开关电源的电磁兼容性技术及解决方法

合集下载

开关电源电磁干扰(EMI)抑制措施总结

开关电源电磁干扰(EMI)抑制措施总结

摘要:开关电源的电磁干扰对电子设备的性能影响很大,因此,各种标准对抑制电源设备电磁干扰的要求已越来越高。

对开关电源中电磁干扰的产生机理做了简要的描述,着重总结了几种近年提出的新的抑制电磁干扰的方法,并对其原理、应用做了简单介绍。

1 引言随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。

开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰( ElectromagneticInterference , EMI )。

EMI 信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容( ElectromagneticCompatibility )性。

随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。

本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。

2 电磁干扰的产生和传播方式开关电源中的电磁干扰分为传导干扰和辐射干扰两种。

通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。

下面将对这两种干扰的机理作一简要的介绍。

2.1传导干扰的产生和传播传导干扰可分为共模( CommonMode CM )干扰和差模( DifferentialMode DM )干扰。

由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。

2.1.1 共模( CM )干扰变换器工作在高频情况时,由于 dv/dt 很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。

开关电源前端EMC概述

开关电源前端EMC概述

05
开关电源前端EMC案例分析
案例一:某企业开关电源前端EMC整改
总结词:成功案例
详细描述:某企业由于开关电源前端EMC问题导致产品在电磁环境下性能不稳定 ,经过EMC整改,包括优化电路设计、添加滤波器、加强屏蔽等措施,产品性能 得到显著提升,顺利通过了相关电磁兼容性测试。
案例二:某品牌手机充电器EMC设计
测试设备与环境
测试设备
包括电磁干扰测试接收机、信号ห้องสมุดไป่ตู้生 器、功率分析仪、阻抗稳定网络等。
测试环境
需要满足电磁兼容性测试的场地,包 括开阔场地、屏蔽室等,以确保测试 结果的准确性和可靠性。
测试方法与流程
测试方法
包括传导发射测试、辐射发射测试、抗扰度测试等,每种测试方法都有相应的测试标准 和规范。
测试流程
制。
以上内容仅供参考,如需获取更 准确的信息,建议查阅相关的国 际、国内标准以及企业内部的
EMC标准和规范。
03
开关电源前端EMC设计技术
滤波技术
滤波器类型
滤波器性能测试
包括无源滤波器和有源滤波器,用于 抑制开关电源产生的谐波电流,减小 对电网的干扰。
需要使用专业的测试设备和方法,对 滤波器的性能进行测试和评估,确保 其满足EMC标准要求。
组成
开关电源前端EMC主要由输入滤波器、共模电感和电容组成,用于抑制电磁干扰 ,提高设备的电磁兼容性。
发展趋势与挑战
发展趋势
随着技术的不断进步和应用需求的不断提高,开关电源前端 EMC技术也在不断发展。未来,开关电源前端EMC将朝着更 高效、更环保、更智能的方向发展。
挑战
尽管开关电源前端EMC技术取得了一定的进展,但仍面临诸 多挑战。如何提高电磁兼容性的同时降低能耗和成本,以及 如何应对复杂多变的电磁环境等,都是亟待解决的问题。

开关电源的电磁干扰解决方法

开关电源的电磁干扰解决方法
输出整流二极管的反向恢复问题可以通过在输出整流管上串联一个饱和电感来抑制,,饱和电感Ls与二极管串联工作。饱和电感的磁芯是用具有矩形BH曲线的磁性材料制成的。同磁放大器使用的材料一样,这种磁芯做的电感有很高的磁导率,该种磁芯在BH曲线上拥有一段接近垂直的线性区并很容易进入饱和。实际使用中,在输出整流二极管导通时,使饱和电感工作在饱和状态下,相当于一段导线;当二极管关断反向恢复时,使饱和电感工作在电感特性状态下,阻碍了反向恢复电流的大幅度变化,从而抑制了它对外部的干扰。
差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等级,并能承受可预料的电压冲击即可。为了避免放电电流引起的冲击危害,CX电容容量不宜过大,一般在0.01~0.1μF之间。电容类型为陶瓷电容或聚酯薄膜电容。
ID=2πfCYVcY
式中:ID为漏电流;
f为电网频率。
一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。
1.2 输入电流畸变造成的噪声
开关电源的输入普遍采用桥式整流、电容滤波型整流电源。,在没有 PFC功能的输入级,由于整流二极管的非线性和滤波电容的储能作用,使得二极管的导通角变小,输入电流i成为一个时间很短、峰值很高的周期性尖峰电流。这种畸变的电流实质上除了包含基波分量以外还含有丰富的高次谐波分量。这些高次谐波分量注入电网,引起严重的谐波污染,对电网上其他的电器造成干扰。为了控制开关电源对电网的污染以及实现高功率因数,PFC电路是不可或缺的部分。

电源设计中的EMC问题与解决方法

电源设计中的EMC问题与解决方法

电源设计中的EMC问题与解决方法在电源设计过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)问题是一个需要被高度关注的重要方面。

EMC问题的存在可能导致电子设备之间的相互干扰,从而影响系统的正常工作。

因此,深入了解电源设计中的EMC问题并寻求解决方法,对于保证产品稳定性和可靠性具有重要意义。

首先,我们来了解一些常见的EMC问题。

电源设计中的EMC问题主要包括以下几个方面:1. 电源线干扰:电源线作为电源输入和输出的连接途径,可能成为传导干扰的通道。

当电源线上的高频噪声传导到其他部分时,会引起其他电子设备的干扰,影响其正常使用。

2. EMI辐射:电源设备在工作过程中会产生电磁辐射,如果辐射幅度过高,可能会对周围的其他设备和信号线路产生干扰,使其无法正常工作。

3. 地线干扰:地线是电路中的参考电位点,负责回流电流。

但如果地线的阻抗较大或者回流电流过大,可能会导致地线产生较大的共模干扰,进而影响整个系统的正常工作。

接下来,我们将介绍一些解决电源设计中EMC问题的方法:1. 合理的布局设计:在电源设计过程中,应注意合理的布局设计。

通过将不同电路板的布局位置安排合理,减小信号之间的干扰。

将高频和低频电路分开布局,采用屏蔽罩等措施对敏感电路进行隔离,以减少电磁辐射和传导干扰。

2. 使用滤波器:在电源设计中,适当选择并使用滤波器可以有效减小电源线上的高频噪声。

滤波器能够过滤掉不需要的高频干扰信号,提高电源线的电磁兼容性。

3. 优化接地设计:合理的地线设计对于解决地线干扰问题至关重要。

通过降低地线的阻抗并增加回流电流的路径,减小共模干扰的产生。

同时,合理选择接地点,如使用星型接地方式,可以减少单点接地带来的电磁干扰。

4. 选择合适的电源元件:在电源设计中,选择合适的电源元件也能够有效降低EMC问题。

例如,采用能够提供更好电源抗干扰能力的开关电源,选择低电磁辐射的磁性元件等。

开关电源的电磁兼容设计

开关电源的电磁兼容设计
描述开关电源和系统传导骚扰的耦合通道有两种方法:
1)将耦合通道分为共模通道和差模通道;
2)采用系统函数来描述骚扰和受扰体之间的耦合通道的特性。
本文采用第一种方法进行论述。
2.2.1 共模和差模骚扰通道
开关电源在由电网供电时,它将从电网取得的电能变换成另一种特性的电能供给负载。同时开关电源又是一噪声源,通过耦合通道对电网、开关电源本身和其它设备产生骚扰,通常多采用共模和差模骚扰加以分析。
减小开关电源本身的骚扰是抑制开关电源骚扰的根本,是使开关电源电磁骚扰低于规定极限值的有效方法。
1)减小功率管通、断过程中产生的骚扰
上面分析表明,开关电源的主要骚扰是来自功率开关管通、断的dv/dt。因此减小功率开关管通、断的dv/dt是减小开关电源骚扰的重要方面。人们通常认为软开关技术可以减小开关管通、断的dv/dt。但是,目前的一些研究结果表明软开关并不像人们预料的那样,可以明显地减小开关电源的骚扰。没有实验结果表明,软开关变换器在EMC性能方面明显地优于硬开关变换器。
3.2 接地
“接地”有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。“地”的经典定义是“作为电路或系统基准的等电位点或平面”。
3.2.1 设备的信号接地
设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。
对开关电源来说,开关电路产生的电磁骚扰是开关电源的主要骚扰源之一。开关电路是开关电源的核心,主要由开关管和高频变压器组成。它产生的dv/dt是具有较大辐度的脉冲,频带较宽且谐波丰富。这种脉冲骚扰产生的主要原因是

开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施1引言开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。

但开关电源的突出缺点是产生较强的电磁干扰(EMI)。

EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。

如果处理不当,开关电源本身就会变成一个干扰源。

随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。

2开关电源产生EMI的原理开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。

它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。

基本整流器的整流过程是产生EMI最常见的原因。

这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。

实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。

变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。

它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。

产生这种脉冲干扰的主要原因是:(1) 开关功率晶体管感性负载是高频变压器或储能电感。

在开关管导通的瞬间,变压器初级出现很大的电流,它在开关管过激励较大时,将造成尖峰噪声。

这个尖峰噪声实际上是尖脉冲,轻者造成干扰,重者有可能击穿开关管。

(2) 由高频变压器产生的干扰。

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。

2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。

3. 地线布局:合理布置地线,减少电磁干扰。

不同元器件的地线要分开布局,避免共
用一个接地点。

4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。

5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。

6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。

7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。

8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。

以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。

开关电源中的电子干扰分析及解决办法

开关电源中的电子干扰分析及解决办法

开关电源中的电子干扰分析及解决办法开关电源因体积小、功率因数较大等优点,在通信、控制、计算机等领域应用广泛。

但由于会产生电磁干扰,其进一步的应用受到一定程度上的限制。

本文将分析开关电源电磁干扰的各种产生机理,并在其基础之上,提出开关电源的电磁兼容设计方法。

开关电源的电磁干扰分析开关电源的结构如图1所示。

首先将工频交流整流为直流,再逆变为高频,最后再经整流滤波电路输出,得到稳定的直流电压。

电路设计及布局不合理、机械振动、接地不良等都会形成内部电磁干扰。

同时,变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也是潜在的强干扰源。

图1 AC/DC开关电源基本框图1 内部干扰源● 开关电路开关电路主要由开关管和高频变压器组成。

开关管及其散热片与外壳和电源内部的引线间存在分布电容,它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。

开关管负载为高频变压器初级线圈,是感性负载。

当原来导通的开关管关断时,高频变压器的漏感产生了反电势E=-Ldi/dt,其值与集电极的电流变化率成正比,与漏感成正比,迭加在关断电压上,形成关断电压尖峰,从而形成传导干扰。

● 整流电路的整流二极管输出整流二极管截止时有一个反向电流,其恢复到零点的时间与结电容等因素有关。

它会在变压器漏感和其他分布参数的影响下产生很大的电流变化di/dt,产生较强的高频干扰,频率可达几十兆赫兹。

● 杂散参数由于工作在较高频率,开关电源中的低频元器件特性会发生变化,由此产生噪声。

在高频时,杂散参数对耦合通道的特性影响很大,而分布电容成为电磁干扰的通道。

2 外部干扰源外部干扰源可以分为电源干扰和雷电干扰,而电源干扰以“共模”和“差模”方式存在。

同时,由于交流电网直接连到整流桥和滤波电路上,在半个周期内,只有输入电压的峰值时间才有输入电流,导致电源的输入功率因数很低(大约为0.6)。

而且,该电流含有大量电流谐波分量,会对电网产生谐波“污染”。

开关电源的EMC设计产生电磁干扰有3个必要条件:干扰源、传输介质、敏感设备,EMC设计的目的就是破坏这3个条件中的一个。

开关电源电磁兼容性试验的问题及整改

开关电源电磁兼容性试验的问题及整改

开关电源电磁兼容性试验的问题及整改丁华【摘要】对某型开关电源的电磁兼容性试验进行研究,为解决该电源在电磁兼容性试验中出现的电磁干扰问题,分析产生的原因及机理,提出了滤波、屏蔽等相应的解决措施。

试验结果表明,该措施有效地解决了开关电源传导发射和辐射发射的超标,提高了产品的电磁兼容性,对类似产品的电磁兼容性设计也具有一定的指导意义。

%To resolve the EMI(electromagnetic interference) of the switching power supply during the EMC(electromagnetic compatibility) test ,the test results and the mechanism of EMI were analysed. Afterwards,the corresponding solutions such as filtering and shielding were thrown out. The results of the test indicate that the solutions effectively restrain the overstandard of conducted emission and radiated emission. The solutions enhance the EMC of switching power supply ,and there is some guidance to the similar produces on EMC design.【期刊名称】《上海计量测试》【年(卷),期】2015(000)002【总页数】3页(P41-42,45)【关键词】开关电源;电磁兼容;滤波;屏蔽【作者】丁华【作者单位】中国电子科技集团公司第38研究所【正文语种】中文开关电源被誉为高效节能电源,它代表着稳压电源的发展方向,现已成为主流产品。

开关电源的电磁兼容性技术及解决方法

开关电源的电磁兼容性技术及解决方法

开关电源的电磁兼容性技术及解决方法⒈引言电磁兼容是一门新兴的跨学科的综合性应用学科。

作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术以及新材料等。

电磁兼容技术应用的范围很广,几乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。

其研究的热点内容主要有:电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术、电磁泄漏与静电放电等。

电磁兼容的英文名称为Electromagnetic Compatibility,简称EMC。

所谓电磁兼容是指设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。

这里包含两层意思,即它工作中产生的电磁辐射要限制在一定水平内,另外它本身要有一定的抗干扰能力。

这便是设备研制中所必须解决的兼容问题。

电磁兼容技术涉及的频率范围宽达0 GHz "400GHz,研究对象除传统设备外,还涉及芯片级,直到各种舰船、航天飞机、洲际导弹甚至整个地球的电磁环境。

电磁兼容三要素是干扰源(骚扰源)、耦合通路和敏感体。

切断以上任何一项都可解决电磁兼容问题,电磁兼容的解决常用的方法主要有屏蔽、接地和滤波。

⒉电磁兼容技术名词(1)电磁兼容性电磁兼容性是指设备或者系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

(2)电磁骚扰电磁骚扰是指任何可能引起设备、装备或系统性能降低或者对有生命或者无生命物质产生损害作用的电磁现象。

电磁骚扰可引起设备、传输通道或系统性能的下降。

它的主要要素有自然和人为的骚扰源、通过公共地线阻抗/内阻的耦合、沿电源线传导的电磁骚扰和辐射干扰等。

电子系统受干扰的路径为:经过电源,通过信号线或控制电缆、场渗透,经过天线直接进入;通过电缆耦合,从其他设备来的传导干扰;电子系统内部场耦合;其他设备的辐射干扰;电子设备外部耦合到内部场;宽带发射机天线系统;外部环境场等。

基于开关电源电磁兼容CS101项目解决方案

基于开关电源电磁兼容CS101项目解决方案

研制开发基于开关电源电磁兼容CS101张俊波(贵州航天林泉电机有限公司,贵州贵阳不通过的情况,结合工程实践经验分析了开关电源自激振荡的原因,给出电路解决方案。

通过电磁兼容摸底试验,开机状态和稳定状态下的电应力分析以及电磁兼容试验条件下的电电路参数,并给出结构方案,具有实用价值和借鉴意义。

电路EMC CS101 Project Solution Based on Switching Power SupplyZHANG JunboGuizhou Aerospace Linquan Motor Co.,Ltd.,Guiyang101in switching powerexcitation oscillation is analyzed in combination with engineering practice experience, and the RC circuit solution iscompatibility test,the electricalstate, and the circuit simulation under the electromagnetic compatibility test condition图1 CS101测试布置图结合图1和图2,开关电源CS101是在输入电源线注入尖峰电压信号,采取的是耦合变压器注入方式,试验模拟等效电路如图3所示。

图3中,T为尖峰电压注入耦合变压器,Lm为耦合变压器自身等效电感,电感量约为1.0 mH。

1.2 开关电源CS101试验情况开关电源输入电压为28 V±8 V,输入额定功率约为130 W,输出为多路DC-DC,输出功率约为92 W。

在试验电路连接完后未注入尖峰电压前对开关电源进行测试,开关电源工作情况如下。

一是输入电压为28 V、输入电流为0.43 A时开关电源工作正常;二是输入电压为28 V、输入电流为1 A时开关电源工作正常;三是输入电压为28 V、输入电流为2 A时开关电源工作正常;四是输入电压为28 V、输入电流为3 A时开关电源工作正常;五是输入电压为28 V、输入电流时开关电源自激振荡,工作不正常。

浅谈开关电源电磁干扰及其抑制技术

浅谈开关电源电磁干扰及其抑制技术

浅谈开关电源电磁干扰及其抑制技术摘要:开关电源以其重量轻、体积小、效率高、可靠性高等优点得到了广泛的应用。

然而,开关电源的电磁干扰不容忽视。

近年来,随着科学技术的发展,电磁干扰问题涉及到的领域不断扩大。

特别是消费类电子电源的体积越来越小,功率越来越大,开关电源的功率密度越来越大,电磁干扰越来越严重,将极大地影响人们的生活和设备的运行。

因此,开关电源的电磁干扰抑制技术一直是国内相关技术人员的研究重点。

关键词:开关电源;电磁干扰;抑制技术引言随着电子信息技术的飞速发展,开关电源以其转换效率高、稳定性好等优点被广泛应用于各个领域。

开关电源在实际应用中经常发生电磁干扰,影响开关电源的使用体验。

解决开关电源的电磁干扰问题,促进开关电源的可靠稳定应用。

1.开关电源工作机理开关电源的主要作用是将电网交流电,转换为设备所需要的直流电,保证用电设备的正常运转。

开关电源电路主要由以下的部分组成:一、输入整流滤波电路;二、反馈控制电路;三、初级功率回路;四、次级整流滤波电路。

其中输入滤波电路主要包括过滤电网杂波的输入滤波器,其能阻止开关电源本身产生的干扰影响到电网,同时也能滤除电网的干扰,保证开关电源正常运行。

整流电路,将电网交流电转化为脉冲直流电。

给控制回路提供能量基础;反馈控制电路是是利用现代电力电子技术,通过对输出电压电流的采样比较,反馈控制开关管开通和关断的时间比率,以实现稳定输出,来满足电气设备的要求,保证整个电气部分的正常运行。

初级功率回路主要由高频变压器、初级开关管、功率检测电阻等组成。

接受反馈控制回路的调节,将整流电路的脉冲直流电,通过高频变压器传递到次级;次级整流滤波电路主要由次级二极管,储能及滤波电容和恒流恒压控制电路组成。

和反馈控制电路相关联,将变压器从初级传递的能量整流后进行一系列的处理,以提供设备所需的直流电压和电流。

1.电磁干扰的危害开关电源内部出现的电磁干扰可分为两种,一种是干扰信号通过导线或公共电源线进行传输,互相产生干扰称为传导干扰;另外一种是开关电源产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备,称为辐射干扰。

什么是电子电路中的电磁兼容性问题如何解决电磁兼容性问题

什么是电子电路中的电磁兼容性问题如何解决电磁兼容性问题

什么是电子电路中的电磁兼容性问题如何解决电磁兼容性问题电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子电路及设备在共存共存条提供快速有效有效有效有效有效有效有效特电磁环境中不产生电磁干扰,同时也对外界电磁环境的电磁干扰具有足够的抵抗能力的特性。

电子电路中的电磁兼容性问题主要是指电磁干扰和电磁敏感性两个方面。

本文将着重探讨电磁兼容性问题的本质,以及如何解决这些问题。

一、电磁兼容性问题的本质是什么?电磁兼容性问题的本质是电磁干扰与电磁敏感性之间的相互作用。

电磁干扰是指电子电路中的高频电流、电压或瞬态信号在电磁环境中传播时,对其他电子电路或设备产生的不良影响,如相互干扰、误动作或损坏等。

电磁敏感性是指电子电路或设备对来自外部电磁环境中的电磁干扰产生的不良反应,如误动作、误显示、误码等。

电磁兼容性的核心问题是如何在电子电路中设计合适的防护措施,同时提高电路的抗干扰能力和免疫能力,以降低电磁干扰的发生和对电磁干扰的敏感性。

二、解决电磁兼容性问题的方法和措施1. 电路设计阶段的考虑在电路设计阶段,应充分考虑电磁兼容性问题。

首先,要合理布局电路元件的位置,减少电磁干扰的传播路径,降低相互干扰的可能性。

其次,要设计合理的电源和地线,减少电源产生的干扰和电磁敏感电路受干扰的可能性。

还要注意电路引脚的布局,避免不良的电磁耦合效应。

2. 合理选择元器件和材料在元器件的选择上,应考虑其抗干扰和免疫能力。

选择具有良好工作性能和抗干扰能力的元器件,如抗干扰能力优异的开关电源和电磁屏蔽器。

此外,还应根据具体的应用环境选择合适的材料,如具有抗干扰能力的高频线缆和电磁隔离材料。

3. 电磁屏蔽和滤波技术电磁屏蔽和滤波技术是解决电磁兼容性问题常用的方法。

电磁屏蔽是指利用屏蔽材料将电子电路或设备与外界电磁环境隔离开来,阻止电磁干扰的传播和敏感电路对电磁干扰的敏感性。

滤波技术是通过合理设计滤波电路,将干扰信号滤除或削弱到可以被电路容忍范围内。

开关电源fcc认证标准

开关电源fcc认证标准

开关电源fcc认证标准开关电源是一种广泛应用于各种电子设备中的电源类型,其作用是将交流电转换为直流电,以供电子设备使用。

然而,开关电源在工作时会产生电磁干扰,这种干扰可能会对周围的电子设备和通信系统造成干扰。

为了确保开关电源的电磁兼容性,需要进行FCC认证。

下面将详细介绍开关电源FCC认证标准。

一、FCC认证概述FCC认证是指对电子设备进行电磁兼容性测试,以确保其符合FCC规定的电磁干扰限制。

二、开关电源的电磁干扰开关电源在工作时,会产生高频噪声和瞬态干扰,这些干扰可能会对周围的电子设备和通信系统造成干扰。

具体来说,开关电源的电磁干扰包括传导干扰和辐射干扰两种。

传导干扰是指通过电源线或信号线传播的干扰,而辐射干扰是指通过空间传播的干扰。

三、开关电源FCC认证标准为了确保开关电源的电磁兼容性,FCC制定了一系列的认证标准。

这些标准包括:1.传导干扰限制:FCC规定了开关电源在电源线上的传导干扰限制,以确保其不会对周围的电子设备造成干扰。

2.辐射干扰限制:FCC规定了开关电源在空间中的辐射干扰限制,以确保其不会对周围的通信系统造成干扰。

3.测试方法:FCC规定了测试开关电源电磁兼容性的方法和程序,包括测试设备的选择、测试环境的设置、测试信号的生成和分析等。

4.认证标志:通过FCC认证的开关电源需要在产品上贴上FCC认证标志,以证明其符合FCC规定的电磁兼容性要求。

四、开关电源FCC认证的重要性通过FCC认证的开关电源具有以下重要性:1.确保产品的电磁兼容性:通过FCC认证可以确保开关电源的电磁兼容性符合规定的要求,从而避免对周围的电子设备和通信系统造成干扰。

2.提高产品的市场竞争力:通过FCC认证的开关电源可以在市场上获得更广泛的认可和接受度,从而提高产品的市场竞争力。

3.避免法律纠纷:通过FCC认证的开关电源可以避免因电磁干扰问题而引起的法律纠纷和投诉,从而保护生产商和消费者的利益。

4.促进国际贸易:通过符合国际电磁兼容性标准的FCC认证可以促进国际贸易,使产品更容易进入国际市场并获得认可。

开关电源电磁兼容设计

开关电源电磁兼容设计

作 为电磁 骚 扰 源 来
1 1 开 关 电路 产 生 的 电磁 骚 扰
形 成 关 断 电压 尖峰
这 种 电源 电

研究

整流 二 极 管反 向 恢复 电流 形 成 的

对 开关 电源 来说

开 关 电路产 生
压 中 断 会 产 生 与 初级线 圈 接 通 时
样的
骚扰 强度 大
频带宽

整流二 极 管产 生

主 电路 中 整 流 二 极 管 产 生 的 反 向恢
dt ] 复 电 流 8 ~ld i/ 远 比续 流 二 极 管 反 向恢 复
能 量 将 和集 电 极 电路 中 的电 容 成 带 有 尖 峰 的衰 减 振 荡
压上
, ,
电阻 形
叠 加 在关 断 电

dt [ 电流 的 Id i/ d\ 得多



W 而 产 乍 删 人 rJfJ 也 磁 骚 扰


但 骚 扰 的频 率 范 阔 (
( 空 气 介质 巾约 为 l
or e
<
3 0M H
z
) 足 比 较低 的

多数 小 功 率 歼 足电 源 的 儿 何 几 J 远 小 1


30M H
z
t
~ 磁 场 对腕 的 波 比

)

肝 火 l乜 源 系 统 研 究 的 电磁 骚 扰 现 象 属 ,似 稳 场 的 范埘
l 技术 应 用
i t 与 负载 大 小 的 关 系 t 1 3 dr /

d t 是 开关 电源的 主 要 骚 扰 源 功 率开 关 管 开 通 和 关断时产 生的 d v /

差分信号emc解决方法

差分信号emc解决方法

差分信号emc解决方法
差分信号的EMC(电磁兼容性)问题可以通过以下几种方法解决:
1. 加装电磁干扰滤波器:在开关电源输入和输出电路中加装电磁干扰滤波器,能有效抑制电磁干扰。

2. 切断干扰信号传播途径:电源线干扰可以使用电源线滤波器滤除。

3. 优化PCB板设计:PCB是LED电源系统中电路元件和器件的支撑件,提供电路元件和器件之间的电气连接。

优化PCB板的电磁兼容性设计,包括PCB布局、布线及接地,能减小PCB的电磁辐射和电路之间的串扰。

4. 采用双线传输和阻抗匹配:两根相邻的导线,如果电流大小相等,电流方向相反,则它们产生的磁力线可以互相抵消,从而减小电磁干扰。

5. 减小电流回路面积:减小磁场干扰和电场干扰,可以通过减小带电导体的面积及长度来实现。

6. 对变压器进行磁屏蔽:减少变压器漏感磁通对周围电路产生电磁感应干扰,以及对外产生电磁辐射干扰。

7. 采用金属屏蔽罩:对于某些特定的高频信号,可以使用金属屏蔽罩来隔离和减弱电磁干扰。

8. 软件算法优化:在某些情况下,通过软件算法的优化,也可以在一定程度上减小差分信号的电磁干扰问题。

以上方法可以根据具体情况选择使用,以解决差分信号的EMC问题。

开关电源的电磁兼容性设计方案

开关电源的电磁兼容性设计方案

开关电源的电磁兼容性设计方案随着电力电子技术的发展,开关电源模块因其相对体积小、效率高、工作可靠等优点开始取代传统整流电源而被广泛应用到社会的各个领域。

但由于开关电源工作频率高,内部产生很快的电流、电压变化,即dv/dt和di/dt,导致开关电源模块将产生较强的谐波干扰和尖峰干扰,并通过传导、辐射和串扰等耦合途径影响自身电路及其它电子系统的正常工作,当然其本身也会受到其它电子设备电磁干扰的影响。

这就是所讨论的电磁兼容性问题,也是关于开关电源电磁兼容的电磁骚扰EMD与电磁敏感度EMS设计问题。

由于国家开始对部分电子产品强制实行3C认证,因此一个电子设备能否满足电磁兼容标准,将关系到这一产品能否在市场上销售,所以进行开关电源的电磁兼容性研究显得非常重要。

电磁兼容学是一门综合性学科,它涉及的理论包括数学、电磁场理论、天线与电波传播、电路理论、信号分析、通讯理论、材料科学、生物医学等。

进行开关电源的电磁兼容性设计时,首先进行一个系统设计,明确以下几点:1. 明确系统要满足的电磁兼容标准;2. 确定系统内的关键电路部分,包括强干扰源电路、高度敏感电路;3. 明确电源设备工作环境中的电磁干扰源及敏感设备;4. 确定对电源设备所要采取的电磁兼容性措施。

一、DC/DC变换器内部噪声干扰源分析1.二极管的反向恢复引起噪声干扰在开关电源中常使用工频整流二极管、高频整流二极管、续流二极管等,由于这些二极管都工作在开关状态,如图所示,在二极管由阻断状态到导通工作过程中,将产生一个很高的电压尖峰VFP;在二极管由导通状态到阻断工作过程中,存在一个反向恢复时间trr,在反向恢复过程中,由于二极管封装电感及引线电感的存在,将产生一个反向电压尖峰VRP,由于少子的存储与复合效应,会产生瞬变的反向恢复电流IRP,这种快速的电流、电压突变是电磁干扰产生的根源。

开关电源的噪音及解决方法

开关电源的噪音及解决方法

开关电源具有线性电源无可比拟的许多优点:体积小,重量轻,效率高等等,但开关电源会产生电磁干扰,尤其是中大功率等级的开关电源干扰更为严重。

这是由于开关电源存在着整流谐波、开关频率和它的谐波以及在开关转换中所固有的高速电流和电压瞬变。

产生电磁干扰是开关电源本身的特点所决定的,是难以避免的,关键是如何采取有效的措施来减小其干扰程度。

通过对开关电源进行电磁兼容性测试得知,一般有以下四项指标不合格。

CE01100Hz~15KHz电源线传导发射。

CE0315KHz~50MHz电源线传导发射。

RE0125Hz~50KHz磁场辐射发射。

RE0214KHz~10GHz电场辐射发射。

2开关电源电磁干扰产生原因分析开关电源按主电路型式可分为全桥式,半桥式,推挽式等几种,但无论何种类型的开关电源在工作时都会产生很强的噪声。

它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射。

开关电源对由电网侵入的外部噪声也很敏感,并经它传递到其他电子设备中产生干扰。

图1是一种最简单的开关电源主电路型式,直流变换式它激单边型开关电源,以此为例分析开关电源的噪声来源。

交流电输入开关电源后,由桥式整流器V1~V4整理成直流电压Vi加在高频变压器的初级L1和开关管V5上。

开关管V5的基极输入一个几十到几百千赫的高频矩形波,其重复频率和占空比由输出直流电压VO的要求来确定。

被开关管放大了的脉冲电流由高频变压器耦合到次级回路。

高频变压器初次级匝数之比也是由输出直流电压VO的要求来确定的。

高频脉冲电流经二极管V6整流并经C2滤波后变成直流输出电压VO。

因此开关电源在以下几个环节都将产生噪声,形成电磁干扰。

(1)高频变压器初级L1、开关管V5和滤波电容C1构成的高频开关电流环路,可能会产生较大的空间辐射。

如果电容器滤波不足,则高频电流还会以差模方式传导到输入交流电源中去。

如图1中的I1 。

(2)高频变压器次级L2、整流二极管V6、滤波电容C2也构成高频开关电流环路会产生空间辐射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源的电磁兼容性技术及解决方法时间:2010-10-23 490次阅读【网友评论0条我要评论】收藏电源网讯1 引言电磁兼容是一门新兴的跨学科的综合性应用学科。

作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术以及新材料等。

电磁兼容技术应用的范围很广,几乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。

其研究的热点内容主要有:电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术、电磁泄漏与静电放电等。

电磁兼容的英文名称为Electromagnetic Compatibility,简称EMC。

所谓电磁兼容是指设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。

这里包含两层意思,即它工作中产生的电磁辐射要限制在一定水平内,另外它本身要有一定的抗干扰能力。

这便是设备研制中所必须解决的兼容问题。

电磁兼容技术涉及的频率范围宽达0 GHz "400GHz,研究对象除传统设备外,还涉及芯片级,直到各种舰船、航天飞机、洲际导弹甚至整个地球的电磁环境。

电磁兼容三要素是干扰源(骚扰源)、耦合通路和敏感体。

切断以上任何一项都可解决电磁兼容问题,电磁兼容的解决常用的方法主要有屏蔽、接地和滤波。

2 电磁兼容技术名词(1)电磁兼容性电磁兼容性是指设备或者系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

(2)电磁骚扰电磁骚扰是指任何可能引起设备、装备或系统性能降低或者对有生命或者无生命物质产生损害作用的电磁现象。

电磁骚扰可引起设备、传输通道或系统性能的下降。

它的主要要素有自然和人为的骚扰源、通过公共地线阻抗/内阻的耦合、沿电源线传导的电磁骚扰和辐射干扰等。

电子系统受干扰的路径为:经过电源,通过信号线或控制电缆、场渗透,经过天线直接进入;通过电缆耦合,从其他设备来的传导干扰;电子系统内部场耦合;其他设备的辐射干扰;电子设备外部耦合到内部场;宽带发射机天线系统;外部环境场等。

(3)电磁环境电磁环境是一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。

(4)电磁辐射电磁辐射是指电磁波由源发射到空间的现象。

“电磁辐射”一词的含义有时也可引申,将电磁感应现象也包含在内。

RFI/EMI可以通过任何一种设备机壳的开口、通风孔、出入口、电缆、测量孔、门框、舱盖、抽屉和面板以及机壳的非理想连接面等进行辐射。

RFI/EMI也可由进入敏感设备的导线和电缆进行辐射,任何一个良好的电磁能量辐射器也可以作为良好的接收器。

(5)脉冲脉冲是指在短时间内突变,随后又迅速返回至其初始值的物理量。

(6)共模干扰和差模干扰电源线上的干扰有共模干扰和差模干扰两种方式。

共模干扰存在于电源任何一相对大地或电线对大地之间。

共模干扰有时也称纵模干扰、不对称干扰或接地干扰。

这是载流导体与大地之间的干扰。

差模干扰存在于电源相线与中线及相线与相线之间。

差模干扰也称常模干扰、横模干扰或对称干扰。

这是载流导体之间的干扰。

共模干扰提示了干扰是由辐射或串扰耦合到电路中的,而差模干扰则提示了干扰是源于同一条电源电路。

通常这两种干扰是同时存在的,由于线路阻抗的不平衡,两种干扰在传输中还会相互转化,所以情况十分复杂。

干扰经长距离传输后,差模分量的衰减要比共模大,这是因为线间阻抗与线-地阻抗不同的缘故。

出于同一原因,共模干扰在线路传输中还会向邻近空间辐射,而差模则不会,因此共模干扰比差模更容易造成电磁干扰。

不同的干扰方式要采取不同的干扰抑制方法才有效。

判断干扰方法的简便方法是采用电流探头。

电流探头先单独环绕每根导线,得出单根导线的感应值,然后再环绕两根导线(其中一根是地线),探测其感应情况。

如感应值是增加的,则线路中干扰电流是共模的;反之则是差模的。

(7)抗扰度电平和敏感性电平抗扰度电平是指将某给定的电磁骚扰施加于某一装置、设备或者系统并使其仍然能够正常工作且保持所需性能等级时的最大骚扰电平。

也就是说,超过此电平时该装置、设备或者系统就会出现性能降低。

而敏感性电平是指刚刚开始出现性能降低的电平。

所以,对某一装置、设备或者系统而言,抗扰度电平与敏感性电平是同一数值。

(8)抗扰度裕量抗扰度裕量是指装备、设备或者系统的抗扰度电平限值与电磁兼容电平之间的插值。

3 开关电源的电磁兼容性开关电源因工作在高电压大电流的开关工作状态下,引起电磁兼容性问题的原因是相当复杂的。

从整机的电磁性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合及电磁波耦合几种。

共阻耦合主要是骚扰源与受骚扰体在电气上存在的共同阻抗,通过该阻抗使骚扰信号进入受骚扰体。

线间耦合主要是产生骚扰电压及骚扰电流的导线或PCB线因并行布线而产生的相互耦合。

电场耦合主要是由于电位差的存在,产生感应电场对受骚扰体产生的场耦合。

磁场耦合主要是指在大电流的脉冲电源线附近,产生的低频磁场对骚扰对象产生的耦合。

电磁场耦合主要是由于脉动的电压或电流产生的高频电磁波通过空间向外辐射,对相应的受骚扰体产生的耦合。

实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。

在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均接近方波,从频谱分析知,方波信号含有丰富的高次谐波。

该高次谐波的频谱可达方波频率的1000次以上。

同时,由于电源变压器的漏电感及分布电容以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波震荡。

该谐波震荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。

用于整流及续流的开关二极管,也是产生高频骚扰的一个重要原因。

因整流及续流二极管工作在高频开关状态,二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频震荡。

整流及续流二极管一般离电源输出线较近,其产生的高频骚扰最容易通过直流输出线传出。

开关电源为了提高功率因数,均采用了有源功率因数校正电路。

同时,为了提高电路的效率及可靠性,减少功率器件的电应力,大量采用了软开关技术。

其中零电压、零电流或零电压/零电流开关技术应用最为广泛。

该技术极大的降低了开关器件所产生的电磁骚扰。

但是,软开关无损吸收电路多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因此,该谐振电路中的二极管成为电磁骚扰的一大骚扰源。

开关电源一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模骚扰信号的滤波。

由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频骚扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。

滤波电容器随着骚扰信号频率的上升,引线电感的作用导致电容量及滤波效果不断的下降,甚至导致电容器参数改变,也是产生电磁骚扰的一个原因。

4 电磁兼容性的解决方法从电磁兼容的三要素讲,要解决开关电源的电磁兼容性问题,可从三个方面入手:第一,减小骚扰源产生的骚扰信号;第二,切断骚扰信号的传播途径;第三,增强受骚扰体的抗骚扰能力。

在解决开关电源内部的兼容性时,可以综合利用上述三个方法,以成本效益比及实施的难易性为前提。

因而,开关电源产生的对外骚扰,如电源线谐波电流、电源线传导骚扰、电磁场辐射骚扰等只能用减小骚扰源的方法来解决。

一方面,可以增强输入/输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流、续流二极管的电压、电流变化率,采用各种软开关电路拓扑及控制方式等;另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。

而对外部的抗骚扰能力(如浪涌、雷击)应优化交流电输入及直流输出端口的防雷能力。

通常,对1.2/50μs开路电压及8/20μs短路电流的组合雷击波形,因能量较小,通常采用氧化锌压敏电阻与气体方电管等的组合方法来解决。

对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电骚扰的器件。

快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用与防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。

减小开关电源的内部骚扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:①注意数字电路与模块电路PCB布线的正确分区;②数字电路与模拟电路电源的去耦;③数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻骚扰,减小地环地影响,布线时注意相邻线间的间距及信号性质,避免产生串扰,减小输出整流回路及续流二极管回路与支流滤波电路所包围的面积,减小变压器的漏电、滤波电感的分布电容,运用谐振频率高的滤波电容器等。

5 滤波器结构滤波是一种抑制传导干扰的方法。

例如,在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。

电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。

它不仅可以抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。

在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。

进行适当的设计或选择合适的滤波器,并正确的安装滤波器是抗干扰技术的重要组成部分。

在交流电输入端加装的电源滤波器电路如图1所示。

图中Ld、Cd用于抑制差模噪声,一般取Ld为100 mH -700mH,Cd取1μF -10μF。

Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。

所有电源滤波器都必须接地(厂家特别说明允许不接地的除外),因为滤波器的共模旁路电容必须在接地时才起作用。

一般的接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳与设备的接地点相连。

接地阻抗越低,滤波效果越好。

滤波器尽量安装在靠近电源入口处。

滤波器的输入及输出端要尽量远离,避免干扰信号从输入端直接耦合到输出端。

如在电源输出端加输出滤波器、加装高频电容、加大输出滤波电感的电感量及滤波电容的容量,则可以抑制差模噪声。

如果把多个电容并联,则效果会更好。

几种滤波器的构成如图2所示。

在图2(a)中,阻抗Z=1/(ωC1),高频区域用陶瓷电容、聚酯薄膜电容并联,其滤波效果更好。

图2(b)中,噪声能通过电容旁路到地线上,这种滤波器连接时应使接地阻抗尽量小。

图2(c)中,C1、C2对不对称噪声有良好的滤波效果,C3对对称噪声有良好的滤波效果,连接时应使电容器的引线及接地线尽量短。

相关文档
最新文档