形成开关电源电磁干扰的三要素及解决方案
开关电源中常用的几种抑制电磁干扰的措施
开关电源中常用的几种抑制电磁干扰的措施形成电磁干扰的三要素是干扰源、传播途径和受扰设备。
因而,抑制电磁干扰也应该从这三方面着手。
首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径(见图2);第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。
目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。
常用的方法是屏蔽、接地和滤波。
图1 共模干扰采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。
例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底板上。
器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网传播的途径。
为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。
电源某些部分与大地相连可以起到抑制干扰的作用。
例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。
电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。
因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连.在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。
因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近接到该参考地上。
开关电源产生干扰的四条主要原因
开关电源产生干扰的四条主要原因1.开关电源本身的电磁干扰:开关电源采用高频开关器件进行开关操作,这会引起较高频率的电流和电压波形,并产生大量的电磁噪声。
这些高频噪声会通过电源线、输入滤波器和输出滤波器等途径进入其他电路和设备,引起干扰。
2.输入电源的电磁干扰:不同的设备可能共享相同的输入电源线路,当一个设备使用开关电源时,其产生的高频电磁噪声会通过共享的电源线路传播给其他设备,从而对它们产生干扰。
3.输出线路干扰:开关电源输出端连接的电源线路和负载线路也可能成为干扰源。
由于开关电源的开关操作会引起电流和电压的突变,这可能会在输出线路中产生较大的尖峰电流和瞬时电压斜率,同时伴随着较高频率的电流波形,进而对连接的负载产生干扰。
4.开关电源引起的电磁互感干扰:由于开关电源中的高频开关操作,其导线和电感元件之间会产生一定强度的电磁场。
当这些元件和其他线路或元件之间存在电磁耦合时,会发生电磁互感干扰。
这种耦合可能发生在电源线、输出线路和周围环境中,通过干扰线路中的电感元件或导线,引起其上产生的感应电流或感应电压,从而产生干扰。
为了减少开关电源产生的干扰,可以采取以下措施:1.优化开关电源的设计:通过合理选择高频开关器件和合适的电源变压器,以减少开关操作时产生的电磁噪声。
2.加强输入滤波:在开关电源的输入端添加滤波电路,能够有效滤除输入电源中的高频噪声,减少其对其他设备的干扰。
3.加强输出滤波:在开关电源的输出端添加输出滤波器,可以滤除输出线路中的高频噪声和尖峰电流,减少对连接设备的干扰。
4.电磁屏蔽措施:对开关电源所在的外壳进行屏蔽处理,防止其产生的电磁辐射波传播到周围环境中。
总之,开关电源产生的干扰主要与其本身设计和工作原理有关,通过合理设计、滤波和屏蔽措施,可以有效减少这些干扰,并保证设备的正常运行。
开关电源的干扰分析及其抑制措施
2 开关电源干扰耦合途径开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式。2.1 传导耦合传导耦合是骚扰源与敏感设备之间的主要耦合途径之一。传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电 磁骚扰至敏感设备,产生电磁干扰。按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合。在开关电源中,这3种耦合方式同时存在,互相联系。2.1.1 电路性耦合电路性耦合是最常见、最简单的传导耦合方式。其又有以下几种:1)直接传导耦合导线经过存在骚扰的环境时,即拾取骚扰能量并沿导线传导至电路而造成对电路的干扰。2)共阻抗耦合由于两个以上电路有公共阻抗,当两个电路的电流流经一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路,这就是 共阻抗耦合。形成共阻抗耦合骚扰的有电源输出阻抗、接地线的公共阻抗等。2 .1.2 电容性耦合电容性耦合也称为电耦合,由于两个电路之生的尖峰电压是一种有较大幅度的窄脉冲,其频间存在寄生电容,使一个电路的电荷通过寄生电容影响到另一条支路。2.1.3 电感性耦合电感性耦合也称为磁耦合,两个电路之间存在互感时,当干扰源是以电源形式出现时,此电流所产生的磁场通过互感耦合对邻近信号形成干扰。2.2 辐射耦合通过辐射途径造成的骚扰耦合称为辐射耦合。辐射耦合是以电磁场的形式将电磁能量从骚扰源经空间传输到接受器。通常存在4种主要耦合途径:天线耦合、导线感 应耦合、闭合回路耦合和孔缝耦合。2.2.1 天线与天线间的辐射耦合在实际工程中,存在大量的天线电磁耦合。例如,开关电源中长的信号线、控制线、输入和输出引线等具有天线效应,能够接收电磁骚扰,形成天线辐射耦合。2.2.2 电磁场对导线的感应耦合开关电源的电缆线一般是由信号回路的连接线、功率级回路的供电线以及地线一起构成,其中每一根导线都由输入端阻抗、输出端阻抗和返回导线构成一个回路。因 此,电缆线是内部电路暴露在机箱外面的部分,最易受到骚扰源辐射场的耦合而感应出骚扰电压或骚扰电流,沿导线进入设备形成辐射骚扰。2.2.3 电磁场对闭合回路的耦合电磁场对闭合回路的耦合是指回路受感应最大部分的长度小于波长的1/4。在辐射骚扰电磁场的频率比较低的情况下,辐射骚扰电磁场与闭合回路的电磁耦合。2.2.4 电磁场通过孔缝的耦合电磁场通过孔缝的耦合是指辐射骚扰电磁场通过非金属设备外壳、金属设备外壳上的孔缝、电缆的编织金属屏蔽体等对其内部的电磁骚扰。3 抑制干扰的一些措施形成电磁干扰的三要素是骚扰源、传播途径和受扰设备。因而,抑制电磁干扰也应该从这三方面人手,采取适当措施。首先应该抑制骚扰源,直接消除干扰原因;其 次是消除骚扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。目前抑制干扰的几种措施基本 上都是用切断电磁骚扰源和受扰设备之间的耦合通道。常用的方法是屏蔽、接地和滤波。1)采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰,即用电导率良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏蔽。屏蔽有两个目的,一是限 制内部辐射的电磁能量泄漏出,二是防止外来的辐射干扰进入该内部区域。其原理是利用屏蔽体对电磁能量的反射、吸收和引导作用。为了抑制开关电源产生的辐 射,电磁骚扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏 蔽。2)所谓接地,就是在两点间建立传导通路,以便将电子设备或元器件连接到某些叫作“地”的参考点上。接地是开关电源设备抑制电磁干扰的重要方法,电源某些 部分与大地相连可以起到抑制干扰的作用。在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该环路时将产 生磁感应噪声。实际上很难实现“一点接地”,因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面作为参考地,需要接地的 各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。在低频和高频共存的电路系统中,应分别将低频电路、高频电路、 功率电路的地线单独连接后,再连接到公共参考点上。3)滤波是抑制传导干扰的有效方法,在设备或系统的电磁兼容设计中具有极其重要的作用。EMI滤波器作为抑制电源线传导干扰的重要单元,可以抑制来自电网 的干扰对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁 环,它们能够改善电路的滤波特性。恰当地设计或选择滤波器,并正确地安装和使用滤波器,是抗干扰技术的重要组成部分。选择滤波器时要注意以下几点:(1)明确工作频率和所要抑制的干扰频率,如两者非常接近,则需要应用频率特性非常陡峭的滤波器,才能把两种频率分开;(2)保证滤波器在高压情况下能够可靠地工作;(3)滤波器连续通以最大额定电流时,其温升要低,以保证在该额定电流连续工作时,不破坏滤波器中元件的工作性能;(4)为使工作时的滤波器频率特性与设计值相符合,要求与它连接的信号源阻抗和负载阻抗的数值等于设计时的规定值:(5)滤波器必须具有屏蔽结构,屏蔽箱盖和本体要有良好的电接触,滤波器的电容引线应尽量短,最好选用短引线低电感的穿心电容;(6)要有较高的工作可靠性,因为作防护电磁干扰用的滤波器,其故障往往比其他元器件的故障更难找。安装滤波器时应注意以下几点:(1)电源线路滤波器应安装在离设备电源人口尽量靠近的地方,不要让未经过滤波器的电源线在设备框内迂回;(2)滤波器中的电容器引线应尽可能短,以免因引线感抗和容抗在较低频率上谐振;(3)滤波器的接地导线上有很大的短路电流通过,会引起附加的电磁辐射,故应对滤波器元件本身进行良好的屏蔽和接地处理;(4)滤波器的输人和输出线不能交叉,否则会因滤波器的输入和输出电容耦合通路引起串扰,从而降低滤波特性,通常的办法是输入和输出端之间加隔板或屏 蔽层。4 结语开关电源产生电磁干扰的因素还有很多,抑制电磁干扰还有大量的工作要做。全面抑制开关电源的各种噪声将使开关电源更加安全可靠地运行。
开关电源的电磁干扰解决方法
差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等级,并能承受可预料的电压冲击即可。为了避免放电电流引起的冲击危害,CX电容容量不宜过大,一般在0.01~0.1μF之间。电容类型为陶瓷电容或聚酯薄膜电容。
ID=2πfCYVcY
式中:ID为漏电流;
f为电网频率。
一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。
1.2 输入电流畸变造成的噪声
开关电源的输入普遍采用桥式整流、电容滤波型整流电源。,在没有 PFC功能的输入级,由于整流二极管的非线性和滤波电容的储能作用,使得二极管的导通角变小,输入电流i成为一个时间很短、峰值很高的周期性尖峰电流。这种畸变的电流实质上除了包含基波分量以外还含有丰富的高次谐波分量。这些高次谐波分量注入电网,引起严重的谐波污染,对电网上其他的电器造成干扰。为了控制开关电源对电网的污染以及实现高功率因数,PFC电路是不可或缺的部分。
开关电源电磁干扰的抑制措施及应用
开关电源电磁干扰的抑制措施及应用摘要本文先分析了开关电源的工作原理、EMI的特点,并结合PDM智能电力综合监控仪表就如何进行有效的开关电源电磁干扰抑制措施,即电磁兼容性设计进行了分析,并提出一些参考建议。
关键词开关电源;电磁干扰;电磁兼容性设计1 概述由于开关电源的电磁干扰EMI信号输出既能有很宽的频率范围,又具有一定的幅度,经传导和辐射后会污染电磁环境,对通信设备和电子产品造成干扰。
因此,如何进行电磁兼容性设计,有效地抑制开关电源的电磁干扰,对保证电子系统的正常稳定运行具有重要意义。
2 开关电源的电磁干扰2.1 开关电源的工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,主要由开关三极管和高频变压器组成。
它首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压(其原理图及等效原理框图如图1所示)。
2.2 电磁干扰EMI的特点作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大,干扰源主要集中在开关管、输出二极管和高频变压器等。
同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。
相对于数字电路干扰源的位置较为清楚,开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;PCB走线因需采用手工调整,具有随意性,这更增加了PCB分布参数的提取和近场干扰估计的难度。
3 电磁兼容性EMC设计图1电磁兼容性EMC设计包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力。
形成电磁干扰的三要素是干扰源、耦合通道、敏感体。
因而,抑制电磁干扰即进行电磁兼容性EMC设计首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。
从电磁干扰三要素解决电磁干扰的思路
从电磁干扰三要素解决电磁干扰的思路
电磁干扰是指电子设备与外界的电磁场发生相互作用,导致设备
性能受到不良影响的现象。
解决电磁干扰需要注意以下三个要素:
1. 发射源控制
发射源是指电子设备所产生的电磁信号。
要控制电子设备的电磁
信号发射,可以采取以下方法:使用屏蔽措施将信号包裹在设备内部,减少信号泄漏;优化设计,降低信号噪声;使用低干扰引脚,减少信
号干扰;在关键部位上添加衰减器或者滤波器,降低发射的电磁干扰。
2. 传输渠道控制
传输渠道是指电磁信号在空气、电线、电缆等传输介质中传播的
过程。
要控制电磁信号在传输渠道中的干扰,可以采取以下方法:选
择合适的传输介质,在设计传输系统时选择合适的传输介质;在传输
渠道上增加屏蔽措施来削弱信号功率并降低电磁干扰;使用合适的信
号调制技术来提高传输质量。
3. 接收器控制
接收器是指接收电子设备发射的电磁信号的设备。
要控制接收器
对电磁信号产生的干扰,可以采取以下方法:在接收设备中加入反干
扰电路,使其能够自动屏蔽噪声直到信号消失;增加滤波器或者放大
器来提高接收设备的接收性能;在接收设备周围加入屏蔽装置以减少
外部电磁干扰。
综上所述,要解决电磁干扰问题,需要控制发射源、传输渠道和
接收器三个要素,并且采取适当的技术措施。
电磁干扰解决方案
电磁干扰解决方案第1篇电磁干扰解决方案一、背景随着电子信息技术的高速发展,电磁干扰(Electromagnetic Interference, EMI)问题日益凸显,对各类电子设备的正常运行及人类健康造成潜在影响。
本方案旨在针对当前面临的电磁干扰问题,提供一套合法合规的解决策略。
二、目标1. 降低电磁干扰对电子设备的影响,确保设备正常运行。
2. 满足国家相关法规及标准要求,保障人类健康。
3. 提高电磁兼容性,降低故障率和维修成本。
三、解决方案1. 电磁干扰源识别(1)现场勘查:对疑似存在电磁干扰的场所进行现场勘查,了解其周围环境、设备布局等情况。
(2)电磁干扰源定位:利用专业的电磁干扰检测设备,对干扰源进行定位。
(3)数据分析:对检测数据进行详细分析,确定干扰源类型、强度等信息。
2. 电磁干扰抑制(1)设备选型:选择具有良好电磁兼容性的设备,从源头上降低电磁干扰。
(2)屏蔽:采用屏蔽材料或屏蔽结构,减少电磁波的辐射和传播。
(3)滤波:在设备电源输入和输出端安装滤波器,降低电磁干扰。
(4)接地:合理设计接地系统,降低设备间的干扰。
(5)布线优化:优化设备布线,避免长距离平行布线,减少电磁干扰。
3. 法规遵循与检测(1)法规遵循:根据国家相关法规和标准,确保电磁干扰解决方案的合法合规性。
(2)检测与评估:定期对电磁干扰抑制效果进行检测,评估是否符合相关标准。
4. 培训与宣传(1)培训:对相关人员进行电磁兼容知识培训,提高其对电磁干扰的认识。
(2)宣传:加强电磁干扰防护意识,提高全体员工的电磁兼容素养。
四、实施与监督1. 成立专项小组,负责电磁干扰解决方案的制定、实施和监督。
2. 制定详细的实施计划,明确责任人和时间节点。
3. 定期对实施进度和效果进行评估,及时调整方案。
4. 加强与相关部门的沟通协调,确保方案的有效实施。
五、总结本方案针对电磁干扰问题,提出了包括电磁干扰源识别、电磁干扰抑制、法规遵循与检测、培训与宣传等方面的解决方案。
开关电源EMC的三个规律及三个要素
开关电源EMC的三个规律及三个要素深圳市森树强电子科技有限公司1、EMC三个重要规律1.1、环路电流频率f越高,引起的EMI辐射越严重,电磁辐射场强随电流频率f的平方成正比增大。
减少辐射骚扰或提高射频辐射抗干扰能力的最重要途径之二,就是想方设法减小骚扰源高频电流频率f,即减小骚扰电磁波的频率f。
1.2、EMC费效比关系规律: EMC问题越早考虑、越早解决,费用越小、效果越好。
在新产品研发阶段就进行EMC设计,比等到产品EMC测试不合格才进行改进,费用可以大大节省,效率可以大大提高;反之,效率就会大大降低,费用就会大大增加。
经验告诉我们,在功能设计的同时进行EMC设计,到样板、样机完成则通过EMC测试,是最省时间和最有经济效益的。
相反,产品研发阶段不考虑EMC,投产以后发现EMC不合格才进行改进,非但技术上带来很大难度、而且返工必然带来费用和时间的大大浪费,甚至由于涉及到结构设计、PCB设计的缺陷,无法实施改进措施,导致产品不能上市。
1.3、高频电流环路面积S越大, EMI辐射越严重。
高频信号电流流经电感最小路径。
当频率较高时,一般走线电抗大于电阻,连线对高频信号就是电感,串联电感引起辐射。
电磁辐射大多是EUT被测设备上的高频电流环路产生的,最恶劣的情况就是开路之天线形式。
对应处理方法就是减少、减短连线,减小高频电流回路面积,尽量消除任何非正常工作需要的天线,如不连续的布线或有天线效应之元器件过长的插脚。
减少辐射骚扰或提高射频辐射抗干扰能力的最重要任务之一,就是想方设法减小高频电流环路面积S。
2、EMC问题三要素开关电源及数字设备由于脉冲电流和电压具有很丰富的高频谐波,因此会产生很强的辐射。
电磁干扰包括辐射型(高频) EMI、传导型(低频)EMI,即产生 EMC问题主要通过两个途径:一个是空间电磁波干扰的形式;另一个是通过传导的形式,换句话说,产生EMC问题的三个要素是:电磁干扰源、耦合途径、敏感设备。
开关电源的抗干扰解决方法(3)
开关电源的抗干扰解决方法(3)开关电源的抗干扰解决方法图4 高频工作下的元件频率特性2 开关电源emi抑制措施电磁兼容的三要素是干扰源、耦合通路和敏感体,抑制以上任何一项都可以减少电磁干扰问题。
开关电源工作在高电压大电流的高频开关状态时,其引起的电磁兼容性问题是比较复杂的。
但是,仍符合基本的电磁干扰模型,可以从三要素入手寻求抑制电磁干扰的方法。
2.1 抑制开关电源中各类电磁干扰源为了解决输入电流波形畸变和降低电流谐波含量,开关电源需要使用功率因数校正(pfc)技术。
pfc技术使得电流波形跟随电压波形,将电流波形校正成近似的正弦波。
从而降低了电流谐波含量,改善了桥式整流电容滤波电路的输入特性,同时也提高了开关电源的功率因数。
软开关技术是减小开关器件损耗和改善开关器件电磁兼容特性的重要方法。
开关器件开通和关断时会产生浪涌电流和尖峰电压,这是开关管产生电磁干扰及开关损耗的主要原因。
使用软开关技术使开关管在零电压、零电流时进行开关转换可以有效地抑制电磁干扰。
使用缓冲电路吸收开关管或高频变压器初级线圈两端的尖峰电压也能有效地改善电磁兼容特性。
输出整流二极管的反向恢复问题可以通过在输出整流管上串联一个饱和电感来抑制,如图5所示,饱和电感ls与二极管串联工作。
饱和电感的磁芯是用具有矩形bh曲线的磁性材料制成的。
同磁放大器使用的材料一样,这种磁芯做的电感有很高的磁导率,该种磁芯在bh曲线上拥有一段接近垂直的线性区并很容易进入饱和。
实际使用中,在输出整流二极管导通时,使饱和电感工作在饱和状态下,相当于一段导线;当二极管关断反向恢复时,使饱和电感工作在电感特性状态下,阻碍了反向恢复电流的大幅度变化,从而抑制了它对外部的干扰。
图5 饱和电感在减小二极管反向恢复电流中的应用2.2 切断电磁干扰传输途径——共模、差模电源线滤波器设计电源线干扰可以使用电源线滤波器滤除,开关电源emi滤波器基本电路如图6所示。
一个合理有效的开关电源emi滤波器应该对电源线上差模干扰和共模干扰都有较强的抑制作用。
抑制电源模块电磁干扰的几点对策
抑制电源模块电磁干扰的几点对策如何抑制电磁干扰,一直都是开关电源模块设计中不可忽视的问题,其不仅关系到电源模块本身的可靠性,也关系到整个应用系统的安全和稳定性。
全面抑制开关电源模块的各种噪声干扰才会使开关电源模块得到更广泛的应用。
一、电磁干扰的定义电磁干扰(Electro Magnetic Interference,简称EMI)是指任何在传导或电磁场伴随着电压、电流的作用而产生会降低某个装置、设备或系统的性能,或可能对生物或物质产生不良影响之电磁现象。
二、电磁干扰的产生1、电磁干扰的产生骚扰源、敏感设备与耦合途径并称电磁干扰三要素。
对于开关电源模块来说,噪声的产生在于电流或电压的急剧变化,即di/dt或 dv/dt很大,因此高功率和高频率运作的器件都是 EMI 噪声的来源。
具体来说,其来源主要有:(1) 外界耦合的干扰(主要在输入端和输出端产生);(2) 开关管;(3) 变压器;(4) 二极管;(5) 储能电感;(6) PCB板布局和走线不合理从而产生的回路干扰。
三、抑制电磁干扰的对策人们总是想方设法地将电磁干扰三要素之中的一个去掉:屏蔽掉骚扰源、隔离开敏感设备或者切断耦合途径。
从能量的角度来讲,电磁干扰是一种能量,无法不让它产生,只有用一定的办法去减小其对系统的干扰。
可用到的方法可分为两大类:一种是让能量泄放掉;另一种是把能量给挡在外部。
可以说一种方法是减小其产生的幅度,另一种则切断其传播途径。
下面针对具体的方面一一分析:1、外界干扰的耦合(输入端和输出端)(1)输入端输入端是整个电源的入口处,电源内部的噪声也可由此传播到外部,对外界造成干扰。
通常采用的策略是在输入加X电容、Y电容、差模电感和共模电感对噪声和干扰进行过滤。
图1就是一种比较常见的EMI滤波电路。
图1 EMI滤波电路其中L1、CY1和CY2组成的滤波电路可以抑制电源线上存在的共模干扰信号。
当有共模干扰电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模干扰。
磁环抑制电磁干扰的三要素
磁环抑制电磁干扰的三要素是什么?磁环抑制电磁干扰的三要素:形成电磁干扰的三要素是骚扰源、传播途径和受扰设备,因而,抑制电磁干扰也应该从这三方面入手,采取适当措施,首先应该抑制骚扰源,直接消除干扰原因;其次是消除骚扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度,目前抑制干扰的几种措施基本上都是用切断电磁骚扰源和受扰设备之间的耦合通道。
(1)磁环采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰,即用电导率良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏蔽,屏蔽有两个目的,一是限制内部辐射的电磁能量泄漏出,二是防止外来的辐射干扰进入该内部区域,其原理是利用屏蔽体对电磁能量的反射、吸收和引导作用。
(2)接地就是在两点间建立传导通路,以便将电子设备或元器件连接到某些叫作“地”的参考点上,接地是开关电源设备抑制电磁干扰的重要方法,电源某些部分与大地相连可以起到抑制干扰的作用,在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该环路时将产生磁感应噪声。
(3)滤波是抑制传导干扰的有效方法,磁环在设备或系统的电磁兼容设计中具有极其重要的作用,EMI滤波器作为抑制电源线传导干扰的重要单元,可以抑制来自电网的干扰对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。
磁环的主要使用方法有几点?磁环专用于电源线、信号线等多股线缆上的EMI干扰抑制,包括电源线上的噪声和尖峰干扰,同时具有吸EMI吸收磁环收静电脉冲能力,使电子设备达到电磁兼容(EMI/EMC 和静电放电的相应国际规范,使用时可将一根多芯电缆或一束多股线缆穿于其中。
多穿一次可加强其效果,通常用25MHz和100MHz频率点的阻抗值来衡量磁环磁珠的吸收特性。
镍锌抗干扰磁环的吸收干扰能力是用其阻抗特性来表征的低频段呈现非常低的感性阻抗值,磁环不影响数据线或信号线上有用信号的传输,高频段,约为10MHz左右开始,阻抗增大,其感抗成分保持很小,电阻性份量却迅速增加,将高频段EMI干扰能量以热能形式吸收耗散,通常用两个关键点频率25MHz和100MHz处电阻值来标定EMI吸收磁环/磁珠的吸收特性。
开关电源的电磁干扰分析及有效的抑制措施
开关电源的电磁干扰分析及有效的抑制措施一、开关电源的概念开关电源就是通过对功率晶体管的导通和关断控制,截取幅值与直流输入相等的矩形脉冲,再通过整流和滤波装置输出稳定的直流电压值。
二、开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;按耦合通道来分,可分为传导干扰和辐射干扰两种。
1、功率开关管开关工作产生的干扰。
开关电源中的功率开关管工作在开关状态,工作时会产生较大的脉冲电压和脉冲电流。
由于在脉冲电流和脉冲电压中含有丰富的高次谐波成分,同时又由于功率开关管导通时整流二极管的恢复特性会形成电流振荡,而在整流二极管上产生的浪涌电压。
2、由于二极管的恢复特性产生的干扰。
当二极管进行高频整流时,由于二极管的PN结,正向电流所储存的电荷在加反向电压时不能马上消失,会形成二极管的反向电流。
这段时间称为反向恢复时间,这时由于加到二极管的反向电压较大,会产生较大损耗和形成较大的干扰来源。
如果二极管在反向电流恢复时的电流变化率di/dt较大,由于电感作用会产生较大的尖峰电压,这就是二极管的恢复噪声。
Di/dt较大时称为硬恢复,Di/dt较小时称为软恢复。
软恢复既可通过吸收回路实现,也可通过谐振开关技术实现。
软恢复对提高开关电源的工作可靠性,减小干扰有很大的好处。
由于肖特基二极管没有载流子蓄积效应,所以恢复噪音很小。
3、由整流滤波电路产生的干扰。
由于交流市电输入的开关电源在输入端接有整流滤波电路,整流二极管的导通角很小,使整流电流的峰值很大,这种脉冲状的二极管整流电流也会产生干扰。
三、抑制开关管电源电磁干扰的措施主要有四种方法,即吸收法、屏蔽技术、滤波技术、接地技术。
1、吸收法,即是在开关管的两端并联RC电路,电容的作用就是把电流中的交流成分吸收掉,但是这时的电感和电容相连就会形成LC振荡回路,所以在其中加上一个电阻,主要的作用就是阻尼作用,把LC振荡回路中产生的能量消耗掉。
开关电源传导骚扰和辐射骚扰解决方法
开关电源传导骚扰和辐射骚扰解决方法开关电源是一种常见的电源供应器,在电子设备中广泛应用。
但是,开关电源工作时会产生电磁辐射和传导骚扰问题。
为了解决这些问题,可以采取以下方法:1.电磁屏蔽材料的使用:使用电磁屏蔽材料将开关电源封装起来,阻挡电磁辐射的传播,减少对周围设备和人员的骚扰。
这种材料通常是在电源外部或内部的铁壳上加上一层导电材料,如铜箔。
通过将电磁波引导到导体上,使其在外部不能通过,并通过接地,排除电磁波。
2.优化电源布线:合理优化电源布线,减少线路长度和交叉区域,减少电磁辐射。
如果电源线和信号线发生交叉,可以采取绕线或分离线路的方式,避免相互干扰,减少传导骚扰。
3.使用滤波器:在开关电源输入和输出端之间安装滤波器,可以抑制输入和输出信号的噪声,减少骚扰。
输入滤波器通常是由电容器和电感器组成,用于消除输入端的高频噪声。
输出滤波器通常是由电容器和电感器组成,用于消除输出端的高频噪声。
4.电源线的屏蔽:使用屏蔽电源线可以减少电磁辐射和传导骚扰。
屏蔽电源线通过在电源线外部包裹一层金属网或箔片,将电磁辐射和传导骚扰限制在金属屏蔽层内部。
5.合理设计散热系统:开关电源工作时会产生较大的热量,如果不能有效散热,会影响电源的工作效率,并可能导致电磁辐射和传导骚扰。
因此,电源的散热系统设计应合理,采用优质散热材料和风扇等散热设备,确保电源的正常工作和延长寿命。
6.选择高质量的开关电源产品:选择经过认证的高质量开关电源产品,这些产品通常具有较低的辐射和骚扰,较好的EMC性能。
这些产品经过专业的测试和验证,能够有效减少对其他设备的影响。
7.定期维护和检修:开关电源在长时间使用后,可能出现故障或老化现象,会导致电磁辐射和传导骚扰的增加。
因此,定期进行维护和检修工作,及时发现和解决问题,可以减少对设备和人员的骚扰。
总之,开关电源的电磁辐射和传导骚扰是一个需要重视的问题,可以通过采取合适的措施来解决。
这些方法包括使用电磁屏蔽材料、优化电源布线、使用滤波器、使用屏蔽电源线、合理设计散热系统、选择高质量产品以及定期维护和检修等。
开关电源的电磁干扰及其滤波措施
开关电源的电磁干扰及其滤波措施1引言开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。
但开关电源的突出缺点是产生较强的电磁干扰(EMI)。
EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。
如果处理不当,开关电源本身就会变成一个干扰源。
随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。
2开关电源产生EMI的原理开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。
它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。
基本整流器的整流过程是产生EMI最常见的原因。
这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。
实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。
变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。
它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。
产生这种脉冲干扰的主要原因是:(1) 开关功率晶体管感性负载是高频变压器或储能电感。
在开关管导通的瞬间,变压器初级出现很大的电流,它在开关管过激励较大时,将造成尖峰噪声。
这个尖峰噪声实际上是尖脉冲,轻者造成干扰,重者有可能击穿开关管。
(2) 由高频变压器产生的干扰。
开关电源的电磁干扰及噪声抑制方法
开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。
但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。
因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。
首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。
导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。
对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。
常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。
2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。
同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。
3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。
将开关电源的地线与其他设备的接地点连接,共用同一个地线。
对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。
金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。
2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。
同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。
3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。
此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。
2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。
3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。
4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。
开关电源电磁干扰的控制技术
开关电源电磁干扰的控制技术要解决开关电源的电磁干扰问题,可从3个方面入手:1)减小干扰源产生的干扰信号;2)切断干扰信号的传播途径;3)增强受干扰体的抗干扰能力。
因此,开关电源电磁电磁干扰要控制技术主要有:电路措施、EMI滤波、元器件选择、屏蔽和印制电路板抗干扰设计等。
①减少开关电源本身的干扰●软开关技术:在原有的硬开关电路中增加电感和电容元件,利用电感和电容的谐振,降低开关过程中的du/dt和di/dt,使开关器件开通时电压的下降先于电流的上升,或关断时电流的下降先于电压的上升,来消除电压和电流的重叠。
●开关频率调制技术:通过调制开关频率fc,把集中在fc及其谐波2fc、3fc…上的能量分散到它们周围的频带上,以降低各个频点上的EMI幅值。
该方法不能降低干扰总量,但能量被分散到频点的基带上,从而使各个频点都不超过EMI规定的限值。
为了达到降低噪声频谱峰值的目的,通常有两种处理方法:随机频率法和调制频率法。
●共模干扰的有源抑制技术:设法从主回路中取出一个与导致电磁干扰的主要开关电压波形完全反相的补偿EMI噪声电压,并用它去平衡原开关电压。
●减小电磁干扰的缓冲电路:其由线性阻抗稳定网络组成,作用是消除在供电电力线内潜在的干扰,包括电力线干扰、电快速瞬变,电涌,电压高低变化和电力线谐波等。
这些干扰对一般稳压电源来说,影响不是很大,但对高频开关电源的影响显著。
●滤波:EMI滤波器的主要目的之一,就是要在150kHz~30MHz的频段范围获得较高的插入损耗,但对频率为50Hz工频信号不产生衰减,使额定电压、电流顺利通过,同时还必须满足一定的尺寸要求。
任何电源线上的传导干扰信号,均可用差模和共模信号来表示。
在一般情况下,差模干扰幅度小,频率低,所造成的干扰较小;共模干扰幅度大,频率高,还可以通过导线产生辐射,所造成的干扰较大。
因此,欲削弱传导干扰,把EMI信号控制在有关EMC标准规定的极限电平以下,最有效的方法就是在开关电源输入和输出电路中加装电磁干扰滤波器。
开关电源电磁干扰的产生
开关电源电磁干扰的产生开关电源通常是将工频交流电整流为直流电,然后经过开关管的控制使其变为高频,再经过整流滤波电路输出,得到稳定的直流电压。
工频整流滤波使用大容量电容充、放电,开关管高频通断,输出整流二极管的反向恢复等工作过程中产生了极高的di/ dt和du/dt ,形成了强烈的浪涌电流和尖峰电压,它是开关电源电磁干扰产生的最基本原因。
另外,开关管的驱动波形, MOSFET漏源波形等都是接近矩形波形状的周期波。
因此,其频率是MHz 级别的,这些高频信号对开关电源的基本信号,特别是控制电路的信号造成干扰。
1、输入整流电路的谐波干扰开关电源输入端通常采用桥式整流、电容滤波电路。
整流桥只有在脉动电压超过输入滤波电容上的电压时才能导通,电流才从市电电源输入,并对滤波电容充电。
一旦滤波电容上的电压高于市电电源的瞬时电压,整流管便截止。
所以,输入电路的电流是脉冲性质的,并且有着丰富的高效谐波电流。
这是因为整流电路的非线性特性,整流桥交流侧的电流严重失真。
而直流侧的谐波次数是n 倍。
所以,整流电路直流侧高频谐波电流不仅使电路产生功率,增加电路的无功功率,而且高频谐波会沿着传输线路产生传导干扰和辐射干扰。
2、开关电路产生的干扰开关电路在开关电源中起着关键的作用,同时也是主要的干扰源之一。
开关管负载为高频变压器初级线圈,是感性负载。
其在导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压; 在断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减震荡,叠加在关断电压上,形成关断电压尖峰。
如果尖峰有足够高的幅度,那么很有可能把开关管击穿。
3、高频变压器产生的共模传导骚扰高频变压器是开关电源中实现能量储存、隔离、输出、电压变换的重要部件,它的漏感和分布电容对电路的电磁兼容性能产生较大的影响。
由于初级线圈有漏磁通,致使一部分能量没有传输到次级线圈,而是通过集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰,产生与初级线圈接通时一样的磁化冲击电流瞬变,这个噪声会传导到输入、输出端,形成传导骚扰,重者有可能击穿开关管。
论开关电源的电磁干扰及其抑制技术
论开关电源的电磁干扰及其抑制技术摘要:结合开关电源中存在电磁干扰问题进行分析,结合工程实践经验角度分析了开关电源产生电磁干扰的原因,在此基础上,有针对性地提出了开关电源中电磁干扰抑制技术,希望对于今后维护电网稳定运行有所帮助。
关键词:开关电源,电磁干扰,干扰原因,抑制技术1 引言随着我国工业化大生产的蓬勃开展,开关电源在工业领域中应用较为广泛。
在具体的应用实践过程中,开关电源还能带来比较大的电磁干扰问题,这样会造成其功能发挥受到很大程度的影响。
所以,则应结合工业生产的实际情况,积极思考如何有效实现电磁干扰抑制技术,以保障正常化运行电子设施的基本要求。
2 开关电源产生电磁干扰的原因2.1高频变压器产生的电磁干扰对于高频变压器来说,主要则是利用电磁感应的方式,能实现低压电转化为高压电的情况。
在具体的工作过程中,不可避免会存在着大量电磁波的问题。
在接通电源的情况下,借助于较为强大的电流影响下,从而造成构建相关磁场,存在一定的电磁干扰问题。
特别是在进行开关断开的瞬间情况来看,漏感则是发生在初级线圈和次级线圈中,主要是由于层之间的磁通没有进行完全化的耦合所致,而造成的瞬间短路情况。
在这样的影响下,电流传导至线圈末端情况,则会影响到变压器的正常工作。
2.2开关管产生的电磁干扰开关管也是容易出现电磁波的部件之一。
其主要的功能则是利用开关电源的电流来有效实现预期的转变作用,实现电源的电力频率得到提升,从而有利于实现较为稳定的电压情况,符合开关电源的正常化工作要求。
如果是传统的旧式开关电源的情况,尽管启动时间较短,但存在着较强的电磁干扰问题,使得难以维系开关电源的工作要求,已经不再应用。
2.3整流电路产生的电磁干扰在进行断开输出整流二极管的过程中,存在着反向电流的情况,特别是在相关的变压器漏感以及相关电流影响下,容易出现较高的高压干扰问题。
如果在一定的情况下,造成二极管的电压升高情况的发生。
对于在反向电压冲击影响下的二极管来说,则会存在着导通与截止的情况,在这样的一系列的转变过程中,造成电流存在着一定的反转变化情况,从而出现了电磁干扰问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形成开关电源电磁干扰的三要素及解决方案
深圳市森树强电子科技有限公司
形成开关电源电磁干扰的三要素是干扰源、传播途径和受扰设备
首先应该抑制开关电源干扰源,直接消除干扰原因;
其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;
第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。
目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。
常用的方法是屏蔽、接地和滤波。
采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。
例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底
板上。
器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之
间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的
分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两
层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网
传播的途径。
为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完
全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为
一体,就能对电磁场进行有效的屏蔽。
电源某些部分与大地相连可以起到抑制干扰的
作用。
例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可
以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,
所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。
电路的公共参考点
与大地相连,可为信号回路提供稳定的参考电位。
因此,系统中的安全保护地线、屏
蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。
在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。
因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导
电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近
接到该参考地上。
为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。
在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单
独连接后,再连接到公共参考点上。
滤波是抑制传导干扰的一种很好的办法。
例如,在电源输入端接上滤波器,可以抑
制开关电源产生并向电网反馈的干扰,也可以抑制来自电网的噪声对电源本身的侵害。
在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤波特性。
恰当地设计或选择滤波器,并正确地安装和使用
滤波器,是抗干扰技术的重要组成部分。
EMI滤波技术是一种抑制尖脉冲干扰的有效措施,可以滤除多种原因产生的传导干扰,接在开关电源的输入端。
电路中,C1、C5是高频旁路电容,用于滤除两输入电
源线间的差模干扰;L1与C2、C4;L2与C3、C4组成共模干扰滤波环节,用于滤除
电源线与地之间非对称的共模干扰;L3、L4的初次级匝数相等、极性相反,交流电流在磁芯中产生的磁通相反,因而可有效地抑制共模干扰。
测试表明,只要适当选择元
器件的参数,便可较好地抑制开关电源产生的传导干扰。