matlab数字图像处理实验

合集下载

matlab数字图像处理实验报告

matlab数字图像处理实验报告
Z2=imsubtract(A,B)
Z3=immultiply(A,B)
Z4=imdivide(A,B)
subplot(3,2,1); imshow(A);title('原图像A') subplot(3,2,2); imshow(B);title('原图像B') subplot(3,2,3); imshow(Z1);title('加法图像') subplot(3,2,4); imshow(Z2);title('减法图像') subplot(3,2,5); imshow(Z3);title('乘法图像') subplot(3,2,6); imshow(Z2);title('除法图像')
h=fspecial('average');%均值滤波器
3基于卷积的图像滤波函数
imfilter函数,filter2函数,二维卷积conv2滤波,都可用于图像滤波, 用法类似,如:
i=imread('e:\w01.tif');
j=filter2(h,i);
或者:
h=fspecial(‘prewitt')
用法:BW = edge(l,'sobel',thresh,direction),
I为检测对象;边缘检测算子可用sobel,roberts,prewitt,zerocross,log,canny;
thresh指定阈值,检测时忽略所有小于阈值的边缘,默认自动选择阈值;direction方向,在所指定的方向direction上,用算子进行边缘检测horizontal(水平方向)、vertical(垂直方向)或both(两个方向)。

用matlab数字图像处理四个实验

用matlab数字图像处理四个实验

数字图像处理实验指导书目录实验一 MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割第二图像基本运算一、实验目的1.了解图像的算术运算在数字图像处理中的初步应用。

2.体会图像算术运算处理的过程和处理前后图像的变化。

二、实验原理图像的代数运算是图像的标准算术操作的实现方法,是两幅输入图像之间进行的点对点的加、减、乘、除运算后得到输出图像的过程。

如果输入图像为A(x,y)和B(x,y),输出图像为C(x,y),则图像的代数运算有如下四种形式:C(x,y) = A(x,y) + B(x,y)C(x,y) = A(x,y) - B(x,y)C(x,y) = A(x,y) * B(x,y)C(x,y) = A(x,y) / B(x,y)图像的代数运算在图像处理中有着广泛的应用,它除了可以实现自身所需的算术操作,还能为许多复杂的图像处理提供准备。

例如,图像减法就可以用来检测同一场景或物体生产的两幅或多幅图像的误差。

使用MATLAB的基本算术符(+、-、*、/ 等)可以执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型。

为了更方便地对图像进行操作,MATLAB图像处理工具箱包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。

下表列举了所有图像处理工具箱中的图像代数运算函数。

表2-1 图像处理工具箱中的代数运算函数能够接受uint8和uint16数据,并返回相同格式的图像结果。

虽然在函数执行过程中元素是以双精度进行计算的,但是MATLAB工作平台并不会将图像转换为双精度类型。

代数运算的结果很容易超出数据类型允许的范围。

例如,uint8数据能够存储的最大数值是255,各种代数运算尤其是乘法运算的结果很容易超过这个数值,有时代数操作(主要是除法运算)也会产生不能用整数描述的分数结果。

图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。

视觉检测技术——MATLAB数字图像处理

视觉检测技术——MATLAB数字图像处理

视觉检测技术实验指导书——图像处理与分析部分实验一:图像预处理实验(验证性实验)一、实验目的与要求:目的:通过本次实验,学生可以掌握图像读取、显示和保存的方法,掌握空间域增强方法和频率域增强方法。

要求:上机运行,调试通过。

二、实验方案:1)对附录中的练习1~11、练习13,进行上机运行和调试。

2)对上述练习,改变一些函数的参数,观察运行结果的变化。

三、实验结果与数据处理对每个练习,要求学生获得相应的实验结果。

四、结论可以是对某些函数如何使用的认识,也可以是学生的实验后的心得体会。

五、问题与讨论1)在显示傅里叶频谱前,为什么常常进行对数变换?2)对实验中遇到的问题,进行讨论。

实验二:形态学处理、图像分割、表达与描述实验(验证性实验)一、实验目的与要求:目的:要求学生掌握形态学处理、图像分割和图像表达与描述的基本方法,掌握相关的函数。

要求:上机运行,调试通过。

二、实验内容:1)对附录中的练习15~24、练习26、练习28~32,进行上机运行和调试。

2)对上述练习,改变一些函数的参数,观察运行结果的变化。

三、实验结果与数据处理对每个练习,要求学生获得相应的实验结果。

四、结论可以是对某些函数如何使用的认识,也可以是学生的实验后的心得体会。

五、问题与讨论1)在形态学处理中,结构元选取的原则是什么?举例说明。

2)对实验中遇到的问题,进行讨论。

实验三:直方图均衡化实验(设计性实验)实验名称:直方图均衡化实验实验项目性质:设计性实验计划学时:2一、实验目的与要求1.目的:通过本次实验,加深学生对直方图均衡化的基本原理的理解,加强学生的算法设计和编程实现的能力。

2、要求:根据直方图均衡化的原理,设计直方图均衡化的算法,并编程实现直方图均衡化的功能。

二、预习与参考1.R. C. , R. E. 。

《数字图像处理》(第二版)。

北京:电子工业出版社,2003。

2.《图像处理与分析实验指导书》的附录。

2.R. C. , R. E. , S. L. 。

matlab数字图像处理实验报告

matlab数字图像处理实验报告

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 1962.给定函数的累积直方图。

MATLAB数字图像处理实验

MATLAB数字图像处理实验

实验一:使用MATLAB计算图像有关统计参数一.实验目的:1.了解图片的基本处理方法。

2.了解MATLAB图片处理函数的基本应用。

3.了解MATLAB图片处理的方法。

二.实验要求:1.获取图片的大小2.将图片重新设置为大小200×200的图片,并计算图片的灰度平均值,协方差矩阵,图片的灰度标准差,图片的相关系数3.将图片旋转90°,180°,270°,360°,计算它们与原图片的相关系数三.实验步骤:1.获取图像大小:(1)实验原理:使用imread()函数读入图像,并且通过size()函数获取图像大小。

(2)编程及运算结果:I=imread('football.jpg');subplot(2,2,1);imshow(I);J=rgb2gray(I);subplot(2,2,2);imshow(J);s=size(J)s =256 320(3)处理结果图像截图:获取图像灰度化图像2. 将图像重新设置大小为200×200,并输出图像(1)实验原理:调用imresize函数重新设置图像大小。

(2)编程如下:I=imread('football.jpg');subplot(2,2,1);imshow(I);J=rgb2gray(I);subplot(2,2,2);imshow(J);B=imresize(J,[200,200],'nearest');subplot(2,2,3);imshow(B);(3)处理或图像截图:3. 计算图像的灰度平均值,协方差矩阵,图像的灰度标准差,图像的相关系数(1)实验原理:分别调用meam2()函数、cov()函数、corr2()函数以及std2()函数计算灰度平均值,协方差等。

比较两幅图的相关性,因而读取另外一副图,做相同处理后使用corr2()函数。

(2)编程如下:ave=mean2(J);ave =74.4516Cov(double(J))Cov=Sd=std2(double(J))Sd =37.1236P=imread('greens.jpg'); %读取另外一副图,灰度处理、重设大小。

MATLAB数字图像处理初步实验

MATLAB数字图像处理初步实验

实验一 MATLAB数字图像处理初步********************总共10小题********************一、实验目的及要求学习在MATLAB环境下对图像文件的I/O操作,为读取各种格式的图像文件和后续进行图像处理打下基础。

1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验设备与软件1.PC计算机2.MATLAB软件/语言包括图像处理工具箱(Image Processing Toolbox)3.实验所需要的图片三.实验内容1.利用imread函数读取一幅图像,假设其名为flower.tif,存入一个数组中;>>I=imread('pout.tif');2. 利用whos 命令提取该读入图像flower.tif的基本信息;>>whos I3.利用imshow函数来显示这幅图像;>>imshow(I)4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;>>imfinfo pout.tif5.利用imwrite函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

>>imwrite(I,'flower.jpg','quality',80)6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。

<同上>7.用imread函数,读入图像:Lenna.jpg 和camema.jpg;由于文件中只有lena.bmp和camera.gif,所以要用imwrite函数,将两个图另存为。

数字图像处理实验程序MATLAB

数字图像处理实验程序MATLAB

实验一内容(一)(1)彩色图像变灰度图像A=imread('1.jpg');B=rgb2gray(A);figuresubplot(1,2,1),imshow(A)title('原图')subplot(1,2,2),imshow(B)title('原图灰度图像')(2)彩色图像变索引图像A=imread('1.jpg');figuresubplot(1,2,1),imshow(A)title('原图')[X,map]=rgb2ind(A,128);subplot(1,2,2),imshow(X,map)title('原图索引图像')(3)彩色图像变二值图像A=imread('1.jpg');figuresubplot(1,2,1),imshow(A)title('原图')C=im2bw(A,0.2);subplot(1,2,2),imshow(C)title('原图二值图像')(4)灰度图像变索引图像(一)A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')C=grayslice(B,39);subplot(1,2,2),imshow(C)title('灰度变索引图像')(5)灰度图像变索引图像(二)A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')[X,map]=gray2ind(B,63);subplot(1,2,2),imshow(X,map)title('灰度变索引图像')(6)灰度图像变彩色图像A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')C=gray2rgb(B,map);subplot(1,2,2),imshow(C)title('灰度变彩色图像')内容(二)(1)灰度平均值A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')B=double(B);[m,n]=size(B);sumg=0.0;for i=1:m;for j=1:n;sumg=sumg+B(i,j);endendavg=sumg/(m*n) % 均值maxg=max(max(B)) % 区域最大灰度ming=min(min(B)) % 区域最小灰度(2)彩色平均值figureimshow(A)title('彩色图像')A=double(A);[m,n]=size(A);sumg=0.0;for i=1:m;for j=1:n;sumg=sumg+A(i,j);endendavg=sumg/(m*n)squre=m*nmaxg=max(max(A))ming=min(min(A))内容(三)采样量化实验二图像变换傅里叶变换、反变换、I=imread('19.jpg');A=rgb2gray(I);x1=fft2(A);x2=fftshift(x1);x3=ifft(x1)/10;figure,subplot(1,4,1);imshow(A)title('原图');subplot(1,4,2);imshow(x1)title('频谱图');subplot(1,4,3);imshow(log(abs(x2)+1),[0 10]);title('直流分量移至频谱图中心');subplot(1,4,4);imshow(x3,[0 10])title('傅里叶反变换');DCT变换、反变换I=rgb2gray(X);subplot(1,3,1);imshow(I);title('原图');subplot(1,3,2);J=dct2(I);imshow(log(abs(J)),[0 20]);title('二维离散余弦变换');subplot(1,3,3);K=idct2(J)/20;imshow(K,[0 20]);title('二维离散反余弦变换');利用DCT变换压缩图像I=imread('19.jpg');A=rgb2gray(I);B=DCT2(A);B(abs(B)<0.1)=0;C=idct2(B)/255;figure,subplot(1,3,1);imshow(A);title('原图');subplot(1,3,2);imshow(B);title('二维离散余弦变换频谱图');subplot(1,3,3);imshow(C);title('压缩后图像');实验三图像增强(一)灰度图像增强(1)线性变换法clc;clear all;I=imread('19.jpg');A=rgb2gray(I);colormap;imshow(A);%设置图像倒数参数j=imadjust(A,[0 1],[1 0],1.5);figure;subimage(j)(2)灰度图像的非线性变换(之对数)I=imread('19.jpg');colormapimshow(I)J=double(I);J=45*log(J+1);I=uint8(J);figure,subimage(J)(二)直方图校正直方图均衡I=imread('19.jpg');B=rgb2gray(I);imshow(B,[40 255]);figure,imhist(B)title('直方图')J=imadjust(B,[0.15 0.9],[0 1]); figure,imhist(B,64)title('均衡直方图')滤波I=imread('19.jpg');figure,B=rgb2gray(I);C=imnoise(B,'salt & pepper',0.02);D=imfilter(B,fspecial('average',3)); E=medfilt2(B);subplot(1,3,2)imshow(D)title('均值滤波')subplot(1,3,3)imshow(D)title('中值滤波')subplot(1,3,1)imshow(C)title('加入椒盐噪声图像')锐化处理I=imread('19.jpg');A=rgb2gray(I);figure,subplot(2,3,1),imshow(A);title('原图');hs=fspecial('sobel');S=imfilter(A,hs);hp=fspecial('prewitt');P=imfilter(A,hs);A=double(A);%双精度型H=[0 1 0,1 -4 1,0 1 0];%拉普拉斯算子J=conv2(A,H,'same');K=A-J;subplot(2,3,2),imshow(K);title('拉普拉斯锐化图像');B=edge(A,'roberts',0.1);subplot(2,3,3),imshow(B);title('罗伯特锐化图像');subplot(2,3,4),imshow(S);title('sobel算子锐化图像');subplot(2,3,5),imshow(P);title('prewitt算子锐化图像');实验四放缩A=imread('19.jpg');imshow(A);title('原图')B=imresize(A,2)figure,imshow(B);title('二倍图')C=imresize(A,0.5)figureimshow(C)title('二分之一图')旋转A=imread('19.jpg');figuresubplot(1,4,1),imshow(A);title('原图像')B=imrotate(A,30,'nearest');subplot(1,4,2),imshow(uint8(B));title('旋转30度图像')C=imrotate(A,45,'nearest');subplot(1,4,3),imshow(uint8(C));title('旋转45度图像')D=imrotate(A,60,'nearest');subplot(1,4,4),imshow(uint8(D));title('旋转60度图像')镜像A1=imread('19.jpg');A1=double(A1);Figure,subplot(1,4,1),imshow(uint8(A1));H=size(A1);title('原像')A2(1:H(1),1:H(2),1:H(3))=A1(H(1):-1:1,1:H(2),1:H(3));%垂直镜像subplot(1,4,2),imshow(uint8(A2));title('垂直镜像')A3(1:H(1),1:H(2),1:H(3))=A1(1:H(1),H(2):-1:1,1:H(3));%水平镜像subplot(1,4,3),imshow(uint8(A3));title('水平镜像')A4(1:H(1),1:H(2),1:H(3))=A1(H(1):-1:1,H(2):-1:1,1:H(3));%对角镜像subplot(1,4,4),imshow(uint8(A4));title('对角镜像')剪切A1=imread('19.jpg');A2=imcrop(A1,[75 68 100 110]);figuresubplot(1,2,1),imshow(A1);title('原像')subplot(1,2,2),imshow(A2);title('剪切后像')实验五阈值分割A=imread('19.jpg');figuresubplot(1,4,1),imshow(A);title('原图像')B=im2bw(A,91/255);subplot(1,4,2),imshow(B);title('阈值91的图像')C=im2bw(A,71/255);subplot(1,4,3),imshow(C);title('阈值71的图像')D=im2bw(A,140/255);subplot(1,4,4),imshow(D);title('阈值140的图像')边缘检测I=imread('19.jpg');A=rgb2gray(I);figuresubplot(1,4,1),imshow(A);title('原图像')B=edge(A,'sobel',0.1);%edge边缘检测函数subplot(1,4,2),imshow(B);title('sobel算子检测')C=edge(A,'roberts',0.1);%0.1为门限subplot(1,4,3),imshow(C);title('roberts算子检测')D=edge(A,'prewitt',0.1);subplot(1,4,4),imshow(D);title('prewitt算子检测')所谓数字图像处理[7]就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。

matlab数字图像处理实验解读

matlab数字图像处理实验解读

数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double类,则像素取值就是浮点数。

数字图像处理的MATLAB实现(新实验指导书)

数字图像处理的MATLAB实现(新实验指导书)

实验一用MATLAB实现图像的傅里叶变换1. 目的(1)掌握二维傅里叶变换的原理。

(2)掌握二维傅里叶变换的性质。

2. 任务(1)选择一幅灰度图像,对其进行离散傅立叶变换,观察其离散傅立叶的频谱。

(2)通过零填充改变图像的大小,对其进行离散傅立叶变换,观察其离散傅立叶的频谱,分析零填充对傅里叶变换频率分辨率的影响。

(3)对选取的灰度图像进行离散傅里叶变换,并将频谱的零频率部分由左上角平移到频谱中心,观察并分析频谱中各频率成分的分布。

(4)对选取的灰度图像旋转一定的角度,观察并分析灰度图像傅里叶频谱和旋转后图像的傅里叶频谱之间的对应关系。

3. 思考题举例说明二维傅里叶变换的应用。

答:傅立叶变换是一种非常有用的积分变换,它能把时域信息变换到频域信息进行处理。

这里我们主要讲二维傅立叶变换在图像处理中的应用。

4. 实验结果:实验二用MATLAB实现图像增强1. 目的(1)掌握图像增强的基本原理。

(2)掌握常用的图像增强技术。

(1)选择一幅直方图不均匀的灰度图像,对该图像做直方图均衡化处理,观察并分析直方图均衡化前、后图像以及它们的灰度直方图的变化。

(2)选择一幅灰度图像,利用邻域平均法对它进行滤波,观察并分析滤波器的大小对滤波结果的影响。

(3)选择一幅灰度图像,对它添加椒盐噪声,然后分别利用邻域平均和中值滤波对该图像进行滤波,比较这两种滤波器的滤波效果。

(4)选择一幅灰度图像,分别利用拉普拉斯滤波器和sobel滤波器对该图像进行锐化,比较这两种滤波器的锐化效果。

3. 思考题直方图均衡化处理的主要步骤是什么?答:直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。

在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数): (1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。

matlab数字图像处理实验

matlab数字图像处理实验

数字图像处理实验指导书目录实验一 MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double 类,则像素取值就是浮点数。

数字图像处理实验matlab

数字图像处理实验matlab

计算机图像处理:学号:班级:实验一:了解数字图像处理平台一、实验目的(1)学会使用扫描仪;(2)熟悉MATLAB软件。

二、实验容(1)用扫描仪扫一幅彩色图片;一幅灰度图片。

(2)熟悉MATLAB的主界面窗口中各个窗口的功能,利用不同的矩阵输入方式给矩阵赋值,了解MATLAB的简单编程及矩阵基本知识;(3)掌握使用MATLAB的帮助来获得更多的信息。

三、实验仪器设备扫描仪、计算机和MATLAB应用软件。

实验二:图像处理一、实验目的(1)通过应用MATLAB语言编程实现对图像的处理,进一步熟悉MATLAB软件的编程及应用;(2)通过实验进一步掌握图像处理的基本技术和方法。

二、实验容1.应用MATLAB语言编写显示一幅灰度图像、二值图像、索引图像及彩色图像的程序,并进行相互之间的转换。

显示原始图像:>>I=imread('D:\tu.jpg');>> imshow(I);RGB 灰度图像: 代码:>> I=imread('D:\tu.JPEG'); >> imshow(I)>> graytu=rgb2gray(I); >> subplot(1,2,1); >> subimage(I); >> subplot(1,2,2); >> subimage(graytu) 效果:1002003004005010015020025030010020030040050100150200250300RGB 转二值图像: 代码:>> [indtu,map]=rgb2ind(I,0.5); >> subplot(1,2,1); >> subimage(I); >> subplot(1,2,2); >> subimage(indtu,map) 效果:100200300400100200300100200300400100200300索引转RGB 图像: 代码:>> I1=ind2rgb(indtu,map); >> subplot(1,2,1);>> subimage(indtu,map); >> subplot(1,2,2); >> subimage(I1) 效果:100200300400100200300100200300400100200300索引转灰度图像: 代码:>> I2gtu=ind2gray(indtu,map); >> subplot(1,2,1);>> subimage(indtu,map); >> subplot(1,2,2); >> subimage(I2gtu) 效果:100200300400100200300100200300400100200300灰度转索引图像: 代码:[g2itu,map]=gray2ind(graytu,64); >> subplot(1,2,1); >> subimage(graytu); >> subplot(1,2,2); >> subimage(g2itu,map) 效果:100200300400100200300100200300400100200300RGB 转二值图像: 代码:>> r2bwtu1=im2bw(I,0.8); >> subplot(1,2,1); >> subimage(I); >> subplot(1,2,2);>> subimage(r2bwtu1)代码: 效果:100200300400100200300100200300400100200300灰度转二值图像 代码:g2bwtu1=im2bw(graytu,0.8); >> subplot(1,2,1); >> subimage(graytu); >> subplot(1,2,2); >> subimage(g2bwtu1) 效果:100200300400100200300100200300400100200300索引转二值图像 代码:>> i2bwtu=im2bw(indtu,map,0.5); >> subplot(1,2,1);>> subimage(indtu,map); >> subplot(1,2,2); >> subimage(i2bwtu) 效果:1002003004001002003001002003004001002003002. 应用MATLAB 工具箱演示一幅图像的傅里叶变换、离散余弦变换,观察其频谱图,然后将它们进行逆变换,观察逆变换后的图像 (1) 傅里叶正变换 代码:>> F=fft2(graytu); >> subplot(1,2,1); >> subimage(graytu); >> subplot(1,2,2);>> subimage(log(abs(F)),[3,10]) 效果:100200300400100200300100200300400100200300(2) 傅里叶反变换 代码:>> IF=ifft2(F); >> subplot(1,2,1);>> subimage(log(abs(F)),[3,10]); >> subplot(1,2,2); >> subimage(uint8(IF)) 效果:100200300400100200300100200300400100200300(3) DCT 变换 代码:>> B=dct2(graytu); >> subplot(1,2,1); >> subimage(graytu); >> subplot(1,2,2);>> subimage(log(abs(B)),[3,5]) 效果:100200300400100200300100200300400100200300(4) IDCT 变换 代码:>> iB=idct2(B); >> subplot(1,2,1);>> subimage(log(abs(B)),[3,5]); >> subplot(1,2,2); >> subimage(uint8(iB)) 效果:100200300400100200300100200300400100200300总结:傅里叶变化:傅里叶变换是一种特殊的积分变换。

数字图像处理实验一:熟悉Matlab图像处理工具箱

数字图像处理实验一:熟悉Matlab图像处理工具箱

实验一:熟悉Matlab图像处理工具箱一.实验目的:1.熟悉matlab图像处理工具箱;2.了解图像处理的函数及使用方法;3.学会简单的图像处理方法;二.实验原理1.二值图像二值图像是一种简单的图像格式,“0”表示黑色像素点,“255”表示白色像素点,二值图像处理运算是从数学形态学下的集合论发展起来的,基本运算比较简单,却可以产生复杂的效果。

2.反色图像对于彩色图像的R,G,B各彩色分量取反的技术就是反色处理,这在二值化图像的连通区域选取的时候非常重要,如物体连通域用黑色表示,而二值化后的物体连通域图像可那是白色的,二背景是黑色的,这时应手动选取图像的反色处理或有程序根据背景和物体连通域两种颜色的数量所占比例而自动选择是否选取图像的反色处理。

3.水平镜像图像的水平镜像是指将指定区域的图像以原图像的垂直中轴线为中心,将图像分为左右两部分进行对称变换显示在屏幕。

水平镜像时每行图像信息的处理方式是相同的,而且行顺序不发生变化,只是每一行的像素信息按从左到右的顺序进行了左右颠倒,所以镜像后图像的高和宽不变。

设图像的高度为Height,宽度为width,原图中坐标为(x0,y0)的点经过水平镜像后,则点(x0,y0)的坐标为(x1,y1)。

(x0,y0)和(x1,y1)的关系如下:x1=Width-x0 y1=y04.垂直翻转图像的翻转有两种,一种是水平翻转,一种是垂直翻转。

水平翻转会产生左右对调的图像,垂直翻转会产生上下对调的图像。

5.旋转30度如果果一个点(x1,y1)旋转到(x2,y2),对应的角度旋转从θ1到θ1+θ2sinθ1=y1/sqrt(x1*x1+ y1*y1)cosθ1=x1/sqrt(x1*x1+ y1*y1)sin(θ1+θ2)=sin(θ1)*cos(θ2)+cos(θ1)*sin(θ2)=y2/sqrt(x2*x2+y2*y2);cos(θ1+θ2)=cos(θ1)*cos(θ2)-sin(θ1)*sin(θ2)=x2/sqrt(x2*x2+y2*y2)。

MATLAB数字图像处理实验--图像基本运算

MATLAB数字图像处理实验--图像基本运算

MATLAB数字图像处理实验--图像基本运算一、实验目的1.理解图像点运算、代数运算、几何运算的基本定义和常见方法;2.掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法;3.掌握在MATLAB中进行插值的方法4.运用MATLAB语言进行图像的插值缩放和插值旋转5.进一步熟悉了解MATLAB语言的应用。

二、实验设备与软件1.PC计算机系统2.MATLAB软件,包括图像处理工具箱(Image Processing Toolbox)3.实验图片三、实验内容及结果分析3.1图像的点运算选择pout.tif作为实验图像,实验原理及内容参照《MATLAB图像处理编程及应用》程序代码:I=imread('pout.tif');figure;subplot(1,3,1);imshow(I);title('原图');J=imadjust(I,[0.3;0.6],[0.1;0.9]);subplot(1,3,2);imshow(J);title('线性扩展');I1=double(I);I2=I1/255;C=2;K=C*log(1+I2);subplot(1,3,3);imshow(K);title('非线性扩展');M=255-I;figure;subplot(1,3,1);imshow(M);title('灰度倒置');N1=im2bw(I,0.4);N2=im2bw(I,0.7);subplot(1,3,2);imshow(N1);title('二值化阈值0.4');subplot(1,3,3);imshow(N2);title('二值化阈值0.7');执行结果:原图线性扩展非线性扩展灰度倒置二值化阈值0.4二值化阈值0.7实验1结果图3.2图像的代数运算选择两幅图像,一幅是原图像,一幅为背景图像,采用正确的图像代数运算方法,分别实现图像叠加、混合图像的分离和图像的局部显示效果。

matlab数字图像处理 实验一

matlab数字图像处理 实验一

实验一基于MATLAB的数字图像处理一姓名-胡青李班级-信息与计算科学11-1班学号-10114590一、实验目的与要求1.了解图像去操技术及其实现方法。

2.了解什么是“图像的噪声”和图像去噪的常用方法。

3.掌握图像畸变校正技术及其实现。

4.了解畸变产生的原因,畸变校正的原理。

5.掌握图像数字水印技术及其实现。

6.掌握数字图像压缩技术及其实现。

二、实验内容及步骤1.基于离散余弦变换,对一幅图像进行降噪处理。

我们认为图像的噪声在离散余弦变换结果中处在其高频部分,而高频部分的幅值一般很小,利用这一性质,就可以很容易实现图像的噪声抑制。

这样也会失去图像的部分细节。

2.用带噪型号预处理图片,然后利用小波变换吧信号分解到各尺度中,在每一尺度下把属于噪声的小波系数去掉,保留并增强属于信号的小波系数,最后在经过小波逆变换恢复检测信号。

小波去噪框图3.首相将输入的图像分成8*8或者16*16的图象块,然后对每个图像块进行二维DCT 变换,最后将变换的来的DCT系数量化,编码,形成压缩后的JPEG图像格式。

在显示JPEG图像时,首先将量化、编码后的DCT系数进行解码,并对每个8*8或者16*16的块进行二维DCT反变换,最后将操作完成后的所有块重构成一幅完整的图像。

对于一幅典型的图像而言,进行DCT变换后,大部分的DCT系数的值非常接近于0,如果舍弃这些接近于0的的DCT系数,在重构图像时并不会因此带来画面质量的显著下降,这就是JPEG算法能够对图像进行压缩的原理。

利用JPEG的压缩原理,输入一幅图像,将其分成8*8的图象块,计算每个图象块的DCT系数。

DCT变换的特点是变换后图像大部分能量集中在左上角,因此左上角反映图像低频部分数据,右下角反映原图像高频部分数据,而图像的能量通常集中在低频部分。

因而,对二维图像进行DCT变换后,只保留DCT系数矩阵最左上角的10个系数,然后对每块图像利用这10个系数进行DCT反变换来重构。

数字图像处理实习1—Matlab图像处理初步

数字图像处理实习1—Matlab图像处理初步

实验1——Matlab图像处理初步
实验目的:熟悉Matlab语言关于图像处理的基本操作
实验内容:练习imread、imshow、iminfo、imwrite、subplot、for等命令以及矩阵计算有关命令。

实验要求:
1、读取并显示cameraman.tif图像(提示:imread)。

2、将图像中间的1/3部分(如图)分别作如下处理,其余部分不变
a) 每个像素点的值都乘以2,即f(x,y)=2*f(x,y),显示处理前后的图像(提
示:imshow),同一个图像窗口左右显示(提示:subplot),左边显示原
始图像,右边显示处理后图像,处理后图像保存为cameraman1.bmp(提
示:imwrite)
b) 每个像素点取反色,即f(x,y)=255-f(x,y);显示处理前后的图像,同一个
图像窗口上下显示(提示:subplot),上边显示原始图像,下边显示处理
后图像,处理后图像保存为cameraman2.bmp(提示:imwrite)
3、撰写实验报告并附上所用程序和结果。

f=imread('cameraman.tif');
[m n]=size(f);
g=f;
r=round(m/3);
c=round(n/3);
for i=r:2*r
for j=c:2*c
g(i,j)=2*f(i,j);
end
end
subplot(2,1,1),imshow(f);
subplot(2,1,2),imshow(g);
imwrite(g,'cameraman1.bmp','bmp');
2013-12-16。

MATLAB实验Matlab在数字图像处理中的应用

MATLAB实验Matlab在数字图像处理中的应用

MATLAB实验Matlab在数字图像处理中的应用实验十 Matlab在数字图像处理中的应用(基础篇)一、实验目的1(熟悉图像的四种类型。

2(熟练掌握图像的读、写操作以及显示方法。

3. 熟悉图像的类型转换以及格式转换。

二、实验原理1. 图像的表示以及数字化广义的图像是指视觉信息。

举凡照片、图画、电视画面以及由透镜、光栅及全息图所构成的光学成像等均属之。

我们观察一幅单色静止图像,其亮度的明暗变化就构成图像视觉。

所以,一幅单色(monochrome)静止的图像可以表示为强度或亮度的二维分布,其中F代表图像亮度或者强度,(x,y)是二维平面点坐标。

对于黑白图像,通常Fxy(,)用不同的灰度级来表示其亮度的差异;对于彩色图像,可以视为由单个单色的二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)按不同的比例组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

此时,每一幅分量图像只有亮度的二维分布,如图1所示。

通常我们看到的图像是一幅亮度在空间连续变化的模拟图像(即图像关于亮度F 以及空间坐标x,y连续)。

例如在显微镜下看到的就是一副光学模拟图像。

连续的模拟图像经过离散化处理后变成计算机能够识别的点阵图像,称为数字图像。

把模拟图像转换成数字图像其实就是数字化 (即离散化)图像亮度F以及空间坐标x,y。

将坐标数字化称为取样;将亮度数字化称为量化。

采样和量化的过程如图2所示。

二维图像平面经过数字化后,变成一个个方形的像素(pixel),亮度数字化之后变成一个二维的数值矩阵。

所以一副数字图像对应于一个数值矩阵,该矩阵通常称为图像的数据矩阵。

图像数据矩阵的大小即是图像像素的数目,矩阵的行与列决定一个像素点,矩阵元素值(也称像素值)反映该像素点的灰度。

例如图2右边所示的图像数据矩阵为8×8的二维矩阵,那么该数字图像包含8×8=64个像素,第一行第一列代表第一个像素,其像素值(元素值)1表达该像素的灰度。

数字图像处理实验_matlab

数字图像处理实验_matlab

实验一:图像文件类型转换实验目的:理解数字图像文件的几种基本类型掌握在MATLAB中进行图象文件类型转换的方法观察图象转换前后的效果加深对图象文件类型的理解熟悉图象格式、颜色系统间的转换实验内容:1)灰度图像与索引图像的相互转换2)RGB图像与索引图像的相互转换3)将图像转换为二值化图像实验方法:利用MATLAB工具进行实验一、灰度图像到索引图像的转换启动MATLAB,新建一个自己的工作文件夹(如下图中的“MYFIG”)。

并把它设置在当前的工作路径(Current Directory)下。

1)在该文件夹中拷入个灰度图片,比如“2.jpg”文件。

2)在MATLAB命令输入窗中,调用函数info=imfinfo('2.jpg')观查2.jpg是否为灰度图像在ColorType: 'grayscale' 属性行如此显示,则说明以2.jpg命名的文件为灰度图像。

3)输入如下命令完成转换RGB=imread('2.jpg'); % 将图像“2.jpg”的数据赋给变量RGBfigure(3); % 设定显示窗口3imshow(RGB); % 显示原“2.jpg”文件figure(1); % 设定显示窗口1[RGB1,map1]=gray2ind(RGB,128); % 指定灰度级128,进行灰度图像到索引图像转换imshow(RGB1,map1) ; % 显示索引图像1figure(2); % 设定显示窗口2[RGB2,map2]=gray2ind(RGB,16); % 指定灰度级16,进行灰度图像到索引图像转换imshow(RGB2,map2) ; % 显示索引图像2imwrite(RGB1,map1,'3.bmp'); % 将索引图像1保存为名为“3.bmp”的文件imwrite(RGB2,map2,'4.bmp'); % 将索引图像2 保存为名为“4.bmp”的文件运行并观察结果和现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理实验指导书目录实验一 MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类:➢亮度图像(Intensity images)➢二值图像(Binary images)➢索引图像(Indexed images)➢RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double 类,则像素取值就是浮点数。

规定双精度型归一化亮度图像的取值范围是[0,1](2) 二值图像一幅二值图像是一个取值只有0和1的逻辑数组。

而一幅取值只包含0和1的uint8类数组,在MATLAB中并不认为是二值图像。

使用logical函数可以把数值数组转化为二值数组或逻辑数组。

创建一个逻辑图像,其语法为:B=logical(A)其中,B是由0和1构成的数值数组。

要测试一个数组是否为逻辑数组,可以使用函数:islogical(c)若C是逻辑数组,则该函数返回1;否则,返回0。

(3) 索引图像索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。

一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。

(4) RGB图像一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相似点都是在特定空间位置的彩色图像相对应的红、绿、蓝三个分量。

按照惯例,形成一幅RGB彩色图像的三个图像常称为红、绿或蓝分量图像。

令fR,fG和fB分别代表三种RGB分量图像。

一幅RGB图像就利用cat(级联)操作将这些分量图像组合成彩色图像:rgb_image=cat(3,fR,fG,fB)在操作中,图像按顺序放置。

2、数据类和图像类型间的转化表1中列出了MATLAB和IPT为表示像素所支持的各种数据类。

表中的前8项称为数值数据类,第9项称为字符类,最后一项称为逻辑数据类。

工具箱中提供了执行必要缩放的函数(见表2)。

以在图像类和类型间进行转化。

表1-1 MATLAB和IPT支持数据类型表1-2格式转换函数下面给出读取、压缩、显示一幅图像的程序(%后面的语句属于标记语句,编程时可不用输入)I=imread(‘原图像名.tif’); % 读入原图像,tif格式whos I % 显示图像I的基本信息imshow(I) % 显示图像% 这种格式知识用于jpg格式,压缩存储图像,q是0-100之间的整数imfinfo lily.tifimwrite(I,'flower.jpg','quality',30);imwrite(I,'flower.bmp'); % 以位图(BMP)的格式存储图像% 显示多幅图像,其中n为图形窗口的号数figure(1 2 3), imshow('tif jpg bmp');gg=im2bw(I,0.6'); % 将图像转为二值图像figure, imshow(gg) % 显示二值图像三、实验内容及步骤1.利用imread( )函数读取一幅图像,假设其名为flower.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。

7.用imread()读入图像:Lenna.jpg 和camema.jpg;8.用imfinfo()获取图像Lenna.jpg和camema.jpg 的大小;9.用figure,imshow()分别将Lenna.jpg和camema.jpg显示出来,观察两幅图像的质量。

10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。

11.将每一步的函数执行语句拷贝下来,写入实验报告,并且将得到第3、9、10步得到的图像效果拷贝下来。

四、考核要点1、熟悉在MATLAB中如何读入图像、如何获取图像文件的相关信息、如何显示图像及保存图像等,熟悉相关的处理函数。

2、明确不同的图像文件格式,由于其具体的图像存储方式不同,所以文件的大小不同,因此当对同一幅图像来说,有相同的文件大小时,质量不同。

五、实验仪器与软件(1) PC计算机(2) MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox)(3) 实验所需要的图片六、实验报告要求描述实验的基本步骤,用数据和图片给出各个步骤中取得的实验结果和源代码,并进行必要的讨论,必须包括原始图像及其计算/处理后的图像。

七、思考题(1) 简述MatLab软件的特点。

(2) MatLab软件可以支持哪些图像文件格式?(3) 说明函数imread 的用途格式以及各种格式所得到图像的性质。

(4) 为什么用I = imread(‘lena.bmp’) 命令得到的图像I 不可以进行算术运算?八、实验图像Fig.1 flower.tif Fig.2 elephant.jpgFig.3 Lenna.jpg Fig.4 camema.jpg第二图像基本运算一、实验目的1.了解图像的算术运算在数字图像处理中的初步应用。

2.体会图像算术运算处理的过程和处理前后图像的变化。

二、实验原理图像的代数运算是图像的标准算术操作的实现方法,是两幅输入图像之间进行的点对点的加、减、乘、除运算后得到输出图像的过程。

如果输入图像为A(x,y)和B(x,y),输出图像为C(x,y),则图像的代数运算有如下四种形式:C(x,y) = A(x,y) + B(x,y)C(x,y) = A(x,y) - B(x,y)C(x,y) = A(x,y) * B(x,y)C(x,y) = A(x,y) / B(x,y)图像的代数运算在图像处理中有着广泛的应用,它除了可以实现自身所需的算术操作,还能为许多复杂的图像处理提供准备。

例如,图像减法就可以用来检测同一场景或物体生产的两幅或多幅图像的误差。

使用MATLAB的基本算术符(+、-、*、/ 等)可以执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型。

为了更方便地对图像进行操作,MATLAB 图像处理工具箱包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。

下表列举了所有图像处理工具箱中的图像代数运算函数。

表2-1 图像处理工具箱中的代数运算函数能够接受uint8和uint16数据,并返回相同格式的图像结果。

虽然在函数执行过程中元素是以双精度进行计算的,但是MATLAB工作平台并不会将图像转换为双精度类型。

代数运算的结果很容易超出数据类型允许的范围。

例如,uint8数据能够存储的最大数值是255,各种代数运算尤其是乘法运算的结果很容易超过这个数值,有时代数操作(主要是除法运算)也会产生不能用整数描述的分数结果。

图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。

例如,如果数据类型是uint8,那么大于255的结果(包括无穷大inf)将被设置为255。

注意:无论进行哪一种代数运算都要保证两幅输入图像的大小相等,且类型相同。

三、实验步骤1.图像的加法运算图像相加一般用于对同一场景的多幅图像求平均效果,以便有效地降低具有叠加性质的随机噪声。

直接采集的图像品质一般都较好,不需要进行加法运算处理,但是对于那些经过长距离模拟通讯方式传送的图像(如卫星图像),这种处理是必不可少的。

在MATLAB中,如果要进行两幅图像的加法,或者给一幅图像加上一个常数,可以调用imadd函数来实现。

imadd函数将某一幅输入图像的每一个像素值与另一幅图像相应的像素值相加,返回相应的像素值之和作为输出图像。

imadd函数的调用格式如下:Z = imadd(X,Y)其中,X和Y表示需要相加的两幅图像,返回值Z表示得到的加法操作结果。

图像加法在图像处理中应用非常广泛。

例如,以下代码使用加法操作将图2.1中的(a)、(b)两幅图像叠加在一起:I = imread(‘rice.tif’);J = imread(‘cameraman.tif’);K = imadd(I,J);imshow(K);叠加结果如图2.2所示。

图2.1 待叠加的两幅图像图2.2 叠加后的图像效果给图像的每一个像素加上一个常数可以使图像的亮度增加。

例如,以下代码将增加图3(a)所示的RGB图像的亮度,加亮后的结果如图3(b)所示。

RGB = imread(‘flower.tif’);RGB2 = imadd(RGB,50);subplot(1,2,1);imshow(RGB);subplot(1,2,2);imshow(RGB2);加50 减50原图加50 减50图2.3 亮度增加与变暗两幅图像的像素值相加时产生的结果很可能超过图像数据类型所支持的最大值,尤其对于uint8类型的图像,溢出情况最为常见。

相关文档
最新文档