开关电源电磁干扰(EMI)抑制措施总结

合集下载

电源EMI传导辐射实际整改经验总结(绝对值得)

电源EMI传导辐射实际整改经验总结(绝对值得)

电源EMI传导辐射实际整改经验总结(绝对值得)第一篇:电源EMI传导辐射实际整改经验总结(绝对值得)1、在反激式电源中,Y电容接初级地与次级地之间在20MHZ时,会比Y电容接在高压与次级地之间高5dB左右。

当然也要视情况而定。

2、MOS管驱动电阻最好能大于或等于47R。

降低驱动速度有利于改善MOS管与变压器的辐射。

一般采用慢速驱动和快速判断的办法。

3、若辐射在40MHZ-80MHZ之间有些余量不够,可适当地增加MOS管DS之间的电容值,以达到降低辐射量的效果。

4、若在输入AC线上套上磁环并绕2圈,有降低40-60MHZ之间辐射值的趋势,那么在输入EMI滤波部分中串入磁珠则会达到同样的效果。

如在NTC电阻上分别套上两个磁珠。

5、在变压器与MOS管D极之间最好能串入一个磁珠,以降低MOS管电流的变化速度,又能降低输出噪音。

6、电源输入AC滤波部分,X电容放在共模电厂的那个位置并不重要,注意布线时要将铜皮都集中于X电容的引脚处,以达到更好的滤波效果,但X电容最好不要与Y电容连接在同一焊点。

7、在300W左右的中功率电源中,其又是由几个不同的电源部分组成,一般采用三极共模电感。

第一级使用100UH-3MH左右的双线并绕锰锌磁环电感,其后再接Y电容,第二级与第三级可使用相同的共模电感,需要使用的电感量并不要求很大,一般10MH左右就能达到要求。

若把Y电容放在第二级与第三级之间,效果就会差一些。

如果采用两级共模滤波,秕一级电感量适当取大些,1.5-2.5MH左右。

8、如果采用三级,第一级电感量适当取小些,在200UH-1MH 之间。

测试辐射时,最好能在初次级之间的Y电容套上磁珠。

如果用三芯AC输入线,在黄绿地线上也串磁环,并绕上两到三圈。

9、在二极管上套磁珠,一般要求把磁珠套在其电压变化最剧烈的地方,在正端整流二极管中,其A端电压变化最剧烈。

10、实例分析:一台19W的二合一电源,在18MH左右处有超过QP值7dB,前级采用两级共模滤波方法和一个X电容,无论怎样更改滤波部分,此处的QP值总是难以压下来。

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。

根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。

1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。

电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。

电源进线端通常采用如图1 所示的EMI 滤波器电路。

该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。

在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。

而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。

抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。

当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。

因此,即使在大负载电流的情况下,磁芯也不会饱和。

而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。

2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。

采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。

可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。

开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施1引言开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。

但开关电源的突出缺点是产生较强的电磁干扰(EMI)。

EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。

如果处理不当,开关电源本身就会变成一个干扰源。

随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。

2开关电源产生EMI的原理开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。

它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。

基本整流器的整流过程是产生EMI最常见的原因。

这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。

实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。

变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。

它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。

产生这种脉冲干扰的主要原因是:(1) 开关功率晶体管感性负载是高频变压器或储能电感。

在开关管导通的瞬间,变压器初级出现很大的电流,它在开关管过激励较大时,将造成尖峰噪声。

这个尖峰噪声实际上是尖脉冲,轻者造成干扰,重者有可能击穿开关管。

(2) 由高频变压器产生的干扰。

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。

2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。

3. 地线布局:合理布置地线,减少电磁干扰。

不同元器件的地线要分开布局,避免共
用一个接地点。

4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。

5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。

6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。

7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。

8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。

以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。

低频emi干扰解决方法

低频emi干扰解决方法

低频emi干扰解决方法(最新版4篇)目录(篇1)一、引言二、低频 EMI 干扰的来源和影响1.来源2.影响三、低频 EMI 干扰的解决方法1.抑制干扰源2.减小干扰源的du/dt3.减小干扰源的di/dt4.使用集成的 EMI 滤波器5.可靠接地四、结论正文(篇1)一、引言随着科技的发展,电子产品日益普及,人们在享受科技带来的便利的同时,也面临着电磁干扰(EMI)的问题。

低频 EMI 干扰是指频率范围在3~3000 赫兹之间的电磁干扰。

本文将探讨低频 EMI 干扰的来源和影响,以及如何解决这类干扰问题。

二、低频 EMI 干扰的来源和影响1.来源低频 EMI 干扰的来源很广泛,主要包括以下几种:(1)开关电源:开关电源是电子产品中最常见的电源类型,由于其开关过程中会产生较大的电磁干扰,因此成为低频 EMI 干扰的主要来源之一。

(2)电机:电机在运行过程中会产生电磁场,如果电机的电磁场与电子设备的电磁场相互干扰,就会产生低频 EMI 干扰。

(3)荧光灯:荧光灯在启动和关闭过程中会产生电磁脉冲,从而产生低频 EMI 干扰。

(4)其他设备:电视机、收音机、电脑等电子设备在运行过程中也会产生低频 EMI 干扰。

2.影响低频 EMI 干扰对电子设备的影响主要表现在以下几个方面:(1)信号干扰:低频 EMI 干扰会影响电子设备中的信号传输,导致信号丢失或错误。

(2)设备故障:严重的低频 EMI 干扰可能导致电子设备无法正常工作,甚至损坏设备。

(3)电磁辐射:低频 EMI 干扰会产生电磁辐射,对人体健康产生潜在危害。

三、低频 EMI 干扰的解决方法针对低频 EMI 干扰问题,可以采取以下措施进行解决:1.抑制干扰源:通过优化开关电源的设计,减小其开关过程中的电磁干扰;采用滤波器等技术降低电机、荧光灯等设备产生的电磁干扰。

2.减小干扰源的du/dt:通过在干扰源两端并联电容,减小干扰源的du/dt。

3.减小干扰源的di/dt:通过在干扰源回路串联电感或电阻以及增加续流二极管,减小干扰源的di/dt。

开关电源的电磁干扰分析及有效的抑制措施

开关电源的电磁干扰分析及有效的抑制措施

开关电源的电磁干扰分析及有效的抑制措施一、开关电源的概念开关电源就是通过对功率晶体管的导通和关断控制,截取幅值与直流输入相等的矩形脉冲,再通过整流和滤波装置输出稳定的直流电压值。

二、开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;按耦合通道来分,可分为传导干扰和辐射干扰两种。

1、功率开关管开关工作产生的干扰。

开关电源中的功率开关管工作在开关状态,工作时会产生较大的脉冲电压和脉冲电流。

由于在脉冲电流和脉冲电压中含有丰富的高次谐波成分,同时又由于功率开关管导通时整流二极管的恢复特性会形成电流振荡,而在整流二极管上产生的浪涌电压。

2、由于二极管的恢复特性产生的干扰。

当二极管进行高频整流时,由于二极管的PN结,正向电流所储存的电荷在加反向电压时不能马上消失,会形成二极管的反向电流。

这段时间称为反向恢复时间,这时由于加到二极管的反向电压较大,会产生较大损耗和形成较大的干扰来源。

如果二极管在反向电流恢复时的电流变化率di/dt较大,由于电感作用会产生较大的尖峰电压,这就是二极管的恢复噪声。

Di/dt较大时称为硬恢复,Di/dt较小时称为软恢复。

软恢复既可通过吸收回路实现,也可通过谐振开关技术实现。

软恢复对提高开关电源的工作可靠性,减小干扰有很大的好处。

由于肖特基二极管没有载流子蓄积效应,所以恢复噪音很小。

3、由整流滤波电路产生的干扰。

由于交流市电输入的开关电源在输入端接有整流滤波电路,整流二极管的导通角很小,使整流电流的峰值很大,这种脉冲状的二极管整流电流也会产生干扰。

三、抑制开关管电源电磁干扰的措施主要有四种方法,即吸收法、屏蔽技术、滤波技术、接地技术。

1、吸收法,即是在开关管的两端并联RC电路,电容的作用就是把电流中的交流成分吸收掉,但是这时的电感和电容相连就会形成LC振荡回路,所以在其中加上一个电阻,主要的作用就是阻尼作用,把LC振荡回路中产生的能量消耗掉。

开关电源产生EMI的原因分析及抗干扰对策

开关电源产生EMI的原因分析及抗干扰对策

开关电源产生EMI的原因分析及抗干扰对策
开关式稳压电源的体积小、重量轻、效率高、稳压范围宽且安全可靠,在很多电子设备中被采用。

但是,它像其他电路一样同样存在一些问题,如控制电路复杂,较高的工作频率会对电视机、收音机等产生电磁辐射干扰使得收音机出现噪声、电视机出现噪波点,甚至还会通过反馈干扰其他电子设备的正常工作。

 1.超音频振荡的干扰问题
 开关式稳压电源的工作频率多为20-100kHz,属于超音频范围。

作为该电源的开关调整器件晶体管或场效应晶体管以相应的频率工作在导通与截止状态,振荡波形近似于方波(还存在过冲),根据傅里叶分析法可以进行分解,即得到直流分量、基波和高次谐波,基波的能量最大,其次是三次、五次、七次……等等。

 2.无线电广播与电磁干扰的关系
 众所周知,无线电广播是利用调制的方法来传播信息的。

音频信号对高频载被采用幅度调制(AM)和频率调制(FM)的方法,然后通过发射天线将调制波以电磁披的形式辐射出去,无线电接收设备是通过接收天线将它们接收下来s再经选频、变频、放大和解调,还原成为音频信号,最后通过低频功放,由扬声器放出声音。

如果只有高频载波而无音频范围的调制信号,那幺它的能量再大,无线电接收设备也不会通过扬声器还原出任何声音信息的。

由此可以想到,仅仅是超音频方披干扰的存在(超音频振荡的下限频率为15k!毡,已在人耳的可听范围之外),产生的高次谐波也不会成为我们通过收音机昕到音频范围的干扰信号,而实际上这种干扰有时却是很严重的,可能在整个中波、短波范围都出现强烈的噪声,那幺干扰来自哪里呢?开关式稳压电源存在。

怎样抑制开关电源的电磁干扰

怎样抑制开关电源的电磁干扰

怎样抑制开关电源的电磁干扰通常开关电源EMI控制主要采用滤波技术、屏蔽技术、密封技术、接地技术等。

EMI干扰按传播途径分为传导干扰和辐射干扰。

开关电源主要是传导干扰,且频率范围最宽,约为10kHz一30MHz。

抑制传导干扰的对策基本上10kHz 一150kHz、150kHz一10MHz、10MHz以上三个频段来解决。

10kHz一150kHz范围内主要是常态干扰,一般采用通用LC滤波器来解决。

150kHz一10 MHz范围内主要是共模干扰,通常采用共模抑制滤波器来解决。

10MHz以上频段的对策是改进滤波器的外形以及采取电磁屏蔽措施。

采用交流输入EMI滤波器通常干扰电流在导线上传输时有两种方式:共模方式和差模方式。

共模干扰是载流体与大地之间的干扰:干扰大小和方向一致,存在于电源任何一相对大地、或中线对大地间,主要是由du/dt产生的,di/dt也产生一定的共模干扰。

而差模干扰是载流体之间的干扰:干扰大小相等、方向相反,存在于电源相线与中线及相线与相线之间。

干扰电流在导线上传输时既可以共模方式出现,也可以差模方式出现;但共模干扰电流只有变成差模干扰电流后,才能对有用信号构成干扰。

交流电源输人线上存在以上两种干扰,通常为低频段差模干扰和高频段共模干扰。

在一般情况下差模干扰幅度小、频率低、造成的干扰小;共模干扰幅度大、频率高,还可以通过导线产生辐射,造成的干扰较大。

若在交流电源输人端采用适当的EMI滤波器,则可有效地抑制电磁干扰。

电源线EMI滤波器基本原理如图1所示,其中差模电容C1、C2用来短路差模干扰电流,而中间连线接地电容C3、C4则用来短路共模干扰电流。

共模扼流圈是由两股等粗并且按同方向绕制在一个磁芯上的线圈组成。

如果两个线圈之间的磁藕合非常紧密,那么漏感就会很小,在电源线频率范围内差模电抗将会变得很小;当负载电流流过共模扼流圈时,串联在相线上的线圈所产生的磁力线和串联在中线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。

抑制开关电源电磁干扰的方法研究

抑制开关电源电磁干扰的方法研究

抑制开关电源电磁干扰的方法研究随着电子产品的普及,开关电源电磁干扰(EMI)变得愈发重要,并且其它设备也受到影响。

EMI是指在某一频率范围内,一种电器或电子设备所产生的相互影响及其他副作用,是指在电网中,开关电源器产生电磁波对其他设备或系统产生的滥用干扰。

开关电源电磁干扰(EMI)会影响电子系统的运行,影响数据和信号传输,从而给电子设备的正常操作,传输和通讯带来影响。

为了研究开关电源电磁干扰,通常需要分析EMI的传播特性、发生机制、特性及其影响。

根据EMI的产生和抑制的原理,可以使用几种不同的方法来抑制开关电源的EMI。

针对开关电源电磁干扰的抑制,可以通过控制电源的设计、结构和配置来减少或抑制EMI,它可以利用信号分析技术、降低电源输出电压和频率、采用电磁兼容电解电容器过滤等等。

此外,EMI的抑制还可以利用物理隔离屏蔽等措施,如空气间隙、电缆屏蔽、屏蔽器件和绝缘材料等。

这些屏蔽措施可以防止电源发射的电磁波,减少传播的电磁能量,从而抑制EMI的产生。

此外,开关电源的EMI可以通过其它传播途径减弱。

这些途径可以被分为传播型和复用型,这两种方法可以通过ECHIP技术对电源进行诊断来减少EMI。

最后,开关电源EMI还可以采用抑制元件,包括吸收材料、滤波器和屏蔽层等。

抑制元件的选择必须根据EMI的频率和传播特性来决定,以便有效地抑制EMI。

综上所述,由于开关电源电磁干扰的特性和发生机制,可以根据其它传播途径、物理隔离屏蔽、ECHIP技术等来采用多种方法来抑制电源电磁干扰。

这些方法可以很好地减少电源发射的电磁波,并有效减少EMI产生和传播特性,从而抑制电源电磁干扰。

上述研究结果表明,在进行开关电源设计和性能调优时,应重视EMI的抑制,采取有效的抑制措施,以防止 EM I发生和传播,从而达到有效的电磁兼容。

开关电源EMI噪声分析及抑制

开关电源EMI噪声分析及抑制

开关电源EMI噪声分析及抑制开关电源是一种高效率的电源转换器,能将电能转换为不同电压、电流和频率的输出。

然而,由于其高频开关行为引起的电磁干扰(EMI)噪声,可能对其他电子设备和通信系统产生不良影响。

因此,EMI噪声的分析和抑制对于开关电源设计和应用至关重要。

EMI噪声源主要包括开关器件、开关电容和开关电感。

开关器件的开关动作会产生脉冲干扰,频率可达数MHz至数GHz。

开关电容和开关电感则会导致谐振效应,形成谐振峰,并产生共模和差分噪声。

为了对EMI噪声进行分析,通常需要进行频谱分析。

可以使用频谱分析仪来测量开关电源的频谱,并确定EMI噪声的频率范围和幅度。

根据测量结果,可以采取相应的措施来抑制EMI噪声。

首先,选择合适的滤波器。

在开关电源的输入端和输出端都可以加入滤波器,以滤除高频噪声。

常用的滤波器包括电源型滤波器、陷波滤波器和共模滤波器等。

电源型滤波器通常采用电容和电感组成,并将高频噪声短路至地。

陷波滤波器则能够抑制特定频率的噪声,而共模滤波器则能滤除共模噪声。

其次,可以采取屏蔽措施。

通过将敏感部件(例如传感器和高速信号线)包裹在屏蔽层中,可以阻挡电磁辐射对其的干扰。

屏蔽可以采用金属盒、铜箔和铁氧体等材料实现。

此外,还可以采用良好的地线布局和绝缘层来提高屏蔽效果。

此外,优化PCB设计也是抑制EMI噪声的重要手段。

首先,在布局设计时,应尽量减小回路面积和环路面积,以降低信号线的长度和电流回路的大小。

其次,应使用短而宽的连线,以减小线路的电感和电阻。

而在布线设计时,则需要注意信号线和电源线的分离,避免共模干扰。

此外,由于高频信号对连线的特殊要求,可以采用扇形隔离和差分传输等技术来提高电路的抗干扰能力。

最后,还可以通过使用低EMI噪声的开关元件、降低开关频率和斩波频率来抑制EMI噪声。

开关元件的选择应具备低开关电流和低开关损耗的特性,以减小开关动作带来的噪声。

而降低开关频率和斩波频率则是通过改变控制电路来实现的,可以减小时域和频域上的噪声。

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。

但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。

因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。

首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。

导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。

对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。

常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。

2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。

同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。

3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。

将开关电源的地线与其他设备的接地点连接,共用同一个地线。

对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。

金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。

2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。

同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。

3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。

此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。

2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。

3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。

4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。

开关电源EMI抑制的9大措施你知道吗

开关电源EMI抑制的9大措施你知道吗

(5)有源功率因数校正,以及其他谐波校正技术
(6)采用合理设计的电源线滤波器
(7)合理的接地处理
(8)有效的屏蔽措施
(9)合理的PCB设计
以上介绍的就是开关电源EMI抑制的9大措施等技术抑制电源的EMI以及提高电源的EMS。
分开来讲,9大措施分别是:
(1)减小dv/dt和di/dt(降 低其峰值、减缓其斜率)
(2)压敏电阻的合理应用,以降低浪涌电压
(3)阻尼网络抑制过冲
(4)采用软恢复特 性的二极管,以降低高频段EMI
开关电源EMI抑制的9大措施你知道吗
开关电源EMI抑制的9大措施是什么?在开关电源中,电压和电流的突变,即高dv/dt和di/dt,是其EMI产生的主要原因。实现开关电源的EMC设计技术措施主要基于以下两点:
(1)尽量减小电源本身所产生的干扰源,利用抑制干扰的方法或产生干扰较小的元器件和电路,并进行合理布局;

开关电源的干扰及抑制

开关电源的干扰及抑制

开关电源的干扰及抑制第一篇:开关电源的干扰及抑制1.电磁干扰的产生与传输电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。

传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。

辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。

常见的辐射耦合有三种:1)一个天线发射的电磁波被另一个天线意外地接收,称为天线对天线的耦合;2)空间电磁场经导线感应而耦合,称为场对线的耦合。

3)两根平等导线之间的高频信号相互感应而形成的耦合,称为线对线的感应耦合。

2.电磁干扰的产生机理从被干扰的敏感设备角度来说,干扰耦合又可分为传导耦合和辐射耦合两类。

传导耦合模型传导耦合按其原理可分为电阻性耦合、电容性耦合和电感性耦合三种基本耦合方式。

辐射耦合模型辐射耦合是干扰耦合的另一种方式,除了从干扰源发出的有意辐射外,还有大量的无意辐射。

同时,PCB板上的走线无论是电源线、信号线、时钟线、数据线或者控制线等,都能起到天线的效果,即可辐射出干扰波,又可起到接收作用。

3.电磁干扰控制技术①传输通道抑制滤波:在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。

滤波器的安装正确与否对其插入损耗特性影响很大,只有安装位置恰当,安装方法正确,才能对干扰起到预期的滤波作用。

在安装滤波器时应考虑安装位置,输入输出侧的配线必须屏蔽隔离,以及高频接地和搭接方法。

屏蔽:电磁屏蔽按原理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。

电场屏蔽包含静电屏蔽和交变电场屏蔽;磁场屏蔽包含低频磁场屏蔽和高频磁场屏蔽。

不同类型的电磁屏蔽对屏蔽体的要求不同。

在实际的屏蔽中,电磁屏蔽效能更大程度上依赖于屏蔽体的结构,即导电的连续性。

实际的屏蔽体由于制造、装配、维修、散热、观察及接口连接要求,其上面一般都开有形状各异、尺寸不同的孔缝,这些孔缝对于屏蔽体的屏蔽效能起着重要的影响作用,因此必须采取措施来抑制孔缝的电磁泄漏。

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施本文先分析了开关电源产生电磁干扰的机理, ,就目前几种有效的开关电源电磁干扰措施进行了分析比较,并为开关电源电磁干扰的进一步研究提出参考建议。

目前,许多大学及科研单位都进行了开关电源EMI(Electromagnetic Interference)的研究,他们中有些从EMI产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。

这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。

一、开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。

现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。

例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。

当采用零电流、零电压开关时,这种谐波干扰将会很小。

另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。

开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。

这种通过电磁辐射产生的干扰称为辐射干扰。

4、其他原因元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。

抑制开关电源电磁干扰的方法研究

抑制开关电源电磁干扰的方法研究

抑制开关电源电磁干扰的方法研究随着计算机技术的发展,越来越多的应用需要为开关电源提供功耗。

由于开关电源可以在比较短的时间内从极低功耗转换到极大功耗,所以它们会产生大量的电磁干扰。

电源电磁干扰(EMI)会影响各种设备,特别是敏感电子设备。

因此,有必要研究有效的方法来抑制开关电源的电磁干扰。

首先要考虑的是降低开关电源的电磁干扰发射等级(EMI辐射等级),这可以通过以下几种方法实现:(1)减少开关电源的匝数,避免发生匝内偏移,从而减少EMI干扰。

(2)对每一节点采取适当的措施,以限制电流流动,减小干扰电流。

(3)使用高品质的过滤器,如低通滤波器、带通滤波器和抗反射滤波器等,以有效地抑制EMI。

(4)使用适当的隔离技术,如电磁屏蔽和绝缘变压器等,可以有效地抑制EMI。

(5)选择低电阻值的电源组件,如电抗器、电容器、隔离变压器等,以减少EMI发射源的电流流动。

另外,在本次研究中,还考虑将开关电源的设计与EMI抑制相结合,以达到最佳的EMI抑制效果。

根据实际应用情况,开发出一个有效的EMI抑制系统。

EMI抑制系统的核心在于抑制开关电源的干扰。

抑制系统通常是采用电路和电磁屏蔽技术。

电路技术具有良好的抑制能力,以抑制低频或脉冲干扰。

电磁屏蔽技术可以有效地抑制中高频的EMI。

除了电路和电磁屏蔽技术外,还可以采用其他技术,如阻尼材料、陶瓷绝缘体、线槽路和变压器等,对电源的干扰进行抑制。

这些技术有助于减少基本电路的EMI,并可以与电路和电磁屏蔽技术结合使用,以实现最佳的EMI抑制结果。

此外,在实际前提下,还可以采用一些电子测试仪,如谐振场分析仪、电磁能量测量仪、模拟调制仪等,以测试设备的EMI响应。

可以利用这些仪器对设备的EMI响应进行详细的分析,为有效的EMI抑制技术的选择提供宝贵的参考资料。

综上所述,抑制开关电源电磁干扰的方法有很多,关键在于正确选择有效的技术,使用恰当的实验设备,平衡性能和成本,以实现最佳的EMI抑制效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:开关电源的电磁干扰对电子设备的性能影响很大,因此,各种标准对抑制电源设备电磁干扰的要求已越来越高。

对开关电源中电磁干扰的产生机理做了简要的描述,着重总结了几种近年提出的新的抑制电磁干扰的方法,并对其原理、应用做了简单介绍。

1 引言随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。

开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰( ElectromagneticInterference , EMI )。

EMI 信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容( ElectromagneticCompatibility )性。

随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。

本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。

2 电磁干扰的产生和传播方式开关电源中的电磁干扰分为传导干扰和辐射干扰两种。

通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。

下面将对这两种干扰的机理作一简要的介绍。

2.1传导干扰的产生和传播传导干扰可分为共模( CommonMode CM )干扰和差模( DifferentialMode DM )干扰。

由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。

2.1.1 共模( CM )干扰变换器工作在高频情况时,由于 dv/dt 很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。

如图 1 所示,共模干扰电流从具有高 dv/dt 的开关管出发流经接地散热片和地线,再由高频 LISN 网络(由两个 50Ω电阻等效)流回输入线路。

根据共模干扰产生的原理,实际应用时常采用以下几种抑制方法:1 )优化电路器件布置,尽量减少寄生、耦合电容。

2 )延缓开关的开通、关断时间。

但是这与开关电源高频化的趋势不符。

3 )应用缓冲电路,减缓 dv/dt 的变化率。

2.2.2 差模( DM )干扰开关变换器中的电流在高频情况下作开关变化,从而在输入、输出的滤波电容上产生很高的 di/dt ,即在滤波电容的等效电感或阻抗上感应了干扰电压。

这时就会产生差模干扰。

故选用高质量的滤波电容(等效电感或阻抗很低)可以降低差模干扰。

2.2辐射干扰的产生和传播辐射干扰又可分为近场干扰〔测量点与场源距离 <λ/6 (λ为干扰电磁波波长)〕和远场干扰(测量点与场源距离 >λ/6 )。

由麦克斯韦电磁场理论可知,导体中变化的电流会在其周围空间中产生变化的磁场,而变化的磁场又产生变化的电场,两者都遵循麦克斯韦方程式。

而这一变化电流的幅值和频率决定了产生的电磁场的大小以及其作用范围。

在辐射研究中天线是电磁辐射源,在开关电源电路中,主电路中的元器件、连线等都可认为是天线,可以应用电偶极子和磁偶极子理论来分析。

分析时,二极管、开关管、电容等可看成电偶极子;电感线圈可以认为是磁偶极子,再以相关的电磁场理论进行综合分析就可以了。

图 2 是一个 Boost 电路的空间分布图,把元器件看成电偶极子或磁偶极子,应用相关电磁场理论进行分析,可以得出各元器件在空间的辐射电磁干扰,将这些干扰量迭加,就可以得到整个电路在空间产生的辐射干扰。

关于电偶极子、磁偶极子,可参考相关的电磁场书籍,此处不再论述。

需要注意的是,不同支路的电流相位不一定相同,在磁场计算时这一点尤其重要。

相位不同一是因为干扰从干扰源传播到测量点存在时延作用(也称迟滞效应);再一个原因是元器件本身的特性导致相位不同。

如电感中电流相位比其它元器件要滞后。

迟滞效应引起的相位滞后是信号频率作用的结果,仅在频率很高时作用才较明显(如 GHz 级或更高);对于功率电子器件而言,频率相对较低,故迟滞效应作用不是很大。

3 几种新的电磁干扰抑制方法在开关电源产生的两类干扰中,传导干扰由于经电网传播,会对其它电子设备产生严重的干扰,往往引起更严重的问题。

常用的抑制方法有:缓冲器法,减少耦合路径法,减少寄生元件法等。

近年来,随着对电子设备电磁干扰的限制越来越严格,又出现了一些新的抑制方法,主要集中在新的控制方法与新的无源缓冲电路的设计等几个方面。

下面分别予以介绍。

3.1新的控制方法—调制频率控制干扰是根据开关频率变化的,干扰的能量集中在这些离散的开关频率点上,所以很难满足抑制 EMI 的要求。

通过将开关信号的能量调制分布在一个很宽的频带上,产生一系列的分立边频带,则干扰频谱可以展开,干扰能量被分成小份分布在这些分立频段上,从而更容易达到 EMI 的标准。

调制频率( ModulatedFrequency )控制就是根据这种原理实现对开关电源电磁干扰的抑制。

最初人们采用随机频率( RandomizedFrequency )控制 [1] ,其主要思想是,在控制电路中加入一个随机扰动分量,使开关间隔进行不规则变化,则开关噪声频谱由原来离散的尖峰脉冲噪声变成连续分布噪声,其峰值大大下降。

具体办法是,由脉冲发生器产生两种不同占空比的脉冲,再与电压误差放大器产生的误差信号进行采样选择产生最终的控制信号。

其具体的控制波形如图 3(a) 所示。

但是,随机频率控制在开通时基本上采用 PWM 控制的方法,在关断时才采用随机频率,因而其调制干扰能量的效果不是很好,抑制干扰的效果不是很理想。

而最新出现的调制频率控制则很好地解决了这些问题。

其原理是,将主开关频率进行调制,在主频带周围产生一系列的边频带,从而将噪声能量分布在很宽的频带上,降低了干扰。

这种控制方法的关键是对频率进行调制,使开关能量分布在边频带的范围,且幅值受调制系数β的影响(调制系数β=Δf/fm ,Δf 为相邻边频带间隔, fm 为调制频率),一般β越大调制效果越好 [2][3] ,其控制波形如图 3(b) 所示。

图 4 即为一个根据调制频率原理设计的控制电路。

各种控制方法可以在不影响变换器工作特性的情况下,很好地抑制开通、关断时的干扰。

3.2 新的无源缓冲电路设计开关变换器中电磁干扰是在开关管开关时刻产生的。

以整流二极管为例,在开通时,其导通电流不仅引起大量的开通损耗,还产生很大的 di/dt ,导致电磁干扰;而在关断时,其两端的电压快速升高,有很大的 dv/dt ,从而产生电磁干扰。

缓冲电路不仅可以抑制开通时的 di/dt 、限制关断时的 dv/dt ,还具有电路简单、成本较低的特点,因而得到了广泛应用。

但是传统的缓冲电路中往往采用有源辅助开关,电路复杂不易控制,并有可能导致更高的电压或电流应力,降低了可靠性。

因此许多新的无源缓冲器应运而生,以下分别予以总结介绍。

3.2.1 二极管反向恢复电流抑制电路对于图 5(a) 的 Boost 电路, Q1 开通后, D1 将关断。

但由于此前 D1 上的电流为工作电流,要降为零,其 dv/dt 将很高。

D1 的关断只能靠反向恢复电流尖峰,而现有的抑制二极管反向恢复电流的方法大多只适用于特定的变换器电路,而且只对应某一种的输入输出模式,适用性很差。

国外有人提出了图 5(b) 的电路 [6] ,可以较好地解决这一缺陷。

图 5(b) 的关键在于把一个辅助二极管( D2 )、一个小的辅助电感( L2 )与主功率电感( L1 )的部分线圈串联,然后与主二极管( D1 )并联。

其工作原理是,在 Q1 开通时,利用辅助电感及辅助二极管构成的辅助电路进行分流,使主二极管 D1 上的电流降为零,并维持到 Q1 关断。

由于电感 L2 的作用,辅助二极管 D2 上的反向恢复电流是很小的,可以忽略。

这种方法除了可用于一般的变换器电路,以限制主二极管的反向恢复电流,还可以用在输入输出整流二极管的恢复电流抑制上。

图 6 是这种应用的举例。

这种技术应用在一般的电源电路里,都可以获得有效抑制反向恢复尖峰电流、降低EMI 、减少损耗提高效率的效果。

3.2.2 无损缓冲电路在变换器电路中,主二极管反向恢复时,会对开关管造成很大的电流、电压应力,引起很大的功耗,极易造成器件的损坏。

为了抑制这种反向恢复电流,减少损耗,而提出了一种无损缓冲电路 [5] ,如图 7 所示。

其主要工作原理是,主开关 Q 开通时的 di/dt 应力、关断时的 dv/dt 应力分别受 L1 、 C1 所限制,利用 L1 、 C1 、 C2 之间相互的谐振及能量转换,实现对主二极管 D 反向恢复电流的抑制,使开关损耗、 EMI 大大减少。

不仅如此,由于开通时 C1 上的能量转移到 C2 ,关断时 C2 和 L1 上的能量转移到负载,这种缓冲电路的损耗很低,效率很高。

3.2.3 无源补偿技术传统的共模干扰抑制电路如图 8 所示。

为了使通过滤波电容 Cy 流入地的漏电流维持在安全范围, Cy 的值都较小,相应的扼流线圈 LCM 就变大,特别是由于 LCM 要传输全部的功率,其损耗、体积和重量都会变大。

应用无源补偿技术,则可以在不影响主电路工作的情况下,较好地抑制电路的共模干扰,并可减少LCM 、节省成本。

由于共模干扰是由开关器件的寄生电容在高频时的 dv/dt 产生的,因此,用一个额外的变压器绕组在补偿电容上产生一个180° 的反向电压,产生的补偿电流再与寄生电容上的干扰电流迭加,从而消除干扰。

这就是无源补偿的原理。

图 9(a) 为加入补偿电路的隔离式半桥电路。

由于半桥、全桥电路常用于大功率场合,滤波电感 LCM 较大,所以补偿的效果会更明显。

该电路在变压器上加了一个补偿线圈 Nc ,匝数与原边绕组一样;补偿电容 CCOMP 的大小则与寄生电容 CPARA 一样。

这样一来,工作时的 Nc 使 CCOMP 产生一个与 CPARA 上干扰电流大小相同、方向相反的补偿电流,迭加后消除了干扰电流。

补偿线圈不流过全部的功率,仅传输干扰电流,补偿电路十分简单。

同样,对于图 9(b) 中的正激式电路,利用其自身的磁复位线圈,可以更加方便地实现补偿。

无源补偿技术还可以应用于非隔离式的变换器电路中,如图 10 所示,原理是一样的。

需要注意的是,无源补偿技术有一定的应用条件,它受开关电流、电压的上升、下降时间,以及变压器结构等因素的影响,特别当变压器的线间耦合电容远大于寄生电容时,干扰电流不经补偿线圈而直接进入大地,此时抑制效果就不很理想。

相关文档
最新文档