历年高考数学易错点18个

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考数学易错点18个

历年高考数学易错点18个

数学是一座高山,哪怕是高考数学这样的小山丘,也让无数学子望其背而心戚戚,更有人混淆知识点,在里面兜兜转转浪费了精力

和时间,满纸推算却只能挣得卷面分,看得自己也是好一阵心疼啊,搬出高考数学易错知识点总结,希望能让大家少走一点弯路。

集合与简单逻辑

1易错点:遗忘空集致误

错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜

密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在

解含有参数的集合问题时,更要充分注意当参数在某个范围内取值

时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于

思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题

错误或是解题不全面。

2易错点:忽视集合元素的三性致误

错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字

母参数的范围后,再具体解决问题。

3易错点:四种命题的结构不明致误

错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则

┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的

命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

4易错点:充分必要条件颠倒致误

错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充

分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时

最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时

一定要根据充要条件的概念作出准确的判断。

5易错点:逻辑联结词理解不准致误

错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有

所帮助:

p∨q真<=>p真或q真,

p∨q假<=>p假且q假(概括为一真即真);

p∧q真<=>p真且q真,

p∧q假<=>p假或q假(概括为一假即假);

┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

函数与导数

6易错点:求函数定义域忽视细节致误

错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制

条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:

(1)分母不为0;

(2)偶次被开放式非负;

(3)真数大于0;

(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

7易错点:带有绝对值的函数单调性判断错误

错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:

一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;

二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

8易错点:求函数奇偶性的常见错误

错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

9易错点:抽象函数中推理不严密致误

错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中

一些具体函数的性质去解决抽象函数的性质。

解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。

抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些

条件,更不要臆造条件,推理过程要层次分明,书写规范。

10易错点:函数零点定理使用不当致误

错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断

的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)

内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程

f(c)=0的根,这个结论我们一般称之为函数的零点定理。

函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要

注意这个问题。

11易错点:混淆两类切线致误

错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的

所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲

线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,

首先要区分是什么类型的切线。

12易错点:混淆导数与单调性的关系致误

相关文档
最新文档