几何五大模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WORD格式
.
五大模型
一、等积变换模型
⑴等底等高的两个三角形面积相等;
其它常见的面积相等的情况
⑵两个三角形高相等,面积比等于它们的底之比;
两个三角形底相等,面积比等于它们的高之比。
S1S2
如上图S1:S2a:b
⑶夹在一组平行线之间的等积变形,如下图S
;
△ACD=S△BCD
反之,如果S△ACD S△BCD,则可知直线AB平行于CD。⑷正方形
的面积等于对角线长度平方的一半;⑸三角形面积等于与它等
底等高的平行四边形面积的一半;
二、鸟头定理(共角定理)模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角 )两夹边的乘积之比。
如图,在△ABC中,D,E分别是AB,AC上的点(如图1)或D在BA的延长线上,E在AC上(如
word
图2),则S△ABC:S△ADE(AB AC):(AD AE)
图1 图2
三、蝴蝶定理模型
任意四边形中的比例关系 (“蝴蝶定理”):
①S1:S2S4:S3或者S1S3S2S4②AO:OC S1 S2:S4 S3
蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的
对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”)
2 2
①S1:S3a:b
②S1:S3:S2:S4a2:b2:ab:ab;
2
③梯形S的对应份数为a b。
2
专业资料整理
WORD格式
.
四、相似模型
相似三角形性质:
金字塔模型沙漏模型
①AD AE DE AF;
AB AC BC AG
②S△ADE:S△ABC AF2:AG2。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变
它们都相似),与相似三角形相关的常用的性质及定理如下:
⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;
⑵相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型
S△ABG:S△AGC S△BGE:S△E
GC BE:EC
S :S S :S AFFC
△BGA△BGC△AGF△FGC :
S :S S :S ADDB
△AGC△BC
G △ADG△DGB : 典型例题精讲
例1 一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的0.15倍,黄色三角形的面积
是21平方厘米。问:长方形的面积是__________平方厘米。
例1图
WORD格式word
WORD格式
例2 如图,三角形田地中有两条小路AE和CF,交叉处为D,张大伯常走这两条小路,他知道DF=DC,且=2。则两块地和的面积比是__________。
ADDE ACF CFB
例2图
【举一反三】两条线段把三角形分为三个三角形和一个四边形,如图所示,三个三角形的面积分别是3,7,7,则阴影四边形的面积是多少?
举一反三图
【拓展】如图,已知长方形ADEF的面积16,三角形ADB的面积是3,三角形ACF的面积是4,那么三角形ABC的面积是多少?
拓展图
4
专业资料整理
WORD格式
.
例3 如图,将三角形ABC的AB边延长1倍到D,BC边延长2倍到E,CA边延长3倍到F。如果三角形的面积等于1,那么三角形的面积是__________。
ABC DEF
例3图
【拓展】如图,在
△ABC中,延长AB至D,使BD=AB,延长BC至E,使CE 1
BC,F是AC的中点,若△2
的面积是 2,则△的面积是多少?
ABC DEF
拓展图
例4如图,在△ABC中,已知M、N分别在边AC、BC上,BM与AN相交于O,若△AOM、△ABO和△BON的面积分别是3、2、1,则△MNC的面积是__________。
例4图
WORD格式word
WORD格式
【秒杀题】四边形ABCD的对角线AC与BD交于点O(如图所示)。如果三角形ABD的面积等于三角形BCD的面
积的1,且AO=2,DO=3,那么CO的长度是DO的长度的__________倍。
3
秒杀题图
例5如图,四边形EFGH的面积是66平方米,EA=AB,CB=BF,DC=CG,HD=DA,求四边形ABCD的面积。
例5图
例6 如右图长方形ABCD中,EF=16,F=9,求AG的长。
例6图
6
专业资料整理
WORD格式
.
【铺垫】图中四边形ABCD是边长为12cm的正方形,从G到正方形顶点C、D连成一个三角形,已知这个三角形在AB上截得的EF长度为4cm,那么三角形GDC的面积是多少?
铺垫图
例7 如图,长方形 ABCD中,E为AD中点,AF与BE、BD分别交于G、H,已知AH=5cm,HF=3cm,求AG。
例7图
例8 如右图,三角形ABC中,BD∶DC=4∶9,CE∶EA=4∶3,求AF∶FB。
例8图
【拓展】如图,三角形ABC的面积是1,BD=DE=EC,CF=FG=GA,三角形ABC被分成9部分,请写出这9部分的面积各是多少 ?
拓展图