高考真题精选4《分段函数》
2023届新高考数学复习:专项(分段函数零点问题 )经典题提分练习(附答案)
2023届新高考数学复习:专项(分段函数零点问题)经典题提分练习一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0-B .[)1,-+∞C .(),0∞-D .(],1-∞2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .54.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x ax a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( )A .3B .4C .5D .67.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x a x ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( ) A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)7,2,28⎫⋃+∞⎪⎪⎝⎭D.7,228⎛⎫⎡⎤⋃ ⎪⎢⎥ ⎪⎣⎦⎝⎭ 8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( )A .4B .5C .6D .7二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( )A .1B .74C .2D .313.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤ B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( )A .0B .14-C .13-D .15-18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________.20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0x x x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________.25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩ 则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________.29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0xx x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.参考答案一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0- B .[)1,-+∞ C .(),0∞- D .(],1-∞【答案】A【答案解析】()()0()g x f x m f x m =+=⇔=-Q()g x ∴存在两个零点,等价于y m =-与()f x 的图象有两个交点,在同一直角坐标系中绘制两个函数的图象:由图可知,保证两函数图象有两个交点,满足01m <-≤,解得:[)1,0m ∈- 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减;当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π, 作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( ) A .1B .3C .4D .5【答案】D【答案解析】当0x >时,0x -<,()3f x x -=当0x <时,0x ->,()e xf x --=()()()3e ,00,0e 3,0x x x x g x f x f x x x x -⎧->⎪∴=--==⎨⎪+<⎩,()()()()g x f x f x g x -=--=-,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =->,()3e 0x g x '=->,令()3e 0x g x '=->,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln 3)3ln 330g =->,而()226e 0g =-<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=-< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞-上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.4.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x a x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D【答案解析】当0a ≤时,对任意的0x ≥,()()22212f x x a x a =-+++在[)0,∞+上至多2个零点,不合乎题意,所以,0a >.函数()22212y x a x a =-+++的对称轴为直线12x a =+,()()22214247a a a ∆=+-+=-. 所以,函数()f x 在1,2a a ⎡⎫+⎪⎢⎣⎭上单调递减,在1,2a ⎛⎫++∞ ⎪⎝⎭上单调递增,且()2f a a =-.①当470a ∆=-<时,即当704a <<时,则函数()f x 在[),a +∞上无零点, 所以,函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有5个零点,当0x a ≤<时,111222a x a -≤-+<,则()11222a x a πππ⎛⎫-≤-+< ⎪⎝⎭,由题意可得()5124a πππ-<-≤-,解得532a ≤<,此时a 不存在;②当Δ0=时,即当74a =时,函数()f x 在7,4⎡⎫+∞⎪⎢⎣⎭上只有一个零点, 当70,4x ⎡⎫∈⎪⎢⎣⎭时,()2cos 2f x x π=-,则7022x ππ≤<,则函数()f x 在70,4⎡⎫⎪⎢⎣⎭上只有3个零点,此时,函数()f x 在[)0,∞+上的零点个数为4,不合乎题意;③当()20Δ470f a a a ⎧=-≥⎨=->⎩时,即当724a <≤时,函数()f x 在[),a +∞上有2个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有3个零点,则()3122a πππ-<-≤-,解得322a ≤<,此时724a <<; ④当()20Δ470f a a a ⎧=-<⎨=->⎩时,即当2a >时,函数()f x 在[),a +∞上有1个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有4个零点,则()4123a πππ-<-≤-,解得522a ≤<,此时,522a <<.综上所述,实数a 的取值范围是75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:D.5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭【答案】B【答案解析】()()11,111,1x x x f x x x ⎧--≤⎪-=⎨->⎪⎩,故()()1,11111,1x x x f x x x ⎧-≤⎪-+=⎨-+>⎪⎩,则函数()()11g x f x ax =--+恰有2个零点等价于()11f x ax -+=有两个不同的解, 故()11,y f x y ax =-+=的图象有两个不同的交点,设()()()()1,01111,011,1x x x g x f x x x x x x ⎧⎪-≤≤⎪=-+=--<⎨⎪⎪-+>⎩又(),y g x y ax ==的图象如图所示,由图象可得两个函数的图象均过原点,若0a =,此时两个函数的图象有两个不同的交点, 当0a ≠时,考虑直线y ax =与()()201g x x x x =-≤≤的图象相切,则由2ax x x =-可得()2100a ∆=--=即1a =, 考虑直线y ax =与()11(1)g x x x=-+≥的图象相切,由11ax x =-+可得210ax x -+=,则140a ∆=-=即14a =.考虑直线y ax =与()2(0)g x x x x =-≤的图象相切,由2ax x x =-可得()2100a ∆=+-=即1a =-, 结合图象可得当114a <<或1a <-时,两个函数的图象有两个不同的交点, 综上,114a <<或1a <-或0a =, 故选:B.6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( ) A .3B .4C .5D .6【答案】B【答案解析】令()2t f x =+,当1x <-时,1()(,2)f x x x =+∈-∞-且递增,此时(,0)t ∈-∞,当10x -<<时,1()(,2)f x x x=+∈-∞-且递减,此时(,0)t ∈-∞,当210e <<x 时,()ln (,2)f x x =∈-∞-且递增,此时(,0)t ∈-∞, 当21e x >时,()ln (2,)f x x =∈-+∞且递增,此时(0,)t ∈+∞, 所以,()g x 的零点等价于()f t 与=2y -交点横坐标t 对应的x 值,如下图示:由图知:()f t 与=2y -有两个交点,横坐标11t =-、201t <<: 当11t =-,即()3f x =-时,在(),1x ∈-∞-、(1,0)-、21(0,)e上各有一个解;当201t <<,即2()1f x -<<-时,在21,e x ∞⎛⎫∈+ ⎪⎝⎭有一个解.综上,()g x 的零点共有4个. 故选:B7.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x ax ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( )A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)72,8⎫⋃+∞⎪⎪⎝⎭D.7,28⎫⎡⎤⋃⎪⎢⎥⎪⎣⎦⎝⎭ 【答案】A【答案解析】①若2x =是一个零点,则需要2()43()f x x ax x a =-+> 只有一个零点, 即有2a ≥,且此时当x a >时,需要2430()x ax x a -+=>只 有一个实根, 而221612162120a ∆=-≥⨯-> ,解方程根得2x a =±,易得2a 2a <<<2a 即当2a ≥ 时, ()f x 恰有 2个零点,122,2x x a ==. ②若2x =不是函数的零点,则2x a =为函数的 2 个零点,于是22Δ161202a a a a ⎧<⎪=->⎨⎪<⎩ ,解得:1.2a << 综上:[)2,2a ∞⎛⎫∈⋃+ ⎪ ⎪⎝⎭.故选:A.8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<【答案】D【答案解析】要使函数()f x k =有三个解,则()y f x =与y k =有三个交点,当0x >时,()ln f x x x =,则()ln 1f x x '=+,可得()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭递增,∴0x >时,()ln f x x x =有最小值11e e f ⎛⎫=- ⎪⎝⎭,且10e x <<时,ln 0x x <;当0x +→时,()0f x →;当x →+∞时,()f x →+∞; 当0x ≤时,2()1f x x =-+单调递增;∴()f x 图象如下,要使函数()g x 有三个零点,则10ek -<<,故选:D .9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --【答案】B【答案解析】由题设,画出[0,)+∞上()f x 的大致图象,又()f x 为奇函数,可得()f x 的图象如下:()F x 的零点,即为方程()0f x a -=的根,即()f x 图像与直线y a =的交点.由图象知:()f x 与y a =有5个交点:若从左到右交点横坐标分别为12344,,,,x x x x x , 1、12,x x 关于3x =-对称,126x x +=-;2、30x <且满足方程()()()333f x a f x a f x a =⇒-=-⇒-=-即()132log 1x a -+=,解得:312a x =-;3、45,x x 关于3x =轴对称,则456x x +=;1234512∴++++=-a x x x x x 故选:B10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( ) A .4B .5C .6D .7【答案】A【答案解析】令(),()0t f x F x ==,则3()202f t t --=, 作出()y f x =的图象和直线32+2y x =,由图象可得有两个交点,设横坐标为12,t t ,∴120,(1,2)t t =∈.当1()f x t =时,有2x =,即有一解;当2()f x t =时,有三个解, ∴综上,()0F x =共有4个解,即有4个零点. 故选:A 二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD【答案解析】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( ) A .1B .74C .2D .3【答案】BD【答案解析】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--≥-=⎨<⎩ , ∵函数()()y f x g x =-恰好有两个零点,∴方程()()0f x g x -=有两个解,即()(2)0f x f x b +--=有两个解, 即函数()(2)y f x f x =+-与y b =的图象有两个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩ ,作函数()(2)y f x f x =+-与y b =的图象如下, 当12x =-和52x =,即115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,当724b <≤时,有不止两个交点, 当2b >或74b =时,满足函数()(2)y f x f x =+-与y b =的图象有两个交点, 当74b <时,无交点, 综上,2b >或74b =时满足题意,故选:BD.13.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点【答案解析】当0,x ≤()22211y x x x =--=++-,故()221,02,0x x f x x x x ⎧->=⎨--≤⎩的图像如图所示,对AC ,函数()()g x f x m =-有3个零点,相当于()y f x =与y m =有3个交点,故m 的取值范围是()0,1,直线1y =与函数()y f x =的图象有两个公共点,AC 对; 对B ,函数()f x 在(),0∞-上先增后减,B 错;对D ,如图所示,联立222y x y x x =+⎧⎨=--⎩可得解得20x y =-⎧⎨=⎩或11x y =-⎧⎨=⎩,由图右侧一定有一个交点,故函数()f x 的图象与直线2y x =+不止一个公共点,D 错.14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 【答案】AD【答案解析】()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,作出()f x 的图象,如图所示:因为()()g x f x a =-,所以()g x 的零点个数即为函数()y f x =与y a =的图象的交点的个数,对于A :若()g x 有1个零点,则函数()y f x =与y a =的图象仅有一个公共点,由图象得0a =,故A 正确;对于B :由图象得()0f x ≥恒成立,故B 错误;对于C :若()g x 有3个零点,则函数()y f x =与y a =的图象有三个公共点,由图象得1a =或者102a <<,故C 错误;对于D :若()g x 有4个零点,则函数()y f x =与y a =的图象有四个公共点,由图象得112a ≤<,故D 正确. 故选:AD .15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点【答案】AC【答案解析】当0a >时,令()f x t =,由()10f t +=,解得13t =或3t =或2t a=-. 作出函数()f x 的图象,如图1所示,易得()f x t =有4个不同的实数解, 即当0a >时,()g x 有4个零点.故A 正确,B 错误; 当a<0时,令()f x t =,所以()10f t +=,解得13t =或3t =或2t a=-(舍) 作出函数()f x 的图象,如图2所示,易得()f x t =有1个实数解, 即当a<0时,()g x 有1个零点.故C 正确,D 错误. 故选:AC.16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;【答案】ACD【答案解析】作出函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩的图象如图所示.所以max min ()1,()1f x f x ==-.对于A :任取12,[1,)x x ∈+∞,都有()12max min 13()()()()122f x f x f x f x -≤-=--=.故A 正确; 对于B :因为151111,,222222kf f f k ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以111?121511*********k k f f f k +⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- .故B 错误; 对于C :由1()(2)2f x f x =-,得到1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭,即()2(2)k f x f x k =+.故C 正确;对于D :函数()ln(1)y f x x =--的定义域为()1,+∞.作出()y f x =和ln(1)y x =-的图象如图所示:当2x =时,sin2ln10y π=-=;当12x <<时,函数()y f x =与函数()ln 1y x =-的图象有一个交点;当2x >时,因为2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,971ln 1ln 1224⎪->⎛⎫ ⎝>=⎭,所以函数()y f x =与函数()ln 1y x =-的图象有一个交点,所以函数()ln(1)y f x x =--有3个零点.故D 正确.故选:ACD17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( ) A .0B .14-C .13-D .15-【答案】BD【答案解析】在0x ≤上()f x 单调递增且值域为(,1]-∞; 在01x <≤上()f x 单调递减且值域为[0,)+∞; 在1x >上()f x 单调递增且值域为(0,)+∞; 故()f x 的图象如下:由题设,()[2()]g x f f x a =+有7个零点,即[2()]f f x a =-有7个不同解,当0a -<时有2()1f x <-,即1()2f x <-,此时()g x 有1个零点;当0a -=时有2()1f x =±,即1()2f x =±,∴1()2f x =-有1个零点,1()2f x =有3个零点,此时()g x 共有4个零点;当0lg 2a <-≤时有12()lg 21f x -<≤-或12()12f x ≤<或12()2f x <≤, ∴1lg 21()022f x --<≤<有1个零点,11()42f x ≤<有3个零点,1(1)2f x <≤有3个零点,此时()g x 共有7个零点;当lg 21a <-≤时有lg 212()0f x -<≤或102()2f x <<或22()10f x <≤, ∴lg 21()02f x -<≤有1个零点,10()4f x <<有3个零点,1()5f x <≤有2个零点,此时()g x 共有6个零点;当1a ->时有102()10f x <<或2()10f x >, ∴10()20f x <<有3个零点,()5f x >有2个零点,此时()g x 共有5个零点; 综上,要使()g x 有7个零点时,则lg 20a -≤<,(lg 20.30103≈) 故选:BD18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16【答案】AD【答案解析】函数f (x )的零点即为方程f (x )=0的解.当m =1时,解方程f (x )=0,当x <2时,4x ﹣1=0,解得:x =0; 当x ≥2时,2021(x ﹣1)(x ﹣3)=0,解得:x =1或3,只取x =3. ∴函数有两个零点0或3.∴A 对;当m =2时,解方程f (x )=0,当x <2时,4x ﹣2=0,解得:x =12; 当x ≥2时,2021(x ﹣2)(x ﹣6)=0,解得:x =2或6. ∴函数有三个零点12或2或6.∴B 错;当m =15时,解方程f (x )=0,当x <2时,4x ﹣15=0,解得:x =log 415<2; 当x ≥2时,2021(x ﹣15)(x ﹣45)=0,解得:x =15或45. ∴函数有三个零点log 415或15或45.∴C 错;当m =16时,解方程f (x )=0,当x <2时,4x ﹣16=0,解得:x =2不成立; 当x ≥2时,2021(x ﹣16)(x ﹣48)=0,解得:x =16或48. ∴函数有两个零点16或48.∴D 对; 故选:AD .三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________. 【答案】50m -<<【答案解析】由答案解析式知:在[0,1]上()f x 为增函数且()[,5]f x m m ∈+, 在(1,)+∞上,0m ≠时()f x 为单调函数,0m =时()5f x =无零点, 故要使()f x 有两个不同的零点,即1x =两侧各有一个零点,所以在(1,)+∞上()f x 必递减且()(,5)f x m ∈-∞+,则050m m <⎧⎨+>⎩,可得50m -<<.故答案为:50m -<<20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.【答案】)⎡⎡⎣⎣【答案解析】令()t f x =,则()()g x f t =,由于函数()[()]g x f f x =在R 上有三个不同的零点,所以()()0g x f t ==必有两解,所以20a -≤<或2a ≥.当20a -≤<时,()f x 的图像如下图所示,由图可知,()y f t =必有两个零点122,0t t =-=,由于()2f x t =有两个解,所以()1f x t =有一个解,即242a -≤-,解得0a ≤<.当2a ≥时,()f x 的大致图像如下图所示,()y f t =必有两个零点342,2t t =-=,由于()3f x t =有两个解,所以()4f x t =有一个解,所以242a -<,解得2a ≤<综上所述,实数a 的取值范围是)⎡⎡⎣⎣ .故答案为:)⎡⎡⎣⎣21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.【答案】1,0e ⎛⎫- ⎪⎝⎭【答案解析】因为函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,所以,0()ln ,0ax x f x x x ≤⎧=⎨>⎩,-,0()ln(-),0ax x f x x x ≥⎧-=⎨<⎩, 因为函数()()()g x f x f x =--恰有5个零点, 所以函数()y f x =与()y f x =-恰有5个交点,如图,因为y ax =-与y ax =交于原点,要恰有5个交点,,0y ax x =->与ln y x =必有2个交点, 设,0y ax x =->与ln y x =相切,切点为(,)m n , 此时切线斜率为1100n y x m m -'===-,解得1,ln 1n m ==, 解得e m =,所以切点为(e,1),所以e 1a -=,解得1a e =-,所以要使函数()()()g x f x f x =--恰有5个零点,则1(,0)ea ∈-.故答案为:1,0e ⎛⎫- ⎪⎝⎭.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______. 【答案】[]32,28--【答案解析】设(]4,8x ∈,则(]40,4x -∈,则[]6()(4)44(4)422x f x f x f x -=-+=-=-,设(]8,12x ∈,则(]80,4x -∈,则[][]()(4)44(4)4(8)4f x f x f x f x =-+=-=-+1016(8)1622x f x -=-=-,则(](](]2610220,4()4224,816228,12x x x x f x x x ---⎧-∈⎪⎪=-∈⎨⎪-∈⎪⎩,,,,则(3)(7)(11)0f f f ===,函数()f x 图象如下:由2()()()0g x f x t f x =+⋅=,可得()0f x =,或()f x t =-, 由()0f x =,可得3x =,或7x =,或11x =,则()f x t =-仅有一根,又(8)f =810162228--=,(12)f =1210162232--=, 则2832t ≤-≤,解之得3228t -≤≤-, 故答案为:3228t -≤≤-.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.【答案】12【答案解析】当0x ≥时,令()e 10xf x =-=,解得0x =,故()f x 在[)0+∞,上恰有1个零点,即方程20ax x a ++=有1个负根.当0a =时,解得0x =,显然不满足题意;当0a ≠时,因为方程20ax x a ++=有1个负根,所以2Δ140.a =-≥ 当2Δ140a =-=,即12a =±时,其中当12a =时,211022x x ++=,解得=1x -,符合题意;当12a =-时,211022x x -+-=,解得1x =,不符合题意; 当2140a ∆=->时,设方程20ax x a ++=有2个根1x ,2x ,因为1210x x =>,所以1x ,2x 同号, 即方程20ax x a ++=有2个负根或2个正根,不符合题意.综上,12a =.故答案为:0.5.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0xx x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________. 【答案】12m <≤【答案解析】由()0g x =得()f x m =,即函数()g x 的零点是直线y m =与函数()y f x =图象交点横坐标, 当0x ≤时,()e 1x f x =+是增函数,函数值从1递增到2(1不能取),当0x >时,()ln f x x =是增函数,函数值为一切实数,在坐标平面内作出函数()y f x =的图象,如图,观察图象知,当12m <≤时,直线y m =与函数()y f x =图象有2个交点,即函数()g x 有2个零点, 所以实数m 的取值范围是:12m <≤. 故答案为:12m <≤25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.【答案】14322---,,, 【答案解析】函数()h x 的零点即为方程()0h x =的解,也即()()1f g x =的解. 令()t g x =,则原方程的解变为方程组()()1t g x f t ⎧=⎪⎨=⎪⎩,①②的解.由方程②可得320t t -=, 解得0t =或1t =,将0t =代入方程①,而方程104x x+=无解, 由方程2680x x ---=解得4x =-或2x =-;将1t =代入方程①,而方程114x x +=,解得12x =, 由方程2681x x ---=,解得3x =-.综上,函数()h x 的零点为14322---,,,,共四个零点. 故答案为:14322---,,,. 26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____ 【答案】11(,)505504-【答案解析】由函数在[0,4)x ∈上的答案解析式作出如图所示图像,由(4)()f x f x a +=+知,函数()f x 是以4为周期,且每个周期上下平移|a |个单位的一个函数,若使[0,2021]x ∈时,存在R k ∈,方程()()g x f x k =+在[0,2021]x ∈上恰有2021个零点,等价于()f x k =-在[0,2021]x ∈上恰有2021个交点,如图所示,知在每个周期都有4个交点,即(1,2)k -∈时满足条件,且必须每个周期内均应使k -处在极大值和极小值之间,才能保证恰有2021个交点, 则当0a ≥时,需使最后一个完整周期[2016,2020)中的极小值(2018)2f <, 即(2018)(2)50415042f f a a =+=+<,解得1504a <,即1[0,504a ∈ 当a<0时,需使最后一个极大值(2021)1f >, 即(2021)(1)50525051f f a a =+=+>,解得1505a >-,即1(,0)505a ∈-, 综上所述,11(,505504a ∈-故答案为:11,505504⎛⎫- ⎪⎝⎭27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.【答案】10,4⎛⎫⎪⎝⎭【答案解析】当0x <时,令()0f x =可得:21k x =, 当0x >时,令()0f x =可得:21x k x-=,令()()()221010x x g x x x x ⎧<⎪⎪=⎨-⎪>⎪⎩, 若01x <<,()21x g x x -+=, ()320x g x x -'=<,()g x 为减函数, 若1x ≥,()21x g x x -=, ()320x g x x -+'==,2x =, 若[)1,2x ∈,()0g x '<,()g x 为减函数, 若()2,x ∈+∞,()0g x '>,()g x 为增函数,()124g = 画出()g x 的图像,如下图:如要()f x 有4个零点,则104k <<, 故答案为:10,4⎛⎫ ⎪⎝⎭. 28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________. 【答案】3(21)2n - 【答案解析】当312x ≤≤时,f (x )=8x ﹣8, 所以()218()82g x x =--,此时当32x =时,g (x )max =0; 当322x ≤<时,f (x )=16﹣8x ,所以g (x )=﹣8(x ﹣1)2+2<0; 由此可得1≤x ≤2时,g (x )max =0.下面考虑2n ﹣1≤x ≤2n 且n ≥2时,g (x )的最大值的情况. 当2n ﹣1≤x ≤3•2n ﹣2时,由函数f (x )的定义知()11112222n n x x f x f f --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 因为13122n x-≤≤, 所以()22251(2)82n n g x x --=--, 此时当x =3•2n ﹣2时,g (x )max =0;当3•2n ﹣2≤x ≤2n 时,同理可知,()12251(2)802n n g x x --=--+<.由此可得2n ﹣1≤x ≤2n 且n ≥2时,g (x )max =0. 综上可得:对于一切的n ∈N *,函数g (x )在区间[2n ﹣1,2n ]上有1个零点, 从而g (x )在区间[1,2n ]上有n 个零点,且这些零点为232n n x -=⋅,因此,所有这些零点的和为()3212n -. 故答案为()3212n -. 29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0x x x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________【答案】23a <≤.【答案解析】函数()f x 当0x >时是对勾函数,因为112x x x x -+=+≥=,当且仅当10x x x ⎧=⎪⎨⎪>⎩即1x =时,取最小值.所以函数最小值为2,且在(0,1)上为减函数,在(1,)+∞上为增函数.当0x ≤时,2x y -= 是减函数,且21x -≥,所以2x y -=-为增函数,且21x --≤-,所以函数()42x f x -=-为增函数,且()3f x ≤,函数图像如图所示.令32t x =-,函数(32)y f x a =--恰有三个不同的零点,可以看成函数()y f t a =-恰有三个不同的零点,函数()f t 的图像与直线y a =有三个交点.由图像可知23a <≤.30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.【答案】01m ≤<【答案解析】当0x ≥时,2'()121212(1)f x x x x x =-=-,在区间()0,1上,()()'0,f x f x <单调递减,在区间()1,+∞上,()()'0,f x f x >单调递增,故函数在1x =处取得极小值()11f =-,据此绘制函数()f x 的图像如图所示,结合函数图像和题意可知原问题等价于函数232y x x =-与函数y m =有两个交点,且交点的横坐标的范围分别位于区间(]1,0-和区间()0,1内,观察二次函数的图像可得m 的范围是01m ≤<.。
考点03 分段函数的4种求法(解析版)
专题二 函数考点3 分段函数的4种求法【方法点拨】分段函数的4种求法1. 求函数值或解不等式:由自变量所属区间,选定相应的解析式求解.2. 求函数值域:分别求每一段的值域取并集.3. 求函数最值:分别求每一段的最值,然后比较大小.4.求参数的值(或参数范围):分段处理,分类讨论,综合作答. 三、【高考模拟】1.已知函数()2,0x x f x x ⎧≤⎪=⎨>⎪⎩,则()()4f f =( )A .-4B .14-C .14D .4【答案】C 【分析】根据分段函数的解析式,先求()4f ,再求()2f -即可求解.【解析】由()2,0x x f x x ⎧≤⎪=⎨>⎪⎩,则()42f ==-,所以()()()214224ff f -=-==. 故选:C2.已知函数(2),2()(2),2x x x f x f x x +⎧=⎨+<⎩,则(1)f =( )A .3B .6C .15D .12【答案】C 【分析】根据分段函数解析式代入计算即可; 【解析】解:因为(2),2()(2),2x x x f x f x x +⎧=⎨+<⎩,所以()()()11233215f f =+=⨯+=故选:C3.已知函数()()1,1 23,1xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则()1f -=( )A .12B .2C .14D .18【答案】C 【分析】根据函数的解析式,代入计算,即可求解. 【解析】由题意,函数()()1,1 23,1xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,可得()()()211113224f f f ⎛⎫-=-+=== ⎪⎝⎭.故选:C.4.已知20()(1)0x x f x f x x ⎧>=⎨+≤⎩,则()1f -=( )A .0B .1C .2D .4【答案】C 【分析】根据分段函数各段的定义域求解. 【解析】因为20()(1)0x x f x f x x ⎧>=⎨+≤⎩,所以()()()110122f f f -====,故选:C 5.已知5,6()(4),6x x f x f x x -≥⎧=⎨+<⎩,则(1)f -的值为( )A .6-B .2-C .2D .3【答案】C【分析】利用解析式可有()()(1)37f f f -==,利用已有的解析式可得(1)f -的值. 【解析】由题设有()()(1)372f f f -===, 故选:C.6.已知21,0()2,0x x f x x x ⎧+≤=⎨->⎩,则()()2f f =( )A .26B .17C .8D .-10【答案】B 【分析】利用分段函数的解析式,将自变量代入即可求解. 【解析】由21,0()2,0x x f x x x ⎧+≤=⎨->⎩,则()2224f =-⨯=-, 所以()()()()2244117ff f =-=-+=.故选:B7.已知函数()222,12,1x x x f x x ++<⎧⎪=⎨≥⎪⎩,则()()0f f =( )A .4B .16C .32D .64【答案】D 【分析】直接根据分段函数解析式代入计算可得; 【解析】解:因为()222,12,1x x x f x x ++<⎧⎪=⎨≥⎪⎩,所以()0022f =+=,()()()2226022264f f f +==== 故选:D8.已知1,(1)()3,(1)x x f x x x +≤⎧=⎨-+>⎩,那么12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值是( )A .52 B .32C .92D .12-【答案】B 【分析】 先根据12所在区间计算出12f ⎛⎫ ⎪⎝⎭的结果,然后再根据12f ⎛⎫ ⎪⎝⎭所在区间计算出12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值. 【解析】 因为112≤,所以1131222f ⎛⎫=+= ⎪⎝⎭,又因为312>,所以133332222f f f ⎡⎤⎛⎫⎛⎫==-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:B.9.设函数()()2221log (1)x x f x x x ⎧+≤=⎨>⎩,则()()0f f ( )A .0B .3C .1D .2 【答案】C 【分析】将自变量代入对应的分段函数中,即可求得答案. 【解析】由题意得2(0)022f =+=,所以2((0))(2)log 21f f f ===,故选:C10.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a <C .2a >D .R【答案】A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【解析】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.11.已知函数24,2()25,2x x x f x ax x ⎧-+≤=⎨->⎩,若存在x 1,x 2∈R ,且x 1≠x 2,使得12()()f x f x =,则实数a 的取值范围为( ) A .(),0-∞ B .9,4⎛⎫-∞ ⎪⎝⎭C .9,2⎛⎫-∞ ⎪⎝⎭D .90,2⎛⎫ ⎪⎝⎭【答案】B 【分析】转化条件为()f x 在(],2-∞上的取值范围与在()2,+∞上的有交集,结合二次函数及一次函数的性质分类讨论即可得解. 【解析】当2x ≤时,2()4f x x x =-+,由二次函数的性质可得()f x 单调递增且(](),4f x ∈-∞;若要满足题意,只需使()f x 在(],2-∞上的取值范围与在()2,+∞上的有交集, 当2x >时,若0a >,则()()2545,f x ax a =-=-+∞, 则454a -<,解得94a <,此时904a <<;若0a =,()5f x =-,符合题意;若0a <,则()()25,45f x ax a =-=-∞-,符合题意; 综上,实数a 的取值范围为9,4⎛⎫-∞ ⎪⎝⎭. 故选:B. 【点睛】关键点点睛:解决本题的关键是转化条件为()f x 在(],2-∞上的取值范围与在()2,+∞上的有交集,再结合一次函数、二次函数的性质即可得解.12.已知()()()23200x x x f x x x ⎧-≥⎪=⎨<⎪⎩,方程()()2210f x f x +-=⎡⎤⎣⎦的根x 的个数是 ( ) A .1 B .2 C .3 D .4【答案】C 【分析】画出函数的图象,求出22[()]()10f x f x +-=的根,结合函数的图象,求解即可.【解析】232(0)()(0)x x x f x x x ⎧-=⎨<⎩的图象如图:方程22[()]()10f x f x +-=,可得()1f x =-,或1()2f x =, 由函数的图象可知:()1f x =-,有2个x 的值,1()2f x =,有一个x 的值, 所以方程22[()]()10f x f x +-=的根x 的个数是3.故选:C . 【点睛】关键点点睛:本题考查函数零点与方程根问题,考查分段函数的图象,解决本题的关键点是先由关于()f x 的一元二次方程解出方程根()1f x =-或1()2f x =,再画出分段函数的图象可得与1y =和12y =的交点个数,即为根x 的个数,考查学生数形结合思想和计算能力,属于中档题. 13.已知函数()1,01,0x x f x x +≥⎧=⎨<⎩,若()()2f f a =,则( )A .1a =±B .1a =-C .0a ≤D .0a <【答案】C 【分析】分0a <,0a =,0a >三种情况求解即可 【解析】当0a <时,()1f a =,得()()()12f f a f ==,当0a =时,()01f =,()()()12ff a f ==,成立,当0a >时,()1f a a =+,得()()()1112ff a f a a =+=++=,得0a =,不成立;所以0a ≤. 故选:C14.已知函数()22,1,,12,2,2,x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f a =,则a =( )A .1 BC.D .32【答案】B 【分析】根据分段函数解析式,将各段等于3,解方程即可得出结果. 【解析】当1a ≤-时,由23a +=,得1a =,舍去; 当1a 2-<<时,由23a =得a =a =当2a ≥时,由23a =得32a =舍去,综上,a =故选:B.15.已知函数()232,1,1x x f x x ax x +<⎧=⎨+≥⎩若()()06f f a =,则实数a =( )A .1B .2C .4D .8【答案】A 【分析】由函数解析式,先计算()0f 的值,然后将其代入,由此得到关于a 的方程,求解即可. 【解析】 (0)2f =2((0))(2)226f f f a a ==+=,解得:1a =故选:A 【点睛】方法点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()ff a 的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16.设f (x )=,012(1),1x x x x ⎧<<⎪⎨-≥⎪⎩,若f (a )=12,则a =( )A .14B .54C .14或54D .2【答案】C 【分析】根据解析式分段讨论可求出. 【解析】解:∵(),012(1),1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,1()2f a =,∴由题意知,0112a a <<⎧⎪⎨=⎪⎩或()11212a a ≥⎧⎪⎨-=⎪⎩,解得14a =或54a =. 故选:C . 17.已知函()f x ={222,0,,0,x mx m x x m x -+≤+>,若()()12ff =,则实数m的值为( ) A .1- B .12C .1D .2【答案】B 【分析】首先求()11f m =+,分1m ≤-和1m >-,两种情况求()()1f f ,再计算实数m 的值.【解析】()11f m =+,当1m ≤-时,()10f ≤,此时()()()()()221112112f f f m m m m m =+=+-++=≠,故不成立;当1m >-时,()10f >,此时()()()()1112f f f m m m =+=++=,解得:12m =,成立. 故选:B【点睛】关键点点睛:本题考查分段函数求自变量,本题的关键是求出()11f m =+后,需分两种情况,求实数m 的值.18.已知函数222,0,()1,0,x x f x x x ⎧->=⎨+⎩,若()2f a =,则a =( )A .2B .1C .2或1-D .1或1-【答案】C 【分析】分类讨论a ,代入解析式可解得结果. 【解析】当0a >时,()222af a =-=,解得2a =;当0a 时,2()12f a a =+=,解得1a =-.综上,2a =或1a =-. 故选:C19.已知()22,1log ,1x x f x x x ⎧≤=⎨>⎩,若()()1f f a =,则实数a 的值是( )A .0或2B .4C .1或4D .1【答案】C 【分析】讨论()1f a ≤与()1f a >先计算()f a 的值;再讨论1a ≤与1a >计算a 值. 【解析】 由()()1ff a =,当()1f a ≤时,有()21f a=,则()0f a = ;当()1f a >时,有()2log 1f a =,则()2f a = ;由()0f a =,当1a ≤时,有20a =,a 无解;当1a >时,有2log 0a =,1a =不符合; 由()2f a =,当1a ≤时,有22a =,1a =;当1a >时,有2log 2a =,4a =; 综上所述:1a =或4a = 故选:C20.已知函数()221,031,0x x f x x x +>⎧=⎨-≤⎩,若()()18f a f +-=,则实数a 的值是( ) A .52B .213±或52 C.21或52D .213-或52 【答案】D 【分析】分0a >和0a ≤两种情况求解 【解析】 解:当0a >时,因为()()18f a f +-=,所以2213(1)18a ++⨯--=,解得52a =, 当0a ≤时,因为()()18f a f +-=,所以22313(1)18a -+⨯--=,解得21a =(舍去),或21a =-, 综上52a =或213a =-, 故选:D21.某数学兴趣小组从商标中抽象出一个函数图象如图,其对应的函数()f x 可能是( )A .()11f x x =- B .()11f x x =- C .()11tan2f x xπ=-D .()211f x x =+ 【答案】A 【分析】根据函数对称性及定义域,直接利用排除法求出结果. 【解析】选项A :函数的图象的渐近线为 1x =或1x =-与原图象相符; 选项B :1x =-时,()111112-==--f 与原图不相符; 选项C :3x =时,函数无意义与原图不相符; 选项D :1x =时,()111112f ==+与原图不相符; 故选:A22.函数图象如图,其对应的函数可能是( )A .1()|||1|f x x =-B .1()|1|f x x =-C .21()1f x x =- D .21()1f x x =+ 【答案】A 【分析】根据定义域可排除BD ,根据()01f =可排除C. 【解析】由图可知()f x 的定义域为{}1x x ≠±,故BD 错误;()01f =,故C 错误.故选:A.23.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()212x f x x -=⋅ B .()212x f x x -=⋅C .()()1)f x x x =⋅- D .()221x f x x =-【答案】A 【分析】利用()10f >可排除CD ,利用奇偶性可排除B ,由此得到结果. 【解析】当1x =时,()10f >,CD 中的函数()10f =,可排除CD ;由图象关于原点对称可知()f x 为奇函数,A 中()()212x f x x f x --=-⋅=-,满足奇函数定义;B中()()221122x x f x x x f x ---=⋅-=⋅=,满足偶函数定义,可排除B.故选:A.24.已知函数2()121()f x ax x ax a =+++-∈R 在32,53x ⎛⎫∈- ⎪⎝⎭有最大值和最小值,则a 的取值范围为___________. 【答案】122675a <≤ 【分析】令2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,得到()()()2,()()2,()()g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,结合函数()g x 和()h x 的图象,根据()f x 在32,53x ⎛⎫∈- ⎪⎝⎭有最大值和最小值求解. 【解析】因为函数2()121()f x ax x ax a =+++-∈R ,令2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩, 解得22()()1g x x ax h x x ⎧=+⎨=-⎩, 所以()()()2,()()()()()()2,()()g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,其中()g x 过点()()0,0,,0a -,()h x 过点()()1,0,1,0-,因为2()121()f x ax x ax a =+++-∈R 在32,53x ⎛⎫∈- ⎪⎝⎭有最大值和最小值,当0a -≤,即0a ≥时,3933916,1525552525g a h ⎛⎫⎛⎫-=--=-= ⎪ ⎪⎝⎭⎝⎭,所以3355h g ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在3,05⎛⎫- ⎪⎝⎭上取不到最小值,要在20,3⎛⎫ ⎪⎝⎭上取到最小值,则2233g h ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,且2335g h ⎛⎫⎛⎫≤- ⎪ ⎪⎝⎭⎝⎭,即425939a +>,且42169325a +≤, 解得122675a <≤, 当0a ->,即0a <时,242245,1393399g a h ⎛⎫⎛⎫=+=-= ⎪ ⎪⎝⎭⎝⎭,所以2233g h ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以()f x 在20,3⎛⎫ ⎪⎝⎭上取不到最小值,要在3,05⎛⎫- ⎪⎝⎭上取不到最小值, 则3355g h ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,且3253g h ⎛⎫⎛⎫-≤ ⎪ ⎪⎝⎭⎝⎭,即931625525a ->,且9352559a -≤, 即715a <-,且44135a ≥-时,无解, 综上:a 的取值范围为122675a <≤.故答案为:122675a <≤ 【点睛】关键点点睛:本题关键是由函数()f x 解析式的结构特征,令2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,将函数转化为()()()2,()()2,()()g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,利用二次函数22(),()1g x x ax h x x =+=-的图象和性质求解.25.已知函数22,0(),0x a x f x x ax x ⎧+≥=⎨-<⎩,若()f x 的最小值是a ,则a 的值为__________.【答案】4- 【分析】利用指数函数的单调性,可得0x ≥时,()f x 的最小值为1a +,由题意可得()f x 在(),0-∞时取得最小值a ,求得对称轴,可得224a a f a ⎛⎫=-= ⎪⎝⎭,解得即可; 【解析】解:当0x ≥时,()2xf x a =+在定义域上单调递增,所以()()01f x f a ≥=+即0x =时,()f x 的最小值为1a +;当0x <时,()22224a a f x x ax x ⎛⎫=-=--⎪⎝⎭ 由题意可得()f x 在(),0-∞时取得最小值a ,即有02a<,所以0a <,则224a a f a ⎛⎫=-= ⎪⎝⎭,解得4a =- 故答案为:4-26.已知函数2223,2()log ,2x x x f x a x x ⎧-+≤=⎨+>⎩有最小值,则1f a ⎛⎫⎪⎝⎭的取值范围为__________. 【答案】[2,3) 【分析】函数()f x 有最小值,所以求出1a ≥,则有101a<≤,代入()f x 求出()f x 的取值范围. 【解析】当2x ≤时,2()(1)2f x x =-+的最小值为2.当x 2>时,要使()f x 存在最小值,必有2log 22a +≥,解得1a ≥.101a ∴<≤,21112[2,3)f a a ⎛⎫⎛⎫∴=-+∈ ⎪ ⎪⎝⎭⎝⎭. 故答案为:[2,3). 【点睛】本题考查分段函数求函数值的范围,属于中档题. 易错点睛:(1)分段函数是一个函数,只有一个最值; (2)分段函数已知函数值求自变量的取值,要分段讨论.27.已知函数21(),0()22,04x a x f x x x x ⎧-≤<⎪=⎨⎪-+≤≤⎩的值域是[]8,1-,则实数a 的取值范围是________. 【答案】[3,0)- 【分析】由二次函数的性质可得当04x 时,函数的值域刚好为[8-,1],故只需1()2xy =-,0a x <的值域为[8-,1]的子集,可得a 的不等式,结合指数函数的单调性可得. 【解析】解:当04x 时,22()2(1)1f x x x x =-+=--+,图象为开口向下的抛物线,对称轴为1x =,故函数在[0,1]单调递增,[1,4]单调递减,011()8,()122a ---当1x =时,函数取最大值1,当4x =时,函数取最小值8-,又函数()f x 的值域为[8-,1],1()2xy ∴=-,0a x <的值域为[8-,1]的子集,1()2x y =-,0a x <单调递增,∴只需0182112a⎧⎛⎫--⎪ ⎪⎪⎝⎭⎨⎛⎫⎪- ⎪⎪⎝⎭⎩, 解得30a -<故答案为:[3,0)-.28.设函数()()222,0,21,0.x a a x f x x x a x ⎧--+≤⎪=⎨-++->⎪⎩若()0f 是()f x 的最大值,则a 的取值范围为__________.【答案】[)2+∞,【分析】由题可得要使()0f 是()f x 的最大值,只需满足020a a ≥⎧⎨-≤⎩即可.【解析】()0=0f ,当0x ≤时,()22y x a a =--+,对称轴为x a =,开口向下,当0x >时,221y x x a =-++-对称轴为1x =,开口向下,则此时在1x =取得最大值为2a -,要使()0f 是()f x 的最大值,则020a a ≥⎧⎨-≤⎩,解得2a ≥,则a 的取值范围为[)2+∞,. 故答案为:[)2+∞,. 【点睛】本题主要考查分段函数的最值问题及其应用,其中解答题中涉及到二次函数的图象与性质的应用,以及分段函数的最值问题的求解方法,此类问题解答的关键在于正确理解分段的性质,合理列出相应的不等关系式.29.函数()2,12,1x x a x f x x x ⎧++<=⎨-≥⎩的值域为R ,则实数a 的取值范围是_____________.【答案】54a ≤ 【分析】根据分段函数的解析式,先求出1≥x 时,函数的值域;再求出1x <时,函数的值域;根据题中条件,即可得出结果. 【解析】由题意,当1≥x 时,()2f x x =-显然单调递减,则()(]2,1f x x =-∈-∞;当1x <时,()2f x x x a =++是开口向,对称轴为12x =-的二次函数,则()1124f x f a ⎛⎫≥-=- ⎪⎝⎭,又函数()2,12,1x x a x f x x x ⎧++<=⎨-≥⎩的值域为R ,所以只需114a -≤,解得54a ≤. 故答案为:54a ≤.30.设函数31,0,()1,0x x f x x x ⎧+≤=⎨->⎩,则()()1f f 的值为______.【答案】1 【分析】先计算(1)f ,再计算()()1f f 可得.【解析】由题意(1)110f =-=,所以((1))(0)1==f f f . 故答案为:1.。
高中数学分段函数解析式及其图像作法练习题含答案
高中数学分段函数解析式及其图像作法练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 若函数f (x )={x +1, x ≥0,f (x +2), x <0则f (−3)的值为 ( ) A.5B.−1C.−7D.22. 已知函数f(x)的图象是两条线段(如图所示,不含端点),则f[f(13)]=( )A.−13B.13C.−23D.233. 已知f(x)={x +2(x ≤−1)x 2(−1<x <2)2x(x ≥2),若f(x)=3,则x 的值是( )A.1B.1或32C.1,32或±√3D.√34. 已知函数{x 2+1,x ≤0−2x,x >0,f(x)=5,则x 的值为( ) A.−2B.2或−2C.2或−52D.2或−2或−525. 已知函数f(x)={x 2+4x +3,x ≤03−x,x >0则f (f(5))=( ) A.0B.−2C.−1D.16. 函数f(x)={|3x −4|(x ≤2)2x−1(x >2),则当f(x)≥1时,自变量x 的取值范围为( ) A.[1,53]B.[53,3] C.(−∞,1)∪[53,+∞)D.(−∞,1]∪[53,3]7. 函数f(x)=ln1的大致图象是( )(2−x)2A.B.C.D.的部分图象大致为() 8. 函数y=1+x+sin xx2A. B.C.D.9. 若函数f(x)={e x e ,x ≥0,x 2+5x +4,x <0,(其中e 为自然对数的底数),则函数ℎ(x)=f(f(x))−f(x) 的零点个数为( )A.2B.3C.4D.510. 已知f(x)={1,x ≥0,−1,x <0,则不等式x +(x +2)⋅f(x +2)≤5的解集是( ) A.[−2, 1]B.(−∞, −2]C.[−2,32]D.(−∞,32]11. 设函数f(x)={x 2+2x ,x <0,−x 2,x ≥0,f(f(a))≤3,则实数a 的取值范围是________.12. f(x)={(12)x −2,x ≤0,2x −2,x >0,则f(x)−x 的零点个数是________.13. 若函数f(x)={2x(x ≥10)f(x +1)(0<x <10),则f(5)=________. 14. 已知函数满足,则函数的解析式为________.15. 定义a ⊗b ={a 2+b ,a >b a +b 2,a ≤b ,若a ⊗(−2)=4,则a =________.16. 已知函数f(x)={ax 2+2x +1,(−2<x ≤0)ax −3,(x >0)有3个零点,则实数a 的取值范围是________.17. 若函数f(x)=,则f(2020)=________.18. 已知函数f(x)={(12)x ,x ≥4f(x +1),x <4,则f(log 23)=________.19. 函数f(x)={e x −a ,x ≤1x 2−3ax +2a 2+1,x >1,若函数y =f(x)图象与直线y =1有两个不同的交点,求a 的取值范围________.20. 已知f (x )是定义在R 上的偶函数,且当x ≥0时, f (x )=x 2+2x −3 .(1)求f (x )的解析式;(2)若f (m +1)<f (2m −1),求实数m 的取值范围.21. 已知函数f(x)的解析式为f(x)={3x +5,(x ≤0),x +5,(0<x ≤1),−2x +8,(x >1).(1)画出这个函数的图象;(2)求函数f(x)的最大值;22. 已知函数f (x )=|2x −1|+|x +2|.(1)在给定的坐标系中画出函数f(x)的图象;(2)设函数g(x)=ax+a,若对任意x∈R,不等式g(x)≤f(x)恒成立,求实数a的取值范围.23. (1)用定义法证明函数f(x)=x2−1x在(0,+∞)上单调递增;(2)已知g(x)是定义在R上的奇函数,且当x<0时,g(x)=x3+3x2+1,求g(x)的解析式.24. 已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=13x3+12x2.(1)求f(x)的解析式,并补全f(x)的图象;(2)求使不等式f(m)−f(1−2m)>0成立的实数m的取值范围.参考答案与试题解析高中数学分段函数解析式及其图像作法练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】解:因为−3<0,所以f(−3)=f(−3+2)=f(−1).因为−1<0,所以f(−1)=f(−1+2)=f(1).因为1>0,所以f(1)=1+1=2.故选D .2.【答案】B【考点】函数的图象与图象的变换分段函数的解析式求法及其图象的作法函数单调性的性质与判断【解析】先根据函数的图象利用分段函数写出函数的解析式,再根据所求由内向外逐一去掉括号,从而求出函数值.【解答】由图象知f(x)={x +1(−1<x <0)x −1(0<x <1)∴ f(13)=13−1=−23,∴ f(f(13))=f(−23)=−23+1=13.3.【答案】D【考点】分段函数的解析式求法及其图象的作法函数的零点与方程根的关系【解析】利用分段函数的解析式,根据自变量所在的区间进行讨论表示出含字母x 的方程,通过求解相应的方程得出所求的字母x 的值.或者求出该分段函数在每一段的值域,根据所给的函数值可能属于哪一段确定出字母x 的值.【解答】该分段函数的三段各自的值域为(−∞, 1],[O, 4).[4, +∞),而3∈[0, 4),故所求的字母x 只能位于第二段.∴ f(x)=x 2=3,x =±√3,而−1<x <2,∴ x =√3.4.【答案】【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】此题暂无解答5.【答案】C【考点】求函数的值函数的求值分段函数的解析式求法及其图象的作法【解析】分段函数是指在定义域的不同阶段上对应法则不同,因此分段函数求函数值时,一定要看清楚自变量所处阶段,例如本题中,5∈{x|x >0},而f(5)=−2∈{x|x ≤0},分别代入不同的对应法则求值即可得结果【解答】因为5>0,代入函数解析式f(x)={x 2+4x +3,x ≤03−x,x >0得f(5)=3−5=−2, 所以f (f(5))=f(−2),因为−2<0,代入函数解析式f(x)={x 2+4x +3,x ≤03−x,x >0得f(−2)=(−2)2+4×(−2)+3=−16.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】根据题意分两种情况x >2和x ≤2,代入对应的解析式列出不等式求解,最后必须解集和x 的范围求交集.【解答】解:∵ f(x)={|3x −4|(x ≤2)2x−1(x >2),∴ 分两种情况: ①当x >2时,由f(x)≥1得,{x >22x−1≥1,解得2<x ≤3,②当x≤2时,由f(x)≥1得,|3x−4|≥1,即3x−4≥1或3x−4≤−1,解得,x≤1或x≥53,则x≤1或53≤x≤2.综上,所求的范围是(−∞,1]∪[53,3].故选D.7.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】解:函数f(x)=ln1(2−x)2的定义域为:x≠2,函数图像关于x=2对称,当x=0时,f(0)=ln1(2−0)2=−ln4<0,因为ln4∈(1,2).故选D.8.【答案】B【考点】奇函数分段函数的解析式求法及其图象的作法函数的图象【解析】通过函数的解析式,利用函数的奇偶性的性质,函数的图象经过的特殊点判断函数的图象即可.【解答】解:函数y=1+x+sin xx2,可知:f(x)=x+sin xx2是奇函数,所以函数的图象关于原点对称,则函数y=1+x+sin xx2的图象关于(0, 1)对称,当x>0时,f(x)>0,当x=π时,y=1+π.故选B.9.【答案】D【考点】函数零点的判定定理分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】解:根据分段函数解析式作出函数的图像,如图所示:, 0)和(0, +∞)上为增函数,由图可知,函数f(x)在(−52且f(f(x))=f(x)解的个数等价于f(x)=x解的个数.作出图像可知,函数y=f(x)与y=x有(−2, −2)和(e, e)两个公共点,作出f(x)=e的图像,由图可知,f(x)=e有三个解;作出f(x)=−2的图像,由图可知,f(x)=−2有两个解.综上可知,函数ℎ(x)=f(f(x))−f(x)的零点的个数为5. 故选D.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】由题意可得,①当x+2≥0时,f(x+2)=1,代入所求不等式可求x,②当x+2< 0即x<−2时,f(x+2)=−1,代入所求不等式可求x,从而可得原不等式的解集【解答】解:①当x+2≥0,即x≥−2时,f(x+2)=1,由x+(x+2)⋅f(x+2)≤5可得x+x+2≤5,∴x≤32,即−2≤x≤32;②当x+2<0即x<−2时,f(x+2)=−1,由x+(x+2)⋅f(x+2)≤5可得x−(x+2)≤5,即−2≤5,∴x<−2.综上,不等式的解集为{x|x≤32}.故选D.二、填空题(本题共计 9 小题,每题 3 分,共计27分)11.【答案】(−∞, √3]【考点】分段函数的应用分段函数的解析式求法及其图象的作法函数的求值【解析】先讨论f(a)的正负,代入求出f(a)≥−3,再讨论a的正负,求实数a的取值范围.【解答】解:①若f(a)<0,则f2(a)+2f(a)≤3,解得,−3≤f(a)≤1,即−3≤f(a)<0;②若f(a)≥0,则−f2(a)≤3,显然成立;则f(a)≥0;③若a<0,则a2+2a≥−3,解得,a∈R,即a<0;④若a≥0,则−a2≥−3,解得,0≤a≤√3;综上所述,实数a的取值范围是:(−∞, √3].故答案为:(−∞, √3].12.【答案】【考点】函数零点的判定定理分段函数的解析式求法及其图象的作法【解析】本题考查分段函数图象的作图及函数零点区间的判断问题.【解答】解:函数f(x)={(12)x−2,x ≤0,2x −2,x >0的图象如图所示, 由图示可得直线y =x 与该函数的图象有两个交点,由此可得f(x)−x 有2个零点.故答案为:2.13.【答案】20【考点】分段函数的解析式求法及其图象的作法【解析】根据自变量的值代入分段函数求值.【解答】解:由f(x)={2x(x ≥10)f(x +1)(0<x <10)得, f(5)=f(6)=f(7)=f(8)=f(9)=f(10)=2×10=20.故答案为:20.14.【答案】千(x )=三.________3′3x【考点】函数解析式的求解及常用方法函数的图象分段函数的解析式求法及其图象的作法【解析】令f (1x )+2f (x )=1x .联立f (x )+2f (1x )=x 消去f (1x )即可I 加加加因为f (x )+2f (1x )=x ,所以f (1x )+2f (x )=1x由{f (x )+2f (1x )=x f (1x )+2f (x )=1x,消去f (1x ),得f (x )=−x 3+23x 故答案为:f (x )=−x 3+23【解答】此题暂无解答15.【答案】 √6【考点】函数新定义问题分段函数的解析式求法及其图象的作法函数的求值【解析】分类讨论,利用新定义即可得出.【解答】解:①当a >−2时,由已知可得4=a ⊗(−2)=a 2−2,解得a =√6.②当a ≤−2时,由已知可得4=a ⊗(−2)=a +(−2)2,解得a =0,应舍去. 综上可知:a =√6.故答案为:√6.16.【答案】(34, 1) 【考点】分段函数的解析式求法及其图象的作法函数零点的判定定理【解析】由题意可得,a >0 且 y =ax 2+2x +1在(−2, 0)上有2个零点,再利用二次函数的性质求得a 的范围.【解答】∵ 函数f(x)={ax 2+2x +1,(−2<x ≤0)ax −3,(x >0)有3个零点, ∴ a >0 且 y =ax 2+2x +1在(−2, 0)上有2个零点,∴ { a >0a(−2)2+2(−2)+1>0−2<−1a <0△=4−4a >0, 解得 34<a <1,17.【答案】1【考点】分段函数的解析式求法及其图象的作法【解析】先判断当x>0时,f(x+6)=f(x),可得x>0时,f(x)是周期为6的周期函数,再由周期性及分段函数解析式求解.【解答】当x>0时,由f(x)=f(x−1)−f(x−2),可得f(x+1)=f(x)−f(x−1),两式相加得f(x+1)=−f(x−2),则f(x+3)=−f(x),∴当x>0时,f(x+6)=−f(x+3)=−[−f(x)]=f(x),即x>0时,f(x)是周期为6的周期函数,又f(x)=,∴f(2020)=f(4)=−f(1)=f(−1)−f(0)=2−1=1,故答案为:1.18.【答案】124【考点】函数的求值求函数的值分段函数的解析式求法及其图象的作法【解析】先判断出log23的范围,代入对应的解析式求解,根据解析式需要代入同一个式子三次,再把所得的值代入另一个式子求值,需要对底数进行转化,利用a log a N=N进行求解.【解答】由已知得,f(x)={(12)x,x≥4f(x+1),x<4,且1<log23<2,∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=f(log224)=(12)log224=2log2(24)−1=124.19.【答案】【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 5 小题,每题 10 分,共计50分)20.【答案】解:(1)当x <0时, f (x )=f (−x )=(−x )2+2⋅(−x )−3=x 2−2x −3,所以f (x )={x 2+2x −3,x ≥0,x 2−2x −3,x <0.(2)当x ≥0时, f (x )=x 2+2x −3=(x +1)2−4,因此当x ≥0时,该函数单调递增,因为f (x )是定义在R 上的偶函数,且当x ≥0时,该函数单调递增,所以由f(m +1)<f(2m −1)⇒f(|m +1|)<f(|2m −1|)⇒|m +1|<|2m −1|因此(m +1)2<(2m −1)2⇒m 2−2m >0⇒m >2或m <0,所以实数m 的取值范围是{m|m <0或m >2}.【考点】分段函数的解析式求法及其图象的作法奇偶性与单调性的综合函数单调性的性质【解析】此题暂无解析【解答】解:(1)当x <0时, f (x )=f (−x )=(−x )2+2⋅(−x )−3=x 2−2x −3,所以f (x )={x 2+2x −3,x ≥0,x 2−2x −3,x <0.(2)当x ≥0时, f (x )=x 2+2x −3=(x +1)2−4,因此当x ≥0时,该函数单调递增,因为f (x )是定义在R 上的偶函数,且当x ≥0时,该函数单调递增,所以由f(m +1)<f(2m −1)⇒f(|m +1|)<f(|2m −1|)⇒|m +1|<|2m −1|因此(m +1)2<(2m −1)2⇒m 2−2m >0⇒m >2或m <0,所以实数m 的取值范围是{m|m <0或m >2}.21.【答案】解:(1)函数f(x)的图象由三段构成,每段都为一次函数图象的一部分,其图象如图:(2)由函数图象,数形结合可知当x =1时,函数f(x)取得最大值6,∴ 函数f(x)的最大值为6;【考点】函数的最值及其几何意义分段函数的解析式求法及其图象的作法【解析】(1)分段函数的图象要分段画,本题中分三段,每段都为一次函数图象的一部分,利用一次函数图象的画法即可画出f(x)的图象;(2)由图象,数形结合即可求得函数f(x)的最大值【解答】解:(1)函数f(x)的图象由三段构成,每段都为一次函数图象的一部分,其图象如图:(2)由函数图象,数形结合可知当x=1时,函数f(x)取得最大值6,∴函数f(x)的最大值为6;22.【答案】【考点】分段函数的解析式求法及其图象的作法绝对值不等式的解法与证明不等式恒成立问题【解析】此题暂无解析【解答】此题暂无解答23.【答案】(1)证明:任取x1,x2∈(0,+∞),令x1<x2,则f(x1)−f(x2)=x12−1x1−x22+1x2=(x1+x2)(x1−x2)+x1−x2 x1x2=(x1+x2+1x1x2)(x1−x2).因为0<x1<x2,所以x1−x2<0,x1+x2+1x1x2>0,即f(x1)<f(x2),故函数f(x)=x2−1x在(0,+∞)上单调递增.(2)解:当x>0时,−x<0,g(−x)=(−x)3+3×(−x)2+1=−x3+3x2+1,因为g(x)是定义在R上的奇函数,所以g(x)=−g(−x)=x3−3x2−1,且g(0)=0,故g(x)={x3+3x2+1,x<0,0,x=0,x3−3x2−1,x>0.【考点】函数单调性的判断与证明分段函数的解析式求法及其图象的作法函数解析式的求解及常用方法【解析】此题暂无解析【解答】(1)证明:任取x1,x2∈(0,+∞),令x1<x2,则f(x1)−f(x2)=x12−1x1−x22+1x2=(x1+x2)(x1−x2)+x1−x2 x1x2=(x1+x2+1x1x2)(x1−x2).因为0<x1<x2,所以x1−x2<0,x1+x2+1x1x2>0,即f(x1)<f(x2),故函数f(x)=x2−1x在(0,+∞)上单调递增.(2)解:当x>0时,−x<0,g(−x)=(−x)3+3×(−x)2+1=−x3+3x2+1,因为g(x)是定义在R上的奇函数,所以g(x)=−g(−x)=x3−3x2−1,且g(0)=0,故g(x)={x3+3x2+1,x<0,0,x=0,x3−3x2−1,x>0.24.【答案】解:(1)设x<0,则−x>0,于是f(−x)=−13x3+12x2,又因为f(x)是偶函数,所以f(x)=f(−x)=−13x3+12x2,所以 f (x )={−13x 3+12x 2,x <0,13x 3+12x 2,x ≥0, 补充图象如图,(2)因为f (x )是偶函数,所以原不等式等价于f (|m|)>f (|1−2m|). 又由(1)的图象知,f (x )在[0,+∞)上单调递增, 所以|m|>|1−2m|,两边平方得m 2>1−4m +4m 2,即3m 2−4m +1<0, 解得13<m <1, 所以实数m 的取值范围是{m|13<m <1}.【考点】分段函数的解析式求法及其图象的作法 函数奇偶性的性质奇偶性与单调性的综合【解析】【解答】解:(1)设x <0,则−x >0,于是f (−x )=−13x 3+12x 2, 又因为f (x )是偶函数,所以f (x )=f (−x )=−13x 3+12x 2,所以 f (x )={−13x 3+12x 2,x <0,13x 3+12x 2,x ≥0, 补充图象如图,(2)因为f(x)是偶函数,所以原不等式等价于f(|m|)>f(|1−2m|).又由(1)的图象知,f(x)在[0,+∞)上单调递增,所以|m|>|1−2m|,两边平方得m2>1−4m+4m2,即3m2−4m+1<0,解得13<m<1,所以实数m的取值范围是{m|13<m<1}.。
浅析新高考试题中的分段函数
试题分析浅析新高考试题中的分段函数文|陶庆梅函数既是中学数学中的核心内容,又是高等数学中最基础的知识。
在高中阶段乃至是在高考中,函数的相关内容都是重点和必考点,因此函数在高中数学中占有很高的地位。
历年高考答题中都会有函数相应内容的出现,而且考查的方式以及题型都在逐年变化。
在新高考函数类型中大多会将函数图象与函数解析式相结合(即数形结合),这一类型的试题大多会在高考填空或选择题中出现,该类题型主要是考查学生对函数表达式以及三角函数、对勾函数等的掌握程度,以及与之对应的图象转换进行判断和分析。
这题型在新高考数学中占一定比例的分值,是一种不容小觑的考试题型。
所以,教师在平时针对分段函数进行教学时应多通过一些典型的考试题目或者借助历年的考试真题,让学生有针对性地训练,提升学生分析问题和解决问题的能力,让学生对与分段函数相关的题型有进一步的了解以及更深刻的认识,从而促使学生在高考中对这一类问题的解决达到事半功倍的效果。
下面主要通过近几年的新高考试题来探讨分段函数在高考中的应对措施和解决方法。
一、分段函数中的奇偶性问题例1(2022上海8)若函数f(x)=a2x-1,x<0 0,x=0x+a,x>0⎧⎩⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐为奇函数,则实数a的值为_________.﹢考点:函数的奇偶性函数的解析式(理性思维)分析:判断分段函数的奇偶性要分段进行判断、整体考虑,即在分段函数的定义域内根据函数奇偶性的定义分别考虑各个分段上函数f(-x)与f(x)的关系,判断各个分段上函数的奇偶性,然后综合在一起判断分段函数的奇偶性。
分段函数中奇偶性在高考试题中经常出现,但学生在利用函数奇偶性的定义判断和研究分段函数中奇偶性时,经常会犯以下几种错误:(1)函数的奇偶性的概念理解不清由奇偶函数的定义可知,具有奇偶性的函数的定义域必是关于原点对称的;(2)函数的奇偶性在关于原点对称的定义域内是一致的,不能把定义域分割开来,因此,“当x<0时,函数是偶函数;当x>0时,函数是偶函数”的说法是错误的。
高考数学微专题4 分段函数(含有绝对值的函数)的图象与性质 课件
实数 m 的最小值为( )
27 A. 8
29 B. 8
13 C. 4
15 D. 4
【思路分析】 根据已知计算出 f(x)=21n[1-|2x-(2n+1)|]≤21n,画出
图象,计算 f(x)=332,解得 x=289,从而求出实数 m 的最小值.
内容索引
【解析】 由题意,得当 x∈[1,2)时,f(x)=12×f(x-1)=12(1-|2x-3|); 当 x∈[2,3)时,f(x)=12f(x-1)=14(1-|2x-5|);…,可得在区间[n,n+1)(n ∈Z)上,f(x)=21n[1-|2x-(2n+1)|]≤21n,所以当 n≥4 时,f(x)≤332.作出函 数 y=f(x)的图象,如图所示,当 x∈72,4时,由 f(x)=18(1-|2x-7|)=332, 解得 x=289,则 m≥289,所以实数 m 的最小值为289.
【答案】 ABD
1234
内容索引
-x2+2, x≤1, 3. (2022 浙江卷)已知函数 f(x)=x+1x-1, x>1,
则 ff12=
________;若当 x∈[a,b]时,1≤f(x)≤3,则 b-a 的最大值是________.
1234
内容索引
【解析】 f12=-122+2=74,f74=74+47-1=3278,所以 ff12=3278.当 x≤1 时,由 1≤f(x)≤3,得 1≤-x2+2≤3,所以-1≤x≤1;当 x>1 时, 由 1≤f(x)≤3 可得 1≤x+1x-1≤3,所以 1<x≤2+ 3.综上,由 1≤f(x)≤3, 得-1≤x≤2+ 3,所以[a,b]⊆[-1,2+ 3],所以 b-a 的最大值为 3+
内容索引
高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)
高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化。
即“分段函数——分段看” 一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。
3、分段函数对称性的判断:如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性。
如果不便作出,则只能通过代数方法比较()(),f x f x −的关系,要注意,x x −的范围以代入到正确的解析式。
4、分段函数分析要注意的几个问题(1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将边界值代入每一段函数(其中一段是函数值,另外一段是临界值),若两个值相等,那么分段函数是连续的。
否则是断开的。
例如:()221,34,3x x f x x x −≤⎧=⎨−>⎩,将3x =代入两段解析式,计算结果相同,那么此分段函数图像即为一条连续的曲线,其性质便于分析。
再比如 ()221,31,3x x f x x x −≤⎧=⎨−>⎩中,两段解析式结果不同,进而分段函数的图像是断开的两段。
(2)每一个含绝对值的函数,都可以通过绝对值内部的符号讨论,将其转化为分段函数。
例如:()13f x x =−+,可转化为:()13,113,1x x f x x x −+≥⎧=⎨−+<⎩5、遇到分段函数要时刻盯住变量的范围,并根据变量的范围选择合适的解析式代入,若变量的范围并不完全在某一段中,要注意进行分类讨论6、如果分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。
经典分段函数专题
经典分段函数专题高考真题类型一:与期有关类型二:与单调性有关 类型三:奇偶性有关类型四:与零点和交点问题有关 类型五;与求导和函数性质有关 类型六:数形结合高考真题201011、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的围是_____。
【解析】考查分段函数的单调性。
2212(1)10x x x x ⎧->⎪⇒∈-⎨->⎪⎩201111、(分类程求解)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________解析:30,2212,2a a a a a a >-+=---=-,30,1222,4a a a a a a <-+-=++=-2012 10.(程组求解)设()f x 是定义在R 上且期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 【解析】因为2T =,所以(1)(1)f f -=,求得20a b +=. 由13()()22f f =,2T =得11()()22f f =-,解得322a b +=-.联立20322a b a b +=⎧⎨+=-⎩,解得24a b =⎧⎨=-⎩所以310a b +=-. 201311.(分区间二次不等式求解)已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .【答案】(﹣5,0) ∪(5,﹢∞)【解析】做出x x x f 4)(2-= (0>x )的图像,如下图所示。
由于)(x f 是定义在R 上的奇函数,利用奇函数图像关于原点对称做出x <0的图像。
高考数学压轴必刷题 专题04 分段函数及其应用A卷(第二篇)(解析版)
又x -时,由“洛必达法则”
lim f (x) lim ex (ax 1) 0.
x-
x
在(-,0)上,f(x)是先增后减,
f(x)=ex (ax a 1),f(x)=0 得
x a 1 0 a 1 或 a>0. a
又在(-,- a 1)上,f ( x) 单调递增, f (x) 0 a
当 n≥1 时,恒有 f(x)-1>1,
此时在 x [e(n1) , en ) 上无根.
在 x [en , en1) 上, en x en1 , n ln x n 1,[ln x] n , 又 n2 ln2 x (n 1)2, n2 n 1 f (x) (n 1)2 n 1,
所以在 x [en , en1) 上,恒有 n2 n 1 f (x) n2 n ,
n2 n 2 f (x) 1 n2 n 1.
n=1 时,在[e, e2)上,
有 2 (f x)-1 1,
n=2 时,在[e2, e3)上, 有 0 f (x) 1 5, f (x) 1, 即 ln2 x n 1 1,
∴当 0 x 2 时,函数 f (x) ax 1 的最大值不能超过 3 即可,
当 a 1时,f (x) 为增函数,则当 0 x 2 时,函数 f (x) ax 1 的最大值为 f (2) a2 1 3 ,即 a2 2 ,
得1 a 2 , 当 0 a 1时, f (x) 为减函数,则 f (x) a0 1 11 2 ,此时满足条件.
综上实数 a 的取值范围是 0 a 1或1 a 2 ,
故选 A.
3.设 [x] 表示不大于实数
x
的最大整数,函数
f
(x)
ln2 x [ln x] 1, x
“分段函数”在高考中的分类解析
— —
本质 就是 “ 与 方程 的交 汇” . 不同点在于前者“ 定性” ,
后者 “ 定 量” . 例 7 (2 0 1 0 年 福 建 卷 ) 函 数
,■ 解析
本题 主要 考 查 函数 解 析 式 的 求 法 和 转 化 思 想 的应用 能 力 可 以结合 已知 的 O ≤ ≤ 1时
静纷赛解钎
营 心
◇
云南
李 祖 斌
所谓“ 分 段 函数 ” , 是 指 在 定 义域 的 不 同 子集 上 , 有不 同 的解 析式 的 函数. 随着 分 段 函数 在 生 活 中 的广
{ : 二 , 三 萋 : 若 , c z : 2 , 则 z 一 ——. 析由 { 墨, 解 得 x - l o g a 2 , 又 由 , 无
4 与 方 程 的 交 汇
瑗 羧 蓬 富
这类综 合 题 有 2种 策 略 : 一是代数法 , 即从 方 程
出发 , 根据 自变 量 的 取 值不 同分 情 况 解 方 程 ; 二 是 几 何法 , 把 问题 转 化为 图象 交点 的横坐 标. ; 例 4 ( 2 0 0 9年 北 京 卷 ) 已 知 函 数 f( )一
, 解析 2.. 析不 等式 等 价 于
/ x > l '
2 ~
,
解
当 ≥ 1时 , l o g l x  ̄O ; 当 x < l时 , 0 <2 < 故 值 域是 ( 一c × 3 , 2 ) .
不 等式 组 , 可得 0 ≤ ≤ 1或 X >1 , 即 z ≥0 , 故 选 D. 6 与 函数 性质 的 交汇
2 求 函 数 值
这类题 型 主要 是 由 函 数 的 奇 偶 性 、 单 调性 、 周 期 性 等 结合起 来 , 综合 考查 学生 分析 、 解决 问题 的能 力.
高考热点——分段函数
由数 形 ( 如图 1 ) 结合得 _ 厂 ( ) 一z的 解 的 个 数 有 3个 . 四、 解 不 等 式 或 方 程 此类题要采取分类讨论的方法 , 利 用 已 知 的分 段 函 数 , 把 所 求 不 等 式 或 方 程 化 为几 个 不 等 式 或 方 程 , 然后加以综合.
2 01 3年 , 弟 7
甲学生数理亿. 掌研版
-_.
同 考 执 , I t ’ , 占 l t ’
【j
J
分 段 函数
● 王 文 勇
笔 者 对 近 几 年 的高 考 试 卷 研 究 中 , 看到有很 多省 、 市 都 考
查 了分 段 函数 , 而 分 段 函数 在 书 本 中 只 出 现 一 个 例 题 , 很 多 考 生对它理解不深刻. 现今对它的应用考查作一 归纳 , 旨在 探 讨
6 + f ( z ), 40 ,
若
一
厂 _ ( 一4 ) 一 f ( O ) ,, ( 一2 ) 一
一
2, 则 ,( )的 解 析 式 为 , ( ) 一 个. 解析 : 由题 意得 :
f 16~ 4 6+ c— c, f 6— 4,
,
, 关 于 的 方 程 图 1
分 段 函数 的应 用考 查 特 点 , 供高考复习参考.
一
、
迭 代 求 值
例 设 函 数 f ㈦: { z , ∈ r 1 + ) , 射 若 _ 厂 ㈩> ‘ z > 删 ' 则
要 弄 清 自变量 所在 区 间 , 然 后 代 入 相 应 的关 系式 .
. ’ .
f z 一2 x + 3, z > 0,
围的并集. 值 域 为 每 段 上 因变 量 取 值 范 围的 并 集 .
2024年上海高考真题数学(含解析)
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
考点04 分段函数(解析版)
考点4 分段函数以及应用一、 知识储备汇总与命题规律展望1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.(3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。
(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题.(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决.(8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望.二、题型与相关高考题解读 1.分段函数求值1.1考题展示与解读例1.(2017山东文9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( )A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B.2. 【变式2:改编结论】设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C【变式3:改编问法】已知f (x )是R 上的奇函数,且f (x )=,则f (﹣)=( )A .B .C .1D .﹣1【答案】C .【解析】∵f (x )是R 上的奇函数,且f (x )=,则f (﹣)=﹣f ()=﹣f ()=﹣log 2=1,故选C .【变式4:函数迭代】已知a ∈R ,函数()24,2,3, 2.x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则a = . 【答案】2【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【解析】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2. 2.分段函数的最值与值域2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解析】如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =-是函数()g x 的极大值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】 【变式1:改编条件】设函数的最小值是1,则实数a 的取值范围是( )A .(﹣∞,4]B .[4,+∞)C .(﹣∞,5]D .[5,+∞) 【答案】B【解析】由题知,当x <1时,f (x )=x 2﹣4x+a=(x ﹣2)2+a ﹣4,且为减函数,可得f (x )>f (1)=a ﹣3,由x≥1时,f (x )递增,可得f (x )的最小值为f (1)=1,由题意可得a ﹣3≥1,即a≥4,故选B .【变式2:改编结论】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a --- =0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【变式3:改编问法】已知函数f (x )=,函数g (x )=asin (x )﹣2a+2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( ) A .[﹣,1] B .[,] C .[,] D .[,2] 【答案】B【解析】当x ∈[0,]时,y=﹣x ,值域是[0,];x ∈(,1]时,y=,y′=>0恒成立,故为增函数,值域为(,1].则x ∈[0,1]时,f (x )的值域为[0,1],当x ∈[0,1]时,g (x )=asin (x )﹣2a+2(a >0),为增函数,值域是[2﹣2a ,2﹣],∵存在x 1、x 2∈[0,1]使得f (x 1)=g (x 2)成立,∴[0,1]∩[2﹣2a ,2﹣]≠∅,若[0,1]∩[2﹣2a ,2﹣]=∅,则2﹣2a >1或2﹣<0,即a <,或a >.∴a 的取值范围是[,],故选B .3.分段函数的解析式3.1考题展示与解读例3.(2021年高考天津卷9)设a ∈R ,函数()()()22cos 22,,215,x a x a f x x a x a x aπ-π<⎧⎪=⎨-+++≥⎪⎩,若函数()f x 在区间()0,+∞内恰有6个零点,则a 的取值范围是 ( )A .95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ B .7511,2,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ C .9112,,344⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭ D .711,2,344⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】A【分析】由()222150x a x a -+++=最多有2个根,可得()cos 220x a π-π=至少有4个根,分别讨论当x a <和x a ≥时两个函数零点个数情况,再结合考虑即可得出. 【解析】()222150x a x a -+++=最多有2个根,()cos 220x a ∴π-π=至少有4个根,由22,2x a k k ππ-π=+π∈Z 可得1,24k x a k =++∈Z ,由1024k a a <++<可得11222a k --<<-. (1)x a <时,当15242a -≤--<-时,()f x 有4个零点,即7944a <≤;当16252a -≤--<-,()f x 有5个零点,即91144a <≤;当17262a -≤--<-,()f x 有6个零点,即111344a <≤.(2)当x a ≥时,()()22215f x x a x a =-+++,()()()22Δ414582a a a =+-+=-,当2a <时,∆<0,()f x 无零点;当2a =时,0∆=,()f x 有1个零点; 当2a >时,令()()22215250f a a a a a a =-+++=-+≥,则522a <≤,此时()f x 有2个零点;∴若52a >时,()f x 有1个零点.综上,要使()f x 在区间()0,+∞内恰有6个零点,则应满足7944522a a ⎧<≤⎪⎪⎨⎪<≤⎪⎩或91144522a a a ⎧<≤⎪⎪⎨⎪=>⎪⎩或或1113442a a ⎧<≤⎪⎨⎪<⎩,则可解得a 的取值范围是95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦.【点睛】关键点睛:解决本题的关键是分x a <和x a ≥两种情况分别讨论两个函数的零点个数情况. 【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解. 3.2【典型考题变式】【变式1:改变条件】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【变式2:改编条件】已知函数f(x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,则k的取值范围是()A.(﹣2]∪{}B.(﹣2+,0]∪{}C.(﹣2]∪{}D.(﹣2+,0]∪{}【答案】D【解答】函数f(x)=,可得f(1﹣x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,即为f(1﹣x)=kx﹣k+有三个不同的实根,作出y=f(1﹣x)和y=kx﹣k+的图象,当直线y=kx﹣k+与曲线y=(x≤1)相切于原点时,即k=时,两图象恰有三个交点;当直线y=kx﹣k+与曲线y=(x﹣2)2(1<x<2)相切,设切点为(m,n),可得切线的斜率为k=2(m﹣2),且km﹣k+=(m﹣2)2,解得m=1+,k=﹣2,即﹣2<k≤0时,两图象恰有三个交点;综上可得,k的范围是(﹣2,0]∪{},故选D.【变式3:改编结论】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( ) (A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式4:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f 解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-,因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+,所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点,所以方程2)(-=x x f 解的个数为3.4.分段函数图像4.1考题展示与解读例4.(2021高考上海卷14)已知参数方程[]334,1,12x t t t y ⎧=-⎪∈-⎨=⎪⎩,下列选项的图中,符合该方程的是 ( )【答案】B【解析】当0,0,0,t x y ===∴过原点,排除A ;当1t =时1,0x y =-=,排除C 和D ;当31230,340,0,,22x t t t t t =-===-=时,1230,,22y y y ==-=,故选B . 4.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,g (x )=f (x )+x +a .若g (x )存在2个零点,则a的取值范围是( ) A .[﹣1,0)B .[0,+∞)C .[﹣1,+∞)D .[1,+∞)【命题意图探究】本题主要考查利用分段函数图像解含参数函数零点问题,是难题. 【答案】C【解析】由g (x )=0得f (x )=﹣x ﹣a ,作出函数f (x )和y =﹣x ﹣a 的图象如图,当直线y =﹣x ﹣a 的截距﹣a ≤1,即a ≥﹣1时,两个函数的图象都有2个交点,即函数g (x )存在2个零点,故实数a 的取值范围是[﹣1,+∞),故选C .【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.【变式2:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞ C. [)()1,04,-⋃+∞ D. [)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式3:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( ) (A )0 (B )1 (C )2 (D )3 【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式4:改编问法】已知函数,则函数f (x )的图象是( )A .B .C .D .【答案】D 【解析】函数,当x <0时,函数是二次函数,开口向下,对称轴为x=﹣1,排除选项B ,C ;当x≥0时,是指数函数向下平移1单位,排除选项A ,故选D .5.分段函数性质5.1考题展示与解读例5【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题. 【答案】C【解析】由()f x 在R 上递减可知43020131a a a -⎧-≥⎪⎪<<⎨⎪≥⎪⎩,解得1334a ≤≤,由方程|()|2f x x =-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数a 的去范围是123[,]{}334,故选C.【解题能力要求】数形结合思想、分类整合思想、运算求解能力. 【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.2【典型考题变式】【变式1:改编条件】已知函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,则实数a 的取值范围是( ) A .(﹣∞,] B .[,+∞)C .[,]D .(,)【答案】C【解析】由于函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,2a≥e ﹣a ,解得a≥.排除A ,D ,当a=2时,x=1可得e x ﹣2x 2=e ﹣2;2a+lnx=4>e ﹣2,显然不成立,排除B ,故选C .【变式2:改编结论】已知()2243,0,23,0,x x x f x x x x ⎧-+≤=⎨--+>⎩不等式()()2f x a f a x +>-在上恒成立,则实数的取值范围是( ) A. B.C.D.【答案】A【解析】二次函数243x x -+的对称轴是2x =,所以该函数在(],0-∞上单调递减; 2433x x ∴-+≥,同样可知函数223x x --+, 2233x x ∴--+<,在()0,+∞上单调递减, ()f x ∴在R 上单调递减,;,所以由()()2f x a f a x +>-得到2x a a x +<-,即2x a < , 2x a ∴<在[],1a a +上恒成立,()21;2a a a ∴+<∴<-,所以实数a 的取值范围是(),2-∞-,故选A.【变式3:改编问法】已知函数则下列结论错误的是( )A .f (x )不是周期函数B .f (x )在上是增函数C .f (x )的值域为[﹣1,+∞)D .f (x )的图象上存在不同的两点关于原点对称 【答案】D 【解析】函数的图象如图所示,则f (x )不为周期函数,A 正确;f (x )在[﹣,+∞)递增,B 正确;f (x )的最小值为﹣1,无最大值,则C 正确;由于x <0时,f (x )=sinx ,与原点对称的函数为y=sinx (x >0),而sinx=x 在x >0无交点,则D 不正确,故选D .6.分段函数的综合应用6.1考题展示与解读例2【2018全国卷Ⅰ】设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是( )A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】D【解析】当0x ≤时,函数()2xf x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.6.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,则不等式f (x+2)<f (x 2+2x )的解集是( )A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C【解析】函数f (x )=,可得x≥0,f (x )递增;x <0时,f (x )递增;且x=0时函数连续,则f (x )在R 上递增,不等式f (x+2)<f (x 2+2x ),可化为x+2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2,则原不等式的解集为(﹣∞,﹣2)∪(1,+∞),故选C .【变式2:改编结论】.已知函数(),0{2,lnx x e f x lnx x e<≤=->,若正实数,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围为( )A. ()2,e eB. ()21,e C. 1,e e ⎛⎫ ⎪⎝⎭ D. 21,e e⎛⎫ ⎪⎝⎭【答案】A【解析】作出)(x f 的图像,不妨设c b a <<,由图知,201a b e c e <<<<<<,由题知,|ln ||ln |b a =,即b a ln ln =-,所以0)ln(ln ln ==+ab b a ,所以ab =1,则c abc =),(2e e ∈,故选A.【变式3:改编问法】已知函数f (x )=,函数y=f (x )﹣a 有四个不同的零点,从小到大依次为x 1,x 2,x 3,x 4,则x 1x 2+x 3x 4的取值范围为( ) A .[4,5) B .(4,5] C .[4,+∞) D .(﹣∞,4]【答案】A【解析】当x >0时,f (x )=x+﹣3≥2﹣3=1,可得f (x )在x >2递增,在0<x <2处递减,由f(x )=e,x≤0,当x <﹣1时,f (x )递减;﹣1<x <0时,f (x )递增,可得x=﹣1处取得极小值1,作出f (x )的图象,以及直线y=a ,可得e=e=x 3+﹣3=x 4+﹣3,即有x 1+1+x 2+1=0,可得x 1=﹣2﹣x 2,﹣1<x 2≤0,x 3﹣x 4=﹣=,可得x 3x 4=4,x 1x 2+x 3x 4=4﹣2x 2﹣x 22=﹣(x 2+1)2+5,在﹣1<x 2≤0递减,可得所求范围为[4,5),故选A .三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=, 所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练一、单选题1.(2021·四川成都零模(文))已知函数2log (2),1()e ,1xx x f x x -<⎧=⎨≥⎩则(2)(ln 4)f f -+=( ) A .2 B .4C .6D .8【答案】C 【分析】分别求出()2f -和()ln 4f 的值再求它们的和,从而可得正确的选项. 【详解】()22log 42f -==,()ln4ln 44f e ==,故(2)(ln 4)6f f -+=,故选:C. 【点睛】易错点睛:本题考查分段函数的函数值的计算,注意根据自变量的大小选择合适的解析式来计算,本题属于基础题.2.(2021·四川射洪模拟(理))定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,例如:[1.3]1=,[ 1.5]2-=-,[2]2=.当*[))0,(x n n N ∈∈时,()f x 的值域为n A .记集合n A 中元素的个数为n a ,则2020211i i a =-∑的值为( ) A .40402021B .20192021C .20192020D .20191010【答案】D【分析】先根据条件分析出当[)0,x n ∈时,集合n A 中的元素个数为222n n n a -+=,进而可得111211n a n n ⎛⎫=- ⎪--⎝⎭,再结合裂项相消法进行求和可得结果. 【详解】因为[][)[)[)[)0,0,11,1,22,2,3......1,1,x x x x n x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[][)[)[)()[)0,0,1,1,22,2,3......1,1,x x x x x x x n x x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[]x x 在各个区间中的元素个数分别为:1,1,2,3,4,......,1n -,所以当[)*0,,x n n N ∈∈时,()f x 的值域为n A ,集合n A 中元素个数为:()()2121123 (1122)n n n n n a n --+=+++++-=+=,所以()1112211n n a n n ⎛⎫=-≥ ⎪--⎝⎭, 所以2020211111112019212...22112232019202020201010i ia =⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑,故选:D. 3.(2021·山东高三其他模拟)已知函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是( )A .()0,1a ∈B .3,14a ⎡⎫∈⎪⎢⎣⎭C .30,4a ⎛⎤∈ ⎥⎝⎦D .3,24a ⎡⎫∈⎪⎢⎣⎭【答案】C 【分析】 将条件()()12120f x f x x x -<-等价于函数函数()f x 为定义域上的单调减函数,由分段函数的单调性要求,结合指数函数、一次函数的单调性得到关于a 的不等式组,求解即得. 【详解】由题意,函数()f x 对任意的12x x ≠都有()()12120f x f x x x -<-成立,即函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩为R 上的减函数,可得0120,123a a a a<<⎧⎪-<⎨⎪≥-+⎩解得304a <≤,故选:C.4.(2021·江苏南京模拟(理))我们知道,任何一个正实数N 都可以表示成10110,()n N a a n Z =⨯≤<∈.定义:(),00,0N n W N N n ≥⎧⎨<⎩的整数部分的位数=的非有效数字的个数,如()()()2211.2103,(1.2310)2,3102, 3.001101W W W W --⨯=⨯=⨯=⨯=,则下列说法错误的是( )A .当1,1M N >>时,()()()W M N W M W N ⋅=+B .当0n <时,()W N n =-C .当0,()1n W N n >=+D .若1002,lg 20.301N ≈=,则()31W N = 【答案】A【分析】A .理解()W N 的含义,举例分析即可;B .根据0n <分析所表示数的特点,由此可得()W N 的结果;C .根据0n >分析所表示数的特点,由此可得()W N 的结果;D .先将N 化为10110,()n N a a n Z =⨯≤<∈的形式,然后计算出()W N 的值.【详解】当[)0,100N ∈时,N 的整数部分位数为2,当[)100,1000N ∈,N 的整数部分位数为3,一般地,)()110,100,1,2,3,4,......n n N n +⎡∈=⎣时,N 的整数部分位数为1n +; 当[)0.1,1N ∈时,N 的非有效数字0的个数为1,当[)0.01,0.1N ∈时,N 的非有效数字0的个数为2,一般地,)()110,101,2,3,4,5,......n n N n +⎡∈=-----⎣时,N 的非有效数字0的个数为n -,A .取210,10M N ==,所以()()()()33,2,104W M W N W M N W ==⋅==,()()325W M W N +=+=,所以()()()W M N W M W N ⋅≠+,故错误;B .当0n <时,)11010,10n n n N a +⎡=⨯∈⎣,N 的非有效数字0的个数为n -,所以()W N n =-,故正确;C .当0n >时,)11010,10n n n N a +⎡=⨯∈⎣,N 整数部分位数为1n +,所以()1W N n =+,故正确; D .因为1002N =,所以lg =100lg230.1N ≈,所以30.110N ≈,所以)303110,10N ⎡∈⎣,所以()30131W N =+=,故正确,故选:A.【点睛】关键点点睛:解答本题的关键在于理解()W N 的含义以及计算的方法, 通过对10n N a =⨯的分析,首先判断n 与0的关系,然后决定采用哪一种计算方法(类似分段函数).5.(2021·安徽皖江名校联考)已知函数()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,方程()10f x -=有两解,则a 的取值范围是( ) A .1(,1)2B .1(0,)2C .(0,1)D .()1,+∞【答案】B【分析】根据已知条件对a 进行分类讨论:01a <<、1a >,然后分别考虑每段函数的单调性以及取值范围,确定出方程()10f x -=有两解时a 所满足的不等式,由此求解出a 的取值范围. 【详解】因为()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,所以0a >且1a ≠, 当01a <<时,()f x 在(,1]x ∈-∞-时单调递增,所以()()max 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,且()()12f x f a >-=, 因为方程()10f x -=有两解,所以21a <,所以102a <<; 当1a >时,()f x 在(,1]x ∈-∞-时单调递减,()()min 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,()()12f x f a >-=, 因为方程()10f x -=要有两解,所以21a <,此时不成立. 综上可得10,2a ⎛⎫∈ ⎪⎝⎭,故选:B.【点睛】方法点睛:根据方程解的个数求解参数范围的常见方法:方法(1):将方程解的个数问题转化为函数的图象的交点个数问题,通过图象直观解答问题;方法(2):若方程中有指、对数式且底数为未知数,则需要对底数进行分类讨论,然后分析()f x 的单调性并求解出其值域,由此列出关于参数的不等式,求解出参数范围.6.(2021·山东济南模拟)若函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则实数a 的取值范围是( ) A .(]0,1 B .(]0,2C .30,2⎛⎫ ⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭【答案】A 【分析】由分段函数单调递增的特性结合单调增函数的图象特征列出不等式组求解即得. 【详解】因函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则有2y ax =-在(,2]-∞上递增,()()32ln 1y a x =--在(2,)+∞上也递增, 根据增函数图象特征知,点(2,22)a -不能在点(2,0)上方,于是得0320220a a a >⎧⎪->⎨⎪-≤⎩ ,解得01a <≤,所以实数a 的取值范围是(]0,1. 故选:A7.(2021·山西名校联考)已知函数()cos ()ln f x x g x x ==,用max{,}a b 表示a ,b 中的最大值,则函数{}()max (),()(0)h x f x g x x =>的零点个数为( ) A .0 B .1C .2D .3【答案】C 【分析】分1x >,1x =,01x <<三种情况讨论可得结果. 【详解】 分三种情况讨论:① 当1x >时,()ln 0g x x =>,所以()()0h x g x ≥>,故()h x 无零点;② 当1x =时,(1)cos110f =-<,(1)0g =,所以(1)0h =,故1x =是()h x 的零点;③ 当01x <<时,()ln 0g x x =<,所以()f x 的零点就是()h x 的零点.显然,()cos f x x =(0,1)上单调递减,且(0)10=>f ,(1)cos110f =-<, 故()f x 在(0,1)内有唯一零点,即()g x 在(0,1)内有唯一零点. 综上可知,函数()h x 在0x >时有2个零点. 故选:C. 【点睛】关键点点睛:本题的关键点是:分1x >,1x =,01x <<三种情况讨论.8.(2021·北京市十一学校高三其他模拟)已知函数()22,0313,0x x f x x x ⎧≤⎪=⎨--+>⎪⎩,若存在唯一的整数x ,使得()10f x x a->-成立,则满足条件的整数a 的个数为( ) A .2 B .3C .4D .无数【答案】C 【分析】作出f (x )的函数图象,利用直线的斜率,根据不等式只有1整数解得出a 的范围. 【详解】作出f (x )的函数图象如图所示:()1f x x a--表示点(,())x f x 和点(,1)a 所在直线的斜率,即曲线上只有一个点(,())x f x 且x 是整数和点(,1)a 所在直线的斜率大于零.如图所示,动点(,1)a 在直线1y =上运动.因为(0)0,(1)3,(2)0f f f ===,当[1,0]a ∈-时,只有点(1,3)这个点满足()10f x x a ->-,当[1,2]a ∈时,只有点(0,0)这个点满足()10f x x a->-. 所以a ∈][1,01,2⎡⎤-⋃⎣⎦.所以满足条件的整数a 有4个.故选:C.【点睛】关键点睛:本题主要考查函数的图像,考查直线的斜率,关键在于考查学生对这些知识的掌握水平和数形结合分析推理能力. 二、多选题9.(2021·重庆高三三模)()f x 是定义在R 上周期为4的函数,且()(](]1,112,1,3x f x x x ⎧∈-⎪=⎨--∈⎪⎩,则下列说法中正确的是( ) A .f ()x 的值域为[]0,2B .当(]3,5x ∈时,()f x =C .()f x 图象的对称轴为直线4,x k k Z =∈D .方程3f x x 恰有5个实数解【答案】ABD 【分析】画出()f x 的部分图象结合图形分析每一个选项即可. 【详解】根据周期性,画出()f x 的部分图象如下图所示,由图可知,选项A ,D 正确,C 不正确;根据周期为4,当(3,5]x ∈时,()(4)f x f x =-==B 正确.故选:ABD.10.(2021·辽宁铁岭二模)设函数()21,0,cos ,0.x x f x x x ⎧+≥=⎨<⎩则( )A .()f x 是偶函数B .()f x 值域为[)1,-+∞C .存在00x <,使得()()00f x f =D .()f x 与()f x -具有相同的单调区间【答案】BC【分析】根据函数奇偶性的定义判断A ,由分段函数求值域确定B ,由余弦函数性质确定C ,由二次函数及余弦函数的单调性确定D.【详解】因为()21,0,cos ,0.x x f x x x ⎧+≤-=⎨>⎩.所以()()f x f x -≠,()f x 不是偶函数,故选项A 错误. 当0x ≥时,211x +≥,当0x <时,cos [1,1]x ∈-,所以()f x 值域为[)1,-+∞,故B 正确; 因为()01f =,()21f π-=,选项C 正确.因为()f x 具有单调性的区间与()f x -具有单调性的区间不同,是数轴上关于原点对称的,选项D 错误(由()f x -表达式也可以看出).故选:BC 。
高考热点:分段函数题型总结
【例
2】已知函数
f
(x)=
2x 3x ,
x
1,
x 1,
1,
则满足
f(f(m)
)=3f
(m)的实数
m
的取值范围是
()
( A)(-∞, 0]
( B)[0,1]
(C)[0,+∞)∪{- 1 } 2
解析:由
f(f(m))=3f(m),可得
f 2
m 1, f m 1
3
f
m
得
( D)[1,+∞)
f(m)=0
2
2
2
2
只需要计算 g(x)=-f(x)- x 在 R 上的最大值和 h(x)=f(x)- x 在 R 上的最小值即可.
2
2
当 x≤1 时,g(x)=-x2+ x -3=-(x- 1 )2- 47 ≤- 47 (当 x= 1 时取等号),h(x)=x2- 3 x+3=(x- 3 )2+
2
4 16 16
3
2x
2x
述得- 47 ≤a≤2.故选 A. 16
方法点睛
首先将不等式化为最简,分清是存在,还是恒成立(任意),构造函数,转化为分 段函数的最值问题,在求值时要分类求解.
4
2
4
39 ≥ 39 (当 x= 3 时取等号),所以- 47 ≤a≤ 39 ;当 x>1 时,g(x)=- 3 x- 2 =-( 3 x+ 2 )≤-2 3
16 16
取等号),h(x)= x + 2 ≥2 x 2 =2(当 x=2 时取等号),所以-2 3 ≤a≤2.综上所
函数
f (x)=
x2
3.分段函数
3.分段函数I .题源探究·黄金母题【例1】已知函数()()()4,0;4,0.x x x f x x x x +≥⎧⎪=⎨-<⎪⎩求()1f ,()3f -,()1f a +的值.【解析】因为()()()4,0;4,0.x x x f x x x x +≥⎧⎪=⎨-<⎪⎩,所以(1)1(14)5f =⨯+=,(3)3(34)21f -=-⨯--=,()(1)(5),1,1(1)(3), 1.a a a f a a a a ++≥-⎧+=⎨+-<-⎩ II .考场精彩·真题回放【例2】【2016高考江苏卷】设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩.其中.a ∈R ,若59()()22f f -=,则(5)f a 的值是_____.【答案】25-【解析】∵5191()()()()2222f f f f -=-==,∴112225a -+=-,即35a =,因此32(5)(3)(1)(1)155f a f f f ===-=-+=-. 【例3】【2016高考北京理】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________. 【答案】2,(,1)-∞-.3()3g x x x =-与直线2y x=-【解析】如图作出函数的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =-是函数()g x 的极大值点,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此①当a =时,()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,得()f x 无最大值,∴所求a 的范围是(,1)-∞-【例4】【2016年山东高考理数】已知函数2||,()24,x x m f x x mx m x m≤⎧=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是________________.【答案】(3,)+∞【解析】由题意画出函数()y f x =与y b =的图像如下图时才符合题意,要满足存在实数b ,使得关于x 的方程()f x b =有三个不同的根应满足240m m m m ⎧-<⎨>⎩解得3m >,即m的取值范围是(3,)+∞.理论基础·解题原理考点一 分段函数的概念(1)定义:在函数的定义域内,对于自变量x 不同取值区间,有着不同的对应法则,这样的函数叫分段函数.函数的解析式中的绝对值含有未知数x ,此函数实质上也是分段函数.(2)定义域:分段函数的定义域是各段函数解析式中自变量取值集合的并集. (3)值域;分段函数的值域是各段函数值集合的并集. 考点二 分段函数图象(1)图象的构成:分类函数不同区间上的表达式不同,但每一段的函数解析式基本上都是常见的基本初等函数关系,因此分段函数的图象基本上是两个或两个以上的基本初等函数的部分图象共同所构成的.(2)图象的作法:通常是逐段作出其函数图象,而作每一段函数的图象时,通常是作出所涉及到基本函数的图象,然后根据每一段的定义域进行截取,但必须注意各个分段的“端点”是空心还是实心.考点三 分段函数的性质 1.分段函数的单调性:判断分段函数的单调性首先应该判断各分段分区间函数的单调性:(1)如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起;(2)如果单调性不相同,则直接可分开说明单调性.2.分段函数的奇偶性:判断分段函数的奇偶性主要有两种方法:(1)如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性;(2)与初等函数奇偶性的判断一样,也可根据定义,一般分两步进行:①判断定义域是否是对称区间;②对定义域中任意一个实数x ,判断()f x -与()f x 的关系.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度中等或中等偏下,往往与函数的定义域、值域、奇偶性、单调性、图象,以及不等式、方程有联系.【技能方法】已知分段函数的最值求参数的取值范围的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式,注意取值范围的大前提,利用函数的单调性寻找关于参数的不等式(组).若能利用数形结合可加快求解的速度.【易错指导】(1)当自变量以字母参数的形式出现时,易忽视对字母的分类讨论,造成少解; (2)判断函数的奇偶性时,忽视函数定义域的对称性的判断,或函数在0x =有定义时,忽视对(0)f 的验证;(3)判断函数单调性时,不考虑函数在分界点是否连续,或忽视函数在分界点处的函数值及此点左右两端的函数值的大小比较,造成逻辑思维不严谨;(4)将含有绝对值符号的函数化为分段表示时,在找分界点易出现错误,或判断符号时出现错误;V .举一反三·触类旁通考向1 求解分段函数的函数值【例1】【2015全国新课标Ⅱ卷理】设函数211l o g (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C ..9D .12【例2】【2012高考江苏10】设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为___________. 【例3】【2015高考山东理10】设函数()31,1,2,1xx x f x x -<⎧=⎨≥⎩则满足()()()2f a f f a =的a 取值范围是( )(A )2,13⎡⎤⎢⎥⎣⎦ (B )[]0,1 (C )2,3⎡⎫+∞⎪⎢⎣⎭(D )[)1,+∞ 考向2 求分段函数的最值(或值域)【例4】【2015高考浙江理10】已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -=,()f x 的最小值是___________.【例5】【2015高考福建理14】若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是___________.考向3 分段函数的奇偶性【例6】【2016届北京市海淀区高三第二学期期中练习理】已知函数sin(),0,()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是( ) A .,44a b ππ==-B .2,36a b ππ== C .,36a b ππ== D .52,63a b ππ==考向4 分段函数的单调性【例7】【2016届浙江宁波效实中学高三上期中考试理科】函数21(2)()1(2)ax x x f x ax x ⎧+->=⎨-≤⎩是R 上的单调递减函数,则实数a 的取值范围是( )A .104a -≤< B .14a ≤- C .114a -≤≤- D .1a ≤- 考向5分段函数的图象交点【例8】【2016届西安中学高三第四次仿真理】已知定义在R 上的函数()f x 满足:(1)()(2)0f x f x +-=,(2)(2)()f x f x -=-;(3)在[1,1-上表达式为[1,0]()cos(),(0,1]2x f x x x π∈-=⎨∈⎪⎩,则函数()f x 与函数2,0()1,0x x g x x x ⎧≤=⎨->⎩的图象在区间[3,3]-上的交点个数为( )A .5B .6C .7D .8 考向6分段函数的零点【例9】【2016届陕西省西工大附中第九次适应性训练数理】函数21,0()2ln ,0x x f x x x x ⎧-≤=⎨-+>⎩的零点个数为_________. 【例10】【2015年天津高考理科】已知函数22||2()(2)2x x f x x x -≤⎧=⎨->⎩,函数()(2)g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有4个零点,则的取值范围是( )A .B .C .D .考向6 分段函数与不等式【例11】【2016届合肥市高三第三次教学质量检测理】已知函数2log (1),1()(2),1x x f x f x x +≥⎧=⎨-<⎩,则不等式()2f x >的解集是___________.b 7,4⎛⎫+∞⎪⎝⎭7,4⎛⎫-∞ ⎪⎝⎭70,4⎛⎫ ⎪⎝⎭7,24⎛⎫ ⎪⎝⎭。
必修1-分段函数--专题与解析
必修1 分段函数-----专题与解析一.选择题(共16小题)1.(2011•浙江)设函数f(x)=,若f(a)=4,则实数a=()A.﹣4或﹣2 B.﹣4或2 C.﹣2或4 D.﹣2或2考点:分段函数的解析式求法及其图象的作法。
专题:计算题。
分析:分段函数分段处理,我们利用分类讨论的方法,分a≤0与a>0两种情况,根据各段上函数的解析式,分别构造关于a的方程,解方程即可求出满足条件的a值.解答:解:当a≤0时若f(a)=4,则﹣a=4,解得a=﹣4当a>0时若f(a)=4,则a2=4,解得a=2或a=﹣2(舍去)故实数a=﹣4或a=2故选B点评:本题考查的知识点是分段函数,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.2.(2010•宁夏)已知函数若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)考点:分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质。
专题:作图题;数形结合。
分析:画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.解答:解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.点评:本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.3.若,则f(log23)=()A.﹣23 B.11 C.19 D.24考点:分段函数的解析式求法及其图象的作法;函数的值;对数的运算性质。
分析: f(x)为分段函数,要求f(log23)的值,先判断log23的范围,代入x<4时的解析式,得到f (log23+1),继续进行直到自变量大于4,代入x≥4时的解析式求解.解答:解:∵1<log23<2,4<log23+3<5∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=故选D点评:本题考查分段函数求值、指数的运算法则、对数恒等式等难度一般.4.已知函数若,则实数a=()A.B.C.D.考点:分段函数的解析式求法及其图象的作法。
高考数学压轴必刷题 专题04 分段函数及其应用A卷(第二篇)(原卷版)
f
x 的零点个数为
log3 x 4, x 5
A. 6
B. 7
C. 9
D.10
14.已知函数
f
(x)
x2 2x, | log2 x ,
x x
0 0
,若
x1<
x2
<
x3
<
x4
,且
f
(x1)
f
(x2 )
f (x3 )
f
(x4 ) ,则下列结论:
①
x1
x2
1 ,②
x3x4
1,③ 0
x1
x2
存在
x1
,
x2
,当
x1
x2 时,
f
x1
f
x2 ,则实数 m 的取值范围
是( ).
A. , 2 [0, )
B. , 2 0,
C. 0,
D. , 2
19)
x2
x 2mx
4m
(x m) (x m) ,若存在实数 b ,使得函数
y
f
(x) 与 y b的
6.设函数
f
(x)
|
x 1,x log4 x , x
0,
若关于
0,
x
的方程
f
(x)
a
有四个不同的解
x1,
x2 ,
x3 ,
x4 , 且
x1
x2
x3
x4 , 则 x3 (x1
x2 )
1 x32 x4
的取值范围是
A. (1, 7 ] 2
B. (1, 7 ) 2
C. (1, )
D. (, 7] 2
7.已知函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年高考数学真题精选(按考点分类)专题八 分段函数(学生版)一.选择题(共19小题)1.(2010•天津)设函数2()2g x x =-,()4,()()(),()g x x x g x f x g x x x g x ++<⎧=⎨-⎩,则()f x 的值域是() A .9[,0](1,)4-+∞ B .[0,)+∞C .9[,0]4-D .9[,0](2,)4-+∞2.(2010•陕西)已知函数232,1(),1x x f x x ax x +<⎧=⎨+⎩若((0))4f f a =,则实数a 等于( )A .12B .45C .2D .93.(2008•天津)已知函数1,0()1,0x x f x x x -+<⎧=⎨-⎩,则不等式(1)(1)1x x f x +++的解集是()A .{}|121x x -- B .{|1}x xC .{}|21x x -D .{}|121x x-4.(2006•北京)已知(31)4,1()log ,1aa x a x f x x x -+⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)75.(2006•山东)设1232,2()log (1),2x e x f x x x -⎧<⎪=⎨-⎪⎩则不等式()2f x >的解集为( ) A .(1,2)(3⋃,)+∞B .,)+∞ C.(1,2)⋃)+∞D .(1,2)6.(2005•山东)函数21sin(),10(),0x x x f x e x π-⎧-<<=⎨⎩若f (1)f +(a )2=,则a 的所有可能值为()A.1B.C.1,D.17.(2018•新课标Ⅰ)设函数2,0()1,0x xf xx-⎧=⎨>⎩,则满足(1)(2)f x f x+<的x的取值范围是()A.(-∞,1]-B.(0,)+∞C.(1,0)-D.(,0)-∞8.(2018•新课标Ⅰ)已知函数,0(),0xe xf xlnx x⎧=⎨>⎩,()()g x f x x a=++.若()g x存在2个零点,则a的取值范围是()A.[1-,0)B.[0,)+∞C.[1-,)+∞D.[1,)+∞9.(2019•天津)已知函数1,()1,1xf xxx⎧⎪=⎨>⎪⎩若关于x的方程1()()4f x x a a R=-+∈恰有两个互异的实数解,则a的取值范围为()A.5[4,9]4B.5(4,9]4C.5(4,9]{1}4D.5[4,9]{1}410.(2010•全国新课标)已知函数||,010()16,102lgx xf xx x<⎧⎪=⎨-+>⎪⎩,若a,b,c互不相等,且f(a)f=(b)f=(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)11.(2017•天津)已知函数23,1()2,1x x xf xx xx⎧-+⎪=⎨+>⎪⎩,设a R∈,若关于x的不等式()||2xf x a+在R上恒成立,则a的取值范围是()A.47[16-,2]B.47[16-,39]16C.[-2]D.[-39]1612.(2017•山东)设1()2(1),1xf xx x<<=-⎪⎩若f(a)(1)f a=+,则1()(fa=)A.2B.4C.6D.813.(2016•天津)已知函数2(43)3,0()(0,1)(1)1,0ax a x a xf x a alog x x⎧+-+<⎪=>≠⎨++⎪⎩在R上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) A .(0,2]3B .2[3,3]4C .1[3,23]{}34D .1[3,23){}3414.(2014•上海)设2(),0()1,0x a x f x x a x x ⎧-⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,则a 的取值范围为( )A .[1-,2]B .[1-,0]C .[1,2]D .[0,2]15.(2014•辽宁)已知()f x 为偶函数,当0x 时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -的解集为( ) A .1[4,24][33,7]4B .3[4-,11][34-,2]3C .1[3,34][43,7]4D .3[4-,11][33-,3]416.(2014•重庆)已知函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩,且()()g x f x mx m =--在(1-,1]内有且仅有两个不同的零点,则实数m 的取值范围是( ) A .9(4-,2](0-⋃,1]2B .11(4-,2](0-⋃,1]2C .9(4-,2](0-⋃,2]3D .11(4-,2](0-⋃,2]317.(2009•山东)定义在R 上的函数()f x 满足2log (1),0()(1)(2),0x x f x f x f x x -⎧=⎨--->⎩,则(2017)f 的值为( ) A .1-B .0C .1D .218.(2009•海南)用{min a ,b ,}c 表示a ,b ,c 三个数中的最小值,设(){2x f x min =,2x +,10}(0)x x -,则()f x 的最大值为( )A .7B .6C .5D .419.(2003•全国)设函数12210()0x x f x xx -⎧-⎪=⎨⎪>⎩若0()1f x >,则0x 的取值范围是( )A .(1,1)-B .(1,)-+∞C .(-∞,2)(0-⋃,)+∞D .(-∞,1)(1-⋃,)+∞二.填空题(共5小题)20.(2018•天津)已知0a >,函数222,0()22,0x ax a x f x x ax a x ⎧++=⎨-+->⎩.若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是 .21.(2016•江苏)设()f x 是定义在R 上且周期为2的函数,在区间[1-,1)上,,10()2||,015x a x f x x x +-<⎧⎪=⎨-<⎪⎩,其中a R ∈,若59()()22f f -=,则(5)f a 的值是 . 22.(2014•新课标Ⅰ)设函数113,1(),1x e x f x x x -⎧<⎪=⎨⎪⎩,则使得()2f x 成立的x 的取值范围是 .23.(2014•安徽)若函数()()f x x R ∈是周期为4的奇函数,且在[0,2]上的解析式为(1),01()sin ,12x x x f x x x π-⎧=⎨<⎩,则2941()()46f f += .24.(2016•北京)设函数33,()2,x x x af x x x a⎧-=⎨->⎩.①若0a =,则()f x 的最大值为 ;②若()f x 无最大值,则实数a 的取值范围是 .历年高考数学真题精选(按考点分类)专题八 分段函数(教师版)一.选择题(共19小题)1.(2010•天津)设函数2()2g x x =-,()4,()()(),()g x x x g x f x g x x x g x ++<⎧=⎨-⎩,则()f x 的值域是() A .9[,0](1,)4-+∞ B .[0,)+∞C .9[,0]4-D .9[,0](2,)4-+∞【答案】D【解析】()x g x <,即 22x x <-,即 1x <- 或 2x >. ()x g x ,即12x -. 由题意 22222()2(,1)(2,)()2()2,[1,2]x x x g x x x x f x x x x g x x x x ⎧⎧++<++∈-∞-+∞==⎨⎨----∈-⎩⎩2217(),(,1)(2,)2419(),[1,2]24x x x x ⎧++∈-∞-+∞⎪⎪=⎨⎪--∈-⎪⎩,所以当(x ∈-∞,1)(2-⋃,)+∞时,由二次函数的性质可得()(2f x ∈,)+∞; [1x ∈-,2]时,由二次函数的性质可得9()[4f x ∈-,0],2.(2010•陕西)已知函数232,1(),1x x f x x ax x +<⎧=⎨+⎩若((0))4f f a =,则实数a 等于( )A .12B .45C .2D .9【答案】C【解析】由题知(0)2f =,f (2)42a =+,由424a a +=,解得2a =.3.(2008•天津)已知函数1,0()1,0x x f x x x -+<⎧=⎨-⎩,则不等式(1)(1)1x x f x +++的解集是()A .{}|121x x -- B .{|1}x xC .{}|21x x -D .{}|121x x-【解析】依题意得()()()10101111x x x x x x x x +<+⎧⎧⎨⎨++-++⎩⎩或所以111121212121x x x x x x R x -⎧<-⎧⎪⇒<---⇒-⎨⎨∈---⎩⎪⎩或或故选:C .4.(2006•北京)已知(31)4,1()log ,1aa x a x f x x x -+⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .(0,1) B .1(0,)3C .11[,)73D .1[,1)7【答案】C【解析】依题意,有01a <<且310a -<,解得103a <<, 又当1x <时,(31)471a x a a -+>-,当1x >时,log 0a x <, 因为()f x 在R 上单调递减,所以710a -解得17a 综上:1173a < 5.(2006•山东)设1232,2()log (1),2x ex f x x x -⎧<⎪=⎨-⎪⎩则不等式()2f x >的解集为( ) A .(1,2)(3⋃,)+∞ B .,)+∞ C .(1,2)⋃)+∞ D .(1,2)【答案】C【解析】令122(2)x e x -><,解得12x <<. 令23log (1)2(2)x x ->,解得x 为)+∞6.(2005•山东)函数21sin(),10(),0x x x fx e x π-⎧-<<=⎨⎩若f(1)f +(a )2=,则a 的所有可能值为( ) A .1B .C .1,D .1【解析】由题意知,当10x -<<时,2()sin()f x x π=; 当0x 时,1()x f x e -=;f ∴(1)111e -==. 若f (1)f +(a )2=,则f (a )1=;当0a 时,11a e -=,1a ∴=;当10a -<<时,2sin()1x π=,∴212x =,x =(不满足条件,舍去),或x =.所以a 的所有可能值为:1,2. 7.(2018•新课标Ⅰ)设函数2,0()1,0x x f x x -⎧=⎨>⎩,则满足(1)(2)f x f x +<的x 的取值范围是()A .(-∞,1]-B .(0,)+∞C .(1,0)-D .(,0)-∞【答案】D【解析】函数2,0()1,0x x f x x -⎧=⎨>⎩,的图象如图:满足(1)(2)f x f x +<,可得:201x x <<+或210x x <+,解得(,0)x ∈-∞.故选:D .8.(2018•新课标Ⅰ)已知函数,0(),0x e x f x lnx x ⎧=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是( ) A .[1-,0) B .[0,)+∞ C .[1-,)+∞ D .[1,)+∞【答案】C【解析】由()0g x =得()f x x a =--,作出函数()f x 和y x a =--的图象如图: 当直线y x a =--的截距1a -,即1a -时,两个函数的图象都有2个交点, 即函数()g x 存在2个零点,故实数a 的取值范围是[1-,)+∞,故选:C .9.(2019•天津)已知函数1,()1,1x f x x x⎧⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为( ) A .5[4,9]4B .5(4,9]4C .5(4,9]{1}4D .5[4,9]{1}4【答案】D【解析】作出函数1,()1,1x f x x x ⎧⎪=⎨>⎪⎩的图象,以及直线14y x =-的图象,关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,即为()y f x =和14y x a =-+的图象有两个交点,平移直线14y x =-,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得94a =或54a =, 考虑直线与1y x =在1x >相切,可得2114ax x -=, 由△210a =-=,解得1(1a =-舍去), 综上可得a 的范围是5[4,9]{1}4.故选:D .10.(2010•全国新课标)已知函数||,010()16,102lgx x f x x x <⎧⎪=⎨-+>⎪⎩,若a ,b ,c 互不相等,且f (a )f =(b )f =(c ),则abc 的取值范围是( ) A .(1,10) B .(5,6) C .(10,12) D .(20,24)【答案】C【解析】作出函数()f x 的图象如图,不妨设a b c <<,则16(0,1)2lga lgb c -==-+∈1ab =,10612c <-+<,则(10,12)abc c =∈.故选:C .11.(2017•天津)已知函数23,1()2,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()||2x f x a +在R 上恒成立,则a 的取值范围是( ) A .47[16-,2] B .47[16-,39]16C .[-2] D .[-39]16【答案】A【解析】当1x 时,关于x 的不等式()||2xf x a +在R 上恒成立, 即为22332x x x a x x -+-+-+,即有22133322x x a x x -+--+, 由2132y x x =-+-的对称轴为114x=<,可得14x =处取得最大值4716-;由2332y x x =-+的对称轴为314x =<,可得34x =处取得最小值3916,则47391616a-① 当1x >时,关于x 的不等式()||2xf x a +在R 上恒成立, 即为22()2x x a x x x -+++,即有322()22x x a x x-++,由3232()22322x y x x x =-+-=-1)x =>取得最大值- 由12122222y x x x x=+=(当且仅当21)x =>取得最小值2. 则32a-② 由①②可得,47216a -. 12.(2017•山东)设1()2(1),1x f x x x <<=-⎪⎩若f (a )(1)f a =+,则1()(f a = )A .2 B.4 C .6 D .8【答案】C【解析】当(0,1)a ∈时,1()2(1),1x f x x x <<=-⎪⎩,若f (a )(1)f a =+2a =,解得14a =,则:1()f f a=(4)2(41)6=-=. 当[1a ∈,)+∞时.1()2(1),1x f x x x <<=-⎪⎩,若f (a )(1)f a =+,可得2(1)2a a -=,显然无解.13.(2016•天津)已知函数2(43)3,0()(0,1)(1)1,0ax a x a x f x a a log x x ⎧+-+<⎪=>≠⎨++⎪⎩在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) A .(0,2]3B .2[3,3]4C .1[3,23]{}34D .1[3,23){}34【答案】C【解析】log (1)1y a x =++在[0,)+∞递减,则01a <<, 函数()f x 在R 上单调递减,则:23402010(43)03(01)1aaa a a log -⎧⎪⎪<<⎨⎪+-+++⎪⎩;解得,1334a ; 由图象可知,在[0,)+∞上,|()|2f x x =-有且仅有一个解, 故在(,0)-∞上,|()|2f x x =-同样有且仅有一个解, 当32a >即23a >时,联立2|(43)3|2x a x a x +-+=-, 则△2(42)4(32)0a a =---=,解得34a =或1(舍去), 当132a 时,由图象可知,符合条件,综上:a 的取值范围为1[3,23]{}34,故选:C .14.(2014•上海)设2(),0()1,0x a x f x x a x x ⎧-⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,则a 的取值范围为( )A .[1-,2]B .[1-,0]C .[1,2]D .[0,2]【答案】D【解析】当0a <时,显然(0)f 不是()f x 的最小值, 当0a 时,2(0)f a =,由题意得:21a x a x++, 解不等式:220a a --,得12a -,02a ∴,15.(2014•辽宁)已知()f x 为偶函数,当0x 时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -的解集为( ) A .1[4,24][33,7]4B .3[4-,11][34-,2]3C .1[3,34][43,7]4D .3[4-,11][33-,3]4【答案】A【解析】当[0x ∈,1]2,由1()2f x =,即1cos 2x π=,则3x ππ=,即13x =,当12x >时,由1()2f x =,得1212x -=,解得34x =, 则当0x 时,不等式1()2f x 的解为1334x ,(如图)则由()f x 为偶函数, ∴当0x <时,不等式1()2f x 的解为3143x --, 即不等式1()2f x 的解为1334x 或3143x --, 则由13134x -或31143x ---,解得4734x 或1243x, 即不等式1(1)2f x -的解集为12{|43x x 或47}34x ,故选:A .16.(2014•重庆)已知函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩,且()()g x f x mx m =--在(1-,1]内有且仅有两个不同的零点,则实数m 的取值范围是( ) A .9(4-,2](0-⋃,1]2B .11(4-,2](0-⋃,1]2C .9(4-,2](0-⋃,2]3D .11(4-,2](0-⋃,2]3【答案】A【解析】由()()0g x f x mx m =--=,即()(1)f x m x =+, 分别作出函数()f x 和()(1)y hx m x ==+的图象如图:由图象可知f (1)1=,()h x 表示过定点(1,0)A -的直线, 当()h x 过(1,1)时,12m =此时两个函数有两个交点,此时满足条件的m 的取值范围是102m<, 当()h x 过(0,2)-时,(0)2h =-,解得2m =-,此时两个函数有两个交点, 当()h x 与()f x 相切时,两个函数只有一个交点,此时13(1)1m x x -=++, 即2(1)3(1)10m x x +++-=, 当0m =时,23x =-,只有1解,当0m ≠,由△940m =+=得94m =-,此时直线和()f x 相切,∴要使函数有两个零点,则924m -<-或102m <,故选:A .17.(2009•山东)定义在R 上的函数()f x 满足2log (1),0()(1)(2),0x x f x f x f x x -⎧=⎨--->⎩,则(2017)f 的值为( ) A .1- B .0 C .1 D .2【答案】A【解析】定义在R 上的函数()f x 满足2log (1),0()(1)(2),0x x f x f x f x x -⎧=⎨--->⎩,(1)1f ∴-=,(0)0f =,f (1)(0)(1)1f f =--=-,f (2)f =(1)(0)1f -=-, f (3)f =(2)f -(1)0=,f (4)f =(3)f -(2)1=, f (5)f =(4)f -(3)1=,f (6)f =(5)f -(4)0=,f (7)f =(6)f -(5)1=-,故当x N ∈时,函数值以6为周期,呈现周期性变化,故(2017)f f =(1)1=-,18.(2009•海南)用{min a ,b ,}c 表示a ,b ,c 三个数中的最小值,设(){2x f x min =,2x +,10}(0)x x -,则()f x 的最大值为( )A .7B .6C .5D .4【答案】B【解析】画出2x y =,2y x =+,10y x =-的图象,观察图象可知,当02x 时,()2x f x =, 当24x 时,()2f x x =+,当4x >时,()10f x x =-,()f x 的最大值在4x =时取得为6, 故选:B .19.(2003•全国)设函数12210()0x x f x xx -⎧-⎪=⎨⎪>⎩若0()1f x >,则0x 的取值范围是( )A .(1,1)-B .(1,)-+∞C .(-∞,2)(0-⋃,)+∞D .(-∞,1)(1-⋃,)+∞【答案】D【解析】当00x 时,0211x -->,则01x <-,当00x >时,1201x >则01x >,故0x 的取值范围是(-∞,1)(1-⋃,)+∞,故选:D . 二.填空题(共5小题)20.(2018•天津)已知0a >,函数222,0()22,0x ax a x f x x ax a x ⎧++=⎨-+->⎩.若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是 . 【答案】(4,8)【解析】当0x 时,由()f x ax =得22x ax a ax ++=,得20x ax a ++=,得2(1)a x x +=-,得21x a x =-+,设2()1x g x x =-+,则22222(1)2()(1)(1)x x x x xg x x x +-+'=-=-++, 由()0g x '>得21x -<<-或10x -<<,此时递增,由()0g x '<得2x <-,此时递减,即当2x =-时,()g x 取得极小值为(2)4g -=, 当0x >时,由()f x ax =得222x ax a ax -+-=,得220x ax a -+=,得2(2)a x x -=,当2x =时,方程不成立,当2x ≠时,22x a x =-设2()2x h x x =-,则22222(2)4()(2)(2)x x x x xh x x x ---'==--,由()0h x '>得4x >,此时递增, 由()0h x '<得02x <<或24x <<,此时递减,即当4x =时,()h x 取得极小值为h (4)8=, 要使()f x ax =恰有2个互异的实数解,则由图象知48a <<, 故答案为:(4,8)21.(2016•江苏)设()f x 是定义在R 上且周期为2的函数,在区间[1-,1)上,,10()2||,015x a x f x x x +-<⎧⎪=⎨-<⎪⎩,其中a R ∈,若59()()22f f -=,则(5)f a 的值是 .【答案】25-【解析】()f x 是定义在R 上且周期为2的函数,在区间[1-,1)上,,10()2||,015x a x f x x x +-<⎧⎪=⎨-<⎪⎩, 511()()222f f a ∴-=-=-+,91211()()||225210f f ==-=,35a ∴=,(5)f a f ∴=(3)32(1)155f =-=-+=-,故答案为:25- 22.(2014•新课标Ⅰ)设函数113,1(),1x e x f x x x -⎧<⎪=⎨⎪⎩,则使得()2f x 成立的x 的取值范围是 .【答案】8x 【解析】1x <时,12x e-,21x ln ∴+,1x ∴<;1x 时,132x,8x ∴,18x ∴,综上,使得()2f x 成立的x 的取值范围是8x .故答案为:8x .23.(2014•安徽)若函数()()f x x R ∈是周期为4的奇函数,且在[0,2]上的解析式为(1),01()sin ,12x x x f x x x π-⎧=⎨<⎩,则2941()()46f f += .【答案】516【解析】函数()()f x x R ∈是周期为4的奇函数,且在[0,2]上的解析式为(1),01()sin ,12x x x f x x x π-⎧=⎨<⎩,则2941()()46f f +37(8)(8)46f f =-+-37()()46f f =-+-37()()46f f =-- 337(1)sin 446π=---31516216=-+=.故答案为:516.24.(2016•北京)设函数33,()2,x x x a f x x x a⎧-=⎨->⎩.①若0a =,则()f x 的最大值为 ;②若()f x 无最大值,则实数a 的取值范围是 . 【答案】2,(,1)-∞-【解析】①若0a =,则33,0()2,0x x x f x x x ⎧-=⎨->⎩,则233,0()2,0x x f x x ⎧-'=⎨->⎩,当1x <-时,()0f x '>,此时函数为增函数,当1x >-时,()0f x '<,此时函数为减函数, 故当1x =-时,()f x 的最大值为2;②233,()2,x x a f x x a ⎧-'=⎨->⎩,令()0f x '=,则1x =±,若()f x 无最大值,则3123a a a a -⎧⎨->-⎩,或312322a a a a a >-⎧⎪->-⎨⎪->⎩,解得:(,1)a ∈-∞-.。