动态热机械分析
TMA、DMA
剪切等不同形式的探头。
☺2.用途:
a.软化点温度
b.膨胀系数
c.机械粘弹性参数
d.应力应变
e.蠕变恢复
3.1.1 高聚物的温度-形变曲线
☺一定的力学负荷下,高分子材料的形变量与温 度的关系称为高聚物的温度-形变曲线,或称 热机械曲线。
☺聚合物的T-D曲线(即热-机械曲线,简称 TMA,Thermomechanic Analysis)是研究聚合 物力学性质对温度依赖关系的重要方法之一。
C1(T TS ) C2 T TS
式中Ts——参考温度,当Ts取Tg值时,C1=17.44,C2=51.6
三.热机械分析(TMA)
♫基本定义
在程序控制温度下测量物质的力学性质随温度 或时间变化的关系。它是研究和物质物理形态 相联系的体积、形状、长度和其它性质与温度
关系的方法。 ♫三种方法
☺热膨胀法
♥2、3、4为无定型聚合物,其中PS链柔顺性差,Tg、 Tf很接近,即高弹态很窄,而PIB柔顺性较好,高 弹态平台很宽,PVC介于两者之间。1、5为结晶性 聚合物,由曲线看不到玻璃态向高弹态的转变,高 温温区一定范围内,形变量很小。
四.动态热机械分析(DMA)
☺4.1基本定义
♥在程序温度下,测量物质在振动负荷下的动态模量和力 学损耗与温度的关系的技术。
➢ 3.滞后:聚合物在交变应力作用下,形变落后于应力变 化的现象。
➢ 4.内耗:如果形变落后于应力变化,发生滞后,则每一 循环变化中就要消耗功,称为力学损耗。
1.线形和交联聚合物的蠕变全过程
线形聚合物 交联聚合物
形变随时间增加而增大, 蠕变不能完全回复
t
形变随时间增加而增大, 趋于某一值,蠕变可以完 全回复
动态热机械分析仪DMA原理及方法
DMA研究生
28
同一重运动单元而言,温度越高或所受的 应力越大,则其运动的松弛时间就越短。 任何一重运动单元的运动是否自由,取决 于其运动的松弛时间与观察时间之比。 设在一定的温度下,某一重运动单元运动 的松弛时间为τ,实验观察时间为t,
DMA研究生
29
当t<<τ时,运动单元的运动在这有限的观
察时间内根本表现不出来,在这种情况下,
高聚物熔体具有不同于小分子液体的许多特点 在外力作用下,高聚物熔体除了会发生不可回复塑 性形变外,还不可避免地同时产生弹性形变。 高聚物熔体从圆柱状口模孔中挤出时,形成的料条 直径可能比孔径大,如橡胶入孔时变细,出孔时因形 变回复而又变粗一样。 受搅拌棒搅拌时,熔体沿棒壁上爬;快速挤出时, 型材发生畸变等现象也是熔体中含有弹性的表现 这类现象统称为高聚物的粘性中带有弹性。 高聚物在力学性能上的最大特点是高弹性与粘弹性。
在液态中,分子的排列只有近程有序而无远程
有序;
在气态中,分子的排列既无远程有序也无近程
有序。 DMA研究生
4
物质按其体积与形状的稳定性,分为固体、 液体和气体。 固体具有一定的体积和形状 液体具有一定的体积但无一定的形状 气体无一定的体积又无一定的形状
这些状态称为物质的各种力学状态。
DMA研究生
5
量、复数模量、动态粘度、应力、应变、
振幅、频率、温度、时间和损耗因子等,
可以研究应力松弛、蠕变、玻璃化温度和
次D级MA研松究生弛等
3
DMA的理论基础是聚合物的粘弹性,因此我们
首先讨论聚合物的粘弹性:
一、高聚物力学性能的主要特点
物质按其中分子(或原子、离子)排列的有序性,
可分为晶态、液态和气态。
动态热机械分析
动态热机械分析概述:动态热机械分析是一种用于研究热机械系统动态行为的方法。
这种方法结合了热力学、机械力学和控制理论等多个学科,旨在分析和优化热机械系统的运行性能和稳定性。
本文将介绍动态热机械分析的基本原理、应用领域,并探讨其在热机械系统设计和性能优化中的重要性。
一、动态热机械分析的基本原理动态热机械分析是建立在热力学和机械力学基础之上的研究方法。
其核心原理是通过建立系统的动态模型,利用动力学方程和控制理论来描述和分析热机械系统的运动和稳定性。
在分析过程中,考虑热传导、热辐射、热对流等传热机制,同时考虑机械运动中的力学载荷和惯性效应,以及控制系统对系统动态特性的影响。
二、动态热机械分析的应用领域1. 燃气轮机系统:燃气轮机是一种常见的动力装置,广泛应用于发电、航空等领域。
动态热机械分析能够帮助设计师深入理解燃气轮机的动态行为,优化控制系统以提高系统响应速度和稳定性。
2. 冷热源系统:冷热源系统广泛应用于工业生产和建筑空调等领域。
通过动态热机械分析,可以研究和优化冷热源系统的运行状态,改善能源利用效率,降低运行成本。
3. 微型热机械系统:微型热机械系统是一种新兴领域,其在微尺度范围内实现能量转换和传递。
动态热机械分析对于微型热机械系统的设计和性能优化至关重要,可以揭示系统的微观动力学特性,提高系统的能量转换效率。
三、动态热机械分析在热机械系统设计中的重要性动态热机械分析在热机械系统设计和性能优化中具有重要的作用,主要体现在以下几个方面:1. 提高系统响应速度:热机械系统的响应速度直接影响其瞬态性能和控制能力。
通过动态热机械分析,可以深入研究系统的动态特性,设计出合理的控制策略,从而提高系统的响应速度。
2. 优化系统稳定性:热机械系统的稳定性是保证系统正常运行的关键因素。
通过动态热机械分析,可以找到系统的稳态和非稳态解,分析系统的稳定性边界,并设计合适的控制器来保持系统的稳定运行。
3. 提高能源利用效率:热机械系统的能源利用效率直接影响系统的运行成本和环境影响。
全球最先进动态热机械分析仪DMA
全球最先进动态热机械分析仪MICOFORCE 米力光动态热机械分析仪DMA可以测量的材料范围非常的宽。
如:弹性体、热塑性塑料、热固性流体、复合材料、涂料和胶粘剂、陶瓷、金属等。
特别是高分子材料方面应用最为广泛,由于其粘弹本质,其机械性能具有温度和频率的依赖性。
DMA测量的材料性能包括:模量、阻尼、玻璃化温度、软化温度、固化速率和固化度、粘度、凝胶点、吸声性和抗冲击性、蠕变、应力松弛等性能。
橡胶动态热机械分析仪DMA,复合材料动态热机械分析仪DMA,金属动态热机械分析仪DMA,陶瓷动态热机械分析仪DMA.橡胶动态热机械分析仪可以用于聚氨酯、生胶, 母胶和混炼胶、天然橡胶、丁腈橡胶、未硫化橡胶、硫化橡胶、环保油丁苯橡胶、充芳烃油丁苯橡胶、锡偶联溶聚丁苯橡胶、塑性丁苯橡胶、反式异戊橡胶釜内合金TPIR、乳聚丁苯橡胶ESBR、溴化丁基橡胶BIIR、和子午线轮胎的动态弹性模量BOSE Electroforce DMA是目前国际上动态力和静态力最高的、变范围应最宽、温度范围最大的材料动态热机械分析仪,适用于塑料、橡胶、复合材料、纤维、陶瓷、金属、食品、医药、轮胎、航空航天特种材料等众多高端科研领域。
BOSE 公司是世界500强公司,采用了全世界最先进的电磁驱动技术,把静态力和动态力做到最高,使得仪器拥有无与伦比的驱动控制能力和测试精度,测试数据重复性特别好。
通过dma测试,可以得到材料的动态模量、损耗角、阻尼等动态粘弹性能,考察材料的动态性能随温度、频率、时间的依赖关系,了解材料的组成和内部结构信息,指导材料配方设计和新材料研发。
由于材料动态力学测试的目的是要考察试样的微观内部结构和组成对材料实际宏观应用性能的影响,因此一款高性能和高精度的动态力学分析仪是十分必要的,而dma则是您的最佳选择!由于Electroforce3550的动态力高,因此,除了常规的塑料树脂类材料测试外,还擅长测试各种金属、橡胶、弹性体、高强度复合材料、金属陶瓷等的动态拉伸、压缩、剪切等动态力学性能。
动态热机械分析
定义:在程序控温下,测量物质在非 振动负荷下的温度与形变关系的技术。
拉伸
压缩
弯曲
扭转
1 热机械分析 1-2 静态热机械分析 △L
Tf Tg T/℃
例1 PMMA 温度-形变曲线(压缩)
1 热机械分析 1-2 静态热机械分析 △L
LDPE
HDPE T/℃
例3 PE 线膨胀系数(压缩)
1 热机械分析 1-2 静态热机械分析 △L
α= △L /(L0 △T)
α —线膨胀系数(1/K) L0—初始长度 △T—试验温度差
1 热机械分析 1-1 热膨胀法
α= △L /(L0 △T)
美国:-30-30℃ 日本: 25-80℃ 我国: 0-40℃
注意:要求测试温度范围内无相转变
1 热机械分析 1-1 热膨胀法
体热膨胀法:温度升高1度,试样体积膨 胀(或收缩)的相对量:
γ= △V /(V0 △T)
γ —体膨胀系数(1/K) V0—初始体积 △T—试验温度差
1 热机械分析 1-1 热膨胀法
DIL 402 PC热膨胀仪 德国
1 热机械分析 1-1 热膨胀法
DIL 402 C热膨胀仪 德国
1 热机械分析 1-1 热膨胀法
DIL 402 E热膨胀仪 德国
1 热机械分析 1-2 静态热机械分析
F
2 动态热机械分析 2-4 分析仪器 F 平行板
3 在高分子材料中的应用
3-1 玻璃化温度测定 E’’ , Tanδ. Tg
T 玻璃化转变附近:E’’ ,Tanδ最大
3 在高分子材料中的应用
3-1 玻璃化温度测定
例1 NBR/S,ZnO,DM/C体系
3 在高分子材料中的应用
第3章动态热机械分析技术DMA
第3章动态热机械分析技术DMA
动态热机械分析技术(Dynamic Mechanical Analysis,DMA)是一种用于测定材料的粘弹性和机械性能的实验方法。
它结合了机械测试和热分析的技术,可以通过施加精确的力或应变,在不同温度下测定材料的动态力学性能。
DMA可以用于研究材料的线性和非线性弹性行为、材料的流变性质、玻璃化和熔融转变行为等。
在DMA实验中,材料试样在垂直加载下以一定频率振动,通过测量应变或力和位移的相位差,可以计算出材料的动态模量、损耗因子、储存模量等力学参数。
DMA技术的主要优势在于它可以在宽温度范围内进行测试,从室温到高温或低温环境都可以进行。
这对于研究材料的热机械性能非常重要,因为材料在不同温度下的性能可能会发生显著变化。
在DMA实验中,可以通过改变频率、幅值和温度等参数来模拟材料在实际应用中的工况,从而评估其使用寿命和稳定性。
DMA技术主要应用于聚合物、橡胶、复合材料、涂料、粘合剂等材料的研究和开发中。
通过DMA实验可以获得材料的力学行为、热稳定性、变形特性等信息,有助于改进材料的性能和设计新的材料。
在实际应用中,DMA可以用于评估材料的强度和刚度、变形和回复能力、阻尼特性等。
例如,在汽车工业中,DMA可以用于评估橡胶密封件的性能,以确保其在不同温度和应力条件下的可靠性。
在医疗器械领域,DMA可以评估聚合物材料的生物相容性和耐久性,以确保其在人体内使用的安全性和可靠性。
总之,动态热机械分析技术是一种重要的实验方法,可以用于研究材料的粘弹性和机械性能。
它的主要优势在于可以在不同温度环境下进行测试,并能提供关于材料性能的详细信息,有助于改进材料的设计和应用。
3-动态热机械分析解读
1 热机械分析 1-1 热膨胀法
体热膨胀法:温度升高1度,试样体积膨 胀(或收缩)的相对量:
γ= △V /(V0 △T)
γ —体膨胀系数(1/K) V0—初始体积 △T—试验温度差
1 热机械分析 1-1 热膨胀法
DIL 402 PC热膨胀仪 德国
1 热机械分析 1-1 热膨胀法
第5章 3-动态热机械分析
Dynamic Thermal Mechanical Analysis, DMA
1 热机械分析 热膨胀法
1、零负荷测定
2、静态负荷测定
静态热机械 动态热机械
3、动态负荷测定
1 热机械分析 1-1 热膨胀法
定义:在程序控温下,测量物质在可忽
略负荷时尺寸与温度关系的技术。
线热膨胀法 体热膨胀法
1 热机械分析 1-2 静态热机械分析
千分表
负荷 介质 压头
温度
样品
例6 塑料维卡软化点测定(针入度)
1 热机械分析 1-2 静态热机械分析
千分表
负荷 介质 压头
温度
样品
例6 塑料热变形温度测定(弯曲法)
1 热机械分析 1-2 静态热机械分析
△L
PC PVC
LDPE HDPE
T/℃
例6 温度-弯曲形变曲线(弯曲法)
2 动态热机械分析 2-3 基本原理
线性粘弹性行为:
σ = ε0 E’ sin(ωt) + ε0 E’’ cos (ωt)
E’ = ( σ0 / ε0 ) COS δ E’’ = ( σ0 / ε0 ) sin δ
2 动态热机械分析 2-3 基本原理
E‘
Tanδ
玻璃化转变 α 次级松弛转变 δ γ
dma动态热机械测试案例
dma动态热机械测试案例
动态热机械分析(Dynamic Mechanical Analysis,DMA)是一
种测试材料在受力和受热条件下机械性能变化的手段。
它可以通过施加周期性的力或应力来测试材料的刚性、弹性、黏弹性等性能,并且可以在不同温度下进行测试,以研究材料的热机械性能。
以下是一个可能的DMA动态热机械测试案例:
材料:聚酰亚胺(Polyimide)
实验目的:研究聚酰亚胺在不同温度下的力学性能变化。
实验步骤:
1. 准备样品:制备聚酰亚胺样品,保证其尺寸一致性,并根据需要进行后续处理(如烘烤、干燥)。
2. 安装样品:将样品固定在DMA仪器的样品夹具上,并确保
夹具与仪器对齐。
3. 设置实验条件:根据实验需求设置实验参数,例如施加力的频率、振幅和温度范围。
4. 开始实验:开始施加周期性的力或应力,同时进行温度控制,记录下材料的应力-应变或应力-时间曲线。
5. 数据分析:根据实验结果,进行数据分析,研究材料在不同温度下的机械性能变化。
可以计算出材料的峰值应变、储存模量、损耗模量等参数。
6. 结果讨论:根据实验结果,讨论材料的热机械性能变化规律,并与其他材料或不同处理条件下的样品进行比较。
7. 结论及应用:根据实验结果得出结论,评估材料的机械性能
在不同温度下的变化,为材料应用提供指导或优化建议。
这仅是一个简单的DMA动态热机械测试案例,实际应用中可以根据具体需求进行设计和优化实验步骤。
静态热机械分析及动态热机械分析
G*为切变模量时,
= E '+iE"
(3) 实数模量或储能模量(storage modulus),反应 形变过程由于弹性形变而储存的能量,也叫弹 性模量(flexible modulus). 与应变相差p/2的虚数模量,是能量的损耗部分, 为耗能模量.
因此在程序控温的条件下不断地测定高聚物 E’、E’’和tand值,
则 可 得 到 如 图 1 . 2 所 示 的 动 态 力 学 — 温 度 谱
(动态热机械曲线)。
图1.2 典型的高聚物动态力学-温度图谱
图1.3 典型非晶态高聚物的DMA温度谱.
二、动态热机械分析仪
动态热机械分析仪的种类很多。主要有: 1.扭摆法(TPA) 2.扭辫法(TBA) 3.强迫共振法DMA——振簧法 4.强迫非共振法——粘弹谱仪 强迫非共振法是目前最好的动态热机械测定法。由于它是强 迫非共振型,温度和频率是两个独立可变的参数,因此它可得 到不同频率下的DMA曲线。同时也可以得到不同定温条件下的
离以及分子链各层次的运动都十分敏感。所以它是研究高聚物
分子运动行为极为有用的方法。
如果施加在试样上的交变应力为 s ,则产生的应变为 e ,由 于高聚物粘弹性的关系其应变将滞后于应力,则 e 、 s 分别可 以下式表示。
s (t) = s0eiwt
(1)
e (t) = e0ei(wt -d)
(2)
一、高聚物的动态力学——温度行为
所谓动态力学是指物质在变负载或振动力的作用下所发生
的松弛行为。DMA就是研究在程序升温条件下测定动态模量
和阻尼随温度的变化一种技术。高聚物是一种粘弹性物质,因 此在交变力的作用下其弹性部分及粘性部分均有各自的反应, 而这种反应又随温度的变化而改变。高聚物的动态力学行为能 模拟实际使用情况,而且它对玻璃化转变,结晶、变联、相分
动态热机械分析仪DMA原理及方法
XX,a click to unlimited possibilities
汇报人:XX
目录 /目录
01
点击此处添加 目录标题
02
DMA基本原理
03
DMA实验方法
04
DMA在材料研 究中的应用实 例
05
DMA技术的发 展趋势和未来 展望
01 添加章节标题
02 DMA基本原理
精度和误差:高精度和低误差,确 保测试结果的准确性和可靠性
03 DMA实验方法
DMA实验步骤
准备样品:选 择合适的样品, 并进行必要的 处理和固定。
安装样品:将 样品安装到
DMA仪器的夹 具中,确保夹 具稳定且不会 对样品产生过
大的应力。
设定实验参数: 根据实验需求, 设置测试温度、 测试频率、振
动态热机械分析仪定义
DMA是一种用 于测量材料在 动态载荷下的 热机械行为的
测试仪器
它通过施加正 弦振动负荷并 测量其响应来 评估材料的力
学性能
DMA常用于评 估材料的粘弹 性、弹性模量、
阻尼等性质
在高分子材料、 复合材料、橡 胶、塑料等领 域有广泛应用
DMA工作原理简述
DMA通过测量样品在振动过程中施加力的变化来表征材料的力学性质。 DMA使用一个固定端和一个可动端之间的相对振动来测试样品的动态特性。 当振动施加力时,样品的形变会发生变化,导致施加的力与时间的关系曲线发生变化。 通过分析力与时间的关系曲线,可以获得样品的力学性质,例如弹性模量、阻尼等。
更高温度和压力下的DMA测量技术 新型DMA测量原理和方法的探索 DMA与其他测量技术的结合 DMA技术在材料科学、能源、环境等领域的应用拓展
动态热机械分析仪
动态热机械分析仪动态热机械分析仪(DMA)是一种用于测量材料热力学和机械性能的仪器。
它结合了热分析和力学分析的原理,可以对材料的热膨胀、玻璃态转变、塑性变形等性质进行研究分析。
本文将从仪器原理、应用领域以及未来发展进行详细介绍。
首先,动态热机械分析仪的原理是通过施加一定频率和振幅的力学载荷,在一定温度范围内对材料进行热力学和动态机械分析。
其主要包括四个组成部分:1.热环境:通过热流控制装置,可以控制样品与环境之间的温度差。
这样可以在一定温度范围内精确测量材料的热膨胀系数和玻璃态转变等热力学性质。
2.力学装置:通过加载系统对样品施加力学载荷。
可以控制载荷的频率、振幅和形状,以模拟材料在不同载荷条件下的力学响应。
3.测量装置:通过传感器和检测设备,可以测量材料的热力学和机械性能。
比如测量材料的热膨胀、表面形貌、动态模量等性质。
其测量原理可以通过电阻应变计、差示扫描量热计、动态机械分析等技术实现。
4.数据处理和分析软件:通过将测量得到的数据进行处理和分析,可以得到材料的力学响应和热力学性质的参数。
如杨氏模量、损耗因子、玻璃态转变温度等。
1.聚合物材料研究:由于聚合物在温度变化下会发生膨胀和收缩,动态热机械分析仪可以测量聚合物的热膨胀性能,从而了解其材料稳定性和使用寿命。
2.不锈钢和合金腐蚀分析:动态热机械分析仪可以通过测量材料的热膨胀性能和动态模量等参数,评估不锈钢和合金在高温和腐蚀环境下的稳定性。
3.复合材料研究:动态热机械分析仪可以用于评估各种复合材料的热膨胀性能和力学强度,优化材料配方和工艺,提高材料的性能和使用寿命。
4.高分子材料研究:动态热机械分析仪可以测量高分子材料的玻璃化温度和疲劳性能,为材料设计和应用提供依据。
最后,未来发展趋势方面,动态热机械分析仪将进一步发展:1.提高测量精度和分辨率,以应对新材料和新应用的需求。
2.开发多功能和多学科结合的测试仪器,将热分析、力学分析和光学分析等多个技术相结合,提供更全面的材料性能评估和分析。
动态热机械分析
动态热机械分析概述动态热机械分析是一种用于研究热机械系统在动态工况下的性能和行为的方法。
它结合热学和机械学的理论,通过建立数学模型,并应用数值计算方法进行仿真分析,以便了解系统在不同工况下的响应和特性。
动态热机械分析通常用于评估热机械系统的可靠性、效率和性能,在设计过程中起到重要的作用。
它可以帮助工程师优化系统的设计,提高系统的工作效率,降低能耗,并检测系统中可能存在的问题。
研究内容动态热机械分析的研究内容主要包括以下几个方面:1.传热特性分析:传热是热机械系统中的重要过程之一,动态热机械分析可以通过建立传热模型,分析系统中的热传导、对流和辐射等传热过程,从而评估系统的传热特性和热能损失。
2.动力学行为分析:动力学行为是指热机械系统在动态工况下的响应和特性。
动态热机械分析可以通过建立动力学模型,分析系统的动态特性,如响应时间、稳态和非稳态运行等,以及系统的振动、冲击和共振等现象。
3.效率和性能评估:动态热机械分析可以通过建立能量平衡模型,分析系统的能量转换效率和能耗特性,从而评估系统的性能和效率。
它可以帮助工程师找到优化系统的方法,提高系统的工作效率,降低能耗。
4.故障诊断与预测:动态热机械分析可以通过建立故障模型,分析系统中可能发生的故障,如设备损坏、泄漏和堵塞等,以及故障对系统性能和效率的影响。
它可以帮助工程师提前检测系统中的问题,并采取相应的维修和保养措施,避免故障引发的不可预测的风险。
方法与工具动态热机械分析通常采用数值计算方法和仿真工具进行模拟和分析。
常用的方法和工具包括:1.有限元分析:有限元分析是一种常用的数值计算方法,可以用于建立热机械系统的数学模型,并进行仿真分析。
它通过将系统分割成小的有限元单元,利用离散数学方法求解微分方程,得到系统在不同工况下的解。
2.计算流体力学:计算流体力学是一种用于研究流体力学和传热问题的数值计算方法,可以用于分析热机械系统中的流动和传热过程。
它通过建立流体的数学模型和边界条件,利用数值计算方法求解流体的运动和温度场,从而分析系统的传热特性。
动态热机械分析
动态热机械分析动态热机械是指将动力学及热力学原理应用于工程设计的领域。
它主要研究各种动力机械在运行中产生的热和能量互换问题,解决机械系统中的能量转换、储存和传递等问题。
本文将从以下几个方面展开对动态热机械的分析:1. 动态热机械的基础理论动态热机械的理论基础有两部分,即动力学和热力学。
其中,动力学涉及机械能、动能、势能等概念,描述物体运动时的力学规律;热力学则研究热力学系统内所含的能量,以及它们之间的变化和转换过程。
通过这两部分知识的结合,动态热机械提供了一种处理热与动能之间相互作用的方法,使得在设计和优化机械系统时可以更加准确地估计能量使用和损失情况。
2. 动态热机械的应用动态热机械的应用范围非常广泛,包括航空航天、汽车和发电机等领域。
例如,在汽车领域,动态热机械将运动学和热力学应用于发动机、离合器和传动系统等部分,以优化燃油效率和功率输出;在航空航天领域,动态热机械则关注于推进系统中的各种动力元件,如涡轮风扇、引擎喷嘴等,使其能够更加高效地吸收并利用燃气能量。
3. 动态热机械的优化随着技术的不断更新和完善,人们开始集中精力研究如何最大限度地提高动态热机械的效率。
目前,一些先进材料、计算机辅助设计和新型测试技术正在被广泛应用于这一领域,从而更好地掌握和利用热和动能的转换规律。
以下是两个具体的例子:汽车发动机的优化:为了提高燃油效率,并降低车辆对环境的影响,目前采用了诸如直接喷射燃料、升级点火系统、改进排气管等技术手段。
此外,一些企业还投资研究新型发动机,如电动汽车和混合动力系统,通过利用多种能源来驱动车辆,从而更好地节约燃料和减少二氧化碳排放量。
风力发电机的优化:风力发电机是将风能转换为电能的一种设备。
为了提高它的效率和产生能力,人们不断尝试改进叶轮设计和气流管道结构,优化输电线路的电阻和损耗等方面。
例如,采用单独控制多个导向板的微调装置,可以更加精确地调整叶片方向来适应复杂的风向变化;同时,使用辨识模型和模型预测控制的方法可以更加有效地监测和控制发电机的运行状态及其输出功率与频率。
DMA
动态力学分析性质:利用动态力学试验求取材料在周期性外力作用下的模量和损耗,并把模量和损耗作为温度、频率或时间的函数来考察材料的黏弹性能的方法。
对试样施加随时间交变的应力或应变,求取作为温度、频率或时间函数关系的模量和损耗的关系曲线,以研究材料的黏弹行为,这就是动态力学分析的主要内容。
其中,模量和损耗与时间的关系曲线,即是动态力学分析时间分布曲线。
Dynamic thermomechanical analysis 动态热机械分析动态热机械分析(DMA)是通过对材料样品施加一个已知振幅和频率的振动,测量施加的位移和产生的力,用以精确测定材料的粘弹性,杨氏模量(E*)或剪切模量(G*)。
动态粘弹分析方法的分类和特征:DMA技术依测试方法的不同,可分为四类: (前三种常用)(1)自由振动法(如扭摆和扭辨仪) (0.1--10Hz)(2)共振法(50--5000Hz)(3)强迫非共振法(0.001--1000Hz)(4)声波传播法。
原理:(1) 自由振动法中的扭摆法其装置的结构原理如图所示。
外力使扭摆中的试样扭转变形,外力除去后,惯性体作固定周期地衰减运动,这是由于高聚物的粘性所产生的力学内耗所致。
在不考虑系统的附加阻尼情况下,振幅的衰减速率是由试样的损耗因子决定的,可以通过测量振动的周期和振幅衰减来获得动态剪切复模量及阻尼。
(a)--扭摆仪原理图, (b)--阻尼振动曲线扭辨法是由扭摆法演变出来的,扭摆和扭辫之间的主要差别在于试样,后者系用玻璃纤维或其它惰性纤维织成的辫子作为基底,把高聚物试样的溶液(5--100%)或熔体涂覆在辫子上进行实验。
由于这种方法使用的试样系复合体,听以测不出试样切模量的绝对值,仅为相对值,一般以周期P平方的倒数1/P2表示,另外扭辫的频率范围小,对固化的难熔物不宜测定,但由于它试样用量小,(100mg以下),且灵敏度高,所以乐于被采用。
动态热机械分析仪
动态热机械分析仪动态热机械分析仪简介动态热机械分析仪是一种用于研究材料的物理特性和性能的分析工具。
它采用了动态机械载荷和热量加热的方法,通过监测样品在不同温度和应力条件下的热力学响应,来研究材料的热膨胀、热导性、热变形和热分解等特性。
动态热机械分析仪广泛应用于塑料、高分子材料、陶瓷、金属、复合材料等领域的材料研究和生产过程中。
动态热机械分析仪的工作原理动态热机械分析仪通过施加动态载荷和热量加热来模拟材料在实际使用条件下的力学和热学环境。
它由一个电炉、一个机械载荷系统和一个检测系统构成。
在实验中,样品被夹在两个机械夹具之间,然后施加动态载荷和恒定温度。
在载荷作用下,样品会发生热膨胀和热变形,通过检测样品的力学和热学响应,可以获得材料的热力学性质。
动态热机械分析仪的应用动态热机械分析仪可以用于研究材料的热膨胀性能。
材料的热膨胀是指随着温度的升高或降低,材料的体积发生变化的现象。
热膨胀性能对于很多工程应用来说是非常重要的,比如在航空航天、电子器件和建筑结构等领域。
通过动态热机械分析仪,可以测量材料在不同温度下的热膨胀系数,并进一步研究其与温度之间的关系。
此外,动态热机械分析仪还可以用于研究材料的热导性能。
热导性是指材料传导热量的性能,它与材料的导热系数和温度梯度有关。
测量材料的热导性能对于研究材料的导热机制和改善热耗散效果非常重要。
通过动态热机械分析仪,可以测量材料在不同温度下的热导率,并进一步研究其与温度和材料结构之间的关系。
此外,动态热机械分析仪还可以用于研究材料的热变形性能。
材料的热变形是指在高温下受力作用下的变形行为。
研究材料的热变形性能对于设计和制造高温工作环境下的零部件和结构件非常重要。
通过动态热机械分析仪,可以测量材料在不同应力和温度条件下的热变形行为,并进一步研究其与材料的晶体结构和成分之间的关系。
此外,动态热机械分析仪还可以用于研究材料的热分解性能。
材料的热分解是指在高温下分解为不同组分的过程。
动态热机械分析仪(DMA)设备安全技术措施
动态热机械分析仪(DMA)设备安全技术措施动态热机械分析仪(DMA)是一种重要的材料分析仪器,用于研究材料的热力学和机械性能。
DMA设备广泛应用于材料科学、生物材料、粘弹性等领域。
为了确保DMA设备的安全使用,必须采取一系列技术措施来预防事故的发生。
下面是DMA设备安全技术措施的具体内容。
1. 设备安装1.1 安装场地:为确保设备的稳定性和精度,DMA设备应该安装在地面平稳、通风良好、环境温度适宜的场地。
1.2 安装要求:在安装DMA设备的过程中,需要严格按照厂家提供的安装手册进行操作,并确保安装基础稳定、电源接地可靠,并正确连接电气线路。
2. 操作安全2.1 操作指南:DMA设备的操作必须由经过专业培训的人员进行。
在操作DMA设备之前,必须仔细阅读设备的操作手册,严格按照手册中的操作步骤进行操作。
2.2 实验准备:在进行实验时,必须准备好所需的材料和试剂,并根据实验需求检查好设备的各个部件是否处于正常工作状态。
2.3 实验操作:在实验操作期间,必须严格遵守实验室安全规定,在操作过程中必须佩戴防护用品,如手套、护目镜等。
同时,必须注意确保实验室内的通风良好,以预防有害气体和粉尘的危害。
3. 维修和保养3.1 安全保养:DMA设备的维修和保养必须由熟悉设备的专业技术人员进行。
在进行设备的保养和维修时,必须严格按照厂家提供的操作步骤进行操作,以确保设备的安全性。
3.2 损坏部件更换:如果设备的部件损坏,必须及时更换,并确保更换的部件符合厂商规定的规格和要求。
3.3 定期检查:DMA设备需要定期检查,以确保设备的性能和安全性。
在定期检查时,必须根据厂家提供的操作手册进行操作,以确保检查的准确性。
4. 废弃处理4.1 设备的处理:在DMA设备报废或无法再使用时,必须严格按照国家和地方有关法律法规对设备进行处理。
在处理设备时,必须选用符合规定的处理方式,并防止污染和造成环境的不良影响。
4.2 化学废物处理:对于DMA设备和实验中产生的化学废物,必须按照国家和地方有关法律法规进行安全处理,以预防对人体和环境造成危害。
动态热机械分析仪DMA原理及方法
05
DMA技术发展趋势与挑战
技术创新方向探讨
更高频率范围
开发能够在更高频率下工作的DMA技术, 以满足对材料高频响应特性的研究需求。
多功能集成
将DMA与其他分析技术(如热分析、光学分析等) 相结合,实现多功能一体化分析。
智能化与自动化
利用人工智能和机器学习技术,提高DMA 测试的自动化程度和数据分析的准确性。
DMA可测定聚合物在不同温度和频率下的储能模量和损耗模量, 揭示材料的粘弹性行为。
蠕变与松弛行为研究
DMA可用于研究聚合物的蠕变和松弛行为,为材料长期性能预测 提供依据。
金属材料疲劳寿命预测
疲劳裂纹扩展速率
测定
DMA可测定金属材料在不同温度 和加载频率下的疲劳裂纹扩展速 率,为疲劳寿命预测提供关键参 数。
100%
温度控制
通过PID算法等精确控制加热元 件的功率,实现样品温度的精确 控制。
80%
温度范围
根据测试需求,加热系统可提供 从室温到高温(如600℃)的宽 温度范围。
冷却系统
冷却方式
采用液氮、压缩空气等作为冷 却介质,实现样品的快速冷却 。
温度控制
通过控制冷却介质的流量和温 度,精确控制样品的冷却速率 和最终温度。
现状
目前,DMA已经成为材料科学研究领域的重要工具之一,随着新材料和新技术的不断涌现,DMA的应用前景将 更加广阔。同时,DMA技术也在不断发展和完善,如高温DMA、高压DMA等新型仪器的出现,为材料科学研究 提供了更多的可能性。
02
DMA系统组成与功能
加热系统
80%
加热元件
通常采用电阻丝、红外线灯等作 为加热元件,提供均匀稳定的热 源。
与其他技术的联合应 用
第五章动态热力分析
(四)动态力学频率谱 在一定温度下,聚合物动态力学性能随频率的变化称为
动态力学频率谱,即DMA频率谱。用于研究材料力学性能 与速率的依赖性。
图5-13 典型非晶态聚合物的DMA频率谱
28
二、动态热力分析仪器
表5-1 动态力学试验方法
振动模式 自由振动 强迫共振
强迫非共振
声波传播
形变模式
扭转 固定-自由弯曲 自由-自由弯曲
16
聚合物材料是典型的粘弹性材料,这种粘弹性表现 在聚合物的一切力学行为上。
聚合物的力学性质随时间的变化统称为力学松弛。 根据聚合物材料受到外部作用的情况不同,可以观 察到不同类型的力学松弛现象,最基本的有蠕变、应力 松弛、滞后和力学损耗(内耗)等。
17
(二)内耗 聚合物在交变应力作用下,应变落后于应力变化的现象 称为滞后现象。 滞后现象的发生是由于链段在运动时要受到内摩擦力的 作用,滞后相位角δ越大,说明链段运动越困难,越是跟不 上外力的变化。 应变的变化落后于应力的变化,发生滞后现象,则每一 循环变化中就要消耗功,称为力学损耗,也称内耗。 聚合物内耗的大小与试样本身的结构有关,还与温度、 频率、时间、应力(或应变)及环境因素(如湿度、介质等 )有关。
负荷作用下,试样弯曲形状达到规定值时的温度。 国标规定,升温速度为12℃/6min,弯曲应力为
18.5kg/cm2或4.6kg/cm2,弯曲变形量为0.21mm。
13
(四)拉伸法 采用拉伸探头,将纤维或薄膜试样装在专用夹具上,
然后放在内外套管之间,外套管固定在主机架上,内套管 上端施加负荷,测定试样在程序控温下的温度-形变曲线。
热机械分析仪有两种类型,即浮筒式和天平式。 负荷的施加方式有压缩、弯曲、针入、拉伸等,常用 的是压缩力。
2024年动态热机械分析仪市场调研报告
2024年动态热机械分析仪市场调研报告1. 引言动态热机械分析仪(Dynamic Mechanical Analyzer,DMA)是一种用于测量材料力学性能与温度、频率、荷载的关系的仪器。
它广泛用于材料研究、品质控制、新产品开发等领域。
本报告旨在对动态热机械分析仪市场进行全面深入的调研与分析,以了解市场规模、发展趋势、竞争格局等情况。
2. 研究方法本报告采用了市场调研的标准方法,包括数据收集、分析、整理和归纳总结。
数据来源主要包括市场研究机构的报告、行业协会的统计数据、企业财报等。
3. 市场概述动态热机械分析仪市场是一个快速发展的市场,主要受到材料研究和制造领域的需求推动。
随着科技进步和工业技术的不断升级,对材料性能的要求越来越高,动态热机械分析仪作为一种重要的测试仪器,市场需求也在不断增加。
4. 市场规模根据调研数据显示,动态热机械分析仪市场在过去几年中保持着稳定增长的趋势。
预计在未来5年内,市场规模将进一步扩大。
据统计,2019年市场规模达到XX亿元,预计到2025年将达到XX亿元,年复合增长率为X%。
5. 市场驱动因素动态热机械分析仪市场的快速发展受到多个因素的驱动。
首先,材料研究领域的需求不断增加,动态热机械分析仪作为进行材料性能测试的重要工具,市场需求也在快速增长。
其次,新材料的不断涌现和应用促进了动态热机械分析仪的广泛使用。
此外,随着生产工艺的进一步精细化和自动化,对材料性能的要求也在不断提高,动态热机械分析仪作为进行材料力学性能测试的关键设备,市场需求也在不断扩大。
6. 市场竞争格局目前,动态热机械分析仪市场上存在多家主要厂商。
这些厂商拥有先进的技术和丰富的经验,产品质量得到了业界的认可。
在市场竞争中,技术创新、产品质量、售后服务等方面成为各家厂商争夺市场份额的关键因素。
据调研数据显示,市场份额前三的厂商分别为A公司、B公司和C公司,占据了市场的大部分份额。
7. 市场前景展望动态热机械分析仪市场具有较高的发展潜力和广阔的市场前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
△V
Tg
Tm Tg
T/℃
例7 天然橡胶体膨胀曲线(膨胀法)
2 动态热机械分析 2-1 基本定义
定义:在程序控温下,测量物质在振 动载荷下的动态模量和(或)力学损耗与 温度的关系。
(Dynamic Mechanical Analysis, DMA)
2 动态热机械分析 2-2 基本特点 特点1:小样品,宽温度、频率范围。 特点2:表征结构变化-分子运动- 性能。 特点3:动态载荷产品设计(轮胎)。
d △L/dt
Tg=128℃
T/℃
例4 环氧树脂 线膨胀系数(压缩)
1 热机械分析 1-2 静态热机械分析 针入度
Tg1 Tg2
T/℃ 例5 聚酯/聚酰亚胺(针入度)
1 热机械分析 1-2 静态热机械分析
千分表
负荷 介质 压头
温度
样品
例6 塑料维卡软化点测定(针入度)
1 热机械分析 1-2 静态热机械分析
μ= -ε2/ε1
E=2G(1+μ)
E—杨氏模量,G—剪切模量
2 动态热机械分析 2-3 基本原理
线性粘弹性行为:
ε = ε0 sin (ωt) σ = σ0 sin (ωt + δ )
ω –角频率 δ –相位差
2 动态热机械分析 2-3 基本原理
线性粘弹性行为:
σ = σ0 sin(ωt) cosδ + σ0cos (ωt)sinδ
δ
γ
β
T
非晶态高聚物DMA温度谱(频率一定)
2 动态热机械分析 2-3 基本原理
Tanδ lgE‘lgE’’
Tanδ E‘
E’’ lgω
非晶态高聚物DMA频率谱(温度一定)
2 动态热机械分析 2-3 基本原理
高聚物 DMA频率谱(温度一定)
高聚物 DMA温度谱(频率一定) 由于调节温度比调频率 更容易,因此DMA温度 谱最常用。
F
2 动态热机械分析 2-4 分析仪器 F 平行板
3 在高分子材料中的应用
3-1 玻璃化温度测定 E’’ , Tanδ. Tg
T 玻璃化转变附近:E’’ ,Tanδ 最大
3 在高分子材料中的应用
3-1 玻璃化温度测定
例1 NBR/S,ZnO,DM/C体系
3 在高分子材料中的应用
3-1 玻璃化温度测定
千分表
负荷 介质 压头
温度
样品
例6 塑料热变形温度测定(弯曲法)
1 热机械分析 1-2 静态热机械分析
△L
PC PVC
LDPE HDPE
T/℃
例6 温度-弯曲形变曲线(弯曲法)
1 热机械分析 1-2 静态热机械分析
△L 硬PVC
LDPE 苯丙共聚
纤维素
T/℃ 例6 温度-拉伸形变曲线(拉伸法)
1 热机械分析 1-2 静态热机械分析
例1 NBR/CoCl2体系
3 在高分子材料中的应用
3-2 耐热性能评价
千分表
负荷 介质 压头
温度
样品
例6 塑料维卡软化点测定(针入度)
千分表
负荷 介质 压头
温度
样品
例6 塑料热变形温度测定(弯曲法)
3 在高分子材料中的应用
3-2 耐热性能评价 特点:热变形温度(维卡软化点)测 定结果仅适合于同种材料间的相对比较, 不能全面衡量材料的耐热性能。
3 在高分子材料中的应用
3-2 耐热性能评价 E’
硬PVC
0.90GPa
尼龙6 T
T1
T2
3 在高分子材料中的应用
3-3 耐寒性或低温韧性评价
1、塑料:非晶态的玻璃态(T<Tg).
2、塑料:晶态+玻璃态(T<Tg).
3、塑料:晶态+橡胶态(T>Tg). 塑料耐寒性:低温下可运动单元情况。
3-3 耐寒性或低温韧性评价
ε = ε0 sin (ωt)
2 动态热机械分析 2-3 基本原理
线性粘弹性行为:
σ = ε0 E’ sin(ωt) + ε0 E’’ cos (ωt)
E’ = ( σ0 / ε0 ) COS δ E’’ = ( σ0 / ε0 ) sin δ
2 动态热机械分析 2-3 基本原理
E‘
Tanδ
玻璃化转变 α 次级松弛转变
玻璃化转变、结晶、取向、交联、相分离
2 动态热机械分析 2-3 基本原理
粘性 弹性 粘弹性 应力 应变
在应力下产生流动的能力 应力后恢复原状的能力 同时具粘性液体与纯弹性质 单位面积上承受的力 ε = △L/L0
2 动态热机械分析 2-3 基本原理
模量 柔量 泊松比
应力与应变之比,刚性量度。 模量的倒数,柔性量度。 外力下纵、横向应变之比。
定义:在程序控温下,测量物质在非 振动负荷下的温度与形变关系的技术。
拉伸
ቤተ መጻሕፍቲ ባይዱ
压缩
弯曲
扭转
1 热机械分析 1-2 静态热机械分析 △L
Tf Tg T/℃
例1 PMMA 温度-形变曲线(压缩)
1 热机械分析 1-2 静态热机械分析 △L
LDPE
HDPE T/℃
例3 PE 线膨胀系数(压缩)
1 热机械分析 1-2 静态热机械分析 △L
γ= △V /(V0 △T)
γ —体膨胀系数(1/K) V0—初始体积 △T—试验温度差
1 热机械分析 1-1 热膨胀法
DIL 402 PC热膨胀仪 德国
1 热机械分析 1-1 热膨胀法
DIL 402 C热膨胀仪 德国
1 热机械分析 1-1 热膨胀法
DIL 402 E热膨胀仪 德国
1 热机械分析 1-2 静态热机械分析
α= △L /(L0 △T)
α —线膨胀系数(1/K) L0—初始长度 △T—试验温度差
1 热机械分析 1-1 热膨胀法
α= △L /(L0 △T)
美国:-30-30℃ 日本: 25-80℃ 我国: 0-40℃
注意:要求测试温度范围内无相转变
1 热机械分析 1-1 热膨胀法
体热膨胀法:温度升高1度,试样体积膨 胀(或收缩)的相对量:
2 动态热机械分析 2-4 分析仪器
DMA 242 C动态热机械分析仪
2 动态热机械分析 2-4 分析仪器 F 三点弯曲
2 动态热机械分析 2-4 分析仪器 双悬臂梁
F
2 动态热机械分析 2-4 分析仪器 单悬臂梁
F
2 动态热机械分析 2-4 分析仪器 纤维延伸
F
2 动态热机械分析 2-4 分析仪器 薄膜延伸
1 热机械分析 热膨胀法
1、零负荷测定
2、静态负荷测定
静态热机械 动态热机械
3、动态负荷测定
1 热机械分析 1-1 热膨胀法
定义:在程序控温下,测量物质在可忽
略负荷时尺寸与温度关系的技术。
线热膨胀法 体热膨胀法
1 热机械分析 1-1 热膨胀法
线热膨胀法:温度升高1度,试样某一方 向上相对伸长(或收缩)量: