高级生物化学问答题
生物化学问答题
1、试述碱基,核苷酸和核酸在结构上的关系答:核酸的组成单元是核苷酸,(1分)核苷酸是由核苷和磷酸组成(2分),而核苷又是由核糖和碱基组成(2分),碱基分为嘌呤和嘧啶(2分),共有A、G、C、T、U五种(3分)。
3、论述tRNA的二级结构特征答:tRNA的二级结构特征是三叶草结构(1分),主要特征是四环四臂,包括是反密码子环、额外环、TΨC环、二氢尿嘧啶环(4分),四臂是反密码子臂、TΨC臂、二氢尿嘧啶臂、氨基臂(4分)。
4、写出EMP途径的限速酶及所催化的反应?答:EMP途径的限速酶及所催化的反应有三步(2分),第一步:葡萄糖在已糖激酶催化下生成6-磷酸葡萄糖,消耗1分子ATP(2分);第二步:6-磷酸果糖在磷酸果糖激酶催化下生成1,6-二磷酸果糖,消耗1分子ATP(2分);第三步:磷酸烯醇式丙酮酸在丙酮酸激酸催化下生成丙酮酸,生成1分子ATP(2分)。
5、试述一分子十八碳硬脂酸彻底氧化成CO2和H2O的化学过程,并计算产生多少ATP答:十八碳软脂酸彻底氧化成CO2和H2O的化学过程包括二部分,即β氧化,三羧酸循环:1、 β氧化过程:1、脂肪酸的活化:脂肪酸在ATP供能下活化生成酯酰辅酶A,消耗两分子ATP;2、脱氢:酯酰辅酶A在酯酰辅酶A脱氢酶催化下生成反烯酯酰辅酶A,同时生成一分子FADH;3、水化:反烯酯酰辅酶A在水化酶催化下生成β羟脂酰辅酶A;4、脱氢:β羟脂酰辅酶A在β羟脂酰辅酶A脱氢酶变成β酮脂酰辅酶A生成一分子NADH;5、硫脂解:β酮脂酰辅酶A与辅酶A进行硫解成乙酰辅酶A和少两个碳的脂酰辅酶A。
2、 三羧酸循环:1、乙酰辅酶A与草酰乙酸在柠檬酸合成酸催化合成柠檬酸;2、柠檬酸在柠檬酸异构酶生成异柠檬酸。
3、异柠檬酸在异柠檬脱氢酶催化下生成α酮戊二酸并生一分子NADH;4、α酮戊二酸在α酮戊二酸脱氢酶催化下琥珀酰辅酶A并生一分子NADH;5、琥珀酰辅酶A生成琥珀酸,并生成一分子GTP。
高级生化题库(四川农业大学)
1. 蛋白质超二级结构:在蛋白质分子中,特别是球状蛋白质中,由若干相邻的二级结构单元(即α-螺旋,β-折叠片和β-转角等)彼此相互作用组合在一起,形成有规则、在空间上能辨认的二级结构组合体,充当三级结构的构件单元,称超二级结构。
2 sanger反应:在弱碱性溶液中,氨基酸的α-氨基易与DNFB(2,4-二硝基氟苯)反应,生成黄色的DNP-AA(二硝基苯氨基酸),此反应最初被sanger用于测定N-末端氨基酸,又被称为sanger反应。
6 引发体:引物酶与相关蛋白质结合成的一个有活性的复合体叫做引发体。
8 分子病:由于基因突变导致蛋白质一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病,称为分子病。
10 固定化酶:将酶从微生物细胞中提取出,将其用固定支持物(称为载体)固定,使其成为不溶于水或不易散失和可多次使用的生物催化剂,这种固定的酶称为固定化酶。
11 解偶联作用:在完整线粒体内,电子传递与磷酸化是紧密偶联的,当使用某些试剂而导致的电子传递与ATP形成这两个过程分开,只进行电子传递而不能形成ATP的作用,称为解偶联作用二,简答1. 简述信号肽的特点和转运机制。
答:信号肽具有两个特点:1)位于分泌蛋白前体的N-端2)引导分泌蛋白进入膜以后,信号肽将被内质网腔内的信号肽酶切除。
信号肽的转运机制:信号肽运作的机制相当复杂,有关组分包括信号肽识别颗粒(SRP)及其受体、信号序列受体(SSR)、核糖体受体和信号肽酶复合物。
信号肽发挥作用时,首先是尚在延伸的、仍与核糖体结合的新生肽链中的信号肽与SRP结合,然后通过三重结合(即信号肽与SSR的结合、SRP及其受体结合、核糖体及其受体的结合)。
当信号肽将新生肽链引导进入内质网腔内后,在信号肽酶复合物的作用下,已完成使命的信号肽被切除。
3. 生物膜主要有哪些生物学功能?任举一例说明膜结构与功能的密切关系。
生物膜的生物学功能可以概括如下:1)区域化或房室化 2)物质的跨膜运输 3)能量转换(氧化磷酸化) 4)细胞识别4. 研究蛋白质一级结构有哪些意义?蛋白质的一级结构即多肽链中氨基酸残基的排列顺序(N端—C端)是由基因编码的,是蛋白质高级结构的基础,因此一级结构的测定成为十分重要的基础研究。
生物化学(简答题、问答题)
简答题、问答题1.组成蛋白质的氨基酸有多少种?其结构特点是什么?答:组成蛋白质的氨基酸有20种。
结构特点:(1)除脯氨酸是α-亚氨基酸外,所有氨基酸均为α-氨基酸;(2)除甘氨酸外,其它氨基酸的α-碳原子(分子中第二个碳,Cα)均为不对称碳原子,D-型和L-型两种立体异构体,但天然蛋白质中的氨基酸都是L-型氨基酸;(3)氨基酸之间的不同,主要在于侧链R 的不同。
2.蛋白质分子结构可分为几级?维持各级结构的化学键是什么?答:蛋白质分子结构分为一、二、三、四级;维持各级结构的化学键分别是肽键、二硫键,氢键,次级键(疏水键),次级键(疏水键)。
3、酶作为一种生物催化剂有何特点?答:酶具有高效性、专一性、活性可调性。
4、解释酶的活性部位、必需基团二者之间的关系。
答:必需基团5、说明米氏常数的意义及应用。
答:米氏常数等于酶促反应速度为最大反应速度一半时的底物浓度。
应用:(1)米氏常数是酶的特征性常数,每一种酶都有它的Km 值,与酶的性质、催化的底物和酶促反应条件(如温度、pH 、有无抑制剂等)有关,而与酶浓度无关。
(2)K m 值可用于表示酶和底物亲和力的大小。
(3)当使用酶制剂时,可以根据K m 值判断使酶发挥一定反应速度时需要多大的底物浓度;在已规定底物浓度时,也可根据K m 值估算出酶能够获得多大的反应速度。
6、什么是竞争性和非竞争性抑制?试用一两种药物举例说明不可逆抑制剂和可逆抑制剂对酶的抑制作用?答:竞争性抑制:抑制剂结构与底物的结构相似,它和底物同时竞争酶的活性中心,因而妨碍了底物与酶的结合,减少了酶分子的作用机会,从而降低了酶的活性。
非竞争性抑制:抑制剂和底物不在酶的同一部位结合,抑制剂与底物之间无竞争性,酶与底物结合后,还可与抑制剂结合,或者酶和抑制剂结合后,也可再同底物结合,其结果是形成了三元复合物(ESI)。
可逆抑制剂:增效联磺的杀菌作用:增效联磺抑制细菌的二氢叶酸合成酶、二氢叶酸还原酶德活性,使细菌体内四氢叶酸的合成受到双重抑制,使细菌因核酸的合成受阻而死亡。
生物化学 问答题
1.酮体生成的意义:酮体是肝脏输出能源的一种形式。
并且酮体可通过血脑屏障,是脑组织的重要能源。
酮体利用的增加可减少糖的利用,有利于维持血糖水平恒定,节省蛋白质的消耗。
2.氨基酸脱氨基作用有哪几种方式?转氨基作用,氧化脱氨基,联合脱氨基,非氧化脱氨基3.简述一碳单位的定义、来源和生理意义某些氨基酸在分解代谢过程中产生的只含有一个碳原子的基团,称为一碳单位。
能作为合成嘌呤和嘧啶的原料,把氨基酸代谢和核酸代谢联系起来需要四氢叶酸载体。
4.维生素B12缺乏与巨幼红细胞贫血的关系是什么?由叶酸、维生素B12缺乏引起的一种大细胞性贫血。
这种贫血的特点是骨髓里的幼稚红细胞增多,红细胞核发育不良,成为特殊的巨幼红细胞。
5.鸟氨酸循环的主要过程及生理意义是什么?氨基甲酰磷酸的合成,瓜氨酸的合成,精氨酸代琥珀酸的生成,精氨酸的生成,精氨酸水解生成尿素最重要的意义是将体内蛋白质代谢产生的较高毒性的氨转化为低毒的尿素,从而排出体外。
鸟氨酸循环也叫尿素循环。
6.补救合成的生理意义补救合成节省从头合成时的能量和一些氨基酸的消耗。
体内某些组织器官,如脑、骨髓等只能进行补救合成。
7. 列举影响核苷酸合成的抗代谢物及其抗癌作用原理.6-巯基鸟嘌呤与次黄嘌呤的结构相似,可抑制次黄嘌呤核苷酸向腺苷酸和鸟甘酸的转变。
8.为什么说细胞水平的调节是机体代谢调节的基础?细胞水平调节主要通过细胞内代谢物浓度的变化,对酶的活性及含量进行调节,是最基础的代谢调节。
9.机体代谢调节方式有多种,相互之间如何联系?物质代谢通过各代谢途径的共同中间产物相互联系,但在相互转变的程度上差异很大,有些代谢反应是不可逆的。
乙酰CoA 是糖、脂、氨基酸代谢共有的重要中间代谢物,三羧酸循环是三大营养物最终代谢途径,是转化的枢纽。
10.平时与饥饿时机体内能量主要来源有何不同平时能量主要来源于对葡萄糖的利用在饥饿时整体水平的代谢调节发挥作用:(1)糖代谢变化糖异生加强,组织对葡萄糖利用降低(2)蛋白质代谢变化分解加强,氨基酸异生成糖(3)脂代谢变化脂肪动员加强,酮体生成增多11.血浆蛋白质的功能。
高级生物化学习题答案
高级生物化学习题答案高级生物化学习题答案生物化学是研究生物体内化学反应和物质转化的一门学科,它涉及到许多复杂的概念和理论。
在学习生物化学的过程中,我们常常会遇到一些高级的习题,需要运用所学知识进行分析和解答。
本文将为大家提供一些高级生物化学习题的答案,帮助大家更好地理解和掌握这门学科。
1. 问题:DNA双螺旋结构中的碱基配对原则是什么?答案:DNA的双螺旋结构是由两条互补的链组成的,其中腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,而鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。
这种碱基配对原则称为互补配对原则。
2. 问题:什么是酶的底物特异性?答案:酶是生物体内催化化学反应的蛋白质,它对底物具有特异性。
酶的底物特异性是指酶只能与特定的底物结合并催化特定的化学反应。
这种特异性是由酶的三维结构决定的,酶的活性部位与底物之间存在特定的空间结构和化学键的相互作用。
3. 问题:ATP是细胞内能量的主要储存形式,请解释ATP的能量释放过程。
答案:ATP(腺苷三磷酸)是细胞内能量的主要储存形式。
ATP的能量释放过程可以通过以下步骤解释:首先,ATP通过酶催化被水分解为ADP(腺苷二磷酸)和一个无机磷酸(Pi)。
这个过程称为ATP水解。
其次,ATP水解释放出的能量被细胞利用,用于推动各种能量消耗的生物学过程,例如细胞运动、物质转运和合成反应等。
最后,ADP和Pi可以通过细胞内的酶催化反应再次合成为ATP。
这个过程称为ATP合成。
在这个过程中,细胞利用外源能量(如光能或化学能)将ADP和Pi 重新合成为ATP,以储存能量供细胞使用。
4. 问题:请解释酶的活性调节机制。
答案:酶的活性调节是细胞内控制酶催化活性的重要机制。
酶的活性调节可以通过以下几种方式实现:(1)底物浓度调节:一些酶的活性受到底物浓度的调节。
当底物浓度较高时,酶的活性会被抑制;而当底物浓度较低时,酶的活性则会被激活。
(2)产物浓度调节:一些酶的活性受到产物浓度的调节。
生物化学试题及答案 (6)
生物化学试题及答案一、选择题1.生物大分子的共有特点是() A. 构成元素多为C、H、O、N、P等B. 构成元素多为C、H、O、N等C. 构成元素多为O、N等D. 构成元素多为C、O、N等2.氨基酸的结构中不包括()A. α-氨基酸B. β-氨基酸C. γ-氨基酸D. δ-氨基酸3.下列哪种生物分子不属于多聚体() A. DNA B. RNA C. 蛋白质 D. 糖类4.下列那种氨基酸在生物体内不能合成() A. 丝氨酸 B. 色氨酸 C. 酪氨酸 D. 酸性氨基酸5.下列哪种物质不属于核酸的组成单元() A. 核苷 B. 核苷酸 C. 核甘酸D. 核小体二、填空题6.生物大分子的特点是多_______。
7.表示核酸单体的单位是_______。
8.蛋白质由_______大分子组成。
9.糖类可以通过_______反应形成聚合物。
10._______酸性氨基酸在生物体内不能合成。
三、简答题11.生物大分子的共有特点是什么?(回答不少于50字)答:生物大分子的共有特点是构成元素多为碳、氢、氧、氮、磷等元素。
这些元素构成了生物大分子的主体骨架,赋予生物大分子特殊的结构和性质。
12.请简要说明氨基酸的结构组成。
(回答不少于50字)答:氨基酸的结构组成包括氨基(-NH2)、羧基(-COOH)以及一个R基团。
其中,氨基和羧基是氨基酸的功能团,而R基团则决定了氨基酸的种类。
氨基酸通过R基团的不同而具有不同的性质和功能。
13.请简要说明生物大分子和非生物大分子的区别(回答不少于50字)答:生物大分子和非生物大分子的区别主要体现在构成元素和结构特点上。
生物大分子的构成元素多为碳、氢、氧、氮、磷等元素,而非生物大分子的构成元素较为简单。
此外,生物大分子的结构特点复杂多样,能够发挥多种生物功能,而非生物大分子的结构相对简单,功能有限。
四、问答题14.请分别列举DNA和RNA的结构特点并比较它们之间的区别。
(回答不少于100字)答:DNA(脱氧核糖核酸)是生物体内存储遗传信息的分子。
高级生物化学试题及答案
高级生物化学试题及答案一、选择题(每题2分,共20分)1. 蛋白质的一级结构是指:A. 氨基酸的排列顺序B. 蛋白质的空间构象C. 蛋白质的亚基组成D. 蛋白质的二级结构答案:A2. 下列哪种氨基酸是非极性氨基酸?A. 丙氨酸B. 谷氨酸C. 天冬氨酸D. 赖氨酸答案:A3. 核酸的基本组成单位是:A. 核苷酸B. 核糖C. 碱基D. 磷酸答案:A4. 酶促反应中,酶降低反应活化能的主要方式是:A. 提供反应物B. 提供能量C. 稳定过渡态D. 改变反应物浓度答案:C5. 糖酵解过程中,产生NADH的步骤是:A. 葡萄糖磷酸化B. 6-磷酸果糖异构化C. 3-磷酸甘油醛氧化D. 丙酮酸还原答案:C6. 以下哪种维生素是辅酶A的组成部分?A. 维生素AB. 维生素B1C. 维生素B2D. 维生素B5答案:D7. 细胞呼吸过程中,电子传递链的主要功能是:A. 产生ATPB. 产生NADHC. 产生FADH2D. 产生CO2答案:A8. DNA复制过程中,引物的作用是:A. 提供起始点B. 提供模板C. 提供能量D. 提供酶答案:A9. 真核细胞中,mRNA的帽子结构的主要功能是:A. 增强mRNA的稳定性B. 促进mRNA的翻译C. 促进mRNA的剪接D. 促进mRNA的运输答案:B10. 以下哪种激素是类固醇激素?A. 胰岛素B. 肾上腺素C. 甲状腺素D. 性激素答案:D二、填空题(每题2分,共20分)1. 蛋白质的二级结构主要包括________和________。
答案:α-螺旋、β-折叠2. 核酸的碱基配对遵循________原则。
答案:碱基互补配对3. 酶的活性中心通常由________和________组成。
答案:氨基酸残基、辅因子4. 糖酵解过程中,1分子葡萄糖完全分解产生________分子ATP。
答案:25. 脂肪酸的合成主要发生在________中。
答案:细胞质6. 细胞色素P450是一类重要的________酶。
生物化学问答题试题
问答(50%):1> 基因载体需要具备的条件答:a具有自我复制能力b含有多种限制性酶的单一识别序列,供外源基因插入c含有易于携带的选择标记d应该尽可能的小e使用安全2>种子发芽时脂肪酸转化成糖的一般过程是,写出主要的途径答:植物细胞内脂肪酸氧化分解为乙酰CoA 之后,在乙醛酸体内生成琥珀琥珀酸、乙醛乙醛酸和苹果酸;此琥珀酸可用于糖的合成,该过程称为乙醛酸循环。
乙醛酸循环是三羧酸循环的修改形式。
和TCA的区别:1.两步不同的反应。
2. 结果是2个乙酰CoA进入循环,释放出一个琥珀酸3>肿瘤细胞中,氨甲酰磷酸合成酶(carbamyl phosphate synthetase)在urea cycle和嘧啶合成过程中酶的活性怎么变化答:肿瘤细胞由于恶性增殖,需要巨大的能量供应以确保其代谢.因此会有大量的蛋白质降解,产生氨基酸,再分解放能维持能量供应.这一过程必然产生过多的氨,需要通过尿素循环排出,而cps1催化的氨甲酰磷酸合成反应正是折椅循环的限速步骤.相对于正常细胞,肿瘤细胞的高速增殖必然是cps1活性极度升高的结果.同时恶性增殖需要核苷酸,于是嘧啶的大量合成成为必须,这也使得承担嘧啶合成的cps2活性必然有提高4>(10%)合成代谢和分解代谢不是简单的逆反应,举一例论述糖酵解和糖异生,其中合成代谢糖酵解途径中有三个步骤是不可逆的,所以在其相对应的分解代谢糖异生途径之中,必须绕过这3个途径.a PEP生成丙酮酸b果糖-1,6-二磷酸生成果糖-6-磷酸c葡糖糖-6-磷酸生成葡萄糖.这三部反应不可逆,合成和分解途径分别由不同的酶催化并且有着不同的反应机理,a步骤通过羧化和脱羧化实现底物的活化,与分解途径完全相异,而bc途径则使用与原途径完全不同的酶来实现反应.因此,合成与分解代谢不是简单的逆反应,其中的步骤都存在变化.5>phaseMet13:A%&T%&G%&C%=100,what do you tell about Met136>试写出下列酶的其中三个共同点:DNA polymaerase,RNA polymerase,reverse transcriptase,RNA replicatase答:a 催化的反应都需要核苷酸或脱氧核苷酸做为底物 b 都有若干亚基构成 c 催化反应均需要模板 d 催化的合成都是由5端到3端.7>Ecoli中,怎么区别启动子AUG和其它AUG答:在mRNA中AUG上游大约10个碱基处,有一段富含嘌呤碱基的SD 序列可与核糖体的嘧啶碱基互补识别,以帮助AUG 处开始翻译,SD序列上发生增强碱基配对的突变可以加强翻译.以此机制区别启动子AUG和其它部位的AUG.8>无糖饮食中,为什么奇数C脂肪酸比偶数C好?答:无糖饮食时,机体对糖的需要比较大,而奇数脂肪酸进行β-氧化丙酰CoA,而后经3部反应,转化为琥珀酸CoA从而进入三羧酸循环,转化成其他物质,从而弥补无糖饮食时机体对糖及其相关代谢产物的需要9>one gene-one enzyme 这种说法正确否?为什么?答:不正确.在原核生物中,某一基因片断转录的mRNA可能有多个核糖体结合位点,因此可以产生多种遗传密码使得不同的蛋白可以得到翻译,是多用基因.因此并非一个基因对应一种酶.与此同时,酶亦可以对应若干个基因,因为同一氨基酸可以有多个遗传密码子,从而有多种基因与之对应.因此也并非一种酶对应一种基因10>英文题:为什么DNA保守性比RNA要好?试从生物角度推断产生这种情况的可能性.答:首先考虑到绝大多数生物以DNA作为生命的遗传物质,因此客观上需要DNA具有比较高度的保守性,严格遵守复制的规则,确保遗传特性的稳定传递,以保持物种遗传的稳定性,相比之下,以RNA作为遗传物质的生物相对少了很多,而且大都出现在较为低等的生物体内,并且这些生物所处环境要求他们本身具有较大的可变异性,因此RNA的保守性较DNA 较差,这也是生物对环境的一种适应.从结构上看,前者具有双螺旋结构,依靠碱基配对原则复制,并且具有一系列的差误检验和校正机制,从自身结构上保证了自我复制的高保守性.后者为单链结构,且校正修复机制不如前者完善,保守性自然不及前者.试题一、填空题(每题1分,共30 分)1.转氨酶的辅酶是。
(完整版)生物化学习题及答案
生化测试一:蛋白质化学一、填空题1.氨基酸的结构通式为 H 3N CH C O OR -+a 。
2.氨基酸在等电点时,主要以 兼性/两性 离子形式存在,在pH>pI 的溶液中,大部分以阴 离子形式存在,在pH<pI 的溶液中,大部分以阳离子形式存在。
3.生理条件下(pH7.0左右),蛋白质分子中的Arg 侧链和 Lys__侧链几乎完全带正电荷,但 His 侧链带部分正电荷。
4.测定蛋白质紫外吸收的波长,一般在280nm ,要由于蛋白质中存在着Phe 、 Trp 、 Tyr 氨基酸残基侧链基团。
5.皮肤遇茚三酮试剂变成 蓝紫 色,是因为皮肤中含有 蛋白质 所致。
6.Lys 的pk 1(COOH-α)=2.18,pk 2(3H N +-α)=8.95,pk 3(3H N +-ε)=10.53,其pI 为 9.74 。
在pH=5.0的溶液中电泳,Lys 向 负 极移动。
7.实验室常用的甲醛滴定是利用氨基酸的氨基与中性甲醛反应,然后用碱(NaOH )来滴定 NH 3+/氨基 上放出的 H 。
8. 一个带负电荷的氨基酸可牢固地结合到阴离子交换树脂上,因此需要一种比原来缓冲液pH 值 小 和离子强度 高 的缓冲液,才能将此氨基酸洗脱下来。
9. 决定多肽或蛋白质分子空间构像能否稳定存在,以及以什么形式存在的主要因素是由 一级结构 来决定的。
10. 测定蛋白质中二硫键位置的经典方法是___对角线电泳 。
11. 从混合蛋白质中分离特定组分蛋白质的主要原理是根据它们之间的 溶解度 、 分子量/分子大小 、 带电性质 、 吸附性质 、 生物亲和力 。
12. 蛋白质多肽链主链构象的结构单元包括__α-螺旋__、_β-折叠__、__β-转角__等,维系蛋白质二级结构的主要作用力是__氢__键。
13. 蛋白质的α—螺旋结构中, 3.6 个氨基酸残基旋转一周,每个氨基酸沿纵轴上升的高度为 0.15 nm ,旋转 100 度。
生物化学问答题
⽣物化学问答题第⼀章蛋⽩质1、为何蛋⽩质的含氮量能表⽰蛋⽩质相对量?实验中⼜是如何依此原理计算蛋⽩质含量的?(第⼀章 P8)答:尽管蛋⽩质的种类很多,结构各异,但是各种蛋⽩质的含氮量很接近,平均为16%,因此测定⽣物样品的含氮量就可以推算出蛋⽩质的⼤致含量。
常⽤公式为:每克样品含氮克数×6.25×100=100g样品中的蛋⽩质含量(g%)2、蛋⽩质的基本组成单位是什么?其结构特征是什么?(第⼀章 P8)答:蛋⽩质的基本组成单位是氨基酸,组成⼈体蛋⽩质的氨基酸仅有20种,均为L-α-氨基酸,即在α-碳原⼦上连有⼀个氨基、⼀个羧基、⼀个氢原⼦和⼀个侧链(R)。
每个氨基酸的侧链各不相同,是其表现不同性质的结构特征。
3、何谓肽键和肽链及蛋⽩质的⼀级结构?(第⼀章 P11 P13)答:⼀个氨基酸的α-羧基和另⼀个氨基酸的α-氨基,进⾏脱⽔缩合反应,⽣成的酰胺键称为肽键。
肽键具有双键性质。
由许多氨基酸通过肽键相连⽽形成长链,称为肽链。
肽链有两端,游离α-氨基的⼀端称为N-末端,游离α-羧基的⼀端称为C-末端。
肽链中的氨基酸分⼦因脱⽔缩合⽽基团不全,被称为氨基酸残基。
蛋⽩质⼀级结构是指多肽链中氨基酸的排列顺序,即从N-端⾄C-端的氨基酸排列的顺序,其主要化学键为肽键。
此外,蛋⽩质分⼦中的⼆硫键也属于⼀级结构范围。
4、什么是蛋⽩质的⼆级结构?它主要有哪⼏种?各有何结构特征?(第⼀章 P14~18)答:蛋⽩质⼆级结构是指蛋⽩质分⼦中某⼀段肽链的局部空间结构,也就是该段多肽链主链⾻架原⼦的相对空间位置,并不包括氨基酸残基侧链的构象。
它主要有α-螺旋、β-折叠、β-转⾓和⽆规卷曲四种。
①在α-螺旋结构中,多肽链主链围绕中⼼轴以右⼿螺旋(顺时针)⽅式旋转上升,每隔3.6个氨基酸残基上升⼀圈,螺距为0.54nm。
氨基酸残基的侧链伸向螺旋外侧。
每个肽键的亚氨基氢与第四个肽键的羰基氧形成氢键,氢键的⽅向与螺旋长轴基本平衡,以维持α-螺旋稳定。
高级生物化学问答题
高级生物化学问答题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1. 简述信号肽的特点和转运机制。
信号肽具有两个特点:1)位于分泌蛋白前体的N-端2)引导分泌蛋白进入膜以后,信号肽将被内质网腔内的信号肽酶切除信号肽的转运机制:信号肽运作的机制相当复杂,有关组分包括信号肽识别颗粒(SRP)及其受体、信号序列受体(SSR)、核糖体受体和信号肽酶复合物。
信号肽发挥作用时,首先是尚在延伸的、仍与核糖体结合的新生肽链中的信号肽与SRP结合,然后通过三重结合(即信号肽与SSR的结合、SRP及其受体结合、核糖体及其受体的结合)。
当信号肽将新生肽链引导进入内质网腔内后,在信号肽酶复合物的作用下,已完成使命的信号肽被切除。
2. 同工酶产生的原因是什么研究同工酶有何意义为什么可以用电泳的方法分离鉴定同工酶?初级同工酶产生的原因是由于酶蛋白的编码基因不同,次级同工酶产生的原因是虽然编码基因相同,但基因转录产物mRNA或翻译产物加工过程不同。
1)在遗传学和分类学上,同工酶提供了一种精良的判别遗传标志的工具;2)在发育学上,同工酶有效的标志细胞类型及细胞在不同条件下的分化情况,以及个体发育和系统发育的关系。
3)在生物化学和生理学上,根据不同器官组织中同工酶的动力学、底物专一性、辅助因子专一性、酶的变构性等性质的差异,从而解释它们代谢功能的差异。
4)在医学和临床诊断上,体内同工酶的变化,可看作机体组织损伤、或遗传缺陷,或肿瘤分化的分子标记。
因为同工酶的功能虽然相同,但是其分子量和其所带电荷数有差异,故可以用电泳的分析方法鉴定。
3. 生物膜主要有哪些生物学功能?任举一例说明膜结构与功能的密切关系。
生物膜的生物学功能可以概括如下:1)区域化或房室化2)物质的跨膜运输3)能量转换(氧化磷酸化)4)细胞识别4. 研究蛋白质一级结构有哪些意义?蛋白质的一级结构即多肽链中氨基酸残基的排列顺序(N端—C端)是由基因编码的,是蛋白质高级结构的基础,因此一级结构的测定成为十分重要的基础研究。
生物化学问答题(含答案)
蛋白质化学1.蛋白质:是一类生物大分子,有一条或多条肽链构成,每条肽链都有一定数量的氨基酸按一定的序列以肽键连接形成。
蛋白质是生命的物质基础,是一切细胞和组织的重要组成成分。
2.标准氨基酸:是可以用于合成蛋白质的20种氨基酸。
7.氨基酸的等电点:氨基酸在溶液中的解离程度受PH值的影响,在某一PH值条件下,氨基酸解离成阳离子和阴离子的程度相等,在溶液中的氨基酸以间性离子形式存在,且净电荷为0,此时溶液的PH值成为该氨基酸的等电点9.缀合蛋白质:含有非氨基酸成分的蛋白质10.蛋白质的辅基:缀合蛋白所含有的非氨基酸成分12.肽键:存在与蛋白质和肽分子中,是有一个氨基酸的ɑ-羧基与另外一个氨基酸的ɑ-氨基缩合时形成的化学键14.肽:是指由2个或多个氨基酸通过肽键连接而成的分子15.氨基酸残基:肽和蛋白质中的氨基酸是不完整的,氨基失去了氢,羧基失去了羟基,因而称为氨基酸残基16.多肽:由10个以上氨基酸通过肽键连接而成的肽18.生物活性肽:是指具有特殊生理功能的肽类物质,它们多为蛋白质多肽链的一个片段,当被降解释放之后就会表现出活性,例如参与代谢调节、神经传导。
食物蛋白质的消化产物也有生物活性肽,它们可以被直接吸收。
20.蛋白质的一级结构:通常叙述为蛋白质多肽链种氨基酸的链接顺序,简称为氨基酸序列,蛋白质的一级结构反应蛋白质分子的共价键结构21.蛋白质的二级结构:是指蛋白质多肽链局部片段的构象,该片段的氨基酸序列式连续的,主链构象通常是规则的23.蛋白质的超二级结构:又称模体基序,是指几个二级结构单元进一步聚合和结合形成的特定构象单元,如ɑɑ、βɑβ、ββ、螺旋-转角-螺旋、亮氨酸拉链等24.蛋白质的三级结构:是指蛋白质分子整条肽链的空间结构,描述其所有原子的空间分布,蛋白质三级结构的形成是肽链在二级结构的基础上进一步折叠的结果。
26.蛋白质的亚基:许多蛋白质分子可以用物理方法分离成不止一个结构单位,每个结构单位可以有不止一条肽链构成,但都有特定且相对独立的三级结构,且是由一个共价键连接的整体,该结构单位称为该蛋白质的一个亚基27.蛋白质的四级结构:多亚基蛋白的亚基与亚基通过非共价键结合,形成特定的空间结构,这一结构层次称为该蛋白质的四级结构35.变构蛋白:具有下列特性蛋白质的统称:它们有两种或多种构象,有两个或多个配体结合位点,配体与其中一个结合位点结合导致蛋白质变构,及从一种构象转换成另一种构象,这种变构影响到其他配体结合位点与配体的结合36.变构剂:导致变构蛋白变构的物质,多为小分子42.蛋白质的等电点:蛋白质是两性的电解质其解离状态受溶液的PH值影响,在某一PH值条件下,蛋白质的净电荷为0,该PH值称为该蛋白质的等电点44.蛋白质变性:由于稳定蛋白质构象的化学键被破坏,造成其四级结构三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变,变性导致蛋白质理化性质改变,生物活性丧失。
生物化学 问答题
蛋白质化学四、问答题1.什么是蛋白质的一级结构?为什么说蛋白质的一级结构决定其空间结构?2.什么是蛋白质的空间结构?蛋白质的空间结构与其生物功能有何关系?3.举例说明蛋白质的结构与其功能之间的关系。
4.蛋白质的α—螺旋结构有何特点?5.蛋白质的β—折叠结构有何特点?6.简述蛋白质变性作用的机制。
7.什么是蛋白质的变性作用?蛋白质变性后哪些性质会发生改变?8.蛋白质有哪些重要功能。
9.下列试剂和酶常用于蛋白质化学的研究中:CNBr、异硫氰酸苯酯、丹黄酰氯、脲、6mol/L HCl、β-巯基乙醇、水合茚三酮、过甲酸、胰蛋白酶、胰凝乳蛋白酶。
其中哪一个最适合完成以下各项任务?(1)测定小肽的氨基酸序列。
(2)鉴定肽的氨基末端残基。
(3)不含二硫键的蛋白质的可逆变性;如有二硫键存在时还需加什么试剂?(4)在芳香族氨基酸残基羧基侧水解肽键。
(4)在蛋氨酸残基羧基侧水解肽键。
(5)在赖氨酸和精氨酸残基羧基侧水解肽键。
10.分别指出下列酶能否水解与其对应排列的肽,如能,则指出其水解部位。
肽酶(1)Phe-Arg-Pro 胰蛋白酶(2)Phe-Met-Leu 羧肽酶B(3)Ala-Gly-Phe 胰凝乳蛋白酶(4)Pro-Arg-Met 胰蛋白酶11.用下列哪种试剂最适合完成以下工作:溴化氰、尿素、β-巯基乙醇、胰蛋白酶、过酸、丹磺酰氯(DNS-Cl)、6mol/L盐酸、茚三酮、苯异硫氰酸(异硫氰酸苯酯)、胰凝乳蛋白酶。
(1)测定一段小肽的氨基酸排列顺序(2)鉴定小于10-7克肽的N-端氨基酸(3)使没有二硫键的蛋白质可逆变性。
如有二硫键,应加何种试剂?(4)水解由芳香族氨基酸羧基形成的肽键(5)水解由甲硫氨酸羧基形成的肽键(6)水解由碱性氨基酸羧基形成的肽键12.扼要解释为什么大多数球状蛋白质在溶液中具有下列性质。
(1)在低pH时沉淀。
(2)当离子强度从零逐渐增加时,其溶解度开始增加,然后下降,最后出现沉淀。
医学资料:生物化学问答题汇总
生物化学问答题汇总第二章蛋白质1、组成蛋白质的基本单位是什么?结构有何特点?氨基酸是组成蛋白质的基本单位。
结构特点:①组成蛋白质的氨基酸仅有20种,且均为α-氨基酸②除甘氨酸外,其Cα均为不对称碳原子③组成蛋白质的氨基酸都是L-a-氨基酸2、氨基酸是如何分类的?按其侧链基团结构及其在水溶液中的性质可分为四类①非极性疏水性氨基酸7种②极性中性氨基酸8种③酸性氨基酸2种④碱性氨基酸3种3、简述蛋白质的分子组成。
蛋白质是由氨基酸聚合而成的高分子化合物,氨基酸之间通过肽键相连。
肽键是由一个氨基酸的a-羧基和另一个氨基酸的a-氨基脱水缩合形成的酰胺键。
4、蛋白质变性的本质是什么?哪些因素可以引起蛋白质的变性?蛋白质特定空间结构的改变或破坏。
化学因素(酸、碱、有机溶剂、尿素、表面活性剂、生物碱试剂、重金属离子等)和物理因素(加热、紫外线、X射线、超声波、高压、振荡等)可引起蛋白质的变性。
5、简述蛋白质的理化性质。
①两性解离-酸碱性质②高分子性质③胶体性质④紫外吸收性质⑤呈色反应6、蛋白质中的氨基酸根据侧链基团结构及其在水溶液中的性质可分为哪几类?各举2-3例。
①非极性疏水性氨基酸7种:蛋氨酸,脯氨酸,缬氨酸②极性中性氨基酸8种:丝氨酸,酪氨酸,色氨酸③酸性氨基酸2种:天冬氨酸,谷氨酸④碱性氨基酸3种:赖氨酸,精氨酸,组氨酸第三章核酸1、简述DNA双螺旋结构模型的要点。
①两股链是反向平行的互补双链,呈右手双螺旋结构②每个螺旋含10bp,螺距3.4nm,直径2.0nm。
每个碱基平面之间的距离为0.34nm,并形成大沟和小沟——为蛋白质与DNA相互作用的基础③脱氧核糖和磷酸构成链的骨架,位于双螺旋外侧④碱基对位于双螺旋内侧,碱基平面与双螺旋的长轴垂直;两条链位于同一平面的碱基以氢键相连,满足碱基互补配对原则:A=T,GºC⑤双螺旋的稳定:横向—氢键,纵向—碱基堆积力⑥DNA双螺旋的互补双链预示DNA的复制是半保留复制2、从组成、结构和功能方面说明DNA和RNA的不同。
高级生物化学试题及答案
高级生物化学试题及答案一、选择题(每题2分,共20分)1. 下列哪项不是蛋白质的功能?A. 催化生物化学反应B. 储存能量C. 作为细胞骨架D. 作为信号分子答案:B2. DNA复制过程中,哪一项不是必需的?A. DNA聚合酶B. 解旋酶C. 核糖体D. 引物答案:C3. 以下哪个过程不涉及酶的催化?A. 糖酵解B. 光合作用C. 蛋白质合成D. 细胞凋亡答案:D4. 以下哪种分子不是第二信使?A. cAMPB. Ca2+C. IP3D. ATP答案:D5. 下列哪种氨基酸是必需氨基酸?A. 谷氨酸B. 赖氨酸C. 丝氨酸D. 甘氨酸答案:B6. 细胞呼吸过程中,哪个阶段不产生ATP?A. 糖酵解B. 柠檬酸循环C. 电子传递链D. 所有阶段都产生ATP答案:D7. 以下哪种物质不是脂肪酸的衍生物?A. 甘油三酯B. 胆固醇C. 前列腺素D. 氨基酸答案:D8. 以下哪种酶不参与DNA修复?A. DNA聚合酶B. DNA连接酶C. DNA内切酶D. 核糖体答案:D9. 以下哪种维生素是水溶性的?A. 维生素AB. 维生素DC. 维生素ED. 维生素B12答案:D10. 以下哪种化合物不是核酸?A. RNAB. DNAC. 脂多糖D. tRNA答案:C二、填空题(每空1分,共20分)1. 蛋白质的一级结构是指蛋白质分子中氨基酸的______。
答案:排列顺序2. 细胞膜的流动性主要是由于膜脂分子的______。
答案:流动性3. 糖原是动物细胞中储存______的主要形式。
答案:葡萄糖4. 细胞周期中,DNA复制发生在______期。
答案:S期5. 酶的活性中心通常含有______。
答案:必需氨基酸残基6. 真核生物的mRNA分子具有______结构。
答案:帽子和尾巴7. 脂肪酸的合成发生在______。
答案:细胞质8. 光合作用中,光能被______捕获。
答案:叶绿素9. 细胞凋亡是由______信号触发的程序性细胞死亡。
生物化学问答题
第一章蛋白质化学1、参与维持蛋白质空间结构的力有哪些?答:氢键、二硫键、疏水作用、范德华力、盐键、配位键。
2、球状蛋白质在PH=7时的水溶液中折叠成一定空间构象。
这时通常非极性氨基酸残基侧链位于分子内部形成疏水核,极性氨基酸残基位于分子表面形成亲水面。
请问缬氨酸Val、脯氨酸Pro 、苯丙氨酸Phe、天冬氨酸Asp、赖氨酸Lys、异亮氨酸Ile、和组氨酸His中哪些氨基酸侧链位于分子内部?哪些氨基酸侧链位于分子外部?答:V al、Pro、Phe和Ile是非极性氨基酸,它们的侧链一般位于分子的内部。
Asp、Lys和His是极性氨基酸,它们的侧链一般位于分子的表面。
第二章核酸化学1、简述DNA双螺旋结构特点。
答:(1)DNA分子为两条多核苷酸链以相同的螺旋轴为中心,盘绕成右旋,反向平行的双螺旋;(2)以磷酸和戊糖组成的骨架位于螺旋外侧,碱基位于螺旋的内部,并按照碱基互补的原则,碱基之间通过氢键形成碱基对,A—T之间形成两个氢键,G—C之间形成三个氢键;(3)双螺旋的直径为20nm,每10个碱基对旋转一周,螺距为3.4nm,所有的碱基平面都与中心轴垂直;(4)维持双螺旋的力是碱基堆积力和氢键。
2、简述tRNA二级结构的组成特点及其每一部分的功能。
答:tRNA的二级结构为三叶草结构。
结构特点:(1)由四臂四环组成。
已配对的片段为臂,未配对的片段为环;(2)叶柄为氨基酸臂,其上含有CCA—OH3ˊ,此结构是接受氨基酸的位置;(3)氨基酸臂对面是反密码子环,在它的中部含有三个相邻碱基组成的反密码子,反密码子可与mRNA上的密码子相互识别;(4)左环是二氢尿嘧啶环(D环),它与氨基酰tRNA合成酶的结合有关;(5)右环是假尿嘧啶环(TψC环),它与核糖体的结合有关;(6)在反密码子环和TψC环之间有一可变环,它的大小决定着tRNA分子的大小。
第七章新陈代谢与生物氧化1、常见的呼吸链电子传递抑制剂有哪些?它们的作用机制是什么?1答:呼吸链抑制剂(电子传递抑制剂):使氧化受阻则偶联的磷酸化也无法进行。
生物化学问答题和计算题;;
问答题和计算题:1、试举例说明蛋白质结构与功能的关系(包括一级结构、高级结构与功能的关系)。
2、参与维持蛋白质空间结构的力有哪些?蛋白质的空间结构主要是靠氨基酸侧链之间的疏水键,氢键,范德华力和盐键维持的(盐键又称离子健,是蛋白质分子中正、负电荷的侧链基团互相接近,通过静电吸引而形成的)3、计算下列溶液的pH值:0.2 mol/L Gly 溶液与0.1mol/L HCL溶液等体积混合的混合液。
(Gly的PK1=2.34 PK2=9.60)4、试述蛋白质多肽链的氨基酸排列顺序测定的一般步骤。
1.测定蛋白质分子中多肽链的数目。
通过测定末端氨基酸残基的摩尔数与蛋白质分子量之间的关系,即可确定多肽链的数目。
2.多肽链的拆分几条多肽链借助非共价键连接在一起,称为寡聚蛋白质,如,血红蛋白为四聚体,烯醇化酶为二聚体;可用8mol/L尿素或6mol/L盐酸胍处理,即可分开多肽链(亚基).3.二硫键的断裂几条多肽链通过二硫键交联在一起。
可在用8mol/L尿素或6mol/L盐酸胍存在下,用过量的β-巯基乙醇处理,使二硫键还原为巯基,然后用烷基化试剂保护生成的巯基,以防止它重新被氧化。
4.测定每条多肽链的氨基酸组成水解,氨基酸分析仪5.分析多肽链的N-末端和C-末端多肽链端基氨基酸分为两类:N-端氨基酸和C-端氨基酸。
在肽链氨基酸顺序分析中,最重要的是N-端氨基酸分析法。
6.多肽链断裂成多个肽段,可采用两种或多种不同的断裂方法将多肽样品断裂成两套或多套肽段或肽碎片,并将其分离开来。
7.分离肽段测定每个肽段的氨基酸顺序。
8.确定肽段在多肽链中的次序。
9.确定原多肽链中二硫键的位置。
1、用图示说明米氏酶促反应速度与底物浓度的关系曲线,并扼要说明其含义。
(1)当[S]很低时,υ与[S]成正比,表现一级反应。
(2)随[S]的增加,υ也随[S]的增加而增加,但不成正比。
(3)当[S]很大时,υ达到最大值Vm,[S]增加υ不再增加,表现零级反应。
生化大题问答题含答案解析-大全精华必备
.什么是生物化学?它的研究对象和目的是什么?答:①生物化学是研究生物体内化学分子和化学反应的基础生命科学,从分子水平探讨生命现象的本质。
②生物化学的研究对象是生物体的分子,研究目的是从分子水平探讨生命现象的本质。
2.什么是分子生物学?它与生物化学的关系是什么?答:①分子生物学是研究核酸、蛋白质等生物大分子的结构、功能及基因结构、表达与调控的科学。
②分子生物学是生物化学的重要组成部分,是生物化学的发展和延续。
3.当代生物化学与分子生物学研究的主要内容是什么?生物化学与分子生物学和医学的关系是什么?答:①当代生物化学与分子生物学研究的主要内容是:生物分子的结构和功能、物质代谢及其调节、基因信息传递及其调控等三方面。
②生物化学与分子生物学是重要的医学基础学科,与医学的发展密切相关、相互促进。
各种疾病发病机制的阐明,诊断手段、治疗方案、预防措施等的实施,无一不依据生物化学与分子生物学的理论和技术。
生物化学与分子生物学的发展必将对基础医学、临床医学、预防医学、护理学、影像学、检验学和药学等领域产生重大影响。
蛋白质1.生物样品的含氮量能表示其蛋白质含量,为什么?试验中是如何计算的。
答:由于蛋白质是体内的主要含氮物,且平均含氮量为16%,因此测定生物样品的含氮量就可以按照下列公式推算出蛋白质的大致含量:每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%)2.什么是蛋白质的两性解离?利用此性质分离纯化蛋白质的常用方法有哪些?答:蛋白质分子除了两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,如谷氨酸残基中的γ-羧基、天冬氨酸残基中的β-羧基、赖氨酸残基中的ε-氨基、精氨酸残基中的胍基和组氨酸残基中的咪唑基,在一定的pH条件下均可解离成带负电荷或正电荷的基团,此种性质称蛋白质的两性解离。
利用蛋白质的两性解离性质分离纯化蛋白质的常用方法有用电泳法和离子交换层析法。
3.简述蛋白质的一、二、三、四级结构的概念及其维持稳定的化学键。
17高级 生物化学复习题
2018——2019生物化学复习题(一)一、最佳选择题:下列各题请选择一个最佳答案。
1、维持蛋白质亲水胶体的因素有( )A.氢键 B.水化膜和表面电荷 C.盐键D.二硫键 E.肽键2、氨基酸在等电点时,应具有的特点是:A 不具正电荷B 不具负电荷C A+BD 溶解度最大E 在电场中不移动3.下列哪一种说法对蛋白质结构的描述是错误的?A 都有一级结构B 都有二级结构C 都有三级结构D 都有四级结构E 二级及二级以上结构统称空间结构4.蛋白质变性过程中与下列哪项无关()A、理化因素致使氢键破坏B、疏水作用破坏C、蛋白质空间结构破坏D、蛋白质一级结构破坏,分子量变小5、蛋白质变性后可出现下列哪种变化( )A、一级结构发生改变B、构型发生改变C、分子量变小D、构象发生改变E、溶解度变大6、氨基酸与蛋白质共有的性质是A 胶体性质B 沉淀反应C 变性性质D 两性性质E 双缩脲反应7、变性蛋白质的特点是A.不易被胃蛋白酶水解B.粘度下降C.溶解度增加D.颜色反应减弱E.丧失原有的生物活性8、下列没有高能键的化合物是( )A、磷酸肌酸B、谷氨酰胺C、ADPD、1,3一二磷酸甘油酸E、磷酸烯醇式丙酮酸9、关于催产素和加压素功能方面的叙述,正确的是A 催产素具有减少排尿的功效;B 加压素可以促进子宫和乳腺平滑肌收缩;C 加压素参与记忆过程;D 催产素可使血压升高;E 催产素可促进血管平滑肌收缩。
10、DNA 碱基配对主要靠A 范德华力B 氢键C 疏水作用力D 盐键11、在 DNA 和 RNA 中都含有的是A 腺苷二磷酸;B 环磷酸腺苷;C 磷酸;D 脱氧核苷。
12、双链 DNA 之所以有较高的溶解温度是由于它含有较多的A、嘌呤B、嘧啶C、A 和 TD、 C 和 GE、 A 和 C13、下列关于α—螺旋的叙述,哪一项是错误的?A 氨基酸残基之间形成的 C=O 与 H-N 之间的氢键使α—螺旋稳定;B 减弱侧链基团 R 之间不利的相互作用,可使α—螺旋稳定;C 疏水作用使α—螺旋稳定;D 在某些蛋白质中,α—螺旋是二级结构中的一种结构类型;E 脯氨酸和甘氨酸的出现可使α—螺旋中断。
生物化学问答题(附答案)
生物化学解答题(一档在手万考不愁)整理:机密下载有淀粉酶制剂1g,用水溶解成1000ml酶液,测定其蛋白质含量和粉酶活力。
结果表明,该酶液的蛋白质浓度为0.1mg/ml;其1ml的酶液每5min分解0.25g淀粉,计算该酶制剂所含的淀粉酶总活力单位数和比酶活(淀粉酶活力单位规定为:在最适条件下,每小时分解1克淀粉的酶量为一个活力单位)。
答案要点:①1ml的酶液的活力单位是60/5×0.25/1=3(2分)酶总活力单位数是3×1000=3000U(1分)②总蛋白是0.1×1000=100 mg(1分),比活力是3000/100=30(1分)。
请列举细胞内乙酰CoA的代谢去向。
(5分)答案要点:三羧酸循环;乙醛酸循环;从头合成脂肪酸;酮体代谢;合成胆固醇等。
(各1分)酿酒业是我国传统轻工业的重要产业之一,其生化机制是在酿酒酵母等微生物的作用下从葡萄糖代谢为乙醇的过程。
请写出在细胞内葡萄糖转化为乙醇的代谢途径。
答案要点:在某些酵母和某些微生物中,丙酮酸可以由丙酮酸脱羧酶催化脱羧变成乙醛,该酶需要硫胺素焦磷酸为辅酶。
乙醛继而在乙醇脱氢酶的催化下被NADH还原形成乙醇。
葡萄糖+2Pi+2ADP+2H+ 生成2乙醇+2CO2+2A TP+2H2O(6分)脱氢反应的酶:3-磷酸甘油醛脱氢酶(NAD+),醇脱氢酶(NADH+H+)(2分)底物水平磷酸化反应的酶:磷酸甘油酸激酶,丙酮酸激酶(Mg2+或K+)(2分)试述mRNA、tRNA和rRNA在蛋白质合成中的作用。
答案要点:①mRNA是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板。
(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。
(4分) ③. rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所(3分)。
物合成过程中直接指令氨基酸掺入的模板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 简述信号肽的特点和转运机制。
信号肽具有两个特点:1)位于分泌蛋白前体的N-端2)引导分泌蛋白进入膜以后,信号肽将被内质网腔内的信号肽酶切除信号肽的转运机制:信号肽运作的机制相当复杂,有关组分包括信号肽识别颗粒(SRP)及其受体、信号序列受体(SSR)、核糖体受体和信号肽酶复合物。
信号肽发挥作用时,首先是尚在延伸的、仍与核糖体结合的新生肽链中的信号肽与SRP结合,然后通过三重结合(即信号肽与SSR 的结合、SRP及其受体结合、核糖体及其受体的结合)。
当信号肽将新生肽链引导进入内质网腔内后,在信号肽酶复合物的作用下,已完成使命的信号肽被切除。
2. 同工酶产生的原因是什么研究同工酶有何意义为什么可以用电泳的方法分离鉴定同工酶初级同工酶产生的原因是由于酶蛋白的编码基因不同,次级同工酶产生的原因是虽然编码基因相同,但基因转录产物mRNA或翻译产物加工过程不同。
1)在遗传学和分类学上,同工酶提供了一种精良的判别遗传标志的工具;2)在发育学上,同工酶有效的标志细胞类型及细胞在不同条件下的分化情况,以及个体发育和系统发育的关系。
3)在生物化学和生理学上,根据不同器官组织中同工酶的动力学、底物专一性、辅助因子专一性、酶的变构性等性质的差异,从而解释它们代谢功能的差异。
4)在医学和临床诊断上,体内同工酶的变化,可看作机体组织损伤、或遗传缺陷,或肿瘤分化的分子标记。
因为同工酶的功能虽然相同,但是其分子量和其所带电荷数有差异,故可以用电泳的分析方法鉴定。
3. 生物膜主要有哪些生物学功能任举一例说明膜结构与功能的密切关系。
生物膜的生物学功能可以概括如下:1)区域化或房室化2)物质的跨膜运输3)能量转换(氧化磷酸化)4)细胞识别4. 研究蛋白质一级结构有哪些意义蛋白质的一级结构即多肽链中氨基酸残基的排列顺序(N端—C端)是由基因编码的,是蛋白质高级结构的基础,因此一级结构的测定成为十分重要的基础研究。
一级结构的特定的氨基酸序列决定了肽链的折叠模式,从而决定其高级结构,从而决定其功能。
一级结构的种属差异与分子进化(细胞色素C)一级结构的变异与分子病(镰刀状红细胞)5. 何谓DNA的变性、复性和杂交DNA的杂交在生物化学和分子生物学研究中的应用试举例说明。
DNA变性是指在一系列物理化学因素作用下DNA一级结构不变而二级结构中的氢键遭到破坏,DNA双螺旋结构部分解体,或全部解离成两条单链DNA分子的过程,两股链成为无规则线团,叫变性。
引起变性的外界条件消除后(如加热变性后再缓慢降温),已分开的双螺旋又可重新缔合成双螺旋,成为复性。
不同来源的DNA分子放在一起热变性,然后慢慢冷却,让其复性,若这些异源DNA之间有互补的序列或部分互补的序列,则复性使会形成杂交分子。
DNA与互补的RNA之间也可以发生杂交。
核酸的杂交在分子生物学和生物化学中应用广泛,如将已知基因的DNA制成具有同位素标记的DNA片段---DNA探针,用其去检测未知DNA分子。
1. 蛋白质特定构象形成的原因是什么环境因素对蛋白质构象形成有无影响为什么蛋白质特定构象形成的驱动力有R-侧链基团间的相互作用;肽链与环境水分子的相互作用;天然构象的形成过程是一个自发的过程。
环境因素对蛋白质构象形成有影响,因为维持蛋白质高级结构的主要是氢键、范得华力、疏水作用和盐键等次级键,环境因素会影响这些作用力的形成和大小,从而影响蛋白质构象的形成。
2. 试比较光合磷酸化和氧化磷酸化能量转化机制的异同。
光合磷酸化的能量是来自光能的激发,是储存能量,氧化磷酸化能量是来自底物的分解,释放能量。
3. 激素受体有哪两大类试比较其信号转导机制。
含氮激素作用机制的第二信使学说:激素是第一信使,它可与靶细胞膜上具有立体构型的专一性受体结合,结合后激活膜上的腺苷酸环化酶系统,在mg+存在的情况下腺苷酸环化酶促使ATP 转化为cAMP,cAMP使无活性的蛋白激酶PKC激活,促使细胞内多种蛋白质发生磷酸化反应,从而引起靶细胞各种生理生化反应。
类固醇激素作用机制的基因表达学说:类固醇激素分子小、呈脂溶性,因此可透过细胞膜进入细胞。
在进入细胞之后,先于细胞内的胞浆受体结合,形成激素-胞浆受体结合物而进入细胞核内,再与核内受体结合,形成激素-核内受体复合物从而激发DNA的转录过程,生成新的mRNA,诱导蛋白质的合成,引起相应的生物效应。
6. 分子筛层析和SDS-聚丙烯酰胺凝胶电泳皆可用于测定蛋白质分子量,其原理有何差异各自特点和适用范围。
分子筛层析,又称凝胶层析、排阻凝胶层析、凝胶过滤,利用凝胶把物质按分子大小不同进行分离的一种方法。
由于被分离物质的分子大小(直径)和形状不同,洗脱时,大分子物质由于直径大于凝胶网孔而不能进入凝胶内部,只能沿着凝胶颗粒间的孔隙,随溶剂向下移动,因此流程短,首先流出层析柱,而小分子物质,由于直径小于凝胶网孔,能自由进入胶粒网孔,使之洗脱时流程增长,移动速度变慢而后流出层析柱。
可用于测定氨基酸,脱盐和浓缩,分离提纯生物大分子,除去热源物质SDS-PAGE,SDS-聚丙烯酰胺凝胶电泳的原理是当SDS与蛋白质结合后,蛋白质分子即带有大量的负电荷,并远远超过了其原来的电荷,从而使天然蛋白质分子间的电荷差别就降低乃至消除了,与此同时蛋白质在SDS作用下结构变得松散,形状趋向一致,所以各种SDS-蛋白质复合物在电泳时产生的脉动率差异,就反映了分子量的大小。
可用于测PH值和蛋白质的亚基数7. 将四种二肽(Gly- Gly,His-His,Asp-Asp,Lys-Lys) 的混合物先在缓冲系统中进行电泳(I),再转90。
在缓冲系统中进行电泳(II),最后用茚三酮显色。
请在下图中绘出该试验电泳图谱,并简述理由。
3. 什么是抗体试以IgG的结构为例,分析抗体的重要功能,并简要说明抗体的多样性。
当外源性物质,如蛋白质、毒素、糖蛋白、脂蛋白等进入人或动物体内时,机体的免疫系统便产生相应的免疫球蛋白并与之结合,以消除异物的毒害,此反应为免疫反应,此异物便是抗原,此球蛋白便是抗体。
抗体分子的多样性和独特的生物学功能都能从其分子结构上找出依据,以下以IgG为例来简单说明:1)轻、重链。
IgG呈Y型,由4条通过二硫键相连的肽链组成,其中包括两条相同的轻链和两条相同的重链。
一条重链的N-末端和相邻轻链协作形成一个抗原结合位点,所以IgG共有2个抗原结合位点,是二价的。
因而一个抗体分子可以和2个抗原分子结合并交叉连接从而使抗原沉淀。
2)可变区和不变区。
IgG每条链在N末端有一可变区,在C末端有一不变区,由于重轻链N 端形成了抗原结合位点,这些区域氨基酸序列的可变性使其在结构上具有某种程度的柔韧性,从而形成了结合不同抗原的不同专一性结合位点。
3)抗体的结构域。
轻链折叠形成2个紧密的三维结构域,一个代表可变区,另一个代表不变区,每条重链可形成4个结构域,一个可变区和三个不可变区。
4)Fab和Fc片段。
木瓜蛋白酶消化IgG释放出Y型分子的两个臂,各含一个抗原结合位点,叫做Fab片段,因为Fab只有一个抗原结合位点,所以不能与抗原交叉连接。
释放出的Y型分子的柄部称为Fc片段,它由两条重链的C端组成,易于结晶。
Fc有触发破坏抗原的作用。
例如触发补体系统和诱导白细胞吞噬病原。
4. 什么是受体有何特征和类别简述一种分离提纯受体的方法、原理。
受体是细胞内或细胞表面的一种天然分子,可以识别并特异地与有生物活性的化学信号分子(配体)结合,从而激活或启动细胞内一系列生物化学反应最后导致该信号物质特定的生物效应。
绝大多数受体为蛋白质,极少数是非蛋白受体。
受体与配体结合具有特异性、亲和性、饱和性受体分为细胞内受体(甾醇类激素)和细胞外受体(离子型通道受体、G蛋白偶联型受体、具有酶活性的受体)。
分子克隆技术提取微量受体:从细胞中提取所有微量mRNA逆转录成cDNA,将其重组入载体质粒子,继而让其转染缺乏受体的培养细胞群,其中少数细胞可能还有能编码受体所需的cDNA,并表达成表面受体。
1. 有一种七肽具有神经传导抑制剂的作用,其氨基酸组成为Ala5、Phe1、Lys1,七肽与FDNB 反应后经酸水解,释放出DNP—Ala。
用胰蛋白酶处理产生组成为Ala3、Phe1的四肽和组成为Ala2、Lys1的三肽。
与胰凝乳蛋白酶作用则生成游离的Ala和一个六肽。
试推导出该七肽的氨基酸序列。
1)七肽与FDNB反应后经酸水解,释放出DNP—Ala:N末端是 Ala-2)与胰凝乳蛋白酶作用则生成游离的Ala和一个六肽:C末端是-Phe–Ala3)用胰蛋白酶处理产生组成为Ala3、Phe1的四肽和组成为Ala2、Lys1的三肽:Ala-Ala- Phe–Ala和Ala-Ala-Lys所以推除Ala-Ala-Lys-Ala-Ala- Phe–Ala胰凝乳蛋白酶(糜蛋白酶)法:水解芳香族氨基酸的羧基侧肽键(色Trp、酪Tyr、苯丙Phe)胰蛋白酶法:水解赖氨酸Lys、精氨酸Arg的羧基侧肽键溴化脯法:水解蛋氨酸Met羧基侧的肽键2. 画出肌红蛋白(Mb)和血红蛋白(Hb)的氧合曲线,并讨论各自氧合曲线与其功能相关性。
4. 什么是双信使信号转导系统,试述胞外信息通过该系统在胞内得以传递的机制。
激素通过结合到细胞表面的膜受体上,激活G蛋白,G蛋白开启磷酯酶C(PLC)的活性,从而使磷酸酰肌醇(PIP2)分解为肌醇三磷酸(IP3)和二酰甘油(DG)。
1)DG进一步活化PKC,促使靶蛋白中的Thr和Ser残基磷酸化,最终改变一系列酶的活性,引起生理生化反应。
2)IP3则作用于内质网膜受体,打开Ca+离子通道,升高胞质内【Ca+】,a. Ca+的释放改变CaM和其他钙传感器的构象,使之变得更容易与靶蛋白结合,改变靶蛋白的生物活性,从而完成激素的联级放大作用,在多种细胞内引起广泛的生理效应。
b. Ca+的释放也活化了PKC,从而改变一系列酶的活性,引起生理生化反应。
5. 试述三种直接或间接的方法,以证明某种外源基因已在转基因生物中存在或表达。
1)载体特征的直接筛选:通常载体都带有可选择的遗传标志,最常用的有抗药性标记、营养标记和显色标记。
对噬菌体而言,噬菌斑的形成则是其自我选择的结果。
2)差别杂交或扣除杂交法分离克隆基因:扣除杂交就是用一般细胞的cDNA与特殊细胞的cDNA 杂交先扣除一般共有的cDNA,再将剩余的特异的cDNA进行克隆。
3)免疫学方法:用放射性固定酶或发光物质标记抗体,可以十分灵敏检测到外源基因的存在或表达。
4)细菌菌落或噬菌斑的原位杂交:细菌菌落——复印至硝酸纤维素膜上——aOH使菌体裂解,DNA变性,然后中和——单链DNA结合到膜上——32P-cDNA杂交——放射自显影——与放射性cDNA 杂交的菌斑。