简单组合逻辑电路的设计实验报告
VerilogHDL实验报告
VerilogHDL实验报告实验一Modelsim仿真软件的使用一、实验目的(1)熟悉Modelsim 软件(2)掌握Modelsim 软件的编译、仿真方法(3)熟练运用Modelsim 软件进行HDL 程序设计开发二、实验内容1、实验要求用Verilog HDL 程序实现一个异或门,Modelism仿真,观察效果。
2、步骤1、建立工程2、添加文件到工程3、编译文件4、查看编译后的设计单元5、将信号加入波形窗口6、运行仿真3、方法moduleyihuo (a,b,c);inputa,b;output c;assign c=a^b;endmodule测试程序:module t_yihuo;reg a,b; wire c;initial begin a=0; forever #20 a=~a; end initial begin b=0; forever #30 b=~b; endyihuou1(a,b,c);endmodule二、实验结果波形图:三、分析和心得通过这次的实验,我基本熟悉Modelsim软件,掌握了Modelsim软件的编译、仿真方法。
同时在编写程序的过程中,加深了我对课上所讲的HDL的语法的认识。
实验二简单组合电路设计一、实验目的(1)掌握基于Modelsim的数字电路设计方法(2)熟练掌握HDL 程序的不同实现方法二、实验内容1、实验要求设计一个三人表决器(高电平表示通过),实验内容如下:(1)三个人,一个主裁判,两个副裁判;(2)规则:只要主裁判同意,输出结果为通过;否则,按少数服从多数原则决定是否通过。
使用 Verilog HDL 程序实现上述实验内容,并使用modelsim 仿真。
2、方法module test(a,b,c,s);inputa,b,c;output s;assign s=c|(b&a);endmodulemodulet_test;rega,b,c;wire s;initialbegina=0;forever#10 a=~a;endinitialbeginb=0;forever #20 b=~b;endinitialbeginc=0;forever#40 c=~c;endtest u1(a,b,c,s);endmodule三、实验结果四、分析和心得通过本次实验,我掌握基于Modelsim的简单数字电路设计方法,且尝试了用不同方法实现功能,三人表决器可以通过testbench测试程序实现,也可以利用always模块实现,可见程序的设计思想是很重要的。
组合逻辑电路实验报告
组合逻辑电路实验报告组合逻辑电路实验报告引言组合逻辑电路是数字电路中的一种重要类型,它由多个逻辑门组成,能够根据输入信号的不同组合产生相应的输出信号。
在本次实验中,我们将研究和实验不同类型的组合逻辑电路,并通过实验结果来验证其功能和性能。
实验一:与门电路与门电路是最简单的组合逻辑电路之一,它的输出信号只有在所有输入信号都为高电平时才会输出高电平。
我们首先搭建了一个与门电路,并通过输入信号的变化来观察输出信号的变化。
实验结果显示,在输入信号都为高电平时,与门电路的输出信号为高电平;而只要有一个或多个输入信号为低电平,输出信号则为低电平。
这验证了与门电路的逻辑功能。
实验二:或门电路或门电路是另一种常见的组合逻辑电路,它的输出信号只有在至少一个输入信号为高电平时才会输出高电平。
我们搭建了一个或门电路,并通过改变输入信号的组合来观察输出信号的变化。
实验结果表明,只要有一个或多个输入信号为高电平,或门电路的输出信号就会为高电平;只有当所有输入信号都为低电平时,输出信号才会为低电平。
这进一步验证了或门电路的逻辑功能。
实验三:非门电路非门电路是一种特殊的组合逻辑电路,它只有一个输入信号,输出信号与输入信号相反。
我们搭建了一个非门电路,并通过改变输入信号的电平来观察输出信号的变化。
实验结果显示,当输入信号为高电平时,非门电路的输出信号为低电平;当输入信号为低电平时,输出信号则为高电平。
这进一步验证了非门电路的逻辑功能。
实验四:多选器电路多选器电路是一种复杂的组合逻辑电路,它具有多个输入信号和一个选择信号,根据选择信号的不同,将其中一个输入信号输出。
我们搭建了一个4选1多选器电路,并通过改变选择信号的值来观察输出信号的变化。
实验结果表明,当选择信号为00时,输出信号与第一个输入信号相同;当选择信号为01时,输出信号与第二个输入信号相同;依此类推,当选择信号为11时,输出信号与第四个输入信号相同。
这验证了多选器电路的功能和性能。
实验报告组合逻辑电(3篇)
第1篇一、实验目的1. 理解组合逻辑电路的基本概念和组成原理;2. 掌握组合逻辑电路的设计方法;3. 学会使用逻辑门电路实现组合逻辑电路;4. 培养动手能力和分析问题、解决问题的能力。
二、实验原理组合逻辑电路是一种在任意时刻,其输出仅与该时刻的输入有关的逻辑电路。
其基本组成单元是逻辑门,包括与门、或门、非门、异或门等。
通过这些逻辑门可以实现各种组合逻辑功能。
三、实验器材1. 74LS00芯片(四路2输入与非门);2. 74LS20芯片(四路2输入或门);3. 74LS86芯片(四路2输入异或门);4. 74LS32芯片(四路2输入或非门);5. 逻辑电平转换器;6. 电源;7. 连接线;8. 实验板。
四、实验步骤1. 设计组合逻辑电路根据实验要求,设计一个组合逻辑电路,例如:设计一个3位奇偶校验电路。
2. 画出逻辑电路图根据设计要求,画出组合逻辑电路的逻辑图,并标注各个逻辑门的输入输出端口。
3. 搭建实验电路根据逻辑电路图,搭建实验电路。
将各个逻辑门按照电路图连接,并确保连接正确。
4. 测试电路功能使用逻辑电平转换器产生不同的输入信号,观察输出信号是否符合预期。
五、实验数据及分析1. 设计的3位奇偶校验电路逻辑图如下:```+--------+ +--------+ +--------+| | | | | || A1 |---| A2 |---| A3 || | | | | |+--------+ +--------+ +--------+| | || | || | |+-------+-------+||v+--------+| || F || |+--------+```2. 实验电路搭建及测试根据逻辑电路图,搭建实验电路,并使用逻辑电平转换器产生不同的输入信号(A1、A2、A3),观察输出信号F是否符合预期。
(1)当A1=0,A2=0,A3=0时,F=0,符合预期;(2)当A1=0,A2=0,A3=1时,F=1,符合预期;(3)当A1=0,A2=1,A3=0时,F=1,符合预期;(4)当A1=0,A2=1,A3=1时,F=0,符合预期;(5)当A1=1,A2=0,A3=0时,F=1,符合预期;(6)当A1=1,A2=0,A3=1时,F=0,符合预期;(7)当A1=1,A2=1,A3=0时,F=0,符合预期;(8)当A1=1,A2=1,A3=1时,F=1,符合预期。
组合逻辑电路的实验报告
一、实验目的1. 理解组合逻辑电路的基本概念和组成。
2. 掌握组合逻辑电路的设计方法。
3. 学会使用基本逻辑门电路构建组合逻辑电路。
4. 验证组合逻辑电路的功能,并分析其输出特性。
二、实验原理组合逻辑电路是一种数字电路,其输出仅取决于当前的输入,而与电路的先前状态无关。
它主要由与门、或门、非门等基本逻辑门组成。
组合逻辑电路的设计通常遵循以下步骤:1. 确定逻辑功能:根据实际需求,确定电路应实现的逻辑功能。
2. 设计逻辑表达式:根据逻辑功能,设计相应的逻辑表达式。
3. 选择逻辑门电路:根据逻辑表达式,选择合适的逻辑门电路进行搭建。
4. 搭建电路并进行测试:将逻辑门电路搭建成完整的电路,并进行测试,验证其功能。
三、实验设备1. 逻辑门电路芯片:与门、或门、非门等。
2. 连接导线。
3. 逻辑分析仪。
4. 电源。
四、实验内容及步骤1. 设计逻辑表达式以一个简单的组合逻辑电路为例,设计一个4位二进制加法器。
设输入为两个4位二进制数A3A2A1A0和B3B2B1B0,输出为和S3S2S1S0和进位C。
根据二进制加法原理,可以得到以下逻辑表达式:- S3 = A3B3 + A3'B3B2 + A3'B3'B2A2 + A3'B3'B2'B2A1 + A3'B3'B2'B2'B1A0- S2 = A2B2 + A2'B2B1 + A2'B2'B1B0 + A2'B2'B1'B0A0- S1 = A1B1 + A1'B1B0 + A1'B1'B0A0- S0 = A0B0 + A0'B0- C = A3B3 + A3'B3B2 + A3'B3'B2A2 + A3'B3'B2'B2A1 + A3'B3'B2'B2'B1A0 + A2B2 + A2'B2B1 + A2'B2'B1B0 + A2'B2'B1'B0A0 + A1B1 + A1'B1B0 +A1'B1'B0A0 + A0B0 + A0'B02. 选择逻辑门电路根据上述逻辑表达式,选择合适的逻辑门电路进行搭建。
组合逻辑电路实验报告
组合逻辑电路实验报告引言组合逻辑电路是由与门、或门和非门等基本逻辑门组成的电路,它的输出仅仅依赖于当前的输入。
在本实验中,我们将学习如何设计和实现组合逻辑电路,并通过实验验证其功能和性能。
实验目的本实验的目的是让我们熟悉组合逻辑电路的设计和实现过程,掌握基本的逻辑门和组合逻辑电路的基本原理,并能够通过实验验证其功能和性能。
实验器材与预置系统本实验使用以下器材和预置系统:•模型计算机实验箱•功能切换开关•LED指示灯•逻辑门芯片实验内容1. 初级组合逻辑电路设计首先,我们将设计一个简单的初级组合逻辑电路。
根据实验要求,该电路需要实现一个2输入1输出的逻辑功能。
1.1 逻辑设计根据逻辑功能的要求,我们可以先用真值表来表示逻辑关系,然后根据真值表来进行逻辑设计。
假设我们需要实现的逻辑功能是“与门”(AND gate),其真值表如下:输入A输入B输出000010100111根据真值表,我们可以得到逻辑方程为:输出 = 输入A AND 输入B。
1.2 逻辑电路设计根据逻辑方程,我们可以得到逻辑电路的设计图如下:+--------------+------ A ---| || AND Gate |--- Output------ B ---| |+--------------+在这个设计图中,A和B为输入引脚,Output为输出引脚,AND Gate表示与门。
1.3 实验验证在实验过程中,我们可以通过观察LED指示灯的亮灭来验证逻辑电路是否正确实现了目标功能。
通过设置不同的输入A 和B,我们可以观察输出是否符合预期结果。
2. 高级组合逻辑电路设计接下来,我们将设计一个更复杂的高级组合逻辑电路。
这个电路由多个逻辑门连接而成,实现多个输入和多个输出的逻辑功能。
2.1 逻辑设计根据实验要求,我们可以先确定需要实现的逻辑功能,并用真值表来表示逻辑关系。
假设我们需要实现的逻辑功能是“四位全加器”(4-bit full adder),其真值表如下:输入A输入B输入C输出S进位输出Cout0000000110010100110110010101011100111111根据真值表,我们可以得到逻辑方程为:输出S = 输入A XOR 输入B XOR 输入C 进位输出Cout = (输入A AND 输入B) OR (输入C AND (输入A XOR 输入B))2.2 逻辑电路设计根据逻辑方程,我们可以使用多个逻辑门来实现四位全加器电路。
组合逻辑电路的设计实验报告
竭诚为您提供优质文档/双击可除组合逻辑电路的设计实验报告篇一:数电实验报告实验二组合逻辑电路的设计实验二组合逻辑电路的设计一、实验目的1.掌握组合逻辑电路的设计方法及功能测试方法。
2.熟悉组合电路的特点。
二、实验仪器及材料a)TDs-4数电实验箱、双踪示波器、数字万用表。
b)参考元件:74Ls86、74Ls00。
三、预习要求及思考题1.预习要求:1)所用中规模集成组件的功能、外部引线排列及使用方法。
2)组合逻辑电路的功能特点和结构特点.3)中规模集成组件一般分析及设计方法.4)用multisim软件对实验进行仿真并分析实验是否成功。
2.思考题在进行组合逻辑电路设计时,什么是最佳设计方案?四、实验原理1.本实验所用到的集成电路的引脚功能图见附录2.用集成电路进行组合逻辑电路设计的一般步骤是:1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表;2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式;3)画出逻辑图;4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。
五、实验内容1.用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)设计一个一位全加器。
1)列出真值表,如下表2-1。
其中Ai、bi、ci分别为一个加数、另一个加数、低位向本位的进位;si、ci+1分别为本位和、本位向高位的进位。
2)由表2-1全加器真值表写出函数表达式。
3)将上面两逻辑表达式转换为能用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)实现的表达式。
4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。
按图选择需要的集成块及门电路连线,将Ai、bi、ci接逻辑开关,输出si、ci+1接发光二极管。
改变输入信号的状态验证真值表。
2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(b),一枪打兔子(c)。
组合逻辑电路设计实验报告
一、实验目的1. 理解组合逻辑电路的基本原理和组成。
2. 掌握组合逻辑电路的设计方法,包括逻辑表达式的推导和门电路的选择。
3. 学习使用逻辑门电路实现基本的逻辑功能,如与、或、非、异或等。
4. 通过实验验证组合逻辑电路的设计和功能。
二、实验原理组合逻辑电路是一种数字电路,其输出仅取决于当前的输入,而与电路的历史状态无关。
常见的组合逻辑电路包括逻辑门、编码器、译码器、多路选择器等。
三、实验设备1. 74LS系列逻辑门芯片(如74LS00、74LS02、74LS04、74LS08等)2. 逻辑电平显示器3. 逻辑电路开关4. 连接线四、实验内容1. 半加器设计(1)设计要求:实现两个一位二进制数相加,不考虑进位。
(2)设计步骤:a. 根据真值表,推导出半加器的逻辑表达式:S = A ⊕ B,C = A ∧ B。
b. 选择合适的逻辑门实现半加器电路。
c. 通过实验验证半加器的功能。
2. 全加器设计(1)设计要求:实现两个一位二进制数相加,考虑进位。
(2)设计步骤:a. 根据真值表,推导出全加器的逻辑表达式:S = A ⊕ B ⊕ Cin,Cout = (A ∧ B) ∨ (B ∧ Cin) ∨ (A ∧ Cin)。
b. 选择合适的逻辑门实现全加器电路。
c. 通过实验验证全加器的功能。
3. 译码器设计(1)设计要求:将二进制编码转换为相应的输出。
(2)设计步骤:a. 选择合适的译码器芯片(如74LS42)。
b. 根据输入编码和输出要求,连接译码器电路。
c. 通过实验验证译码器的功能。
4. 多路选择器设计(1)设计要求:从多个输入中选择一个输出。
(2)设计步骤:a. 选择合适的多路选择器芯片(如74LS157)。
b. 根据输入选择信号和输出要求,连接多路选择器电路。
c. 通过实验验证多路选择器的功能。
五、实验结果与分析1. 半加器实验结果通过实验验证,设计的半加器电路能够实现两个一位二进制数相加,不考虑进位的功能。
组合逻辑电路设计实验报告
组合逻辑电路设计实验报告一、实验目的。
本实验旨在通过设计和实现组合逻辑电路,加深学生对组合逻辑电路原理的理解,提高学生的动手能力和实际应用能力。
二、实验内容。
1. 学习组合逻辑电路的基本原理和设计方法;2. 设计和实现一个简单的组合逻辑电路;3. 进行实际电路的调试和测试;4. 编写实验报告,总结实验过程和结果。
三、实验原理。
组合逻辑电路是由多个逻辑门组成的电路,其输出仅依赖于输入信号的组合。
常见的组合逻辑电路包括加法器、译码器、多路选择器等。
在设计组合逻辑电路时,需要根据具体的逻辑功能,选择适当的逻辑门并进行连接,以实现所需的逻辑运算。
四、实验步骤。
1. 确定所需的逻辑功能,并进行逻辑门的选择;2. 根据逻辑功能,进行逻辑门的连接设计;3. 利用数字集成电路芯片,进行实际电路的搭建;4. 进行电路的调试和测试,验证电路的正确性和稳定性;5. 编写实验报告,总结实验过程和结果。
五、实验结果。
经过设计和实现,我们成功搭建了一个4位全加器电路,并进行了测试。
在输入A=1101,B=1011的情况下,得到了正确的输出结果S=11000,C=1。
实验结果表明,我们设计的组合逻辑电路能够正确地实现加法运算,并且具有较高的稳定性和可靠性。
六、实验总结。
通过本次实验,我们深入了解了组合逻辑电路的设计原理和实现方法,提高了我们的动手能力和实际应用能力。
同时,我们也意识到了在实际搭建电路时需要注意的细节问题,如电路连接的稳定性、输入信号的干扰等。
这些经验对我们今后的学习和工作都将具有重要的指导意义。
七、实验感想。
通过本次实验,我们不仅学到了理论知识,还提高了实际操作能力。
在今后的学习和工作中,我们将更加注重理论与实践相结合,不断提升自己的综合能力。
同时,我们也希望能够将所学知识应用到实际中,为社会做出更大的贡献。
八、参考文献。
[1] 《数字逻辑电路与系统设计》,张三,电子工业出版社,2018年。
[2] 《数字集成电路设计》,李四,清华大学出版社,2019年。
组合逻辑电路的设计实验报告
组合逻辑电路的设计实验报告本实验旨在通过设计和实现组合逻辑电路,加深对数字电路原理的理解,提高实际动手能力和解决问题的能力。
1. 实验目的。
本实验的主要目的是:1)掌握组合逻辑电路的设计原理和方法;2)了解组合逻辑电路的实际应用;3)培养实际动手能力和解决问题的能力。
2. 实验原理。
组合逻辑电路由多个逻辑门组成,根据输入信号的不同组合产生不同的输出信号。
常见的组合逻辑电路包括加法器、减法器、译码器、编码器等。
在本实验中,我们将重点学习和设计加法器和译码器。
3. 实验内容。
3.1 加法器的设计。
加法器是一种常见的组合逻辑电路,用于实现数字的加法运算。
我们将学习半加器和全加器的设计原理,并通过实际电路进行实现和验证。
3.2 译码器的设计。
译码器是将输入的数字信号转换为特定的输出信号的组合逻辑电路。
我们将学习译码器的工作原理和设计方法,设计并实现一个4-16译码器电路。
4. 实验步骤。
4.1 加法器的设计步骤。
1)了解半加器和全加器的原理和真值表;2)根据真值表,设计半加器和全加器的逻辑表达式;3)根据逻辑表达式,画出半加器和全加器的逻辑电路图;4)使用逻辑门集成电路,搭建半加器和全加器的电路;5)验证半加器和全加器的功能和正确性。
4.2 译码器的设计步骤。
1)了解译码器的原理和功能;2)根据输入和输出的关系,设计译码器的真值表;3)根据真值表,推导译码器的逻辑表达式;4)画出译码器的逻辑电路图;5)使用逻辑门集成电路,搭建译码器的电路;6)验证译码器的功能和正确性。
5. 实验结果与分析。
通过实验,我们成功设计并实现了半加器、全加器和译码器的电路。
经过验证,这些电路均能正常工作,并能正确输出预期的结果。
实验结果表明,我们掌握了组合逻辑电路的设计原理和方法,提高了实际动手能力和解决问题的能力。
6. 实验总结。
通过本次实验,我们深入学习了组合逻辑电路的设计原理和方法,掌握了加法器和译码器的设计和实现技术。
组合逻辑电路的实验报告
组合逻辑电路的实验报告组合逻辑电路的实验报告引言组合逻辑电路是数字电路中的一种重要类型,它由多个逻辑门组成,根据输入信号的不同组合产生不同的输出信号。
在本次实验中,我们将通过搭建和测试几个常见的组合逻辑电路,来深入了解其原理和工作方式。
实验一:二输入与门二输入与门是最简单的组合逻辑电路之一,它的输出信号只有在两个输入信号同时为高电平时才为高电平。
我们首先搭建了一个二输入与门电路,并通过信号发生器输入不同的高低电平信号进行测试。
实验结果显示,只有当两个输入信号同时为高电平时,与门的输出信号才为高电平,否则输出信号为低电平。
实验二:二输入或门二输入或门是另一种常见的组合逻辑电路,它的输出信号只有在两个输入信号至少有一个为高电平时才为高电平。
我们按照实验一的方法,搭建了一个二输入或门电路,并通过信号发生器输入不同的高低电平信号进行测试。
实验结果显示,只要两个输入信号中至少有一个为高电平,或门的输出信号就会为高电平,否则输出信号为低电平。
实验三:三输入异或门异或门是一种特殊的组合逻辑电路,其输出信号只有在输入信号中有奇数个高电平时才为高电平。
我们搭建了一个三输入异或门电路,并通过信号发生器输入不同的高低电平信号进行测试。
实验结果显示,只有当输入信号中有奇数个高电平时,异或门的输出信号才为高电平,否则输出信号为低电平。
这个实验结果验证了异或门的工作原理。
实验四:四输入多路选择器多路选择器是一种常用的组合逻辑电路,它可以根据控制信号选择不同的输入信号输出。
我们搭建了一个四输入多路选择器电路,并通过信号发生器输入不同的高低电平信号进行测试。
实验结果显示,根据控制信号的不同,多路选择器将相应的输入信号输出。
这个实验结果验证了多路选择器的功能。
实验五:二进制加法器二进制加法器是组合逻辑电路中的复杂电路之一,它可以实现二进制数的相加操作。
我们搭建了一个二进制加法器电路,并通过信号发生器输入不同的二进制数进行测试。
实验结果显示,二进制加法器可以正确地将两个二进制数相加,并输出相应的结果。
组合逻辑电路的设计实验报告
组合逻辑电路的设计实验报告一、实验目的组合逻辑电路是数字电路中较为基础且重要的部分。
本次实验的主要目的是通过设计和实现简单的组合逻辑电路,深入理解组合逻辑电路的工作原理和设计方法,掌握逻辑门的运用,提高逻辑分析和问题解决的能力。
二、实验原理组合逻辑电路是指在任何时刻,输出状态只取决于同一时刻输入信号的组合,而与电路以前的状态无关。
其基本组成单元是逻辑门,如与门、或门、非门等。
通过将这些逻辑门按照一定的逻辑关系连接起来,可以实现各种不同的逻辑功能。
例如,一个简单的 2 输入与门,只有当两个输入都为 1 时,输出才为 1;而 2 输入或门,只要有一个输入为 1,输出就为 1。
组合逻辑电路的设计方法通常包括以下几个步骤:1、分析问题,确定输入和输出变量,并定义其逻辑状态。
2、根据问题的逻辑关系,列出真值表。
3、根据真值表,写出逻辑表达式。
4、对逻辑表达式进行化简和变换,以得到最简的表达式。
5、根据最简表达式,选择合适的逻辑门,画出逻辑电路图。
三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS00(四 2 输入与非门)、74LS04(六反相器)、74LS08(四 2 输入与门)、74LS32(四 2 输入或门)等。
3、导线若干四、实验内容与步骤(一)设计一个一位全加器1、分析问题一位全加器有三个输入变量 A、B 和 Cin(低位进位),两个输出变量 S(和)和 Cout(进位输出)。
2、列出真值表| A | B | Cin | S | Cout |||||||| 0 | 0 | 0 | 0 | 0 || 0 | 0 | 1 | 1 | 0 || 0 | 1 | 0 | 1 | 0 || 0 | 1 | 1 | 0 | 1 || 1 | 0 | 0 | 1 | 0 || 1 | 0 | 1 | 0 | 1 || 1 | 1 | 0 | 0 | 1 || 1 | 1 | 1 | 1 | 1 |3、写出逻辑表达式S = A⊕B⊕CinCout = AB +(A⊕B)Cin4、化简逻辑表达式S = A⊕B⊕Cin 已最简Cout = AB +(A⊕B)Cin = AB + ACin + BCin5、画出逻辑电路图使用 74LS00、74LS08 和 74LS32 芯片实现,连接电路如图所示。
组合逻辑电路实验报告
2.用74LS138产生逻辑函数
1)先将逻辑函数化为最小项为
2)由74LS138真值表知道, 输出端产生信号,将这四个输出端接四输入与非门74LS00
实验过程:
1.数字锁的设计
由于实验室缺少非门,用74LS00代替非门。按如下电路图连线:
通过警报输出和脉冲信号相与输出控制发光二极管闪烁警报
根据数字锁功能得出真值表
G
A
B
C
D
Yo
Ya
0
X
X
X
X
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
1
1
0
1
0
1
0
1
1
0
1
1
0
0
1
1
0
1
1
1
0
1
1
1
0
0
0
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
1
1
0
1
1
0
1
1
1
1
0
0
0
1
1பைடு நூலகம்
1
1
0
1
0
1
1
1
1
组合逻辑电路的设计实验总结
组合逻辑电路的设计实验总结1. 引言组合逻辑电路是数字电路设计的基础,它由多个逻辑门组成,根据输入信号产生相应的输出信号。
在本次实验中,我们探索了组合逻辑电路的设计方法,并通过实践,加深了对组合逻辑电路的理解。
本文将对实验进行总结和分析。
2. 实验目的本次实验的目的主要包括: - 学会使用逻辑门组合设计组合逻辑电路。
- 掌握逻辑表达式转换为逻辑电路的方法。
- 理解逻辑门的功能和特性。
- 加深对组合逻辑电路设计的理解。
3. 实验步骤本次实验的实验步骤如下:3.1 确定逻辑功能首先,我们需要确定要设计的组合逻辑电路的逻辑功能。
通过分析题目中给出的需求和逻辑关系,我们可以建立逻辑函数,并将其转换为逻辑表达式形式。
3.2 设计逻辑电路根据逻辑表达式,我们可以使用逻辑门进行组合逻辑电路的设计。
逻辑门可以分为与门、或门、非门等,根据逻辑需求选择适当的门进行设计。
3.3 搭建实验电路在实验板上搭建电路,连接逻辑门和输入输出端口。
根据设计的逻辑电路,确定逻辑门的输入和输出连接方式,确保电路的正确性。
3.4 验证电路功能使用实验板上的开关或信号发生器,调节输入信号,观察输出信号的变化。
通过观察和记录输出信号,验证逻辑电路是否满足设计要求。
4. 实验结果与分析经过实验,我们完成了逻辑电路的设计,并成功验证了其功能。
下面是每个部分的实验结果分析。
4.1 逻辑功能设计通过仔细分析题目要求,我们确定了所需设计的逻辑电路功能。
根据逻辑关系,我们转换了逻辑表达式,并将其化简为最简形式。
这样我们就可以根据逻辑表达式来选择适当的逻辑门进行设计。
4.2 逻辑电路设计根据逻辑表达式,我们选择了合适的逻辑门进行设计。
根据逻辑门的输入和输出特性,我们可以确定其连接方式。
4.3 实验电路搭建根据逻辑电路设计,我们在实验板上搭建了电路。
根据设计要求,我们连接了逻辑门和输入输出端口。
在连接过程中,注意确保电路的正确性,避免线路短路或接反。
组合电路设计实验报告
一、实验目的1. 理解组合逻辑电路的基本原理和设计方法。
2. 掌握门电路的基本应用和组合逻辑电路的搭建。
3. 培养逻辑思维能力和实际操作能力。
二、实验原理组合逻辑电路是由门电路组成的,其输出信号仅与当前输入信号有关,而与电路之前的输入信号和输出信号无关。
常见的组合逻辑电路有编码器、译码器、数值比较器、数据选择器、奇偶检验器等。
三、实验器材1. 实验箱2. 74系列集成电路3. 跳线4. 数字逻辑分析仪5. 万用表四、实验步骤1. 编码器设计(1)根据设计要求,确定编码器的输入和输出信号。
(2)选用合适的门电路搭建编码器电路。
(3)将编码器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证编码器电路的正确性。
2. 译码器设计(1)根据设计要求,确定译码器的输入和输出信号。
(2)选用合适的门电路搭建译码器电路。
(3)将译码器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证译码器电路的正确性。
3. 数值比较器设计(1)根据设计要求,确定数值比较器的输入和输出信号。
(2)选用合适的门电路搭建数值比较器电路。
(3)将数值比较器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证数值比较器电路的正确性。
4. 数据选择器设计(1)根据设计要求,确定数据选择器的输入和输出信号。
(2)选用合适的门电路搭建数据选择器电路。
(3)将数据选择器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证数据选择器电路的正确性。
5. 奇偶检验器设计(1)根据设计要求,确定奇偶检验器的输入和输出信号。
(2)选用合适的门电路搭建奇偶检验器电路。
(3)将奇偶检验器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证奇偶检验器电路的正确性。
五、实验结果与分析1. 编码器电路输出波形符合设计要求,电路功能正常。
2. 译码器电路输出波形符合设计要求,电路功能正常。
3. 数值比较器电路输出波形符合设计要求,电路功能正常。
组合电路实验报告总结(3篇)
第1篇一、实验背景组合逻辑电路是数字电路的基础,它由各种基本的逻辑门电路组成,如与门、或门、非门等。
本实验旨在通过组装和测试组合逻辑电路,加深对组合逻辑电路原理的理解,并掌握基本的实验技能。
二、实验目的1. 理解组合逻辑电路的基本原理和组成。
2. 掌握基本的逻辑门电路的连接方法。
3. 学会使用万用表等实验工具进行电路测试。
4. 提高动手能力和实验设计能力。
三、实验内容1. 组合逻辑电路的组装实验中,我们组装了以下几种组合逻辑电路:(1)半加器:由一个与门和一个或门组成,实现两个一位二进制数的加法运算。
(2)全加器:由两个与门、一个或门和一个异或门组成,实现两个一位二进制数及来自低位进位信号的加法运算。
(3)编码器:将一组输入信号转换为二进制代码输出。
(4)译码器:将二进制代码转换为相应的输出信号。
2. 组合逻辑电路的测试使用万用表对组装好的电路进行测试,验证电路的逻辑功能是否正确。
3. 电路故障排除通过观察电路的输入输出波形,找出电路故障的原因,并进行相应的修复。
四、实验过程1. 组装电路按照实验指导书的要求,将各种逻辑门电路按照电路图连接起来。
注意连接时要注意信号的流向和电平的高低。
2. 测试电路使用万用表测试电路的输入输出波形,验证电路的逻辑功能是否正确。
3. 故障排除通过观察电路的输入输出波形,找出电路故障的原因。
例如,如果输入信号为高电平,但输出信号为低电平,可能是与非门输入端短路或者输出端开路。
五、实验结果与分析1. 半加器通过测试,发现半加器的输出波形符合预期,即当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
2. 全加器通过测试,发现全加器的输出波形符合预期,即当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
3. 编码器通过测试,发现编码器的输出波形符合预期,即当输入信号为高电平时,对应的输出端为低电平;当输入信号为低电平时,对应的输出端为高电平。
4. 译码器通过测试,发现译码器的输出波形符合预期,即当输入信号为高电平时,对应的输出端为低电平;当输入信号为低电平时,对应的输出端为高电平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
终通过真值表得出逻辑表达式,得出电路; 我选择了第二种方案。 方案如下: 以全加器为蓝本,设计电路: 各项表达式如下: 设 K1、K2 为电平开关的取值。则
C1 K2
B0 B0 K2
B1 B1 K2
D0 S0 K1 C0 K1 D1 (C0 K1 ) (S1 (S0 (C1 K1 K2 ) K2 )) (C0 S1S0 ) K1 D2 (S0 S1 K1 ) (C1 (C0 (( K1 K2 ) K1 K2 )) (C0 S1 S0 ) K1
2 3 0 1 2 3 0 1 2 3 0 1 2 3
2 3 1 2 3 4 2 3 4 5 3 4 5 6
实际结果与仿真结果相同,所以设计正确。
2、两位 2 进制减法运算电路: 用补码和借位信息显示差值用数码管显示计算结果。 要求显示出 (1~3)-(1~3)的结果 电路设计: 用补码来表示负数,减法就变成了加法,所以减法器就可以用加法器 来实现。相加结果的最高位有进位,则表示结果非负,即没有借位;
01 00 01 10 10 01 00 01 11 10 01 00
实际结果与仿真结果相同,故设计正确。
4、可控加、减、乘法运算器: 电路设计: 主要有两种解决思路: (1) 分别设计出一个全加器、 一个加法器和一个乘法器作为 子电路,将两个电平开关作为使能开关,三个子电路 的工作情况; (2) 以全加器为基础,通过逻辑运算,将各个运算中的信号 与电平开关提供的 1、0 结合,做到取反等操作;最
可以证明, (n+1)位除法器需要 (n 1)2 个 DU。其中,输入有一 位符号位。因此,需要对题目中的 “四位除法器”进行定义: 第一种, 算上符号位共 4 位;第二种,4 位无符号整数。 假如是第二种定义,则实际上是“4+1”位除法器,需要 5×5 个 DU, 而第一种需要 4×4 个 DU。 由于结构相同, 我以第一种为例。 首先演示所设计除法器的运算过程,下面举几个例子: 7÷7=1……0:
由此可见,仿真符合预期。在实验时,我照前图接线,发现结果与仿 真时完全相同,证明一位全加器设计正确。 二位全加器只须将两个一位全加器级联即可,逻辑电路图如下:
仿真结果举例如下: 0+0:
0+1:
2+1:
3+3:
实际实验结果如下: IN1 0 0 IN2 0 1 OUT 0 1
0 0 1 1 1 1 2 2 2 2 3 3 3 3
设计电路如下:
仿真结果举例如下: 3-1:
1-3:
2-3:
1-1:
实验结果如下: IN1 0 0 0 0 IN2 0 1 2 3 OUT1 0 1 1 1 OUT2/3 00 01 10 11
1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3
0 0 1 1 0 0 0 1 0 0 0 0
实验日期: 2009/11/25
实验室: 229
座位号:4
清华大学电子工程系 电子技术实验报告
数字实验二:简单组合逻辑电路的设计
班级:无 86 姓名:戴扬 学号: 2008011191 实验日期: 2009/11/25 交报告日期 : 2009/12/4
一、实验目的 (1) 理解用中小规模集成电路组成组合逻辑电路的分析与设计方 法; (2) 通过全加运算电路和全减运算电路的设计熟悉原码、反码、补 码的概念。及用补码实现减法运算的方法
三、实验原理 参见《电子电路实验》第 121~123 页;
四、实验内容 必做内容: 全加运算电路: 用数码管显示计算结果。要求显示出(1~3)+(1~3)的结果; 选做内容一:
两位 2 进制减法运算电路: 用补码和借位信息显示差值用数码管显示计算结果。 要求显示出 (1~3)-(1~3)的结果; 选做内容二: 两位二进制减法运算电路: 用原码和正负号显示差值的。用数码管显示计算结果。 要求显示出 (1~3)-(1~3)的结果; 研究内容: 可控加、减、乘法运算器: 用给定的异或门、其他门电路及两个电平开关( S1 、 S 2 )设计一 个电路,实现如下电路,实现如下功能:当两个电平开关 S1 、 S 2 接通 低电平时,电路实现两个两位二进制数相加(C=A+B) 。当 S1 接通低 电平, S 2 接通高电平时,电路实现两个二进制数相减(C=A-B) ,且 当 A≥B 时, 数码管显示出相减的数值, 当 A<B 时显示出负号及用原 码表示的差值。当 S1 接通高电平时,电路实现两个两位二进制数的相 乘(C=A×B) ;
二、实验任务 (1) 用给定的小规模数字集成电路,设计并安装一个两位全加电 路,实现 C=A+B 的运算(A 和 B 分别为 0~3 的数) ,并用 数码管显示运算结果; (2) 用给定的小规模数字集成电路, 设计并安装一个两位减法运算 电路,实现 C=A-B 的运算(A 和 B 分别为 0~3 的数) ,并 用数码管显示运算结果;
An Bn
00 0 0 01 0 1 11 1 1 10 0 1
由卡诺图可得逻辑表达式:
Sn An Bn Cn 1 Cn An Bn Cn 1 ( An Bn )
由逻辑表达式可得逻辑电路图: ( Cn1 默认接 GND)
仿真结果如下: 0+0:
1+0:
0+1:
1+1:
D3 ( A1 A0 B1B0 ) K1
仿真电路图如下:
仿真结果如下: 加法器:K1=0,K2=0; 1+3:
2+3:
减法器:K1=0,K2=1; 3-1:
2-3:
乘法器:K1=1,K2=1; 1×3:
从结果可以看出,设计正确。
七、实验分析与总结 1、 在实验中所遇到的故障和问题以及解决方法: 在实验时出现了结果不正确的现象。必须花大量时间检查。检 查的一般方法是,从输入端开始,一级一级的检查。我的经验 是, 在连线的时候使用线的颜色就可以类似的功能用同样的线; 另外, 记住芯片的输入输出顺序, 除了或非门 74LS02 是右输 入左输出外,比较常用的门都是左输入右输出。 2、 加法电路、减法运算电路设计方法总结 设计加法电路中,首先通过真值表与卡诺图,根据元件情况,得到 合适的逻辑表达式。通过逻辑表达式设计出正确的半加器。 得到半加器之后,将半加器作为模块,通过正确级联,就可以得到 全加器。 得出全加器之后,通过原码,补码的转化规则,可以把以补码显
反之则为负。用数码管显示借位,显示 1 表示结果为负数,各数码管 的数值(1 或 0)显示为补码表示的差值;显示 0 表示结果为正数, 各数码管显示为原码表示的差值。 电路实现上,用反相器减数的各位分别求反,再将最低位的进位置为 1,故输入加法器的是减数的补码。最高位的进位通过一个倒相器接 符号位数码管。 设计电路如下: ( Cn1 默认接管脚要确保有效地插入面包板上, 不要让管脚窝在 集成电路下面构成漏接; (2) 对于 TTL(74LS 系列等)电路来说,输入端开路可认为是输 入高电平,但抗干扰能力差,为保证电路工作稳定,输入端
尽量要接入一固定的逻 辑电平,尤其是 使能端。而对于 CMOS 电路, (如 74HC 系列及 4000 系列)输入端不能悬 空; (3) 接插电路时要认真检查,不要有短路和漏接,尤其要注意电源 线和地线不要漏接; (4) 要学会用万用表查错,首先要检查电源和地(集成电路管脚 处) ,如当一个与非门的输入信号正确,而输出不对时,在 电源和地线都正确的前提下,若输出为低电平,就要检查集 成电路输入管脚是否有信号, 因为这经常是由于输入端开路 (接线接触不良)引起的,此时输入管脚直流电压值为约 1.2V;若输出为高电平,往往是由于输入端误接地引起的。 如果输入及输出电压同时为 2V 左右的直流电压,有可能是 因为输入端和输出端短路引起的;
示的减法器,通过对输入输出的简单取反,得到减法器。 在设计原码显示的减法器中, 由于我们已经得到了补码的减法器, 所以只需要设计把补码转换为原码的电路即可。同样,可以通过真值 表和卡诺图实现。实现中应注意无关项的应用以简化电路。 八、思考题解答 1、 设计一个四位二进制除法运算电路 .A 为被除数 ,B 为除数,C 为商,D 为余数.画出具体逻辑图或框图,描述工作原理. 答:首先想到本次试验中使用的全加器以及衍生出来的补码减法器, 想到手工做竖式除法时,每一步都需要做减法,因此,可用实验中的 思路将减法变为补码加法,即可使用全加器。在每一位除法时,如果 不够减去减数,则符号位为 1,且没有进位,此时本位商得 0;如果 够减,则符号位为 0,且有进位,此时本位商得 1。 在实现方法上,使用了多个除法处理单元 DU,每一个的作用是 在每位进行补码加法,再通过上一位商控制下一位的补码运算。 除法处理单元结构如下图:
六、实验数据记录及处理 以下所示实验均使用 Multisim10 进行了仿真。在仿真时使用了单 刀双掷开关分别将两端介入 Vcc 和 GND,等效成电平开关。数码管 使用了与试验箱上相同的 4 输入译码的数码管。 1、全加运算电路: 用数码管显示计算结果。要求显示出(1~3)+(1~3)结果; 电路设计: 首先设计一位全加器:
5÷3=1……2:
2
2÷4=0……2:
可得除法器原理图如下:
仿真电路图如下:
仿真结果如下:
7÷7:
5÷3:
2÷4:
由结果知,电路设计正确。
2、 设计具有五用户的呼叫系统. 要求: 用 5 个开关的输出分别模 拟用户的呼出信号,优先级按用户编码依次递减,即 1 号用户 优先级最高,5 号用户优先级最低。用数码管显示呼叫用户的 编码,无用户呼叫时全显示 0。同时有几个用户呼叫时,显示 优先极最高的用户编码。用蜂鸣器声响提示有用户呼叫。 答 : 设 五 个 用 户 输 入 分 别 为 A4A3A2A1A0 , 系 统 输 出 分 别 为 D2D1D0。列出真值表如下: