹD:DC=5:13时,求m的值;(2)若∠ACPʹ=60°,试用m的代数式表示n;(3)若点P在第一象限,是否同时存在m,n,使△PʹCA为等腰直角三角形?若存在,请求出所有满足要求的m,n的值;若不存在,请说明理由.31.如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y 轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.32.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB 的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x 对称?若存在,求出的值;若不存在,请说明理由.参考答案与试题解析1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.【分析】(1)对于y=2x+2,分别令x与y为0求出A与B坐标,根据CO=CD=4,求出D坐标,确定出直线AD解析式即可;(2)存在,如图所示,设出P(﹣4,p),分三种情况考虑:当BD=P1D时;当BP3=BD时;当BP4=DP4,分别求出P坐标即可.【解答】解:(1)对于直线y=2x+2,当x=0时,y=2;当y=0时,x=﹣1,∴点A的坐标为(0,2),点B的坐标为(﹣1,0),又∵CO=CD=4,∴点D的坐标为(﹣4,4),设直线AD的函数表达式为y=kx+b,则有,解得:,∴直线AD的函数表达式为y=﹣x+2;(2)存在,设P(﹣4,p),分三种情况考虑:当BD=P1D时,可得(﹣1+4)2+(0﹣4)2=(p﹣4)2,解得:p=9或p=﹣1,此时P1(﹣4,9),P2(﹣4,﹣1);当BP3=BD时,则有(﹣1+4)2+(0﹣p)2=(﹣1+4)2+(0﹣4)2,解得:p=﹣4,此时P 3(﹣4,﹣4);当BP 4=DP 4时,(﹣1+4)2+(0﹣p )2=(p ﹣4)2,解得:p=,此时P 4(﹣4,),综上,共有四个点满足要求.分别是P 1(﹣4,9),P 2(﹣4,﹣4),P 3(﹣4,﹣1),P 4(﹣4,).【点评】此题属于一次函数综合题,此题属于一次函数综合题,涉及的知识有:涉及的知识有:涉及的知识有:待定系数法求一次函数解析待定系数法求一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.2.如图,直线L :y=﹣x +2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点N (0,4),动点M 从A 点以每秒1个单位的速度匀速沿x 轴向左移动. (1)点A 的坐标:的坐标: (4,0) ;点B 的坐标:的坐标: (0,2) ;(2)求△NOM 的面积S 与M 的移动时间t 之间的函数关系式;(3)在y 轴右边,当t 为何值时,△NOM ≌△AOB ,求出此时点M 的坐标; (4)在(3)的条件下,若点G 是线段ON 上一点,连结MG ,△MGN 沿MG 折叠,点N 恰好落在x 轴上的点H 处,求点G 的坐标.【分析】(1)在y=﹣x+2中,令别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到=,则可求得OG的长,可求得G点坐标.【解答】解:(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).【点评】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y轴上,一次函数y=x+3的图象经过点B、C.的坐标为 (﹣4,2);(1)点C的坐标为的坐标为 (0,3),点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.【分析】(1)设点C的坐标为(0,y),把x=0代入y=x+3中得y=3,即可求出C点的坐标;设点B的坐标为(﹣4,y),把x=﹣4代入y=x+3中得y=2,即可求出B点的坐标;(2)①根据对称的性质和平行线的性质,推知∠CMD=∠MCD,故MD=CD,所以CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.利用勾股定理求得CP的长度,然后结合坐标与图形的性质求得点M的坐标,利用待定系数法求得直线l的解析式即可.【解答】解:(1)如图①,∵A(﹣4,0),AB∥y轴,直线y=x+3经过点B、C,设点C的坐标为(0,y),把x=0代入y=x+3x+3中得y=3,∴C(0,3);设点B的坐标为(﹣4,y),把x=4代入y=x+3中得y=2,∴B(﹣4,2);故答案是:(0,3);(﹣4,2);(2)①证明:∵AB∥y轴,∴∠OCM=∠CMD.∵∠OCM=∠MCD,∴∠CMD=∠MCD,∴MD=CD,∴CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.在直角△DCP中,由勾股定理得到:CP==3,∴OP=AD=CO+CP=3+3=6,∴AB=AD﹣DM=6﹣5=1,∴点M的坐标是(﹣4,1).设直线l的解析式为y=kx+b(k≠0).把M(﹣4,1)、C(0,3)分别代入,得,解得,故直线l的解析式为y=x+3.【点评】此题考查了一次函数综合题,此题考查了一次函数综合题,需要综合利用勾股定理,需要综合利用勾股定理,需要综合利用勾股定理,等腰三角形的判等腰三角形的判定与性质,对称的性质以及待定系数法求一次函数解析式等知识点,难度不是很大,但是需要学生对所学知识有一个系统的掌握.4.如图1,在平面直角坐标系中,一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB ⊥x 轴,垂足为点A ,过点C 作CB ⊥y 轴,垂足为点C ,两条垂线相交于点B .(1)线段AB ,BC ,AC 的长分别为AB= 8 ,BC= 4 ,AC= 4 ;(2)折叠图1中的△ABC ,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2. 请从下列A 、B 两题中任选一题作答,我选择两题中任选一题作答,我选择 A 题. A :①求线段AD 的长;②在y 轴上,是否存在点P ,使得△APD 为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由. B :①求线段DE 的长;②在坐标平面内,是否存在点P (除点B 外),使得以点A ,P ,C 为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC ;(2)A 、①利用折叠的性质得出BD=8﹣AD ,最后用勾股定理即可得出结论; ②分三种情况利用方程的思想即可得出结论;B 、①利用折叠的性质得出AE ,利用勾股定理即可得出结论; ②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,∴A (4,0),C (0,8), ∴OA=4,OC=8,∵AB ⊥x 轴,CB ⊥y 轴,∠AOC=90°, ∴四边形OABC 是矩形, ∴AB=OC=8,BC=OA=4,在Rt △ABC 中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A 、①由(1)知,BC=4,AB=8, 由折叠知,CD=AD ,在Rt △BCD 中,BD=AB ﹣AD=8﹣AD , 根据勾股定理得,CD 2=BC 2+BD 2, 即:AD 2=16+(8﹣AD )2, ∴AD=5,②由①知,D (4,5), 设P (0,y ), ∵A (4,0),∴AP 2=16+y 2,DP 2=16+(y ﹣5)2, ∵△APD 为等腰三角形, ∴Ⅰ、AP=AD , ∴16+y 2=25,∴y=±3,∴P (0,3)或(0,﹣3) Ⅱ、AP=DP , ∴16+y2=16+(y ﹣5)2,∴y=, ∴P (0,),Ⅲ、AD=DP ,25=16+(y ﹣5)2, ∴y=2或8,∴P (0,2)或(0,8).B 、①、由A ①知,AD=5, 由折叠知,AE=AC=2,DE ⊥AC 于E ,在Rt △ADE 中,DE==,②、∵以点A ,P ,C 为顶点的三角形与△ABC 全等, ∴△APC ≌△ABC ,或△CPA ≌△ABC , ∴∠APC=∠ABC=90°, ∵四边形OABC 是矩形,∴△ACO ≌△CAB ,此时,符合条件,点P 和点O 重合, 即:P (0,0), 如图3,过点O 作ON ⊥AC 于N , 易证,△AON ∽△ACO , ∴,∴, ∴AN=,过点N 作NH ⊥OA , ∴NH ∥OA ,∴△ANH ∽△ACO , ∴,∴,∴NH=,AH=, ∴OH=, ∴N (,),而点P 2与点O 关于AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,), 即:满足条件的点P 的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,相似三角形的相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC ,解(2)的关键是利用分类讨论的思想解决问题.5.如图,一次函数y=x +6的图象交x 轴于点A 、交y 轴于点B ,∠ABO 的平分线交x 轴于点C ,过点C 作直线CD ⊥AB ,垂足为点D ,交y 轴于点E . (1)求直线CE 的解析式;(2)在线段AB 上有一动点P (不与点A ,B 重合),过点P 分别作PM ⊥x 轴,PN ⊥y 轴,垂足为点M 、N ,是否存在点P ,使线段MN 的长最小?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)先求出AB=10,进而判断出Rt△BCD≌Rt△BCO,和△ACD∽△ABO,确定出点C(﹣3,0),再判断出△EBD≌△ABO,求出OE=BE﹣OB=4,即可得出点E坐标,最后用待定系数法即可;(2)设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN 2 =(m﹣)2+,即可得出点P横坐标,即可得出结论.【解答】解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0,6),A(﹣8,0),∴OA=8,OB=6,∴AB==10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO,∴BD=BO=6,∴AD=AB﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,∴,∴AC=5,∴OC=OA ﹣AC=3, ∴C (﹣3,0),∵∠EDB=∠AOB=90°,BD=BO ,∠EBD=∠ABO , ∴△EBD ≌△ABO , ∴BE=AB=10, ∴OE=BE ﹣OB=4, ∴E (0,﹣4),设直线CE 的解析式为y=kx ﹣4, ∴﹣3k ﹣4=0, ∴k=﹣,∴直线CE 的解析式为y=﹣x ﹣4,(2)解:存在,(﹣,),如图,∵点P 在直线y=x +6上,∴设P (﹣m ,﹣m +6),∴PN=m ,PM=﹣m +6,根据勾股定理得,MN 2=PN2+PM2=m2+(﹣m +6)2=(m ﹣)2+,∴当m=时,MN 2有最小值,则MN 有最小值,当m=时,y=﹣x +6=﹣×+6=,∴P (﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了待定系数法,主要考查了待定系数法,主要考查了待定系数法,全等三角形的判定和全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是求出点C 的坐标,解(2)的关键是得出MN 2的函数关系式,是一道中等难度的中考常考题.6.如图1,已知▱ABCD ,AB ∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B 在第四象限,点P 是▱ABCD 边上的一个动点. (1)若点P 在边BC 上,PD=CD ,求点P 的坐标.(2)若点P 在边AB ,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x ﹣1上,求点P 的坐标.(3)若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标.(直接写出答案)【分析】(1)由题意点P 与点C 重合,可得点P 坐标为(3,4);(2)分两种情形①当点P 在边AD 上时,②当点P 在边AB 上时,分别列出方程即可解决问题;(3)分三种情形①如图1中,当点P 在线段CD 上时.②如图2中,当点P 在AB 上时.③如图3中,当点P 在线段AD 上时.分别求解即可; 【解答】解:(1)∵CD=6, ∴点P 与点C 重合, ∴点P 坐标为(3,4).(2)①当点P 在边AD 上时, ∵直线AD 的解析式为y=﹣2x ﹣2, 设P (a ,﹣2a ﹣2),且﹣3≤a ≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNMʹ中,∵PM=PMʹ=6,PN=4,∴NMʹ==2,在Rt△OGMʹ中,∵OG 2+OMʹ2=GMʹ2,∴22+(2+m)2=m2,解得m=﹣, ∴P (﹣,4)根据对称性可知,P (,4)也满足条件.②如图2中,当点P 在AB 上时,易知四边形PMGMʹ是正方形,边长为2,此时P (2,﹣4).③如图3中,当点P 在线段AD 上时,设AD 交x 轴于R .易证∠MʹRG=∠MʹGR ,推出MʹR=MʹG=GM ,设MʹR=MʹG=GM=x .∵直线AD 的解析式为y=﹣2x ﹣2, ∴R (﹣1,0),在Rt △OGMʹ中,有x 2=22+(x ﹣1)2,解得x=,。
第四章 一次函数压轴题考点训练(解析版)-2024年常考压轴题攻略(8年级上册北师大版)
第四章一次函数压轴题考点训练A ....【答案】A【分析】根据y 1,y 2的图象判断出k+b 的值,然后根据k-1、所求函数图象经过的象限即可.【详解】解:根据y 1,y 2的图象可知,,且当x=1时,y 2=0,即k+b=0.∴对于函数()1y k x b =-+,有b 时,y=k-1+b=0-1=-1<0.∴符合条件的是选项.故选:A.【点睛】本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关....()A.(-1,0)【答案】B【分析】由题意作A求的P点;首先利用待定系数法即可求得直线∵A(1,-1),∴C的坐标为(1,1连接BC,设直线BC∴123k bk b+-⎧⎨+-⎩==,解得⎧⎨⎩A .433B .233【答案】D【分析】根据题意利用相似三角形可以证明线段用o n AB B ∆∽AON ∆求出线段o n B B 的长度,即点【详解】解:由题意可知,2OM =,点则OMN ∆为顶角30度直角三角形,ON如图所示,当点P 运动至ON 上的任一点时,设其对应的点∵o AO AB ⊥,iAP AB ⊥∴o iOAP B AB ∠=∠又∵tan 30o AB AO =∙ ,tan i AB AP =∙∴::o i AB AO AB AP=∴o i AB B ∆∽AOP∆∴o i AB B AOP∠=∠【答案】32b -≤≤【分析】根据矩形的性质求得点D 的坐标,交,则交点在线段BD 之间,代入求解即可.【详解】解:矩形ABCD 中,点A 、根据矩形的性质可得:(1,3)D 根据图像得到直线y x b =+与矩形ABCD 将点(4,1)B 代入得:41b +=,解得b 将点(1,3)D 代入得:13+=b ,解得b 由此可得32b -≤≤【答案】0k <或01k <<【分析】分别利用当直线()430y kx k k =+-≠过点值范围,据此即可求解.【详解】解:当直线y =【点睛】本题主要考查等腰直角三角形的性质和两直线交点坐标的求法,加辅助线,构造等腰直角三角形和全等三角形,是解题的关键.评卷人得分三、解答题13.A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往运任务承包给某运输公司.已知C乡需要农机34台,两乡运送农机的费用分别为250元/台和200元/台,从别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为系式,并直接写出自变量x的取值范围;值.【答案】(1)W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30;(2)有三种调运方案:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)a 的值为200元.【分析】(1)设A 城运往C 乡x 台农机,可以表示出运往其它地方的台数,根据调运单价和调运数量可以表示总费用W ;(2)列出不等式组确定自变量x 的取值范围,在x 的正整数解的个数确定调运方案,并分别设计出来;(3)根据A 城运往C 乡的农机降价a 元其它不变,可以得出另一个总费用与x 的关系式,根据函数的增减性,确定当x 为何值时费用最小,从而求出此时的a 的值.【详解】解:(1)设A 城运往C 乡x 台农机,则A 城运往D 乡(30﹣x )台农机,B 城运往C 乡(34﹣x )台农机,B 城运往D 乡(6+x )台农机,由题意得:W =250x +200(30﹣x )+150(34﹣x )+240(6+x )=140x +12540,∵x ≥0且30﹣x ≥0且34﹣x ≥0,∴0≤x ≤30,答:W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30.(2)由题意得:1401254016460030x x +>⎧⎨⎩,解得:28≤x ≤30,∵x 为整数,∴x =28或x =29或x =30,因此有三种调运方案,即:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)由题意得:W =(250﹣a )x +200(30﹣x )+150(34﹣x )+240(6+x )=(140﹣a )x +12540,∵总费用最小值为10740元,∴140﹣a <0∴W 随x 的增大而减小,又∵28≤x ≤30,∴当x =30时,W 最小,即:(140﹣a )×30+12540=10740,【答案】(1)y=2x+4(2)1112-+【分析】(1)根据图像求出B的坐标,然后根据待定系数法求出直线(1)求m 的值;(2)点P 从O 出发,以每秒2个单位的速度,沿射线OA 方向运动.设运动时间为t ()s .①过点P 作PQ OA ⊥交直线AB 于点Q ,若APQ ABO ∆≅∆,求t 的值;②在点P 的运动过程中,是否存在这样的t ,使得POB ∆为等腰三角形?若存在,请求出所有符合题意的t 的值;若不存在,请说明理由.【答案】(1)6;(2)①2或8;②2.5或4或6.4.3【点睛】本题主要考查一次函数图象与几何图形的综合,形的性质,利用分类讨论的思想方法,是解题的关键.17.如图,在平面直角坐标系中,直线2y x =-+交于点C .(1)求点A ,B 的坐标.(3)存在.∵线段AB在第一象限,∴这时点P在x轴负半轴.∵==OA 2,OB 4,∴222224BP OP OB x =+=+,222222420AB OA OB =+=+=,222()(2)AP OA OP x =+=-.∵222BP AB AP +=,∴222420(2)x x ++=-,解得8x =-,∴当点P 的坐标为(8,0)-时,ABP 是直角三角形;③设AB 是直角边,点A 为直角顶点,即90BAP ∠= .∵点A 在x 轴上,P 是x 轴上的动点,∴90BAP ∠≠ .综上,当点P 的坐标为(0,0)或(8,0)-时,ABP 是直角三角形.【点睛】本题考查的是一次函数的图象与及几何变换、一次函数的性质及直角三角形的判定等知识点,掌握分类讨论思想和一次函数图像的性质是解答本题的关键.。
中考数学压轴题专项训练一次函数含解析
2021年中考数学压轴题专项训练《一次函数》1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息,解决下列问题:(1)求乙离开A城的距离y与x的关系式;(2)求乙出发后几小时追上甲车?解:(1)设乙对应的函数关系式为y=kx+b将点(4,300),(1,0)代入y=kx+b得:解得:,∴乙对应的函数关系式y=100x﹣100;(2)易得甲车对应的函数解析式为y=60x,联立,解得:,2。
5﹣1=1.5(小时),∴乙车出发后1。
5小时追上甲车.2.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距km设甲、乙两车与B地之间的距离为,y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1)A,B两地之间的距离为20km;(2)当x为何值时,甲、乙两车相距5km?解:(1)A,B两地之间的距离为20km.故答案为:20;(2)乙车的速度为:20÷=120(km/h),甲车的速度为:=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)﹣120x=5,解得x=0。
75;相遇后:120x﹣(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.3.在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于点A,B,点D的坐标为(0,3),点E是线段AB上的一点,以DE 为腰在第二象限内作等腰直角△DEF,∠EDF=90°.(1)请直接写出点A,B的坐标:A(﹣2,0),B(0,2);(2)设点F的坐标为(a,b),连接FB并延长交x轴于点G,求点G的坐标.解:(1)∵直线y=x+2与x轴,y轴分别交于点A,B,∴点A(﹣2,0),点B(0,2)故答案为:(﹣2,0),(0,2)(2)如图,过点F作FM⊥y轴,过点E作EN⊥y轴,∴∠FMD=∠EDF=90°∴∠FDM+∠DFM=90°,∠FDM+∠EDN=90°,∴∠DFM=∠EDN,且FD=DE,∠FMD=∠END=90°,∴△DFM≌△EDN(AAS)∴EN=DM,FM=BN,∵点F的坐标为(a,b),∴FM=DN=﹣a,DM=b﹣3,∴点E坐标(﹣b+3,3+a),∵点E是线段AB上的一点,∴3+a=﹣b+3+2∴a+b=2,∴点F(a,2﹣a)设直线BF的解析式为y=kx+2,∴2﹣a=ka+2∴k=﹣1,∴直线BF的解析式为y=﹣x+2,∴点G(2,0)4.某学校甲、乙两名同学去爱国主义教育基地参观,该基地与学校相距2400米.甲从学校步行去基地,出发5分钟后乙再出发,乙从学校骑自行车到基地.乙骑行到一半时,发现有东西忘带,立即返回,拿好东西之后再从学校出发.在骑行过程中,乙的速度保持不变,最后甲、乙两人同时到达基地.已知,乙骑行的总时间是甲步行时间的.设甲步行的时间为x (分),图中线段OA表示甲离开学校的路程y(米)与x(分)的函数关系的图象.图中折线B﹣C﹣D和线段EA表示乙离开学校的路程y(米)与x(分)的函数关系的图象.根据图中所给的信息,解答下列问题:(1)甲步行的速度和乙骑行的速度;(2)甲出发多少时间后,甲、乙两人第二次相遇?(3)若s(米)表示甲、乙两人之间的距离,当15≤x≤30时,求s(米)关于x(分)的函数关系式.解:(1)由题意得:(米/分),=240(米/分);(2)由题意可得:C(10,1200),D(15,0),A(30,2400),设线段CD的解析式为:y=kx+b,则,解得∴线段CD的解析式为:y=﹣240x+3600,易知线段OA的解析式为:y=80x,根据题意得240x+3600=80x,解得:x=,∴甲出发分后,甲、乙两人第二次相遇;(3)∵E(20,0),A(30,2400),设线段EA的解析式为:y=mx+n,,解得,∴线段EA的解析式为:y=240x﹣4800,∴当15≤x≤20时,s=y OA﹣0=80x,当20<x≤30时,s=y OA﹣y EA=80x﹣(240x﹣4800)=﹣160x+4800,∴.5.对于给定的△ABC,我们给出如下定义:若点M是边BC上的一个定点,且以M为圆心的半圆上的所有点都在△ABC的内部或边上,则称这样的半圆为BC边上的点M关于△ABC的内半圆,并将半径最大的内半圆称为点M 关于△ABC的最大内半圆.若点M是边BC上的一个动点(M不与B,C重合),则在所有的点M关于△ABC的最大内半圆中,将半径最大的内半圆称为BC关于△ABC的内半圆.(1)在Rt△ABC中,∠BAC=90°,AB=AC=2,①如图1,点D在边BC上,且CD=1,直接写出点D关于△ABC的最大内半圆的半径长;②如图2,画出BC关于△ABC的内半圆,并直接写出它的半径长;(2)在平面直角坐标系xOy中,点E的坐标为(3,0),点P 在直线y=x上运动(P不与O重合),将OE关于△OEP的内半圆半径记为R,当≤R≤1时,求点P的横坐标t的取值范围.解:(1)①如图1,过D作DE⊥AC于E,∵Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠C=∠B=45°,∵CD=1,∴BD=2﹣1>CD,∴D到AC的距离小于到AB的距离,∵△DEC是等腰直角三角形,∴DE=,即点D关于△ABC的最大内半圆的半径长是;②当D为BC的中点时,BC关于△ABC的内半圆为⊙D,如图2,∴BD=BC=,同理可得:BC关于△ABC的内半圆半径DE=1.(2)过点E作EF⊥OE,与直线y=x交于点F,设点M是OE 上的动点,i)当点P在线段OF上运动时(P不与O重合),OE关于△OEP 的内半圆是以M为圆心,分别与OP,PE相切的半圆,如图3,连接PM,∵直线OF:y=x∴∠FOE=30°由(1)可知:当M为线段中点时,存在OE关于△OEP的内半圆,∴当R=时,如图3,DM=,此时PM⊥x轴,P的横坐标t=OM=;如图4,当P与F重合时,M在∠EFO的角平分线上,⊙M分别与OF,FE相切,此时R=1,P的横坐标t=OE=3;∴当≤R≤1时,t的取值范围是≤t≤3.ii)当点P在OF的延长线上运动时,OE关于△OEP的内半圆是以M为圆心,经过点E且与OP相切的半圆,如图5.∴当R=1 时,t的取值范围是t≥3.iii)当点P在OF的反向延长上运动时(P不与O重合),OE关于△OEP的内半圆是以M为圆心,经过点O且与EP相切的半圆,如图6.∵∠FOE=∠OPE+∠OEP=30°,∴∠OEP<30°,∴OM<1,当R=时,如图6,过P作PA⊥x轴于A,N是切点,连接MN,MN⊥PE,此时OM=MN=,ME=3﹣=,∴EN===,Rt△OPA中,∠POA=30°,OA=﹣t,∴PA=﹣t,∵∠ENM=∠EAP=90°,∠MEN=∠AEP,∴△EMN∽△EPA,∴,即=解得:t=﹣,∴当≤R<1时,t的取值范围是t≤﹣.综上,点P在直线y=x上运动时(P不与O重合),当≤R ≤1时,t的取值范围是t≤﹣或t≥.6.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)若S△AOC=S△BCP,求点P的坐标.(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.解:(1)一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为:(8,0)、(0,6);(2)联立y=﹣x+6、y=x并解得:x=3,故点C(3,),S△AOC=8×=15=S△BCP=BP×(yP﹣yC)=BP×(6﹣),解得:BP=,故点P(,6)或(﹣,6)(3)设点E(m,m)、点P(n,6);①当∠EPA=90°时,如左图,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即|m﹣n|=6,m﹣6=8﹣n,解得:m=或16,故点E(,)或(14,);②当∠EAP=90°时,如右图,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14,故点E(2,)或(16,20);上,E(,)或(14,)或;(2,)或(16,20).7.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b 过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)当点D是AB的中点时,在x轴上找一点E,使ED+EB 的和最小,画出点E的位置,并求E点的坐标.(3)若点D是折线A﹣B﹣C上一动点,是否存在点D,使AACD 为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入,y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)如图点E为所求点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线DB1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入一次函数表达式并解得:故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为.(3)存在,D点的坐标为(﹣1,3)或.①当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D点的坐标为(﹣1,3);②当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∠FAO=∠CBO,∠AOF=∠BOD,AO=BO,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组并解得:x=,∴交点D的坐标为.8.(1)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①如图2,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点A、B,以线段AB为腰在第一象限内作等腰直角三角形ABC,则C点的坐标为C(4,6)或C(6,2)(直接写出结果)②如图3,在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=45°,连接BD、AE,作CM⊥AE于M点,延长MC与BD 交于点N,求证:N是BD的中点.解:(1)∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠ACD=∠CAD=90°,∵∠ACB=90°,∴∠ACD=∠BCE=90°,∴∠BCE=∠CAD,在△BEC和△CDA中,∴△BEC≌△CDA(AAS);(2)①根据题意可得点C的坐标为C(4,6)或C(6,2);故答案为:C(4,6)或C(6,2);②如图,作BP⊥MN交MN的延长线于P,作DQ⊥MN于Q∵∠BCP+∠BCA=∠CAM+∠AMC,∵∠BCA=∠AMC,∴∠BCP=∠CAM,在△CBP与△ACM中,,∴△CBP≌△ACM(AAS),∴MC=BP,同理,CM=DQ,∴DQ=BP在△BPN与△DQN中,,∵△BPN≌△DQN(AAS),∴BN=ND,∴N是BD的中点.9.如图,在平面直角坐标系xOy中,直线l:y=﹣x+4与x轴、y轴分别相交于B、A两点,点C是AB的中点,点E、F分别为线段AB、OB上的动点,将△BEF沿EF折叠,使点B的对称点D恰好落在线段OA上(不与端点重合).连接OC分别交DE、DF于点M、N,连接FM.(1)求tan∠ABO的值;(2)试判断DE与FM的位置关系,并加以证明;(3)若MD=MN,求点D的坐标.解:(1)直线l:y=﹣x+4与x轴、y轴分别相交于B、A两点,则点A、B的坐标分别为:(0,4)、(3,0);tan∠ABO===tanα;(2)DE与FM的位置关系为相互垂直,理由:点C是AB的中点,则∠COB=∠CBO=∠EDF=α,∠ONF=∠DNM,∴∠DMN=∠DFO,∴O、F、M、D四点共圆,∴∠DMF+∠DOF=180°,∴∠DOF=90°,即:DE⊥FM;(3)MD=MN,∴∠MDN=∠MND=α,而∠COB=α,∠DNM=∠ONF=α,即△OCF为以ON为底,底角为α的等腰三角形,则tan∠NFO===tanβ,则cosβ=(证明见备注);设OF=m,则DF=FB=3﹣m,cos∠DFO=cosβ=,解得:m=,OD2=DF2﹣OF2=(3﹣m)2﹣m2=;则OD=,故点D(0,).备注:如下图,过点N作HN⊥OF于点H,tanα=,则sinα=,作FM⊥ON 于点M,设FN=OF=5a,则FN=4a,则ON=6a,同理可得:NH=,tan∠NFO===tanβ,则cosβ=.10.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).11.如图,长方形OBCD的OB边在x轴上,OD在y轴上,把OBC 沿OC折叠得到OCE,OE与CD交于点F.(1)求证:OF=CF;(2)若OD=4,OB=8,写出OE所在直线的解析式.解:(1)∵四边形OBCD为矩形,∴DO=BC,∠OBC=∠ODC.由翻折的性质可知∠E=∠OBC,CE=BC,∴OD=CE,∠E=∠ODC.在△ODF和△CEF中,∴△ODF≌△CEF(AAS),∴OF=CF.(2)∵OF=CF.设DF=x,则OF=CF=8﹣x.在Rt△ODF中,OD=4,根据勾股定理得,OD2+DF2=OF2,∴42+x2=(8﹣x)2,解得x=3,∴F(3,4),设直线OE的解析式为y=kx,把F(3,4)代入得4=3k,解得k=,∴OE所在直线的解析式y=x.12.如图,在平面直角坐标系中,直线y=﹣x+m过点A(5,﹣2)且分别与x轴、y轴交于点B、C,过点A画AD∥x轴,交y轴于点D.(1)求点B、C的坐标;(2)在线段AD上存在点P,使BP+CP最小,求点P的坐标.解:(1)∵y=﹣x+m过点A(5,﹣2),∴﹣2=﹣5+m,∴m=3,∴y=﹣x+3,令y=0,∴x=3,∴B(3,0),令x=0,∴y=3,∴C(0,3);(2)过C作直线AD对称点Q,可得Q(0,﹣7),连结BQ,交AD与点P可得直线BQ:,令y′=﹣2,∴,∴.13.如图,直线l1的函数表达式为y=3x﹣2,且直线l1与x轴交于点D.直线l2与x轴交于点A,且经过点B(4,1),直线l1与l2交于点C(m,3).(1)求点D和点C的坐标;(2)求直线l2的函数表达式;(3)利用函数图象写出关于x,y的二元一次方程组的解.解:(1)在y=3x﹣2中令y=0,即3x﹣2=0 解得x=,∴D(,0),∵点C(m,3)在直线y=3x﹣2上,∴3m﹣2=3,∴m=,∴C(,3);(2)设直线l2的函数表达式为Y=KX+B(K≠0),由题意得:,解得:,∴y=﹣x+;(3)由图可知,二元一次方程组的解为.14.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x 轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x 的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D 的坐标为(﹣2,5)或(﹣5,3)或(,).解:(1)∵点C在正比例函数图象上,∴m=4,解得:m=3,∵点C(3,4)、A(﹣3,0)在一次函数图象上,∴代入一次函数解析式可得,解这个方程组得,∴一次函数的解析式为y=x+2;(2)在中,令x=0,解得y=2,∴B(0,2)∴S△BOC=×2×3=3;(3)过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,如图,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD2,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,即可得出点D的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D的坐标为(﹣5,3),∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).15.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.(1)在如图2所示的平面直角坐标系xOy中,已知S(﹣3,1),P (1,3),Q(﹣1,﹣3),M(﹣2,4).①在点P,点Q中,点P是点S关于原点O的“正矩点";②在S,P,Q,M这四点中选择合适的三点,使得这三点满足:点S是点P关于点M的“正矩点",写出一种情况即可;(2)在平面直角坐标系xOy中,直线y=kx+3(k<0)与x轴交于点A,与y轴交于点B,点A关于点B的“正矩点”记为点C,坐标为C(x c,y c).①当点A在x轴的正半轴上且OA小于3时,求点C的横坐标x c的值;②若点C的纵坐标y c满足﹣1<y c≤2,直接写出相应的k的取值范围.解:(1)①在点P,点Q中,点S绕点O顺时针旋转90°能得到线段OP,故S关于点O的“正矩点”为点P,故答案为点P;②点S是点P关于点M的“正矩点”(答案不唯一);故答案为:S,P,M;(2)①如图1,作CE⊥x轴于点E,作CF⊥y轴于点F,∠BFC=∠AOB=90°,点B(0,3),点A(﹣,0),∵∠ABO+∠CBO=90°,∠CBO+∠BCF=90°,∴∠BCF=∠ABO,BC=BA,∴△BCF≌△AOB(AAS),∴FC=OB=3,故点C的坐标为:(﹣3,3+),即点C的横坐标x c的值为﹣3;②点C(﹣3,3+),如图2,﹣1<y c≤2,即:﹣1<3+≤2,则﹣3≤k.。
一次函数相关中考压轴题(含分析和答案)
一次函数是初中数学的重点内容之一,也是中考的主要考点。
现举几例以一次函数为背景的中考压轴题供同学们在中考复习时参考一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x 的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.4.如图,在平面直角坐标系xoy中,点A(1,0),点B(3,0),点,直线l经过点C,(1)若在x轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式;(2)若在x轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在x轴上方直线l上有且只有一个点在函数的图形上,求直线l所表达的函数关系式.5.如图1,直线y=﹣kx+6k(k>0)与x轴、y轴分别相交于点A、B,且△AOB的面积是24.(1)求直线AB的解析式;(2)如图2,点P从点O出发,以每秒2个单位的速度沿折线OA﹣OB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与x轴平行的直线l,与线段AB相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过P作x轴的垂线,与直线l相交于点M,连接AM,当tan∠MAB=时,求t值.6.首先,我们看两个问题的解答:问题1:已知x>0,求的最小值.问题2:已知t>2,求的最小值.问题1解答:对于x>0,我们有:≥.当,即时,上述不等式取等号,所以的最小值.问题2解答:令x=t﹣2,则t=x+2,于是.由问题1的解答知,的最小值,所以的最小值是.弄清上述问题及解答方法之后,解答下述问题:在直角坐标系xOy中,一次函数y=kx+b(k>0,b>0)的图象与x轴、y轴分别交于A、B两点,且使得△OAB 的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△AOB面积的最小值.7.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有_________个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标_________;(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N 的坐标.8.如图,已知AOCE,两个动点B同时在D的边上按逆时针方向A运动,开始时点F在点FA位置、点Q在点O 位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求x两点之间的最小距离,并求此时点P,Q的坐标.9.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A_________,C_________;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果).10.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(﹣4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P'(点P'不在y轴上),连接P P',P'A,P'C.设点P的横坐标为a.(1)当b=3时,求直线AB的解析式;(2)在(1)的条件下,若点P'的坐标是(﹣1,m),求m的值;(3)若点P在第一像限,是否存在a,使△P'CA为等腰直角三角形?若存在,请求出所有满足要求的a的值;若不存在,请说明理由.11.如图,四边形OABC为直角梯形,BC∥OA,A(9,0),C(0,4),AB=5.点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.(1)求直线AB的解析式;(2)t为何值时,直线MN将梯形OABC的面积分成1:2两部分;(3)当t=1时,连接AC、MN交于点P,在平面内是否存在点Q,使得以点N、P、A、Q为顶点的四边形是平行四边形?如果存在,直接写出点Q的坐标;如果不存在,请说明理由.12.如图所示,在平面直角坐标系中,已知点A(0,6),点B(8,0),动点P从A开始在线段AO上以每秒1个单位长度的速度向点O运动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向点A运动,设运动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△ABO相似?13.如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E 在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,﹣x+y=1.(1)求点D的坐标;(2)用含有a的式子表示点P的坐标;(3)图中面积相等的三角形有几对?14.如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=,点P在线段OC上,且PO、OC的长是方程x2﹣15x+36=0的两根.(1)求P点坐标;(2)求AP的长;(3)在x轴上是否存在点Q,使四边形AQCP是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.15.已知函数y=(6+3m)x+(n﹣4).(1)如果已知函数的图象与y=3x的图象平行,且经过点(﹣1,1),先求该函数图象的解析式,再求该函数的图象与y=mx+n的图象以及y轴围成的三角形面积;(2)如果该函数是正比例函数,它与另一个反比例函数的交点P到轴和轴的距离都是1,求出m和n的值,写出这两个函数的解析式;(3)点Q是x轴上的一点,O是坐标原点,在(2)的条件下,如果△OPQ是等腰直角三角形,写出满足条件的点Q的坐标.16.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y轴上,OA和OC是方程的两根(OA>OC),∠CAO=30°,将Rt△OAC折叠,使OC 边落在AC边上,点O与点D重合,折痕为CE.(1)求线段OA和OC的长;(2)求点D的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA=OB,过点B作y轴的垂线,垂足为D,直线AB的解析式为y=﹣3x+30,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求点B坐标;(2)点P沿折线BC﹣OC以每秒1个单位的速度运动,当一点停止运动时,另一点也随之停止运动.设△PQC的面积为S,运动时间为t,求S与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,连接PQ,设PQ与OB所成的锐角为α,当α=90°﹣∠AOB时,求t值.(参考数据:在(3)中,取.)18.如图,在平面直角坐标系中,直线l经过点A(2,﹣3),与x轴交于点B,且与直线平行.(1)求:直线l的函数解析式及点B的坐标;(2)如直线l上有一点M(a,﹣6),过点M作x轴的垂线,交直线于点N,在线段MN上求一点P,使△PAB是直角三角形,请求出点P的坐标.19.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x 轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.20.如图,在平面直角坐标系中,点A(2,0),C(0,1),以OA、OC为边在第一象限内作矩形OABC,点D(x,0)(x>0),以BD为斜边在BD上方做等腰直角三角形BDM,作直线MA交y轴于点N,连接ND.(1)求证:①A、B、M、D四点在同一圆周上;②ON=OA;(2)若0<x≤4,记△NDM的面积为y,试求y关于x的函数关系式,并求出△NDM面积的最大值;(3)再点D运动过程中,是否存在某一位置,使DM⊥DN?若存在,请求出此时点D的坐标;若不存在,请说明理由.21.如图(1),直线y=kx+1与y轴正半轴交于A,与x轴正半轴交于B,以AB为边作正方形ABCD.(1)若C(3,m),求m的值;(2)如图2,连AC,作BM⊥AC于M,E为AB上一点,CE交BM于F,若BE=BF,求证:AC+AE=2AB;(3)经过B、C两点的⊙O1交AC于S,交AB的延长线于T,当⊙O1的大小发生变化时,的值变吗?若不变证明并求其值;若变化,请说明理由.22.如图:直线y=﹣x+18分别与x轴、y轴交于A、B两点;直线y=2x分别与AB交于C点,与过点A且平行于y轴的直线交于D点.点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直线AB、OD于P、Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).(1)当0<t<12时,求S与t之间的函数关系式;(2)求(1)中S的最大值;(3)当t>0时,若点(10,10)落在正方形PQMN的内部,求t的取值范围.23.直线l:y=﹣x+3分别交x轴、y轴于B、A两点,等腰直角△CDM斜边落在x轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交x轴、y轴于Q、P两点,以OP、OQ为边作如图矩形OPRQ.设运动时间为t秒.(1)求运动后点M、点Q的坐标(用含t的代数式表示);(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.24.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.25.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标;(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.26.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.27.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.28.已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO 向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.29.如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足.(1)求直线AP的解析式;(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S 的坐标;(3)如图2,点B(﹣2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.30.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.(1)求点F的坐标和∠GEF的度数;(2)求矩形ABCD的边DC与BC的长;(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.答案与评分标准一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.考点:一次函数综合题。
初二下学期压轴题练习- 一次函数与几何变换(含答案)
专题09一次函数与几何变换一.选择题1.(2021春•大同期末)对于一次函数y=﹣2x+4,下列结论正确的是()A.函数的图象与y轴的交点坐标是(4,0)B.函数的图象不经过第三象限C.函数的图象向上平移4个单位长度得y=﹣2x的图象D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y22.(2021•扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+3.(2020秋•天桥区期末)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.24.(2020秋•碑林区校级期中)将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2 5.(2020•碑林区校级模拟)若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1 6.(2019•嘉祥县三模)在平面直角坐标系中,将直线y1:y=2x﹣2平移后,得到直线y2:y=2x+4,则下列平移作法正确的是()A.将y1向上平移2个单位长度B.将y1向上平移4个单位长度C.将y1向左平移3个单位长度D.将y2向右平移6个单位长度7.(2018春•雨花区校级月考)如图,A(0,1),M(3,2),N(4,4).点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒,当M、N位于直线l的异侧时,t应该满足的条件是()A.3<t<6B.4<t<7C.3<t<7D.<t<7二.填空题8.(2021春•安丘市期末)在平面直角坐标系xOy中,Rt△AOB的直角顶点B在y轴上,点A的坐标为(1,),将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',过A'作A'C垂直于OA′交y轴于点C,则点C 的坐标为.9.(2021春•东台市月考)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为.10.(2021•广东模拟)如图,已知一条直线经过点A(﹣1,0),B(0,﹣2),将这条直线向右平移与x 轴、y轴分别交于点C、D,若AB=AD,则直线CD的函数表达式为.11.(2020春•黄陂区期末)将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是.12.(2018秋•福田区校级期中)如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3(4,0)作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B n的坐标为.13.(2017秋•碑林区校级期末)如图,一次函数y=,的图象向下平移2个单位后得直线l,直线l交x轴于点A、交y轴于点B,在线段AB上有一动点P(不与点A、B重合),过点P分别作PE⊥x 轴点E,PF⊥y轴于点F,当线段EF的长最小时,点P的坐标为.14.(2018春•丰南区期末)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为.15.(2019春•西湖区校级期中)在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=4x+1以每秒2个单位的速度向下平移,经过秒该直线可将平行四边形OABC的面积平分.16.(2019•天津二模)将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.17.(2019春•常州期中)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过秒该直线可将平行四边形OABC分成面积相等的两部分.三.解答题18.(2021春•古丈县期末)如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式;(2)将该函数的图象向下平移5个单位,求出平移后一次函数的解析式,并写出平移后的图象与x轴的交点坐标.19.(2021春•武汉月考)已知,在平面直角坐标系中,函数y1=2|x﹣a|,(1)若该函数经过点A(1,0),求该函数的解析式,并在图1中画出函数图象;(2)在(1)的条件下,将函数y2=x向上平移m个单位后与函数y1的图象相交于点B和C点,若BC =,求m;(3)如图2,设直线y3=6n与直线y4=2n分别与函数y1=2|x﹣a|相交于点E、F和M、N,点P为直线y3=6n上一点,连接PM、PN并延长交直线y5=kn于点G、H,若2EF=3GH,求k.20.(2021春•河北区期末)如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x 轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.21.(2019秋•罗湖区校级期末)如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A,点A的横坐标为3,直线l2交y轴于点B,且OA=OB.(1)试求直线l2的函数表达式;(2)若将直线l1沿着x轴向左平移3个单位,交y轴于点C,交直线l2于点D.试求△BCD的面积.22.(2018秋•宿迁期末)如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=,点A的坐标为(,).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.23.(2019•大渡口区模拟)如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AD∥y轴,点A的坐标为(5,3),已知直线l:y=x﹣2.(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.24.(2018春•沙坪坝区校级期末)如图:一次函数y=x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.25.(2017春•武昌区期末)已知一次函数y=kx+b的图象过点A(﹣4,﹣2)和点B(2,4)(1)求直线AB的解析式;(2)将直线AB平移,使其经过原点O,则线段AB扫过的面积为.26.(2017春•安岳县期中)已知直线y=(m+1)x|m|﹣1+(2m﹣1),当x1>x2时,y1>y2,求该直线的解析式.并求该直线经过怎么的上下平移就能过点(2,5)?27.(2016春•大兴区期末)阅读材料:通过一次函数的学习,小明知道:当已知直线上两个点的坐标时,可以用待定系数法,求出这个一次函数的表达式.有这样一个问题:直线l1的表达式为y=﹣2x+4,若直线l2与直线l1关于y轴对称,求直线l2的表达式.下面是小明的解题思路,请补充完整.第一步:求出直线l1与x轴的交点A的坐标,与y轴的交点B的坐标;第二步:在平面直角坐标系中,作出直线l1;第三步:求点A关于y轴的对称点C的坐标;第四步:由点B,点C的坐标,利用待定系数法,即可求出直线l2的表达式.小明求出的直线l2的表达式是.请你参考小明的解题思路,继续解决下面的问题:(1)若直线l3与直线l1关于直线y=x对称,则直线l3的表达式是;(2)若点M(m,3)在直线l1上,将直线l1绕点M顺时针旋转90°.得到直线l4,求直线l4的表达式.28.(2016•河北模拟)如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.29.(2015秋•栖霞区期末)课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.【阅读理解】小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式?老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.(1)将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6【解决问题】(2)已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.【拓展探究】(3)一次函数y=﹣2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为.(直接写结果)专题09一次函数与几何变换一.选择题1.(2021春•大同期末)对于一次函数y=﹣2x+4,下列结论正确的是()A.函数的图象与y轴的交点坐标是(4,0)B.函数的图象不经过第三象限C.函数的图象向上平移4个单位长度得y=﹣2x的图象D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【思路引导】代入y=0求出与之对应的x值,即可得出A不正确;根据一次函数的系数结合一次函数的性质,即可得知B选项正确、D选项不正确,根据平移的规律求得平移后的解析式,即可判断C不正确,此题得解.【完整解答】解:A、令y=﹣2x+4中y=0,则x=2,∴一次函数的图象与x轴的交点坐标是(2,0),故本选项不符合题意;B、∵k=﹣2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,即函数的图象不经过第三象限,故本选项符合题意;C、根据平移的规律,函数的图象向上平移4个单位长度得到的函数解析式为y=﹣2x+4+4,即y=﹣2x+8,故本选项不符合题意;D、∵k=﹣2<0,∴一次函数中y随x的增大而减小,∴若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1>y2,故本选项不符合题意.故选:B.【考察注意点】本题考查了一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.2.(2021•扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+【思路引导】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【完整解答】解:∵一次函数y=x+的图像与x轴、y轴分别交于点A、B,令x=0,则y=,令y=0,则x=﹣,则A(﹣,0),B(0,),则△OAB为等腰直角三角形,∠ABO=45°,∴AB==2,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC==x,由旋转的性质可知∠ABC=30°,∴BC=2CD=2x,∴BD==x,又BD=AB+AD=2+x,∴2+x=x,解得:x=+1,∴AC=x=(+1)=,故选:A.【考察注意点】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.3.(2020秋•天桥区期末)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.2【思路引导】先根据△AEF为等腰直角三角形,可得直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,再根据BD的长即可得到b的值.【完整解答】解:如图1,连接BD并且两端延长,直线y=x﹣3中,令y=0,得x=3;令x=0,得y =﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴等腰Rt△ABD中,BD=5,即当a=7时,b=5.故选:A.【考察注意点】本题考查了动点问题的函数图象,一次函数图象与几何变换,用图象解决问题时,要理清图象的含义即会识图.解决问题的关键是掌握正方形的性质以及平移的性质.4.(2020秋•碑林区校级期中)将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2【思路引导】根据平移性质可由已知的解析式写出新的解析式.【完整解答】解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故选:A.【考察注意点】此题主要考查了一次函数图象与几何变换,解题时注意:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y =kx±|b|.5.(2020•碑林区校级模拟)若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1【思路引导】先求出一次函数y=kx+3与y轴交点关于直线x=1的对称点,得到b的值,再求出一次函数y=2x+b与y轴交点关于直线x=1的对称点,代入一次函数y=kx+3,求出k的值即可.【完整解答】解:∵一次函数y=kx+3与y轴交点为(0,3),∴点(0,3)关于直线x=1的对称点为(2,3),代入直线y=2x+b,可得4+b=3,解得b=﹣1,一次函数y=2x﹣1与y轴交点为(0,﹣1),(0,﹣1)关于直线x=1的对称点为(2,﹣1),代入直线y=kx+3,可得2k+3=﹣1,解得k=﹣2.故选:D.【考察注意点】本题考查的是一次函数图象与几何变换,待定系数法求函数解析式,先根据题意得出直线与坐标轴的交点是解决问题的关键.6.(2019•嘉祥县三模)在平面直角坐标系中,将直线y1:y=2x﹣2平移后,得到直线y2:y=2x+4,则下列平移作法正确的是()A.将y1向上平移2个单位长度B.将y1向上平移4个单位长度C.将y1向左平移3个单位长度D.将y2向右平移6个单位长度【思路引导】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【完整解答】解:∵将直线y1:y=2x﹣2平移后,得到直线y2:y=2x+4,∴2(x+a)﹣2=2x+4,解得:a=3,故将y1向左平移3个单位长度.故选:C.【考察注意点】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.7.(2018春•雨花区校级月考)如图,A(0,1),M(3,2),N(4,4).点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒,当M、N位于直线l的异侧时,t应该满足的条件是()A.3<t<6B.4<t<7C.3<t<7D.<t<7【思路引导】分别求出直线l经过点M、点N时的t值,即可得到t的取值范围.【完整解答】解:当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.故选:B.【考察注意点】本题考查了坐标平面内一次函数的图象与性质,关键是利用一次函数图象上点的坐标特征解答.二.填空题8.(2021春•安丘市期末)在平面直角坐标系xOy中,Rt△AOB的直角顶点B在y轴上,点A的坐标为(1,),将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',过A'作A'C垂直于OA′交y轴于点C,则点C 的坐标为(0,﹣4).【思路引导】依据轴对称的性质可得OB'=OB=,A′B′=AB=1,OA′=OA=2,进而通过证得△A′OB′∽△COA′,求得OC=4,即可证得C的坐标为(0,﹣4).【完整解答】解:∵点A的坐标为(1,),∴AB=1,OB=,∴OA===2,∵将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',∴OB'=OB=,A′B′=AB=1,OA′=OA=2,∴A'(﹣,﹣1),∵过A'作A'C垂直于OA'交y轴于点C,∴∠A′OC+∠A′CO=90°,∵∠A′OB′+∠A′OC=90°,∴∠A′CO=∠A′OB′,∵∠A′B′O=∠OA′C=90°,∴△A′OB′∽△OCA′,∴=,即=,∴OC=4,∴C(0,﹣4),故答案是:(0,﹣4).【考察注意点】本题考查了轴对称的性质,正比例函数的性质,求得对称点的坐标是解题的关键.9.(2021春•东台市月考)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为8.【思路引导】通过图象中(4,0),(7,2),(8,2)可得直线运动到A,D,B三点时所移动距离,从而求出AB长度,再通过添加辅助线构造直角三角形求出平行四边形的高而求解.【完整解答】解:由图象可知,直线经过A时移动距离为4,经过D时移动距离为7,经过B时移动距离为8,∴AB=8﹣4=4.如图,当直线经过点D时,交AB于点E,作DF垂直于AB于点F,由图2可知DE=2,∵直线与AB夹角为45°,∴DF=EF=2,∴ABCD面积为AB•DF=4×2=8.故答案为:8.【考察注意点】本题考查一次函数图象与图形结合问题,解题关键是掌握k=﹣1时直线与x轴所夹锐角为45°.10.(2021•广东模拟)如图,已知一条直线经过点A(﹣1,0),B(0,﹣2),将这条直线向右平移与x 轴、y轴分别交于点C、D,若AB=AD,则直线CD的函数表达式为y=﹣2x+2.【思路引导】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【完整解答】解:设直线AB的解析式为y=kx+b(k≠0),∵点A(﹣1,0)点B(0,﹣2)在直线AB上,∴,解得,∴直线AB的解析式为y=﹣2x﹣2,∵AB=AD,AO⊥BD,∴OD=OB,∴D(0,2),∴直线CD的函数解析式为:y=﹣2x+2,故答案为:y=﹣2x+2.【考察注意点】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.11.(2020春•黄陂区期末)将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是y=2x﹣1.【思路引导】直接根据“上加下减,左加右减”的原则进行解答即可.【完整解答】解:由“上加下减”的原则可知,直线y=2x﹣3沿y轴向上平移2个单位,所得直线的函数关系式为y=2x﹣3+2,即y=2x﹣1;故答案为y=2x﹣1.【考察注意点】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.(2018秋•福田区校级期中)如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3(4,0)作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B n的坐标为(2n﹣1,2n).【思路引导】先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点B n的坐标.【完整解答】解:∵点A1坐标为(1,0),∴OA1=1,过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,2),∵点A2与点O关于直线A1B1对称,∴OA1=A1A2=1,∴OA2=1+1=2,∴点A2的坐标为(2,0),B2的坐标为(2,4),∵点A3与点O关于直线A2B2对称.故点A3的坐标为(4,0),B3的坐标为(4,8),依此类推便可求出点A n的坐标为(2n﹣1,0),点B n的坐标为(2n﹣1,2n).故答案为:(2n﹣1,2n).【考察注意点】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了轴对称的性质.13.(2017秋•碑林区校级期末)如图,一次函数y=,的图象向下平移2个单位后得直线l,直线l交x轴于点A、交y轴于点B,在线段AB上有一动点P(不与点A、B重合),过点P分别作PE⊥x轴点E,PF⊥y轴于点F,当线段EF的长最小时,点P的坐标为(﹣,).【思路引导】利用勾股定理和一次函数图象上点的坐标特征,列出二次函数关系式,结合二次函数最值的求法解答.【完整解答】解:由已知条件得到直线l解析式为:y=﹣2,即y=,设P(a,),所以EF2=a2+()2=a2+a+.当EF取最小值时,a=﹣=﹣,此时,=,即P(﹣,),故答案是:(﹣,).【考察注意点】考查了一次函数图象与几何变换,解题时,利用了二次函数最值的求法,熟记二次函数顶点坐标公式是解题的关键.14.(2018春•丰南区期末)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为y=x﹣.【思路引导】设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x 轴于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式,再根据平移规律即可得到直线l′的函数解析式.【完整解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线l为y=kx,则3=k,k=,∴直线l解析式为y=x,∴直线l向右平移3个单位长度后所得直线l′的函数解析式为y=(x﹣3),即y=x﹣,故答案为:y=x﹣.【考察注意点】此题考查了面积相等问题、用待定系数法求一次函数的解析式以及正方形的性质,解题的关键是作AB⊥y轴,作AC⊥x轴,根据题意即得到:直角三角形ABO,利用三角形的面积公式求出AB的长.15.(2019春•西湖区校级期中)在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=4x+1以每秒2个单位的速度向下平移,经过6秒该直线可将平行四边形OABC的面积平分.【思路引导】首先连接AC、BO,交于点D,当y=4x+1经过D点时,该直线可将▱OABC的面积平分,然后计算出过D且平行直线y=4x+1的直线解析式,从而可得直线y=4x+1要向下平移,进而可得答案.【完整解答】解:连接AC、BO,交于点D,当y=4x+1经过D点时,该直线可将▱OABC的面积平分;∵四边形AOCB是平行四边形,∴BD=OD,∵B(6,2),点C(4,0),∴D(3,1),设DE的解析式为y=kx+b,∵平行于y=4x+1,∴k=4,∵过D(3,1),∴DE的解析式为y=4x﹣11,∴直线y=4x+1要向下平移12个单位,∴时间为6秒,故答案为:6【考察注意点】此题主要考查了平行四边形的性质,以及一次函数,关键是正确掌握经过平行四边形对角线交点的直线平分平行四边形的面积.16.(2019•天津二模)将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是y=3x﹣2.【思路引导】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【完整解答】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为:y=3x﹣2.【考察注意点】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k和b的值的变化.17.(2019春•常州期中)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过6秒该直线可将平行四边形OABC分成面积相等的两部分.【思路引导】首先连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将▱OABC的面积平分,然后计算出过D且平行直线y=2x+1的直线解析式,从而可得直线y=2x+1要向下平移6个单位,进而可得答案.【完整解答】解:连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将▱OABC的面积平分;∵四边形AOCB是平行四边形,∴BD=OD,∵B(6,2),点C(4,0),∴D(3,1),设DE的解析式为y=kx+b,∵平行于y=2x+1,∴k=2,∵过D(3,1),∴DE的解析式为y=2x﹣5,∴直线y=2x+1要向下平移6个单位,∴时间为6秒,故答案为:6.【考察注意点】此题主要考查了平行四边形的性质,以及一次函数,关键是正确掌握经过平行四边形对角线交点的直线平分平行四边形的面积.三.解答题18.(2021春•古丈县期末)如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式;(2)将该函数的图象向下平移5个单位,求出平移后一次函数的解析式,并写出平移后的图象与x轴的交点坐标.【思路引导】(1)利用待定系数法确定该一次函数的解析式;(2)根据平移规律“上加下减”写出平移后一次函数解析式,然后根据一次函数图象上点的坐标特征求直线与x轴的交点坐标.【完整解答】解:(1)∵一次函数y=kx+b的图象经过点(﹣2,0)和点(2,2),∴.解得k=,b=1.∴一次函数的解析式为:y=x+1;(2)∵一次函数y=x+1向下平移5个单位的解析式为y=x+1﹣5=x﹣4,即y=x﹣4.∴当y=0时,x=8,∴平移后的图象与x轴的交点坐标为(8,0).【考察注意点】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的性质是解答此题的关键.19.(2021春•武汉月考)已知,在平面直角坐标系中,函数y1=2|x﹣a|,(1)若该函数经过点A(1,0),求该函数的解析式,并在图1中画出函数图象;(2)在(1)的条件下,将函数y2=x向上平移m个单位后与函数y1的图象相交于点B和C点,若BC=,求m;(3)如图2,设直线y3=6n与直线y4=2n分别与函数y1=2|x﹣a|相交于点E、F和M、N,点P为直线y3=6n上一点,连接PM、PN并延长交直线y5=kn于点G、H,若2EF=3GH,求k.【思路引导】(1)把点A坐标代入函数,求出a,得到函数y1的解析式,画出图象;(2)设出函数y2的解析式,得到B、C的坐标,根据BC=列出方程,求m的值;(3)由三角形相似得出MN和GH的比例,求出k的值.【完整解答】解:(1)把点A(1,0)代入y1=2|x﹣a|,得:2|1﹣a|=0,解得:a=1,∴y1=2|x﹣1|,图象如右所示.(2)由题意得y2=x+m(m>0),x≤1时,y1=﹣2x+2,x>1时,y1=2x﹣2,由,解得:,∴B(,),由,解得:,∴C(m+2,2m+2),∵BC=,∴(m+2﹣)2+(2m+2﹣)2=128,解得:m1=5,m2=﹣7(舍),∴m=5.(3)∵直线y3=6n与直线y4=2n间的距离为4n,直线y4=2n与x轴间的距离为2n,∴EF=3MN,∵2EF=3GH,∴MN:GH=1:2,∴MN是△PGH的中位线,∴y3=6n与y4=2n间的距离和y3=6n与y5=kn间的距离相等,∴k=﹣2.【考察注意点】本题考查了分段函数图象和函数图象变换,画图的关键顺序是“列表﹣描点﹣连线”,需要注意的是连线的时候要用平滑的曲线连接.20.(2021春•河北区期末)如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x 轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.【思路引导】(1)根据题意求得正方形各顶点的坐标,然后根据待定系数法求得直线l的解析式,直线平移,斜率不变,设平移后的直线方程为y=x+b;把点B和D的坐标代入进行解答即可;(2)根据正方形是中心对称图形,当直线l经过对角线的交点时,恰好平分正方形ABCD的面积,求得交点坐标,代入y=x+b,根据待定系数法即可求得直线l此时的解析式,然后求得E、F的坐标,根据待定系数法求得直线BE的解析式,得到与y轴的交点Q的坐标,根据三角形面积公式即可求得.【完整解答】解:(1)∵长为3的正方形ABCD中,点A的坐标为(5,4),∴B(2,4),C(2,1),D(5,1),设直线l的解析式为y=kx,把C(2,1)代入得,1=2k,解得k=,∴直线l为y=,设平移后的直线方程为y=x+b,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等
腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM
上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.
2.如图直线:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)
(1)求k的值.
(2)若P(x,y)是直线在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.
(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.
3.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.
(1)若直线AB解析式为y=﹣2x+12,
①求点C的坐标;
②求△OAC的面积.
(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q 分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
4.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.
(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;
(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;
(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.
5.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.
(1)求点F的坐标和∠GEF的度数;
(2)求矩形ABCD的边DC与BC的长;
(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.
6.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A 点的坐标是(1,0).
(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;
(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;
(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.。