中考数学相似(大题培优)附答案
中考数学 相似 培优练习(含答案)及答案解析
中考数学相似培优练习(含答案)及答案解析一、相似1.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M 的坐标;如果不存在,请说明理由.【答案】(1)解:∴代入,得解得∴抛物线对应二次函数的表达式为:(2)解:如图,设直线CD切⊙P于点E.连结PE、PA,作点.由得对称轴为直线x=1,∴∴∴为等腰直角三角形.∴∴∴∴为等腰三角形.设∴在中,∴∴整理,得解得,∴点P的坐标为或(3)解:存在点M,使得∽.如图,连结∵∴为等腰直角三角形,∴由(2)可知,∴∴分两种情况.当时,∴,解得.∴∴当时,∴,解得∴∴综上,点M的坐标为或【解析】【分析】(1)用待定系数法即可求解;(2)由(1)中的解析式易求得抛物线的对称轴为直线x=1,顶点D(1,4),点C(0,3),由题意可设点P(1,m),计算易得△DCF为等腰直角三角形,△DEP为等腰三角形,在直角三角形PED和APQ中,用勾股定理可将PE、PA用含m的代数式表示出来,根据PA=PE可列方程求解;(3)由△DCM∽△BQC所得比例式分两种情况:或,根据所得比例式即可求解。
2.如图,在一个长40 m、宽30 m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3 m/s的速度跑向C地.当他出发4 s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上.(1)此时两人相距多少米(DE的长)?(2)张华追赶王刚的速度是多少?【答案】(1)解:在Rt△ABC中:∵AB=40,BC=30,∴AC=50 m.由题意可得DE∥AC,∴Rt△BDE∽Rt△BAC,∴ = ,即 = .解得DE= m.答:此时两人相距 m.(2)解:在Rt△BDE中:∵DB=2,DE=,∴BE=2 m.∴王刚走的总路程为AB+BE=42 m.∴王刚走这段路程用的时间为 =14(s).∴张华用的时间为14-4=10(s),∵张华走的总路程为AD=AB-BD=40-2=37(m),∴张华追赶王刚的速度是37÷10≈3.7(m/s).答:张华追赶王刚的速度约是3.7m/s.【解析】【分析】(1)在Rt△ABC中,根据勾股定理得AC=50 m,利用平行投影的性质得DE∥AC,再利用相似三角形的性质得出对应边的比相等可求得DE长.(2)在Rt△BDE中,根据勾股定理得BE=2 m,根据题意得王刚走的总路程为42 m,根据时间=路程÷速度求得王刚用的时间,减去4即为张华用的时间,再根据速度=路程÷时间解之即可得出答案.3.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形;②若AE=6,BE=8,则EF的长为________.【答案】(1)证明:∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD.∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC.∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS)(2)60;【解析】【解答】解:(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC.∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°.∵∠ABC=60,∴∠AEC=120°=∠AOC.∵OA=OC,∴∠OAC=∠OCA=30°.∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CAD+∠D.∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形.∵OA=OC,∴▱AOCE是菱形;②由(1)得:△ABE≌△CDE,∴BE=DE=8,AE=CE=6,∴∠D=∠EBC.∵∠CED=∠ABC=∠ACB,∴△ECD∽△CFB,∴ = .∵∠AFE=∠BFC,∠AEB=∠FCB,∴△AEF∽△BCF,∴ = ,∴EF= = .故答案为:①60°;② .【分析】(1)由题意易证∠ABC=∠ACB,AB=CD;再由四点共圆和已证可得∠ABC=∠ACB=∠AEB,∠CED=∠AEB,则利用AAS可证得结论;(2)①连接AO、CO.宪政△ABC是等边三角形,再证明四边形AOCE是平行四边形,又AO=CO可得结论;②先证△ECD∽△CFB,可得EC:ED=CF:BC=6:8;再证△AEF∽△BCF,则AE:EF=BC:CF,从而求出EF.4.如图1,图形ABCD是由两个二次函数与的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C 与点E是对应顶点)的点E的坐标.【答案】(1)解:(2)解:存在,理由:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y轴时,设M(x,-x2+1)为第一象限内的图形ABCD上一点,M'(x,3x2-3)为第四象限内的图形上一点,∴MM'=(1-x2)-3(3x2-3)=4-4x2,由抛物线的对称性知,若有内接正方形,则2x=4-4x2,即2x2+x-2=0,x= 或(舍),∵0< ,∴存在内接正方形,此时其边长为(3)解:解:在Rt△AOD中,OA=1,OD=3,∴AD= ,同理CD= .在Rt△BOC中,OB=OC=1,∴BC= .①如图(1)当△DBC~△DAE时,因∠CDB=∠ADO,∴在y轴上存在一点E,由得,得DE= ,因D(0,-3),∴E();由对称性知在直线DA右侧还存在一点E'使得△DBC~△DAE',连接EE'交DA于F点,作E'M⊥OD,垂足为M,连接E'D,∵E、E'关于DA对称,∴DF垂直平分EE',∴△DEF~△DAO,∴,有,∴, .因,∴,又,在Rt△DE'M中,DM= ,∴OM=1,得∴,使得△DBC~△DAE的点E的坐标为(0, ,)或;如图(2)当△DBC~△ADE时,有∠BDC=∠DAE,,即,得AE= .当E在直线DA左侧时,设AE交y轴于P点,作EQ⊥AC,垂足为Q.由∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=x,则PO=3-x,PA=x,在Rt△AOP中,由得,解得,则有PA= ,PO= ,因AE= ,∴PE= ,在△AEQ中,OP∥EQ,∴,得,又,∴QE=2,∴E(),当E'在直线DA右侧时,因∠DAE'=∠BDC,又∠BDC=∠BDA,∴∠BDA=∠DAE',则AE'∥OD,∴E'(1,),则使得△DBC~△ADE的点E的坐标为或 .综上,使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标有4个,即(0, ,)或或或【解析】【解答】(1)∵二次函数经过点A(1,0),B(0,1)代入得解得∴二次函数;∵二次函数经过点A(1,0),D(0,-3)代入得解得∴二次函数 .【分析】(1)由A(1,0),B(0,1)代入二次函数解出k,m的值可得二次函数y1的表达式;由A(1,0),D(0,-3)代入二次函数解出k,m的值可得二次函数y1的表达式;(2)判断是否存在,可以列举出一种特殊情况:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y 轴时,则可设点M(x,-x2+1)在y1图象上,则该正方形存在另一点M'(x,3x2-3)在y2图象上,由邻边相等构造方程解答即可;(3)对于△BDC与△ADE相似,且C于D对应,那么就存在两种情况:①当点B对应点A,即△DBC~△DAE,此时点E的位置有两处,一处在y轴上,另一处在线段AD的右侧;②当点B对应点DA时,即△DBC~△ADE,些时点E 有两处,分别处于线段AD的左右两侧;结果两种情况所有的条件解出答案即可.5.如图,在Rt△ABC中,∠C=90°,顶点A、C的坐标分别为(﹣1,2),(3,2),点B 在x轴上,点B的坐标为(3,0),抛物线y=﹣x2+bx+c经过A、C两点.(1)求该抛物线所对应的函数关系式;(2)点P是抛物线上的一点,当S△PAB= S△ABC时,求点P的坐标;(3)若点N由点B出发,以每秒个单位的速度沿边BC、CA向点A移动,秒后,点M 也由点B出发,以每秒1个单位的速度沿线段BO向点O移动,当其中一个点到达终点时另一个点也停止移动,点N的移动时间为t秒,当MN⊥AB时,请直接写出t的值,不必写出解答过程.【答案】(1)解:将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,得,解得∴抛物线y=﹣x2+2x+5.(2)解:∵点A(-1,2),B(3,0),C(3,2),∴BC⊥x轴,AC=4,BC=2,∴,∴设直线AB为y=mx+n,将点A(-1,2),B(3,0),代入可得,解得,∴直线AB为y=,设点P(x,),过点P作PN⊥x轴,交直线AB于点M,则M(x,),∴PM= ,∴即,∴或,解得,则点P .(3)解:当时,如图1,点N在BC的线段上,BN= ,BM= ,∵MN⊥AB,∴,又∵A(-1,2),B(3,0),C(3,2),∴AC∥x轴,BC∥y轴,∴∠ACB=90°,∴,∴又∵∠MBN=∠ACB=90°,∴△BNM~△CAB,∴,则,解得t= .当时,点N在线段AC上,如图2,MN与AB交于点D,BM= ,由A(-1,2),B(3,0),得AB= ,设AD=a,则BD= ,∵∠ADN=∠ACB=90°, ∠DAN=∠CAB,∴△ADN~△ACB,∴;则 = ,则a=∵∠BDM=∠ACB=90°, ∠DBM=∠CAB,∴△BDM~△ACB,∴ =,则解得 .综上, .【解析】【分析】(1)将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,联立方程组解答即可求出b和c的值;(2)由A(-1,2),B(3,0),C(3,2)可求出直线AB 的解析式和,从而求出 .设PP(x,),过点P作PN⊥x轴,交直线AB于点M,则M(x,),可得代入求出P的横坐标x的值,再代入抛物线的解析式求出点P的纵坐标;(3)首先要明确时间t表示点N运动的时间,由点M,N的速度可求出它们当到达终点时的时间t,取其中的较小值为t所能取到的最大值;由点M只在线段OB上运动,点N在线段BC和线段AC上运动,则要分成两部分进行讨论,当点N在线段BC上时和当点N在线段AC上时,并分别求出相应时间t的取值范围;结合相似三角形的判定和性质得到相应边成比例,列方程解答即可.6.如图,抛物线y=ax2+bx+c过原点O、点A (2,﹣4)、点B (3,﹣3),与x轴交于点C,直线AB交x轴于点D,交y轴于点E.(1)求抛物线的函数表达式和顶点坐标;(2)直线AF⊥x轴,垂足为点F,AF上取一点G,使△GBA∽△AOD,求此时点G的坐标;(3)过直线AF左侧的抛物线上点M作直线AB的垂线,垂足为点N,若∠BMN=∠OAF,求直线BM的函数表达式.【答案】(1)解:将原点O(0,0)、点 A (2,﹣4)、点 B (3,﹣3),分别代入y=ax2+bx+c,得,解得,∴y=x2-4x= ,∴顶点为(2,-4).(2)解:设直线AB为y=kx+b,由点A(2,-4),B(3,-3),得解得,∴直线AB为y=x-6.当y=0时,x=6,∴点D(6,0).∵点A(2,-4),D(6,0),B(3,-3),∴OA= ,OD=6,AD= ,AF=4,OF=2,DF=4,AB= ,∴DF=AF,又∵AF⊥x轴,∴∠AD0=∠DAF=45°,∵△GBA∽△AOD,∴,∴,解得,∴FG=AF-AG=4- ,∴点G(2,).(3)解:如图1,∵∠BMN=∠OAF,,∴∠MBN=∠AOF,设直线BM与AF交于点H,∵∠ABH=∠AOD,∠HAB=∠ADO,∴∴,则,解得AH= ,∴H(2,).设直线BM为y=kx+b,∵将点B、G的坐标代入得,解得.∴直线BM的解析式为y= ;如图2,BD=AD-AB= .∵∠BMN=∠OAF,∠GDB=∠ODA,∴△HBD∽△AOD.∴,即,解得DH=4.∴点H的坐标为(2,0).设直线BM的解析式为y=kx+b.∵将点B和点G的坐标代入得:,解得k=-3,b=6.∴直线BM的解析式为y=-3x+6.综上所述,直线MB的解析式为y= 或y=-3x+6.【解析】【分析】(1)将原点O(0,0)、点A (2,﹣4)、点B (3,﹣3),分别代入y=ax2+bx+c,联立方程组解答即可a,b,c的值,得到二次函数解析式;将解析式配成顶点式,可得顶点;(2)由△GBA∽△AOD,可得,分别求出AD,AB,OD的长即可求出AG,由点A的坐标,即可求出点G;(3)点M在直线AF的左侧,可发出垂足N可以在线段AB上,也可以在AB的延长线上,故有如图1和如图2两种可能;设直线BM与直线AF的交点为H,由(2)可知,参加(2)的方法可求出点H的坐标,从而求出直线BM的解析式.7.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0)。
中考数学圆与相似(大题培优 易错 难题)含答案解析
中考数学圆与相似(大题培优易错难题)含答案解析一、相似1.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'= AD,那么请直接写出点D'到直线BC的距离.【答案】(1)证明:∵将△APD沿直线AB翻折,得到△AP'D,∴∠ADP'=∠ADP,∵AE∥PD,∴∠EAD=∠ADP,∴∠EAD=∠ADP',∴AE=DE(2)解:①∵DP∥BC,∴△APD∽△ACB,∴,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴ = ,∵BC=7,∴PD=,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F= D'D,∠ADF=∠AD'F,∵cos∠ADF== = ,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=,∵CM=AM﹣AC=﹣3,∴CM=,∴点D'到直线BC的距离为若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,同理可证:△AMD'≌△DPA,∴AM=PD=,∵CM=AC+AM,∴CM=3+ =,∴点D'到直线BC的距离为综上所述:点D'到直线BC的距离为或;【解析】【分析】(1)由折叠的性质和平行线的性质可得∠EAD=∠ADP=∠ADP',即可得AE=DE;(2)①由题意可证△APD∽△ACB,可得,由旋转的性质可得AP=AP',AD=AD',∠PAD=∠P'AD',即∠P'AC=∠D'AB,,则△AP'C∽△AD'B;②分点D'在直线BC的下方和点D'在直线BC的上方两种情况讨论,根据平行线分线段成比例,可求PD=,通过证明△AMD'≌△DPA,可得AM=PD=,即可求点D'到直线BC 的距离.2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE·CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,若PB=OB,CD=,求⊙O的半径.【答案】(1)证明:∵DC2=CE·CA,∴,∵∠DCE=∠ACD,∴△CDE~△CAD,∴∠CDE=∠CAD,又∵∠CBD=∠CAD,∴∠CDE=∠CBD,∴CD=CB.(2)解:连结OC(如图),设⊙O的半径为r,由(1)知CD=CB,∴弧CD=弧CB,∴∠CDB=∠CBD=∠CAB=∠CAD=∠BAD,∠BOC=2∠CAB,∴∠BOC=∠BAD,∴OC∥AD,∴,∵PB=OB,∴PB=OB=OA=r,PO=2r,∴=2,∵CD=2,∴PC=4,PD=PC+CD=6,又∵∠PCB=∠CDB+∠CBD,∠PAD=∠PACB+∠CAD,∴∠PCB=∠PAD,∵∠CPB=∠APD,∴△PCB~△PAD,∴,即,解得:r=4.即⊙O的半径为4.【解析】【分析】(1)根据相似三角形的判定:两边对应成比例及夹角相等可得△CDE~△CAD,再由相似三角形的性质:对应角相等,等量代换可得∠CDE=∠CBD,根据等腰三角形的性质即可得证.(2)连结OC,设⊙O的半径为r,根据圆周角定理可得∠BOC=∠BAD,由平行线的判定得OC∥AD,根据平行线所截线段成比例可得=2,从而求得PC、PD长,再根据相似三角形的判定可得△PCB~△PAD,由相似三角形的性质可得,从而求得半径.3.如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)【答案】(1)解:,理由如下:∵四边形是平行四边形,∴∥, .∵四边形是菱形,∴∥, .∴∥, .∴ .又∵,∴≌ .∴(2)解:方法1:过点作∥,交于点,∴ .∵,∴∽ .∴ .由(1)结论知 .∴ .∴ .∵四边形为菱形,∴ .∵四边形是平行四边形,∴∥ .∴ .∵∥,∴ .∴,即 .∴是等边三角形。
中考数学相似(大题培优 易错 难题)附答案
,
,求 关于 的函数关系式,并写
出它的定义域.
【答案】(1)解:由题意,得
,
在 Rt△ 中,
∴
∵
∴
∴
∴ ∵ ∴ ∴ ∵ ∴△ ∽△
∴
∴
∴
(2)解:答: 的比值随点 的运动没有变化
理由:如图,
∵∥
∴
,
∵
∴
∵
∴
∴ ∴△ ∽△
∴
∵
,
∴
∴ 的比值随点 的运动没有变化,比值为
(3)解:延长 交 的延长线于点
边的一半得出 AE=CE=ED,根据等边对等角得出∠ EAC=∠ ECA,根据全等三角形对应角相等
得出∠ ABM=∠ CAD,从而得出∠ ABM=∠ MCE,根据对顶角相等及三角形的内角和得出
∠ CEM=∠ BAM=90°,从而判断出△ ABM∽ △ ECM,由相似三角形对应边成比例得出 BM∶
CM= AM∶ EM,从而得出 BM∶ AM= CM∶ EM,根据两边对应成比例及夹角相等得出
∴ ∵ CE=4,BC=5,BQ=t,
∴
∴ ∵ PM=AM−AP=4−t,
∴
②当
时,点 P 在线段 BM 上,点 Q 在线段 BC 上,
过点 Q 作 QF⊥AB,垂足为 F,如图 3,
∵ QF⊥AB,CE⊥AB,
∴ ∴ QF∥ CE. ∴ △ QFB∽ △ CEB.
∴ ∵ CE=4,BC=5,BQ=t,
∴ t≠4.
∴当
且 t≠4(s)时,点 Q 在 BC 上运动;当
(s)时,点 Q 在 CD 上运动.
(2)解:①当 0<t<4 时,点 P 在线段 AM 上,点 Q 在线段 BC 上, 过点 Q 作 QF⊥AB,垂足为 F,如图 2,
2020-2021中考数学培优易错试卷(含解析)之相似及答案解析
2020-2021中考数学培优易错试卷(含解析)之相似及答案解析一、相似1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.求:(1)AK为何值时,矩形EFGH是正方形?(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.(3)x为何值时,S EFGH达到最大值.【答案】(1)解:设边长为xcm,∵矩形为正方形,∴EH∥AD,EF∥BC,根据平行线的性质可以得出: = 、 = ,由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,∵BE+AE=AB,∴ + = + =1,解得x= ,∴AK= ,∴当时,矩形EFGH为正方形(2)解:设AK=x,EH=24-x,∵EHGF为矩形,∴ = ,即EF= x,∴S EFGH=y= x•(24-x)=- x2+16x(0<x<24)(3)解:y=- x2+16x配方得:y= (x-12)2+96,∴当x=12时,S EFGH有最大值96【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。
(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。
(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。
2.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【答案】(1)解:如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC= ,∴A(-1,),把A(-1,)代入抛物线y=ax2(a>0)中得:a= ;(2)解:如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,∵CF∥BG,∴,∵AC=4BC,∴ =4,∴AF=4FG,∵A的横坐标为-4,∴B的横坐标为1,∴A(-4,16a),B(1,a),∵∠AOB=90°,∴∠AOD+∠BOE=90°,∵∠AOD+∠DAO=90°,∴∠BOE=∠DAO,∵∠ADO=∠OEB=90°,∴△ADO∽△OEB,∴,∴,∴16a2=4,a=± ,∵a>0,∴a= ;∴B(1,);(3)解:如图3,设AC=nBC,由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),∴AD=am2n2,过B作BF⊥x轴于F,∴DE∥BF,∴△BOF∽△EOD,∴,∴,∴,DE=am2n,∴,∵OC∥AE,∴△BCO∽△BAE,∴,∴,∴CO= =am2n,∴DE=CO.【解析】【分析】(1)抛物线y=ax2关于y轴对称,根据AB∥x轴,得出A与B是对称点,可知AC=BC=1,由∠AOB=60°,可证得△AOB是等边三角形,利用解直角三角形求出OC的长,就可得出点A的坐标,利用待定系数法就可求出a的值。
中考数学 相似 培优练习(含答案)含答案解析
中考数学相似培优练习(含答案)含答案解析一、相似1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
中考数学圆与相似(大题培优 易错 难题)含详细答案
中考数学圆与相似(大题培优易错难题)含详细答案一、相似1.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.【答案】(1)解:设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣ x+2;把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,∴抛物线解析式为y=﹣ x2+ x+2(2)解:∵M(m,0),MN⊥x轴,∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),∴NP=﹣ m2+4m,PM=﹣ m+2,而NP=PM,∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,∴N点坐标为(,)(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),∴AB= = ,BP= = m,而NP=﹣ m2+4m,∵MN∥OB,∴∠BPN=∠ABO,当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);综上所述,点M的坐标为(,0)或(,0)【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。
2023年九年级数学中考综合培优测试卷《相似三角形综合》压轴题【含答案】
2023年九年级数学中考综合培优测试卷《相似三角形综合》压轴题1.如图,CD是等腰直角△ABC斜边AB的中线,以点D为顶点的∠EDF绕点D旋转,角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AE交于点M,DE 与BC交于点N,且∠EDF=45°.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,若CE≠CF,求证:CD2=CE•CF;(3)如图2,过D作DG⊥BC于点G,若CD=2,CF=,求DN的长.2.如图,Rt△ABC中,∠C=90°,BC=5,AB=13,动点P从点A开始以每秒4个单位长度的速度匀速沿A﹣C﹣A运动,回到A点时停止运动,动点Q同时从点C开始以每秒1个单位长度的速度匀速沿C﹣B运动,到达B点时停止运动,点D为AB的中点,连接PQ,DP,DQ.设运动时间为t秒.(1)当点P沿A﹣C运动时,①BQ= ,PC= (用含t的式子表示);②当DP⊥AB时,求t的值;(2)当△CPQ与△ABC相似时,直接写出t的值.3.如图,在平面直角坐标系中,已知▱ABCD,AD=6,OA,OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)AB= ;(直接写出结果)(2)若点E在x轴上,且S△AOE=.①E点坐标为 ;(直接写出结果)②求证:△AOE∽△DAO.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A,C,F,M 为顶点的四边形为菱形?若存在,请直接写出点F的坐标;若不存在,请说明理由.4.如图,Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,动点E从点A出发沿AC方向运动,动点F从点C出发沿CB方向运动,点E,F同时出发,且速度均为1cm/s,设运动时间为t(s)(0<t<4).过E作线段EP∥BC,且EP=BC,连接EF,PF,解答下列问题:(1)当点F运动到BC中点时,求EC的长;(2)连接PC,当△PFC的面积为1cm2时,求t的值;(3)是否存在某一时刻t,使△EFP为直角三角形,若存在,请直接写出t的值;若不存在,请说明理由.5.已知矩形ABCD,点E为线段BC上的一点,连接AE,过点B作线段AE的垂线分别交线段AE,CD交于点G,F,延长CG交边AB于点M.(1)如图1,若四边形ABCD是正方形,且点M为边AB的中点,①求证:BE=CF;②若正方形ABCD的边长为2,求证:;(2)如图2,若GC平分∠FGE,若,求的值.6.在等边△ABC中,点D是BC的中点,点E为AC上一点,将线段DE绕点D逆时针方向旋转60°得线段DF,(1)如图1,当DF与AB交于点G时,求证:BD2=BG•EC;(2)如图2,在(1)的条件下,连接FE交AB于点H,当时,求AH:HG:GB;(3)若AB=4,当点E在线段AC上运动时,△BDF能否成为直角三角形,若能,请求出此时DF的值,若不能,请说明理由.7.【模型建立】(1)如图1,在等边△ABC中,点D、E分别在BC、AC边上,∠ADE=60°,求证:AB•CE=BD•DC;【模型应用】(2)如图2,在ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,点E在AC边上,AE=AD,点F在DC边上,∠EFD=60°,则的值为 ;【模型拓展】(3)如图3,在钝角△ABC中,∠ABC=60°,点D、E分别在BC、AC 边上,∠DAE=∠ADE=60°,若AB=5,CE=6,求DC的长.8.已知△ABC为直角三角形,点D在直线CB上,以AD为直角边做直角三角形ADE,连接CE.(1)如图1,当时,请直接写出线段BD与线段CE的数量关系与位置关系;(2)如图2,当时,请猜想线段BD与线段CE的数量关系与位置关系,并说明理由;(3)如图3,当点D在射线CB上,且时,连接BE,分别取线段BE,DE的中点M,N,连接MN,CM,CN,若,请直接写出△CMN 的面积.9.如图1,在矩形ABCD中,AB=8,BC=6,点E,F分别是AB,AD边上的动点,EF∥BD.将△AEF沿直线EF对折,点A对应点为点G,连结DG.(1)如图2,当点G落在对角线BD上时,求DG的长;(2)如图3,当∠DGF=Rt∠时,求AF的长;(3)若直线FG交BD于点H,在点E的运动过程中,是否存在某一位置,使得以E,H,G为顶点的三角形与△AEF相似?若存在,请求出AE的长;若不存在,请说明理由.10.如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点D 在BC上,连接CE.(1)如图1,当=1时,则线段BD与线段CE的数量关系是 ,位置关系是 ;(2)如图2,当=3时,请猜想线段BD与线段CE的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接BE,分别取线段BE,DE的中点M,N,连接MN,MC,NC,若AB=,∠ADB=60°,求出△MNC的面积.11.几何学的产生,源于人们对土地测量的需要,后来由实际问题抽象成为数学问题.初中数学常见的几何模型有很多,通过整理归纳,可以从这些基本模型中找到其所藻蕴含的规律.【提出问题】如图1,△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,△ADE绕点A旋转,连结BD、EC,小明通过探究得到∠ABD与∠BCE的大小存在某种数量关系,具体探究过程如下.【探究问题】小明先将上述问题“特值化”,如图1,令AB=1,AD=,∠ABD=100°,则可证明△ABD和△ACE相似,进而可求得∠BCE的度数.请你帮助小明完成解答过程.【解决问题】将问题“一般化”,如图2,在△ADE绕点A旋转过程中,∠ABD与∠BCE满足的数量关系为 .【拓展应用】如图3,过线段AB的端点B作射线BM⊥AB,Rt△ADE的直角顶点D在射线BM上运动,连结BE,若AB=4,=,则BE的最小值为 .12.[基础巩固](1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,AF交DE于点G,求证:=.[尝试应用](2)如图2,已知D、E为△ABC的边BC上的两点,且满足BD=2DE=4CE,一条平行于AB的直线分别交AD、AE和AC于点L、M和N,求的值.[拓展提高](3)如图3,点E是正方形ABCD的边CD上的一个动点,AB=3,延长CD至点F,使DF=2DE,连接AE,BF,AE与BF相交于点G,连接CG,求CG的最小值.13.(1)例题再现:如图1,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,则AD的长为 .(2)类比探究:如图2,△ABC中,AC=14,BC=6,点D,E分别在线段AB,AC上,∠EDB=∠ACB=60°,DE=2.求AD的长.(3)拓展延伸:如图3,△ABC中,点D,点E分别在线段AB,AC上,∠EDB=∠ACB=60°.延长DE,BC交于点F,AD=4,DE=5,EF=6,求BD的长.14.如图,已知在菱形ABCD中,AB=5,cos B=,点E、F分别在边BC、CD上,AF的延长线交BC的延长线于点G,且∠EAF=∠BAD.(1)求证:AE2=EC•EG;(2)如果点F是边CD的中点,求S△ABE的值.(3)延长AE、DC交于点H,联结GH、AC,如果△AGH与△ABC相似,求线段BE 的长.15.已知Rt△ABC,∠BAC=90°,点D为直线BC上的一个动点(点D不与点B重合),连接AD,以AD为一边构造Rt△ADE,使∠DAE=90°,连接CE.(1)如图1,当==1时,直接写出线段BD与线段CE的数量关系与位置关系:①数量关系: ;②位置关系: ;(2)如图2,当==2时,请猜想线段BD与线段CE的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接BE,分别取线段BE,DE的中点M,N,连接MN,CM,CN,若AB=2,∠ADB=45°,请直接写出△CMN的面积.16.定义:一般地,如果两个相似多边形任意一组对应顶点P,P'所在的直线都经过同一点O,且有OP'=k⋅OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心,(1)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm.点P在AB上,点Q 在AC上,以PQ为边作菱形PQMN,点N在线段PB上且∠APQ=120°,在△ABC及其内部,以点A为位似中心,请画出菱形PQMN的位似菱形P'Q'M'N',且使菱形P'Q'M'N'的面积最大(不要求尺规作图);(2)求(1)中作出的菱形P'Q'M'N'的面积;(3)如图,四边形ABCD、AEFG是全等的两个菱形,CD、EF相交于点M,连接BG、CF.请用定义证明:△ABG与△MCF位似.17.定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图1,在△ABC与△AED中,BA=BC,EA=ED,且△ABC~AED,所以称△ABC与△AED为“关联等腰三角形”,设它们的顶角为α,连接EB,DC,则称为“关联比”.下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题:(1)当△ABC与△AED为“关联等腰三角形”,且α=90°时,①如图2,若点E落在AB上,则“关联比”= ;②如图3,探究△ABE与△ACD的关系,并求出“关联比”的值.(2)如图4,当△ABC与△AED为“关联等腰三角形”,且α=120°时,“关联比”= .[迁移运用](3)如图5,△ABC与△AED为“关联等腰三角形”.若∠ABC=∠AED=90°,AC=4,点P为AC边上一点,且PA=1,点E为PB上一动点,求点E自点B运动至点P时,点D所经过的路径长.18.阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A,B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,那么我们就把点E叫四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,那么我们就把点E叫四边形ABCD的边AB上的“强相似点”.解决问题:(1)如图1,∠A=∠B=∠DEC=50°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由.(2)如图2,在矩形ABCD中,A,B,C,D四点均在正方形网格(网格中每个小正方形的边长均为1)的格点(即每个小正方形的顶点)上,试在图中画出矩形ABCD的边AB上的强相似点.(3)如图3,将矩形ABCD沿着CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.19.如图,把两块全等的等腰直角三角板ABC和DEF叠放在一起,使三角板DEF的锐角顶点E与三角板ABC的斜边中点重合,其中∠BAC=∠EDF=90°,∠C=∠F=45°,AB=DE=6.把三角板ABC固定不动,三角板DEF由图1所示的位置绕点E沿顺时针方向旋转,设旋转角为α,其中0°<α<90°.设射线ED与射线BA相交于点P,射线EF与线段CA相交于点Q(当三角板旋转到图3所示位置时,线段EP交线段CA于点M).(1)如图1,当射线EF经过点A,即点Q与点A重合时,易证△BPE∽△CEQ.此时,BP•CQ= ;(2)当三角板DEF转到如图2的位置时,BP•CQ的值是否改变?说明你的理由;(3)在三角板DEF旋转的过程中,两三角板重合部分的面积是否可能为?若可能,直接写出此时CQ的长;若不可能,请说明理由.20.如图①,已知在正方形ABCD中,点E是边BC的中点,以BE为斜边构造等腰直角△BEF,将△BEF绕点B在平面内作逆时针旋转.(1)如图②,当∠EBC=30°时,若CG=,则BG= ;AG= ;(2)如图③,延长BE,与AC、DC分别相交于点G、N,延长BF,与AC、AD分别相交于点H、M,求证:△AMH∽△CGN;(3)如图④,连接CE、DE,请直接写出当DE+4CE取得最小值时,∠ECB的正切值.参考答案1.(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在△DCE与△DCF中,,∴△DCE≌△DCF(SAS),∴DE=DF;(2)证明:∵∠DCE=∠DCF=135°,∴∠CDF+∠F=180°﹣135°=45°,∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴=,即CD2=CE•CF;(3)解:如图,∵DG⊥BF,∴∠DGN=∠ECN=90°,CG=DG,当CD=2,CF=时,由CD2=CE•CF可得,CE=,在Rt△DCG中,CG=DG=CD•sin∠DCG=2×sin45°=,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△CEN∽△GDN,∴===2,∴GN=CG=,∴DN===.2.解:(1)∵∠C=90°,BC=5,AB=13,∴AC=12,①BQ=BC﹣CQ=5﹣t,PC=AC﹣AP=12﹣4t,故答案为:5﹣t,12﹣4t;②如图1,∵∠C=∠ADP=90°,∴cos A=,∴,∴t=,∴当t=时,PD⊥AB;(2)∵∠C=∠C,∴△CPQ∽△CAB或△CPD∽△CBA,∴或,当0<t≤3时,=或,∴t=或t=,当3<t≤6时,或,∴t=(舍去)或t=,综上所述:t=或或.3.解:(1)解x2﹣7x+12=0,得x1=4,x2=3,∵OA>OB,∴OA=4,OB=3,在Rt△AOB中,由勾股定理有AB===5.故答案为:5.(2)①∵点E在x轴上,S△AOE=,∴AO×OE=,∴OE=,∴E(,0)或E(﹣,0).故答案为:(,0)或(﹣,0).②在△AOE中,∠AOE=90°,OA=4,OE=,在△AOD中,∠OAD=90°,=4,AD=6,∵=,∠AOE=∠DAO,∴△AOE∽△DAO.(3)存在,理由如下:由题意,OB=OC=3,∴AO平分∠BAC,①AC、AF是邻边,点F在射线AB上时,AF=AC=5,所以点F与B重合,即F(﹣3,0).②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,点F(3,8).③AC是对角线时,AC解析式为y=﹣x+4,AC的垂直平分线经过点(,2),解析式为y=x+,由题意直线AB的解析式为y=x+4,由,解得,联立直线L与直线AB求交点,∴F(﹣,﹣).④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=,勾股定理得出,AN===.作点A关于N的对称点即为F,AF=,过F作y轴垂线,垂足为G,FG=×=,∴F(﹣,).综上所述,满足条件的点有四个:F1(3,8),F2(﹣3,0),F3(﹣,﹣),F4(﹣,).4.解:(1)∵AB=3cm,AC=4cm,∴BC===5(cm),∵F为BC的中点,∴CF=BC=cm,∴AE=cm,∵AC=4cm,∴CE=AC﹣AE=4﹣=(cm);(2)过点E作EM⊥CB于M,∵∠EMC=∠A=90°,∠ECM=∠ACB,∴△EMC∽△BAC,∴,∴,∴EM=,过点P作PG⊥CF,交BC的延长线于G,∵EP∥BC,EM⊥BC,四边形EMGP是矩形,∴EM=PG=(cm),∵S△PFC=CF•PG=1,∴=1,解得t=,∴当t=时,△PFC的面积为1cm2;(3)存在.分两种情况:①若∠FEP=90°时,∵EP∥BC,∴EF⊥BC,∵∠EFC=∠A,∠ECF=∠ACB,∴△EFC∽△BAC,∴,∴,解得t=;②当∠EFP=90°时,过点E作EM⊥BC,过点P作PG⊥BC,交BC的延长线于G,由(2)可知EM=(cm),,∴CM=(cm),∴MF=CM﹣CF=﹣t=(cm),∵EP=MG=5cm,∴FG=5﹣MF=5﹣=(cm),∵∠EFM+∠PFG=90°,∠PFG+∠FPG=90°,∴∠EFM=∠FPG,又∵∠EMF=∠PGF,∴△EMF=∽△FGP,∴,∴EM2=FG•MF,∴,∴2t2﹣3t=0,解得t=或t=0(舍去),综上所述,t=或t=时,△EFP为直角三角形.5.(1)证明:①∵BG⊥AE,∴∠BGA=90°,∴∠BAG+∠ABG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE=∠CBF,∴△ABE≌△BCF(ASA),∴BE=CF;②∵∠AGB=90°,点M为AB的中点,∴GM=BM=1,∴∠MGB=∠MBG,∵∠CGF=∠MGB,∠CFB=∠ABG,∴∠CFG=∠CGF,∴CF=CG,在Rt△CBM中,由勾股定理得,CM=,∴CF=CG=CM﹣MG=,∴;(2)解:由(1)同理可得△∽△BCF,∴,延长DC和AE交于点N,作CK⊥CG,交AN于K,∵DC∥AB,∴∠N=∠BAE=∠CBG,∵CG平分∠EGF,∴∠CGE=45°,∵CK⊥CG,∴CK=CG,∠BCG=∠KCN,∴△BCG≌△NCK(AAS),∴CN=CB,∵,∴,∵CN∥AB,∴,设CE=2m,BE=3m,则FC=2m,CN=5m,AB=,∴,∴,∴,∴AM=m,∴=.6.(1)证明:∵点D是BC的中点,故BD=CD,∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵∠CED+∠CDE=180°﹣∠C=120°,∠CDE+∠FDB=180°﹣∠EDF=120°,∴∠CED=∠FDB,∵∠B=∠C=60°,∴△CED∽△BDG,∴,∵BD=CD,∴BD2=BG•EC;(2)解:当时,设AE=3x,则EC=5x,∵DE=DF,∠EDF=60°,∴△EFD为等边三角形,则∠FED=60°,∵∠AEH+∠CED=120°,而∠AHE+∠AEH=180°﹣∠BAC=120°,∴∠CED=∠AHE且∠HAC=∠C=60°,∴△AHE∽△CED,∴,∴AH=,∵BD2=BG•EC,即(4x)2=BG×5x,∴BG=x,∴GH=AB﹣AH﹣BG=8x﹣﹣=,∴AH:HG:GB=75:21:64;(3)解:能,理由:①如图3,当∠FDB为直角时,由(1)知,△CED∽△BDF,∴∠DEC=∠BDF=90°,在Rt△CDE中,DE=CD sin C=2×==DF,∴DF=;②当∠FBD为直角时,如图4,过点D作DM⊥AC,由(1)知,∠DEC=∠FDB,∵∠EMD=∠FBD=90°,DE=DF,∴△EMD≌△DBF(AAS),∴DM=BF,由①得:DM==BF,在Rt△BDF中,DF===;③当∠BFD为直角时,如图5,过点D作DM⊥AC,由(1)知,∠DEC=∠FDB,∵∠EMD=∠BFD=90°,DF=DE,∴△EMD≌△DFB(ASA),∴BD=ED=DF,即BD=DF,这与∠BFD为直角矛盾,故该情况不存在,综上,DF=或.7.(1)证明:∵△ABC是等边三角形;,∴∠B=∠C=60°,∴∠ADB+∠BAD=180°﹣∠B=120°.∵∠ADE=60°,∴∠ADB+∠EDC=180°﹣∠ADE=120°,∴∠BAD=∠EDC,∴△BAD∽△CDE,∴,∴AB•CE=BD•DC;(2)解:∵∠BAC=90°,∠B=60°,∴∠C=30°.∵∠BAC=90°,AD⊥BC,∴∠BAD=30°,∴∠DAE=60°.∵AE=AD,∴△ADE为等边三角形,∴DE=AD=AE,∠ADE=∠AED=60°.∵∠AED=∠C+∠EDC=60°,∴∠EDC=∠C=30°,∴DE=EC.∵∠EFD=60°,∴∠DEF=180°﹣∠EFD﹣∠EDC=90°,∴DF=2EF.∵∠DFE=∠C+∠FEC=60°,∴∠FEC=∠C=30°,∴EF=FC,∴DF=2FC,即=2,故答案为:2;(3)解:在DC上截取DF=EF,如图,∵∠DAE=∠ADE=60°,∴∠DAE=∠ADE=∠AED=60°,∴△ADE为等边三角形,∴AD=DE.∵∠ABC=60°,∠ADE=60°,∴∠ADB+∠BAD=120°,∠ADB+∠EDF=120°,∴∠BAD=∠EDF,在△BAD和△FDE中,,∴△BAD≌△FDE(SAS),∴∠B=∠EFD=60°,∴∠EFC=120°.∵∠AED=60°,∴∠DEC=120°,∴∠EFC=∠DEC,∵∠C=∠C,∴△EFC∽△DEC,∴,∴,∴CF2+5CF﹣36=0,∵CF>0,∴CF=4.∴DC=DF+CF=5+4=9.8.解:(1)BD与线段CE的数量关系为:BD=CE,它们的位置关系为:BD⊥EC,理由:∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE=90°,∴∠BAD=∠CAE.∵=1,∴△BAD∽△CAE,∴=1,∠ABD=∠ACE,∴BD=EC,∵∠B+∠ACB=90°,∴∠ACE+∠ACB=90°,即:∠BCE=90°,∴BD⊥EC;(2)线段BD与线段CE的数量关系为:,位置关系为:BD⊥EC,理由:∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE=90°,∴∠BAD=∠CAE.∵=1,∴△BAD∽△CAE,∴=,∠ABD=∠ACE,∵∠B+∠ACB=90°,∴∠ACE+∠ACB=90°,即:∠BCE=90°,∴BD⊥EC;(3)①当点D在线段CB上时,过点A作AF⊥BD于点F,如图,∵,tan∠ABC=,∴tan∠ABC=2,∵tan∠ABC=,∴=2,设BF=k,则AF=2k,∴AB==k=2,∴k=2,∴AF=4,BF=2.∵tan∠ADB==,∴DF=3,∴BD=DF+BF=3+2=5.∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE=90°,∴∠BAD=∠CAE.∵=,∴△BAD∽△CAE,∴=,∠ABD=∠ACE,∴EC=2BD=10.∵∠B+∠ACB=90°,∴∠ACE+∠ACB=90°,即:∠BCE=90°,∴BD⊥EC;∵点N为DE的中点,点M为BE的中点,∴CN=NE=DN=DE,CM=EM=BM=BE,在△CMN和△EMN中,,∴△CMN≌△EMN(SSS),∴S△CMN=S△EMN.∵点N为DE的中点,店M为BE的中点,∴M,N为△EDB的中位线,∴MN∥BD,MN=BD,∴△EMN∽△EBD,∴.∵BD•EC=5×10=25,∴S△EMN=,∴.②当点D在线段CB的延长线上时,过点A作AF⊥BD于点F,如图,∵,tan∠ABC=,∴tan∠ABC=2,∵tan∠ABC=,∴=2,设BF=k,则AF=2k,∴AB==k=2,∴k=2,∴AF=4,BF=2.∵tan∠ADB==,∴DF=3,∴BD=DF﹣BF=3﹣2=1.∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE=90°,∴∠BAD=∠CAE.∵=,∴△BAD∽△CAE,∴=,∠ABD=∠ACE,∴EC=2BD=2.∵∠B+∠ACB=90°,∴∠ACE+∠ACB=90°,即:∠BCE=90°,∴BD⊥EC;∵点N为DE的中点,点M为BE的中点,∴CN=NE=DN=DE,CM=EM=BM=BE,在△CMN和△EMN中,,∴△CMN≌△EMN(SSS),∴S△CMN=S△EMN.∵点N为DE的中点,店M为BE的中点,∴M,N为△EDB的中位线,∴MN∥BD,MN=BD,∴△EMN∽△EBD,∴.∵BD•EC=1×2=1,∴S△EMN=,∴S.综上,△CMN的面积为或.9.解:(1)连结AG,如图2,∵四边形ABCD是矩形,∴AD=BC=6,∠BAD=90°,∴BD===10,由折叠的性质得:AG⊥EF,∵EF∥BD,∴AG⊥BD,∴∠AGD=90°,∵∠ADG=∠BDA,∴△AGD∽△BAD,∴=,即=,解得:DG=,即DG的长为;(2)当∠DGF=90°时,此时点D,G,E三点共线,由折叠的性质得:FG=FA,∵EF∥BD,∴△AEF∽△∠ABD,∴===,设AF=3t,则FG=3t,AE=4t,DF=6﹣3t,在Rt△DFG中,由勾股定理得:DG2=DF2﹣FG2=(6﹣3t)2﹣(3t)2=36﹣36t,∵∠GDF=∠ADE,∠DGF=∠DAE,∴△DGF∽△DAE,∴=,即,解得:t=,经检验,t=是原方程的解,且符合题意,∴AF=3t=.(3)①当点E与点B重合时,点H与点D重合,如图4,此时,△EHG与△AEF全等,符合条件.∴AE=8.②当△GHE∽△AEF时,如图5,则,∴,设AF=3t,则AE=4t,∴FG=3t,DF=6﹣3t,GE=4t,,∴,由折叠的性质得:∠AFE=∠GFE,∵EF∥BD,∴∠AFE=∠ADB,∠GFE=∠DHF,∴∠AFE=∠ADB=∠DHF,∴DF=FH,即,解得:,∴AE=;③当△GHE∽△AFE时,如图6,∴==,∴,由折叠的性质得:FG=AF,GE=AE,设AF=3t,则AE=4t,∴FG=3t,DF=6﹣3t,GE=4t,GH=3t,∴FH=FG+GH=3t+3t=6t,同②得:DF=FH,∴6﹣3t=6t,解得:,∴AE=;综上所述,在点E的运动过程中,存在某一位置,使得以E,H,G为顶点的三角形与△AEF相似,AE的长为8或或.10.解:(1)∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,又∵=1,∴△ABD∽△ACE,∴==1,∠B=∠ACE,∴BD=CE,∠BCE=∠ACB+∠ACE=∠ACB+∠B=90°,∴BD⊥CE,故答案为:BD=CE,BD⊥CE;(2)CE=3BD,BD⊥CE,理由如下:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,又∵=3,∴△ABD∽△ACE,∴==3,∠B=∠ACE,∴CE=3BD,∠BCE=∠ACB+∠ACE=∠ACB+∠B=90°,∴BD⊥CE;(3)如图3,过点A作AH⊥BC于H,∵,AB=,∴AC=3,∴BC===10,∵S△ABC=×AB×AC=×BC×AH,∴AH==3,∴BH===1,∵∠ADB=60°,AH⊥BC,∴∠DAH=30°,∴AH=DH,∴DH=,∴BD=1+,∵CE=3BD,∴CE=3+3,∴S△BDE=×BD×CE=6+3,∵点M是BE的中点,点N是DE的中点,∠BCE=90°,∴CM=BE,CN=DE,MN=BD,∴=,∴△MNC∽△BDE,∴=,∴S△MNC=×(6+3)=.11.解:【探究问题】如图1,∵△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,∴AB=CB=1,AD=ED=,∴AC===,AE===2,∴==,∵∠BAC=∠BCA=45°,∠DAE=∠DEA=45°,∴∠CAE=∠BAD=45°﹣∠BAE,∴△CAE∽△BAD,∴∠ACE=∠ABD=100°,∴∠BCE=∠ACE﹣∠BCA=100°﹣45°=55°,∴∠BCE的度数是55°.【解决问题】如图2,∵△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,∴AB=CB,AD=ED,∴AC===AB,AE===AD,∴==,∵∠BAC=∠BCA=45°,∠DAE=∠DEA=45°,∴∠BAD=∠CAE=45°+∠BAE,∴△BAD∽△CAE,∴∠ABD=∠ACE,∴∠ABD﹣∠BCE=∠ACE﹣∠BCE=45°,故答案为:∠ABD﹣∠BCE=45°.【拓展应用】如图3,延长BG到点G,使BG=3,连结AG,∵AB=4,=,∴==,∵BM⊥AB,∠ADE=90°,∴∠ABG=∠ADE=90°,∴△ABG∽△ADE,∴=,∠BAG=∠DAE,∴=,∠BAG﹣∠BAE=∠DAE﹣∠BAE,∴∠GAE=∠BAD,∴△GAE∽△BAD,∴∠AGE=∠ABD=90°,∴点E在过点G且垂直于AG作BF⊥EG于点F,则∠GFB=∠ABG=90°,∵∠FGB=∠BAG=90°﹣∠AGB,∴△FGB∽△BAG,∴=,∵BG=3,GA===5,∴FB===,∵BE≥BF,∴BE≥,∴BE的最小值为,故答案为:.12.(1)证明:∵DE∥BC,∴△ADG∽△ABF,△AGE∽△AFC,∴,=,∴,∴;(2)解:如图2,过点M作MG∥BC,交AB于点G,交AD于点H,交AC于点F,∵MG∥BC,∴△AHG∽△ADB,△AMH∽△AED,∴,=,∴=,∴==2,∴GH=2HM,同理可得:HM=2MF,∴GH=4MF,GF=7MF,∵NL∥AB,∴△FMN∽△FAG,∴=,∴MN=AG,∵NL∥AB,∴△MHL∽△GHA,∴=,∴ML=AG,∴=;(3)解:如图3,连接DG,并延长DG交AB于Q,∵AB∥CD,∴△ABG∽△EFG,△AQG∽△EDG,∴,,∴,∵DF=2DE,∴EF=3DE,∴=,∴AQ=1,∴QD===,∵点G在QD上运动,∴当CG⊥QD时,CG有最小值,此时,∠CGD=∠DAQ=90°,∵AB∥CD,∴∠AQD=∠CDG,∴△AQD∽△GDC,∴=,∴CG==.13.解:(1)∵∠ADE=∠C=90°,∠A=∠A,∴△ADE∽△ACB,∴=,∵AB=10,AC=8,AE=5,∴=,解得:AD=4,故答案为:4;(2)如图2,在AC上截取CH=CB,连接BH,∵∠ACB=60°,∴△BCH为等边三角形,∴CH=BH=BC=6,∠CHB=60°,∴AH=AC﹣CH=8,∠AHB=120°,∵∠EDB=60°,∴∠ADE=120°,∴∠ADE=∠AHB,∵∠A=∠A,∴△ADE∽△AHB,∴=,即=,解得:AD=;(3)过点B作BM⊥DE于点M,过点E作EN⊥AB于点N,∴∠BMD=∠BME=∠ANE=90°,∵∠EDN=60°,∴∠DEN=30°,∴DN=DE=,则EN==,∴AN=AD+DN=4+=,设DM=a,∵∠BDM=60°,∠DMB=30°,∴∠MBD=30°,∴BD=2a,∴BM==a,∵DE=5,EF=6,∴MF=DE+EF﹣DM=11﹣a,∵∠BCA=∠F+∠FEC,∠BDE=∠A+∠AED,∠AED=∠FEC,∠BCA=∠BDE,∴∠A=∠F,∴△AEN∽△FMB,∴=,即=,解得:a=,∴BD=2a=.14.(1)证明:∵四边形ABCD为菱形,∴AD∥BC,∠BAC=∠CAD=∠BAD,又∵∠EAF=∠BDA,∴∠CAD=∠EAF,∴∠EAC=∠DAF,∵AD∥BC,∴∠DAF=∠G,∴∠EAC=∠G,又∵∠AEC=∠GAE,∴△AEC∽△GAE,∴,即AE2=EC•EG;(2)解:过点A作AH⊥BC交CB于点H,∵四边形ABCD为菱形,∴AD=AB=BC=CD=5,AD∥BC,∵AD∥BC,点F是CD的中点,,∴CG=AD=5,设BE=x,则EC=5﹣x,EG=EC+CG=5﹣x+5=10﹣x,则AE2=EC•EG=(5﹣x)(10﹣x),在Rt△ABH中,cos B=,而AB=5,则HB=3,AH=4,则EH =3﹣x ,在Rt △AEH 中,AE 2=AH 2+EH 2,即AE 2=(3﹣x )2+42,∴(3﹣x )2+42=(5﹣x )(10﹣x ),解得x ==BE ,则S △ABE =BE ×AH =××4=;(3)解:由(1)知,∠EAC =∠DAF ,则∠BAE =∠CAG ,∴∠BAC =∠EAF ,∴当或时,△AGH 与△ABC 相似,当时,∵∠BAC =∠BAD ,∠EAF =∠BAD ,∴∠BAC =∠EAF ,∴∠BAE =∠CAG ,∵AB ∥CD ,∴∠BAE =∠AHC ,∴∠CAG =∠AHC ,又∵∠EAC =∠AGC ,∴△AHC ∽△GAC ,∴,又,∴CH =AB ,∵AB ∥CD ,∴,∴BE =EC =BC =;当时,同理可得:△AHC ∽△GAC ,∴,又∵,∴CG=AB,由(2)知,此时BE=,综上,BE=或.15.解:(1)①∵==1,∴AC=AB,AE=AD,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE,故答案为:BD=CE;②由①可知△BAD≌△CAE(SAS),∴∠ABD=∠ECA,∵∠ABD+∠ACB=90°,∴∠ECA+∠ACB=90°,∴∠CEB=90°,∴CE⊥BD,故答案为:CE⊥BD;(2)EC=2BD,CE⊥BD,理由如下:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠ABD=∠ECA,∵==2,∴△BAD∽△CAE,∴=2,∴EC=2BD,∵∠ABD+∠ACB=90°,∴∠ECA+∠ACB=90°,∴∠CEB=90°,∴CE⊥BD,∴综上所述,EC=2BD,CE⊥BD;(3)当D点在线段BC上时,如图1,过点A作AF⊥BD交于F点,由(2)知,AC=2AB,∴tan∠ABC=2=,∴AF=2BF,∵AB=2,∴AF=4,BF=2,∵∠ADF=45°,∴DF=AF=4,∴BD=2+4=6,∵=2,∴EC=12,∴S△EBD=×BD×EC=×12×6=36,∵M、N分别是BE、DE的中点,∴MN∥BD,MN=BD,∴=,∵∠ECD=90°,∴CN=ED,CM=BE,∴EN=CN,EM=CM,∴△CMN≌△EMN(SSS),∴=,∴S△CMN=9;当D点在CB的延长线上时,如图2,过A点作AG⊥BD交于点G,同理可得BD=4﹣2=2,∵=2,∴EC=4,∴S△EBD=×BD×EC=×4×2=4,∵=,∴S△CMN=1;综上所述:△CMN的面积为1或9.16.解:(1)如图:(2)∵四边形P'Q'M'N'在△ABC内,∴当M'点在BC上时,菱形P'Q'M'N'的面积最大,∵四边形PQMN是菱形,四边形P'Q'M'N'是菱形,∴Q'M'∥AB,M'N'∥PQ,∴∠QPB=∠M'N'B=60°,∵∠CAB=30°,∠ACB=90°,∴∠B=60°,∴△BM'N'是等边三角形,∴M'B=M'N'=Q'M',∵AB=6cm,∴BC=3cm,∴CM'=3﹣BM',在Rt△CM'Q'中,∠CQ'M'=30°,∴Q'M'=2CM',∴BM'=2(3﹣BM'),解得BM'=2,在△BM'N'中,过点M'作M'E⊥BN'交于点E,∵BM'=2,∠B=60°,∴M'E=,∴菱形P'Q'M'N'的面积=2;(3)延长GF、BC交于O点,连接AO,∵四边形ABCD、AEFG是全等的两个菱形,∴AG=AB,∠AGF=∠ABC,∴∠OGB=∠OBG,∴OG=BO,∵GF=BC,∴OF=OC,∴=,连接OM,∵∠GFE=∠BCD,∴∠MFO=∠MCO,∵∠OFC=∠FCO,∴CM=FM,∴△MOF≌△MOC(SAS),∴∠FOM=∠COM,∵AG=AB,∠AGO=∠ABO,GO=BO,∴△AGO≌△ABO(SAS),∴∠FOA=∠BOA,∴MO与AO重合,∴A、M、O三点共线,∴GF、BC、AM的延长线交于一点O,∴MF∥AG,∴=,∵CM∥AB,∴=,∴==,∴△ABG与△MCF位似.17.解:(1)①∵△ABC与△AED为等腰直角三角形,∴∠BAC=∠EAD=45°,,∴∠BAC﹣∠CAE=∠EAD﹣∠EAC,∴∠BAE=∠CAD,∴△ABE∽△ACD,∴,故答案为:;②∵∠AED=∠CBA=90°,∴DE∥CB,∴==,故答案为:;(2)如图1,作EF⊥AD于F,∴∠AFE=90°,∵AE=DE,∠AED=120°,∴∠EAD=∠EDA=30°,AF=DF,∴AE=2EF,AF=EF,∴AD=2AF=2EF,∴,同理可证:△CAD∽△BAE,∴,故答案为:;(3)如图2,同理可得:△CAD∽△BAE,∴∠ACD=∠ABE,∴点D所经过的路径是线段CD,此时CP=AC﹣AP=1,PE=DE=1,∠CPD=90°,∴CD===,∴自点B运动至点P时,点D所经过的路径长为:.18.解:(1)结论:点E是四边形ABCD的边AB上的相似点.理由:∵∠A=∠DEC=50°∴∠ADE+∠AED=130°,∠BEC+∠AED=130°,∴∠ADE=∠BEC,又∵∠A=∠B,∴△ADE∽△BEC,∴点E是四边形ABCD的边AB上的相似点;(2)如图中所示的点E和点F为AB上的强相似点;(3)∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM,由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=∠BCD=30°,CE=AB,在Rt△BCE中,cos∠BCE=,∴=,∴=,∴AB=BC.19.解:(1)∵△ABC是等腰直角三角形,且点E是BC的中点,∴∠B=∠C=45°,AE⊥BC,BE=AE,∴∠BEP=∠AEP=∠EAC=45°,∴△BPE∽△CEQ,∴,∴BP•CQ=BE•CE=(BC)2=(•AB)2=18;故答案为:18;(2)BP•CQ的值不变,理由如下:由(1)可知:△BPE∽△CEQ,∴,∴BP•CQ=BE•CE=BE•BE=BE2=18;(3)过E点作EN⊥AC于点N,此时重叠部分为△MEQ,设CQ为x,∵BP•CQ=18,∴BP=,∴AP=,∵EN⊥AC,∴∠ENC=90°=∠BAC,∴EN∥AB,∴△ENM∽△PAM,∴,即,解得:AM==,∴MQ=6﹣AM﹣CQ=6﹣x﹣,∴y==(6﹣x﹣)×3,当y=时,代入得:=(6﹣x﹣)×3,整理可得:2x2﹣7x+6=0,∵x=或x=2,∴存在CQ使面积为.20.(1)解:过点G作GH⊥BC于H,∵四边形ABCD是正方形,∴∠ACB=45°,∴GH=CH=1,∵∠EBC=30°,∴BH=,BG=2,∴+1,∴AC=BC=+,∴AG=,故答案为:2,;(2)证明:∵∠EBF=∠ACB=45°,∴∠CGN=45°+∠CBN=∠MBC,∵AD∥BC,∴∠AMH=∠MBC,∴∠AMH=∠CGN,∵∠MAH=∠GCN=45°,∴△AMH∽△CGN;(3)解:连接BD,在BD上取点G,使BG=,连接EG,∵BE=BC,BD=BC,∴=,∵∠EBG=∠DBE,∴△EBG∽△DBE,∴EG=DE,∴DE+4CE=4(DE+CE)=4(EG+CE),∴点C、E、G三点共线时,EG+CE最小.过点G作GH⊥BC于H,设BG=x,则BE=x,BC=2x,∴BH=GH=,∴CH=,∴tan∠BCE==.。
2020-2021中考数学相似培优练习(含答案)含详细答案.doc
2020-2021中考数学相似培优练习 (含答案 )含详细答案一、相似1.如图所示,△ ABC 中, AB=AC,∠ BAC=90°, AD⊥ BC, DE⊥ AC,△ CDE 沿直线 BC 翻折到△ CDF,连结 AF 交 BE、 DE、 DC分别于点 G、 H、I.(1)求证: AF⊥ BE;(2)求证: AD=3DI.【答案】(1)证明:∵在△ ABC中, AB=AC,∠ BAC=90°, D 是 BC 的中点,∴AD=BD=CD,∠ ACB=45 ,°∵在△ ADC中, AD=DC,DE⊥ AC,∴A E=CE,∵△ CDE沿直线 BC 翻折到△ CDF,∴△ CDE≌ △CDF,∴C F=CE,∠ DCF=∠ACB=45 ,°∴C F=AE,∠ ACF=∠DCF+∠ACB=90 ,°在△ ABE 与△ ACF中,,∴△ ABE≌ △ ACF(SAS),∴∠ ABE=∠ FAC,∵∠ BAG+∠ CAF=90 ,°∴∠ BAG+∠ ABE=90 ,°∴∠ AGB=90 ,°∴AF⊥BE(2)证明:作IC 的中点 M,连接 EM,由( 1)∠ DEC=∠ECF=∠ CFD=90°∴四边形 DECF是正方形,∴EC∥ DF, EC=DF,∴∠ EAH=∠ HFD, AE=DF,在△ AEH 与△FDH 中,∴△ AEH≌ △FDH( AAS),∴EH=DH,∵∠ BAG+∠ CAF=90 ,°∴∠ BAG+∠ ABE=90 ,°∴∠ AGB=90 ,°∴AF⊥BE,∵M 是 IC 的中点, E 是 AC 的中点,∴EM∥AI,∴,∴DI=IM ,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】( 1)根据翻折的性质和SAS 证明△ ABE≌ △ ACF,利用全等三角形的性质得出∠ ABE=∠ FAC,再证明∠ AGB=90°,可证得结论。
中考数学 相似 培优练习(含答案)附详细答案
中考数学相似培优练习(含答案)附详细答案一、相似1.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。
中考数学相似(大题培优 易错 难题)含答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D 是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F.求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.【答案】(1)解:(1)①当MN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BM= = = ,②当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN= = =5,综上,BN= 或5;(2)解:作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;点D即为所求;如图2所示.(3)解:①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AF,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,∵BH=DF,EF=HE,∵EF2=BE2+DF2,∴E、F是线段BD的勾股分割点.②证明:如图4中,连接FM,EN.∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∵∠AFE=∠FDN,∴△AFE∽△DFN,∴∠AEF=∠DNF,,∴,∵∠AFD=∠EFN,∴△AFD∽△EFN,∴∠DAF=∠FEN,∵∠DAF+∠DNF=90°,∴∠AEF+∠FEN=90°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM= AF,AN= AE,∵S△AMN= AM•AN•sin45°,S△AEF= AE•AF•sin45°,∴ =2,∴S△AMN=2S△AEF.【解析】【分析】(1)此题分两种情况:①当MN为最大线段时,②当BN为最大线段时,根据线段的勾股分割点的定义,利用勾股定理分别得出BM的长;(2)利用尺规作图,将线段AC,CD,DB转化到同一个直角三角形中,①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;这样的作图可以保证直角的出现,及AC 是一条直角边,③连接BF,并作BF的垂直平分线,交AB于D;这样的作图意图利用垂直平分线上的点到线段两个端点的距离相等,即BD=DF,从而实现将三条线段转化到同一直角三角形的目的;(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.根据正方形的性质及旋转的性质得出∠EAH=∠EAF=45°,AH=AF,利用SAS判断出△EAH≌△EAF,根据全等三角形对应边相等得出EF=HE,根据正方形的每条对角线平分一组对角,及旋转的性质得出∠ABH=∠ADF=45°=∠ABD,故∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,根据等量代换得出结论;②证明:如图4中,连接FM,EN.根据正方形的性质及对顶角相等判断出△AFE∽△DFN,根据相似三角形对应角相等,对应边成比例得出∠AEF=∠DNF, AF∶DF =EF∶FN ,根据比例的性质进而得出AF∶EF =DF∶FN,再判断出△AFD∽△EFN,根据相似三角形对应角相等得出∠DAF=∠FEN,根据直角三角形两锐角互余,及等量代换由∠DAF+∠DNF=90°,得出∠AEF+∠FEN=90°,即∠AEN=90°,从而判断出△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;根据等腰直角三角形的边之间的关系AM= AF,AN= AE,从而分别表示出S△AMN与S△AEF,求出它们的比值即可得出答案。
中考数学 相似 培优练习(含答案)及详细答案
中考数学相似培优练习(含答案)及详细答案一、相似1.如图,在四边形ABCD中,AD//BC,,BC=4,DC=3,AD=6.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围).(2)当B,P,Q三点为顶点的三角形是等腰三角形时,求出此时的值.(3)当线段PQ与线段AB相交于点O,且2OA=OB时,直接写出 =________. (4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由.【答案】(1)(2)解:如图1,过点P作PH⊥BC于点H,∴∠PHB=∠PHQ=90°,∵∠C=90°,AD∥BC,∴∠CDP=90°,∴四边形PHCD是矩形,∴PH=CD=3,HC=PD=2t,∵CQ=t,BC=4,∴HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,∴BQ2= ,BP2= ,PQ2= ,由BQ2=BP2可得:,解得:无解;由BQ2=PQ2可得:,解得:;由BP2= PQ2可得:,解得:或,∵当时,BQ=4-4=0,不符合题意,∴综上所述,或;(3)(4)解:如图3,过点D作DM∥PQ交BC的延长线于点M,则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,∵AD∥BC,DM∥PQ,∴四边形PQMD是平行四边形,∴QM=PD=2t,∵QC=t,∴CM=QM-QC=t,∵∠BCD=∠MCD=90°,∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2,∵BM2=(BC+CM)2=(4+t)2,∴由BM2=BD2+DM2可得:,解得:,∴当时,∠BDM=90°,即当时,PQ⊥BD.【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-t,点P到BC的距离=CD=3,∴S△PBQ= BQ×3= ;( 3 )解:如图2,过点P作PM⊥BC交CB的延长线于点M,∴∠PMC=∠C=90°,∵AD∥BC,∴∠D=90°,△OAP∽△OBQ,∴四边形PMCD是矩形,,∴PM=CD=3,CM=PD=2t,∵AD=6,BC=4,CQ=t,∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,∴,解得:,∴MQ= ,又∵PM=3,∠PMQ=90°,∴tan∠BPQ= ;【分析】(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到s与t之间的函数关系式。
中考数学相似(大题培优 易错 难题)附详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在△ABC中,∠C=90°,AC=8,BC=6。
P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x.(1)在△ABC中,AB= ________;(2)当x=________时,矩形PMCN的周长是14;(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。
【答案】(1)10(2)5(3)解:∵PM⊥AC,PN⊥BC,∴∠AMP=∠PNB=∠C=90º.∴AC∥PN,∠A=∠NPB.∴△AMP∽△PNB∽△ABC.当P为AB中点时,可得△AMP≌△PNB此时S△AMP=S△PNB= ×4×3=6而S矩形PMCN=PM·MC=3×4=12.所以不存在x的值,能使△AMP的面积、△PNB的面积与矩形PMCN面积同时相等.【解析】【解答】(1)∵△ABC为直角三角形,且AC=8,BC=6,( 2 )∵PM⊥AC PN⊥BC∴MP∥BC,AC∥PN(垂直于同一条直线的两条直线平行),∴,∵AP=x,AB=10,BC=6,AC=8,BP=10-x,∴矩形PMCN周长=2(PM+PN)=2( x+8- x)=14,解得x=5;【分析】在△ABC中,∠C=90°,AC=8,BC=6根据勾股定理,可求出AB的长;AP=x,可以得到矩形PMCN的周长的表达式,构造方程,解方程得到x值.可以证明△AMP∽△PNB∽△ABC,只有当P为AB中点时,可得△AMP≌△PNB,此时S△AMP=S△PNB,分别求出当P为AB中点时△PAM的面积、△PBN的面积与矩形PMCN的面积比较即可.2.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【答案】(1)解:∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AC∵AB=BC,∴△ABD≌CBD∴∠ABD=∠CBD在⊙O中,AD与DE分别是∠ABD与∠CBD所对的弦∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴,∵AB=BC=10,CE=2,D是AC的中点,∴CD= ;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD= ,AB=10,∴BD=3 ,∵EM⊥AB,AB是⊙O的直径,∴,∴∠BEP=∠EDB,∴△BPE∽△BED,∴,∴BP= ,∴DP=BD-BP= ,∴S△DPE:S△BPE=DP:BP=13:32,∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE= .【解析】【分析】(1)根据已知条件AB是⊙O的直径得出∠ADB=90°,再根据等腰三角形的三线合一的性质即可得出结论。
中考数学培优(含解析)之相似附答案
中考数学培优(含解析)之相似附答案一、相似1.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.(1)试用含a,b,x的代数式表示新矩形的长和宽;(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),可得新矩形的长为(a+2x)cm,宽为(b+2x)cm(2)解:假设两个矩形的长与宽是成比例线段,则有,由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.∵a>b,∴a-b≠0,∴x=0,又∵x>0,∴原矩形的长、宽与新矩形的长、宽不是比例线段.【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。
(2)假设两个矩形的长与宽是成比例线段,列出比例式,再利用比例的性质得出x=0,即可判断。
2.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)设四边形DECO的面积为s,求s关于t的函数表达式.【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入得:,解得:,∴抛物线的解析式为:,对称轴为:直线x=﹣;(2)解:存在,∵AD=2t,∴DF=AD=2t,∴OF=4﹣4t,∴D(2t﹣4,0),∵直线AC的解析式为:,∴E(2t﹣4,t),∵△EFC为直角三角形,分三种情况讨论:①当∠EFC=90°,则△DEF∽△OFC,∴,即,解得:t= ;②当∠FEC=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴DE= AF,即t=2t,∴t=0,(舍去),③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;(3)解:∵B(1,0),C(0,2),∴直线BC的解析式为:y=﹣2x+2,当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);当D在y轴的右侧时,如图2,∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即(2<t<).综上所述:【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。
中考数学培优(含解析)之相似及详细答案
中考数学培优(含解析)之相似及详细答案一、相似1.如图,在矩形ABCD中,AB=18cm,AD=9cm,点M沿AB边从A点开始向B以2cm/s 的速度移动,点N沿DA边从D点开始向A以1cm/s的速度移动.如果点M、N同时出发,用t(s)表示移动时间(0≤t≤9),求:(1)当t为何值时,∠ANM=45°?(2)计算四边形AMCN的面积,根据计算结果提出一个你认为合理的结论;(3)当t为何值时,以点M、N、A为顶点的三角形与△BCD相似?【答案】(1)解:对于任何时刻t,AM=2t,DN=t,NA=9-t,当AN=AM时,△MAN为等腰直角三角形,即:9-t=2t,解得:t=3(s),所以,当t=3s时,△MAN为等腰直角三角形(2)解:在△NAC中,NA=9-t,NA边上的高DC=12,∴S△NAC= NA•DC= (9-t)•18=81-9t.在△AMC中,AM=2t,BC=9,∴S△AMC= AM•BC= •2t•9=9t.∴S四边形NAMC=S△NAC+S△AMC=81(cm2).由计算结果发现:在M、N两点移动的过程中,四边形NAMC的面积始终保持不变.(也可提出:M、N两点到对角线AC的距离之和保持不变)(3)解:根据题意,可分为两种情况来研究,在矩形ABCD中:①当NA:AB=AM:BC 时,△NAP∽△ABC,那么有:( 9-t):18=2t:9,解得t=1.8(s),即当t=1.8s时,△NAP∽△ABC;②当 NA:BC=AM:AB时,△MAN∽△ABC,那么有:( 9-t):9=2t:18,解得t=4.5(s),即当t=4.5s时,△MAN∽△ABC;所以,当t=1.8s或4.5s时,以点N、A、M为顶点的三角形与△ABC相似【解析】【分析】(1)根据题意可得:因为对于任何时刻t,AM=2t,DN=t,NA=9-t.当NA=AM时,△MAN为等腰直角三角形,可得方程式,解可得答案。
2020-2021初三数学相似的专项培优练习题(含答案)附详细答案
2020-2021初三数学相似的专项培优练习题(含答案)附详细答案一、相似1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。
中考数学培优(含解析)之相似及答案
中考数学培优(含解析)之相似及答案一、相似1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为________;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为________;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=________(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=________(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含m,n,b的式子表示).【答案】(1)(2)(3);;或;或【解析】【解答】(解:(1)∵点H是AD的中点,∴AH= AD,∵正方形AEOH∽正方形ABCD,∴相似比为: == ;故答案为:;( 2 )在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:,故答案为:;( 3 )A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即 a:b=b:a,∴a= b;故答案为:②每个小矩形都是全等的,则其边长为b和 a,则b: a=a:b,∴a= b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a= a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣ = ,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为: b或 b.【分析】由题意可知,用相似多边形的性质即可求解。
中考数学培优(含解析)之相似及答案解析
中考数学培优(含解析)之相似及答案解析一、相似1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=- ,则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2(2)解:由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,∴直线BD解析式为y= x-2,∵QM⊥x轴,P(m,0),∴Q(m,- m2+ m+2)、M(m, m-2),则QM=- m2+ m+2-( m-2)=- m2+m+4,∵F(0,)、D(0,-2),∴DF= ,∵QM∥DF,∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3,即m=-1或3时,四边形DMQF是平行四边形。
(3)解:如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。
2020-2021初三数学相似的专项培优练习题(含答案)含答案
2020-2021初三数学相似的专项培优练习题(含答案)含答案一、相似1.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.(1)试用含a,b,x的代数式表示新矩形的长和宽;(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),可得新矩形的长为(a+2x)cm,宽为(b+2x)cm(2)解:假设两个矩形的长与宽是成比例线段,则有,由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.∵a>b,∴a-b≠0,∴x=0,又∵x>0,∴原矩形的长、宽与新矩形的长、宽不是比例线段.【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。
(2)假设两个矩形的长与宽是成比例线段,列出比例式,再利用比例的性质得出x=0,即可判断。
2.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【答案】(1)解:∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AC∵AB=BC,∴△ABD≌CBD∴∠ABD=∠CBD在⊙O中,AD与DE分别是∠ABD与∠CBD所对的弦∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴,∵AB=BC=10,CE=2,D是AC的中点,∴CD= ;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD= ,AB=10,∴BD=3 ,∵EM⊥AB,AB是⊙O的直径,∴,∴∠BEP=∠EDB,∴△BPE∽△BED,∴,∴BP= ,∴DP=BD-BP= ,∴S△DPE:S△BPE=DP:BP=13:32,∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE= .【解析】【分析】(1)根据已知条件AB是⊙O的直径得出∠ADB=90°,再根据等腰三角形的三线合一的性质即可得出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此时,∠ ABM=∠ BAC=90°,∠ AMB=∠ BAM=45°,BM=AB=AC. ∴ 四边形 ABMC 是正方形. ∴ ∠ BMC=90°, ∴ ∠ AMC=∠ BMC-∠ AMB=45°, ∵ ∠ BAM=∠ DAE=45°, ∴ ∠ BAD=∠ MAE, 在等腰直角△ BAM 和等腰直角△ DAE 中,
方形 AMEF,点 N 为正方形 AMEF 的中点,连接 CN,若 BC=10,CN= ,试求 EF 的长. 【答案】(1)NC∥ AB (2)解:∠ ABC=∠ ACN,理由如下:
∵
=1 且∠ ABC=∠ AMN,
∴ △ ABC~△ AMN
∴
,
∵ AB=BC,
∴ ∠ BAC= (180°﹣∠ ABC), ∵ AM=MN
∴ ∠ PMC=∠ C=90°, ∵ AD∥ BC, ∴ ∠ D=90°,△ OAP∽ △ OBQ,
∴ 四边形 PMCD 是矩形,
,
∴ PM=CD=3,CM=PD=2t,
∵ AD=6,BC=4,CQ=t,
∴ PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,
∴
,解得:
,
∴ MQ=
,
又∵ PM=3,∠ PMQ=90°,
∴ tan∠ BPQ=
;
【分析】(1)点 P 作 PM⊥BC,垂足为 M,则四边形 PDCM 为矩形,根据梯形的面积公式
就可以利用 t 表示,就得到 s 与 t 之间的函数关系式。
(2)以 B、P、Q 三点为顶点的三角形是等腰三角形,可以分 PQ=BQ、BP=BQ、PB=PQ 三
种情况,在 Rt△ PMQ 中根据勾股定理,就得到一个关于 t 的方程,就可以求出 t。
(3)根据相似三角形对应边比例可列式求出 t,从而根据正切的定义求出值;
(4)首先假设存在,然后根据相似三角形对应边成比例求证。
3. (1)问题发现:
如图 1,在等边三角形 ABC 中,点 M 为 BC 边上异于 B、C 的一点,以 AM 为边作等边三角 形 AMN,连接 CN,NC 与 AB 的位置关系为________; (2)深入探究: 如图 2,在等腰三角形 ABC 中,BA=BC,点 M 为 BC 边上异于 B、C 的一点,以 AM 为边作 等腰三角形 AMN,使∠ ABC=∠ AMN,AM=MN,连接 CN,试探究∠ ABC 与∠ ACN 的数量关 系,并说明理由; (3)拓展延伸: 如图 3,在正方形 ADBC 中,AD=AC,点 M 为 BC 边上异于 B、C 的一点,以 AM 为边作正
∵ AE=BE,EH⊥AB, ∴ AH=BH, ∴ AM=BM, ∵ ∠ ABC=45°, ∴ AM⊥BC,△ BMH 是等腰直角三角形, ∵ AD=DE,∠ ADE=90°, 易得△ ADM≌ △ DEG, ∴ DM=EG, ∵ ∠ EMG=∠ BMH=45°, ∴ △ EMG 是等腰直角三角形,
一、相似真题与模拟题分类汇编(难题易错题)
1.如图,正方形 ABCD、等腰 Rt△ BPQ 的顶点 P 在对角线 AC 上(点 P 与 A、C 不重合),
QP 与 BC 交于 E,QP 延长线与 AD 交于点 F,连接 CQ.
(1)①求证:AP=CQ;②求证:PA2=AF•AD; (2)若 AP:PC=1:3,求 tan∠ CBQ. 【 答 案 】 ( 1 ) 证 明 : ①∵ 四 边 形 ABCD 是 正 方 形 , ∴ AB=CB , ∠ ABC=90° , ∴ ∠ ABP+∠ PBC=90°, ∵ △ BPQ 是等腰直角三角形,∴ BP=BQ,∠ PBQ=90°,∴ ∠ PBC+∠ CBQ=90° ∴ ∠ ABP=∠ CBQ,∴ △ ABP≌ △ CBQ,∴ AP=CQ; ②∵ 四边形 ABCD 是正方形,∴ ∠ DAC=∠ BAC=∠ ACB=45°, ∵ ∠ PQB=45°,∠ CEP=∠ QEB,∴ ∠ CBQ=∠ CPQ, 由①得△ ABP≌ △ CBQ,∠ ABP=∠ CBQ ∵ ∠ CPQ=∠ APF,∴ ∠ APF=∠ ABP,∴ △ APF∽ △ ABP,
∴ tan∠ CBQ=tan∠ CPQ= . 【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证 △ ABP≌ △ CBQ , 可 得 AP=CQ ; ② 利 用 正 方 形 的 性 质 可 证 得 ∠ CBQ=∠ CPQ , 再 由 △ ABP≌ △ CBQ 可证得∠ APF=∠ ABP,从而证出△ APF∽ △ ABP,由相似三角形的性质得证; (2)由△ ABP≌ △ CBQ 可得∠ BCQ=∠ BAC=45°,可得∠ PCQ=45°+45°=90°,再由三角函数可
在△ ABM 与△ ACN 中,
, ∴ △ ABM≌ △ ACN(SAS), ∴ ∠ B=∠ ACN=60°, ∵ ∠ ANC+∠ ACN+∠ CAN=∠ ANC+60°+∠ CAN=180°, ∴ ∠ ANC+∠ MAN+∠ BAM=∠ ANC+60°+∠ CAN=∠ BAN+∠ ANC=180°, ∴ CN∥ AB; 【 分 析 】 ( 1 ) 由 题 意 用 边 角 边 易 得 △ ABM≌ △ ACN , 则 可 得 ∠ B=∠ ACN=60°, 所 以 ∠ BCN+∠ B=∠ BCA+∠ ACN+∠ B=180°,根据平行线的判定即可求解;
AH= AB= AG,AE= AD.
∴
,
∴ △ AGD∽ △ AHE;
(2)解:分三种情况:①当 B 与 D 重合时,即 BD=0,如图 3,此时 AB=BE;
②当 AB=AE 时,如图 4,此时 E 与 C 重合,
∴ D 是 BC 的中点, ∴ BD= BC=2 ; ③当 AB=BE 时,如图 5,过 E 作 EH⊥AB 于 H,交 BC 于 M,连接 AM,过 E 作 EG⊥BC 于 G,连接 DH,
( 2 ) 由 题 意 易 得 △ ABC ~ △ AMN , 可 得 比 例 式
,由三角形内角和定理易得
∠ BAM=∠ CAN,根据相似三角形的判定可得△ ABM~△ ACN,由相似三角形的性质即可求
解;
(3)要求 EF 的值,只须求得 CM 的值,然后解直角三角形 AMC 即可求解。连接 AB,
AN , 由 正 方 形 的 性 质 和 相 似 三 角 形 的 判 定 易 得 △ ABM ~ △ ACN , 可 得 比 例 式
,可求得 BM 的值,而 CM=BC﹣BM,解直角三角形 AMC 即可求 得 AM 的值,即为 EF 的值。
4.如图 1,在△ ABC 中,∠ BAC=90°,AB=AC=4,D 是 BC 上一个动点,连接 AD,以 AD 为 边向右侧作等腰直角△ ADE,其中∠ ADE=90°.
(3)当线段 PQ 与线段 AB 相交于点 O,且 2OA=OB 时,直接写出
=________.
(4)是否存在时刻 ,使得
若存在,求出 的值;若不存在,请说明理由.
【答案】(1) (2)解:如图 1,过点 P 作 PH⊥BC 于点 H,
∴ ∠ PHB=∠ PHQ=90°, ∵ ∠ C=90°,AD∥ BC, ∴ ∠ CDP=90°, ∴ 四边形 PHCD 是矩形, ∴ PH=CD=3,HC=PD=2t, ∵ CQ=t,BC=4, ∴ HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,
得 tan∠ CPQ= ,由 AP:PC=1:3,AP=CQ,可得 tan∠ CPQ= ,再由∠ CBQ=∠ CPQ 可求出答
案.
2.如图,在四边形 ABCD 中,AD//BC,
,BC=4,DC=3,AD=6.动点 P 从点 D 出
发,沿射线 DA 的方向,在射线 DA 上以每秒 2 两个单位长的速度运动,动点 Q 从点 C 出
( 1 ) 如 图 2 , G , H 分 别 是 边 AB , BC 的 中 点 , 连 接 DG , AH , EH . 求 证 : △ AGD∽ △ AHE; (2)如图 3,连接 BE,直接写出当 BD 为何值时,△ ABE 是等腰三角形;
(3)在点 D 从点 B 向点 C 运动过程中,求△ ABE 周长的最小值. 【答案】(1)证明:如图 2,由题意知△ ABC 和△ ADE 都是等腰直角三角形, ∴ ∠ B=∠ DAE=45°. ∵ H 为 BC 中点, ∴ AH⊥BC. ∴ ∠ BAH=45°=∠ DAE. ∴ ∠ GAD=∠ HAE. 在等腰直角△ BAH 和等腰直角△ DAE 中,
∴ ME= MG,
由(1)得:△ AHD∽ △ AME,且
,
∴ ∠ AHD=∠ AME=135°,ME= DH,
∴ ∠ BHD=45°,MG=DH,
∴ △ BDH 是等腰直角三角形,
∴ BD=DH=EG=DM= ;
综上所述,当 BD=0 或 或 2 时,△ ABE 是等腰三角形;
(3)解:当点 D 与点 B 重合时,点 E 的位置记为点 M,连接 CM,如图 6,
∴ ∠ MAN= (180°﹣∠ AMN), ∵ ∠ ABC=∠ AMN, ∴ ∠ BAC=∠ MAN, ∴ ∠ BAM=∠ CAN, ∴ △ ABM~△ ACN, ∴ ∠ ABC=∠ ACN (3)解:如图 3,连接 AB,AN,
∵ 四边形 ADBC,AMEF 为正方形, ∴ ∠ ABC=∠ BAC=45°,∠ MAN=45°, ∴ ∠ BAC﹣∠ MAC=∠ MAN﹣∠ MAC 即∠ BAM=∠ CAN,
∵
,
∴
,
∴ △ ABM~△ ACN
∴
,
∴
=cos45°= ,
∴
,
∴ BM=2,
∴ CM=BC﹣BM=8,
在 Rt△ AMC,
AM=
,
∴ EF=AM=2 .