ASHRAE-62.1-2013

合集下载

ASHRAE

ASHRAE

2005ASHRAE HANDBOOK FUNDAMENTALSI-P Edition Supported by ASHRAE Research2005 ASHRAE® HANDBOOKFUNDAMENTALSInch-Pound EditionAmerican Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.1791 Tullie Circle, N.E., Atlanta, GA 30329(404) 636-8400Copyright ©2005 by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. All rights reserved.DEDICATED TO THE ADVANCEMENT OFTHE PROFESSION AND ITS ALLIED INDUSTRIES No part of this book may be reproduced without permission in writing from ASHRAE, except by a reviewer who may quote brief passages or reproduce illustrations in a review with appropriate credit; nor may any part of this book be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, photocopying, recording, or other—without permission in writing from ASHRAE.V olunteer members of ASHRAE Technical Committees and others compiled the infor-mation in this handbook, and it is generally reviewed and updated every four years. Com-ments, criticisms, and suggestions regarding the subject matter are invited. Any errors or omissions in the data should be brought to the attention of the Editor. Additions and correc-tions to Handbook volumes in print will be published in the Handbook published the year following their verification and, as soon as verified, on the ASHRAE Internet Web site.DISCLAIMERASHRAE has compiled this publication with care, but ASHRAE has not investigated, and ASHRAE expressly disclaims any duty to investigate, any product, service, process, procedure, design, or the like that may be described herein. The appearance of any technical data or editorial material in this publication does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, design, or the like. ASHRAE does not warrant that the information in this publication is free of errors. The entire risk of the use of any information in this publication is assumed by the user.ISBN 1-931862-70-2CONTENTSContributorsASHRAE Technical Committees, Task Groups, and Technical Resource Groups ASHRAE Research: Improving the Quality of LifePrefaceTHEORYChapter 1.Thermodynamics and Refrigeration Cycles (TC 1.1, Thermodynamics and Psychrometrics, TC 8.3, Absorption and Heat-Operated Machines)2.Fluid Flow (TC 1.3, Heat Transfer and Fluid Flow)3.Heat Transfer (TC 1.3)4.Two-Phase Flow (TC 1.3)5.Mass Transfer (TC 1.3)6.Psychrometrics (TC 1.1)7.Sound and Vibration (TC 2.6, Sound and Vibration Control)GENERAL ENGINEERING INFORMATIONChapter8.Thermal Comfort (TC 2.1, Physiology and Human Environment)9.Indoor Environmental Health (Environmental Health Committee)10.Environmental Control for Animals and Plants (TC 2.2, Plant and Animal Environment)11.Physiological Factors in Drying and Storing Farm Crops (TC 2.2)12.Air Contaminants (TC 2.3, Gaseous Air Contaminants and Gas Contaminant RemovalEquipment)13.Odors (TC 2.3)14.Measurement and Instruments (TC 1.2, Instruments and Measurement)15.Fundamentals of Control (TC 1.4, Control Theory and Application)16.Airflow Around Buildings (TC 5.12, Ventilation Requirements and Infiltration)BASIC MATERIALSChapter17.Energy Resources (TC 2.8, Building Environmental Impacts and Sustainability)bustion and Fuels (TC 6.10, Fuels and Combustion)19.Refrigerants (TC 3.1, Refrigerants and Secondary Coolants)20.Thermophysical Properties of Refrigerants (TC 3.1)21.Physical Properties of Secondary Coolants (Brines) (TC 3.1)22.Sorbents and Desiccants (TC 8.12, Dessicant Dehumidification and Components)23.Thermal and Moisture Control in Insulated Assemblies—Fundamentals(TC 4.4, Building Materials and Building Envelope Performance)24.Thermal and Moisture Control in Insulated Assemblies—Applications (TC 4.4)25.Thermal and Water Vapor Transmission Data (TC 4.4)26.Insulation for Mechanical Systems (TC 1.8, Mechanical Systems Insulation)LOAD AND ENERGY CALCULATIONSChapter27.Ventilation and Infiltration (TC 5.12)28.Climatic Design Information (TC 4.2, Weather Information)29.Residential Cooling and Heating Load Calculations (TC 4.1, Load Calculation Data andProcedures)30.Nonresidential Cooling and Heating Load Calculations (TC 4.1)31.Fenestration (TC 4.5, Fenestration)32.Energy Estimating and Modeling Methods (TC 4.7, Energy Calculations)DUCT AND PIPE DESIGNChapter33.Space Air Diffusion (TC 5.3, Room Air Distribution)34.Indoor Environmental Modeling (TC 4.10, Indoor Environmental Modeling)35.Duct Design (TC 5.2, Duct Design)36.Pipe Sizing (TC 6.1, Hydronic and Steam Equipment and Systems)GENERALChapter37.Abbreviations and Symbols (TC 1.6, Terminology)38.Units and Conversions (TC 1.6)39.Physical Properties of Materials (TC 1.3)40.Codes and StandardsADDITIONS AND CORRECTIONSINDEXComposite index to the 2002 Refrigeration, 2003 HV AC Applications, 2004 HV AC Systems andEquipment, and 2005 Fundamentals volumesCONTRIBUTORSIn addition to the Technical Committees, the following individuals contributed significantly to this volume. The appropriate chapter numbers follow each contributor’s name.Thomas H. Kuehn (1, 6)University of MinnesotaRick J. Couvillion (2, 3, 4, 5) University of ArkansasJohn W. Coleman (2)Brazeway, Inc.Narasipur Suryanarayana (3) Michigan Technological University Zahid Ayub (3)Isotherm, Inc.Art Bergles (3)Rennselaer Polytechnic Institute Michael Ohadi (3)University of MarylandTim Shedd (4)University of WisconsinRoy R. Crawford (6)The Trane CompanyRon M. Nelson (6)Iowa State UniversityCourtney B. Burroughs (7)The Pennsylvania State University Clifford C. Federspiel (8)University of California, Berkeley Larry G. Berglund (8)U.S. Army Research Institute of Environmental MedicineWane A. Baker (9)Michaels Engineering, Inc.Linda D. Stetzenbach (9)University of Nevada, Las VegasJan Sundell (9)Technical University of Denmark Sidney A. Parsons (9)Parsons & LusdenJames E. Woods (9)Building Diagnostics Research Institute Clifford S. Mitchell (9)Johns Hopkins UniversityByron W. Jones (9)Kansas State UniversityDennis Stanke (9)The Trane Company Richard S. Gates (10)University of KentuckyAlbert J. Heber (10)Purdue UniversityFarhad Memarzadeh (10)National Institutes of HealthGerald L. Riskowski (10, 11)Texas A&M UniversityYuanhui Zhang (10)University of Illinois, Urbana-ChampaignRoger C. Brook (11)Michigan State UniversityCarolyn (Gemma) Kerr (12)InAir Environmental, Ltd.Doug VanOsdell (12)RTI InternationalMatthew Middlebrooks (12)AQF TechnologiesKarin Foarde (12)RTI InternationalBrian Krafthefer (12)Honeywell LaboratoriesNick Agopian (12)Circul-AireJoe F. Pedelty (13)Holcombe Environmental ServicesPamela Dalton (13)Monell Chemical Senses CenterMartin Kendal-Reed (13)Florida State University Sensory ResearchInstituteJames C. Walker (13)Florida State University Research InstituteLen Damiano (14)EBSTRON, Inc.Charlie Wright (14)TSI, Inc.Terry Beck (14)Kansas State UniversityChariti A. Young (15)Automated Logic CorporationDavid B. Kahn (15)RMH GroupSteven T. Bushby (15)National Institute of Standards andTechnologyJohn Carter (16)Cermak Peterka Petersen, Inc.Don Brundage (17)Southern Company ServicesStephen C. Turner (17)Brown UniversityPeter Baade (18)Noise and Vibration Control, Inc.Thomas A. Butcher (18)Brookhaven National LaboratoryDieter Göttling (18)University of StuttgartS. Win Lee (18)CANMETBruce Swiecicki (18)National Propane Gas AssociationHall Virgil (18)Rajiv Singh (19)Honeywell ChemicalsDonald Bivens (19)DuPontMark McLinden (20)National Institute of Standards andTechnologyKevin Connor (21)The Dow Chemical CompanyLew Harriman (22)Mason-Grant ConsultingWilliam B. Rose (23, 24, 25)University of Illinois, Urbana-ChampaignHugo Hens (23)K.U. LeuvenPaul Shipp (23)USG CorporationAnton TenWolde (23)Forest Products LaboratoryJoseph Lstiburek (24)Building Science CorporationGarth Hall (24)Raths, Raths & JohnsonG. Christopher P. Crall (26)Owens CorningGlenn A. Brower (26)Knauf InsulationW. Scott Miller (26)Knauf InsulationRoger C. Schmidt (26)Nomaco K-flexIain Walker (27)Lawrence Berkeley National Laboratory Max Sherman (27)Lawrence Berkeley National Laboratory Andrew Persily (27)National Institute of Standards and TechnologyCharles S. Barnaby (28, 29) Wrightsoft CorporationRobert Morris (28)Environment CanadaDidier Thevenard (28)Numerical Logics Inc.Marc Plantico (28)National Climate Data CenterJeffrey D. Spitler (29)Oklahoma State UniversitySteve Bruning (30)Newcomb & BoydD. Charlie Curcija (31)University of MassachusettsMichael Collins (31)University of WaterlooWilliam C. duPont (31)John F. Hogan (31)City of Seattle DCLUJoseph H. Klems (31)Lawrence Berkeley National LaboratoryAbedlaziz Laouadi (31)National Research CouncilW. Ross McCluney (31)Florida Solar Energy CenterBipin V. Shah (31)Rick Strand (32)University of Illinois, Urbana-ChampaignRon Judkoff (32)National Renewable Energy LaboratoryJoel Neymark (32)J. Neymark and AssociatesJames Aswegan (33)TitusAndrey Livchak (33)Halton CompanyAmy Musser (34)University of NebraskaSteve Emmerich (34)National Institute of Standards andTechnologyChao-Hsin Lin (34)The Boeing CompanyDuncan Phillips (34)Rowan Williams Davis & Irwin, Inc.Jelana Srebric (34)The Pennsylvania State UniversityYan Chen (34)Purdue UniversityWalter Schwarz (34)Fluent, Inc.Stuart Dols (34)National Institute of Standards andTechnologyPeter Nielsen (34)Aalborg UniversityThamir al-Alusi (34)The Boeing CompanyJim Van Gilder (34)American Power ConversionHerman Behls (35)Mark Hegberg (36)ITT Bell & GossettBirol Kilkis (37, 38)Watts RadiantLawrence Drake (37)Radiant Panel AssociationASHRAE HANDBOOK COMMITTEELynn F. Werman, Chair2005 Fundamentals V olume Subcommittee: William S. Fleming, ChairGeorge F. Carscallen Mark G. Conway L. Lane Jackins Cesare M. Joppolo Dennis L. O’Neal T. David Underwood John W. Wells, IIIASHRAE HANDBOOK STAFFMark S. Owen, EditorHeather E. Kennedy, Associate EditorNancy F. Thysell, Typographer/Page DesignerDavid Soltis, Manager and Jayne E. JacksonPublishing ServicesW. Stephen Comstock,Director, Communications and PublicationsPublisherASHRAE TECHNICAL COMMITTEES, TASK GROUPS, AND TECHNICAL RESOURCE GROUPSSECTION 1.0—FUNDAMENTALS AND GENERAL1.1Thermodynamics and Psychrometrics1.2Instruments and Measurement1.3Heat Transfer and Fluid Flow1.4Control Theory and Application1.5Computer Applications1.6Terminology1.7Business, Management, and General Legal Education 1.8Mechanical Systems Insulation1.9Electrical Systems1.10Cogeneration Systems1.11Electric Motors and Motor Control1.12Moisture Management in BuildingsSECTION 2.0—ENVIRONMENTAL QUALITY2.1Physiology and Human Environment2.2Plant and Animal Environment2.3Gaseous Air Contaminants and Gas ContaminantRemoval Equipment2.4Particulate Air Contaminants and ParticulateContaminant Removal Equipment2.5Global Climate Change2.6Sound and Vibration Control2.7Seismic and Wind Restraint Design2.8Building Environmental Impacts and Sustainability TRG Blast, Chemical and Biological RemediationSECTION 3.0—MATERIALS AND PROCESSES3.1Refrigerants and Secondary Coolants3.2Refrigerant System Chemistry3.3Refrigerant Contaminant Control3.4Lubrication3.6Water Treatment3.8Refrigerant ContainmentSECTION 4.0—LOAD CALCULATIONS AND ENERGY REQUIREMENTS4.1Load Calculation Data and Procedures4.2Weather Information4.4Building Materials and Building Envelope Performance 4.5Fenestration4.7Energy Calculations4.10Indoor Environmental ModelingSECTION 5.0—VENTILATION AND AIR DISTRIBUTION 5.1Fans5.2Duct Design5.3Room Air Distribution5.4Industrial Process Air Cleaning (Air Pollution Control) 5.5Air-to-Air Energy Recovery5.6Control of Fire and Smoke5.7Evaporative Cooling5.8Industrial Ventilation Systems5.9Enclosed Vehicular Facilities5.10Kitchen Ventilation5.11Humidifying Equipment5.12Ventilation Requirements and Infiltration SECTION6.0—HEATING EQUIPMENT, HEATING AND COOLING SYSTEMS AND APPLICATIONS6.1Hydronic and Steam Equipment and Systems6.2District Energy6.3Central Forced-Air Heating and Cooling Systems6.5Radiant and Convective Space Heating and Cooling6.6Service Water Heating6.7Solar Energy Utilization6.8Geothermal Energy Utilization6.9Thermal Storage6.10Fuels and CombustionSECTION 7.0—BUILDING PERFORMANCE7.1Integrated Building Design7.3Operation and Maintenance Management7.4Building Operation Dynamics7.5Smart Building Systems7.6Systems Energy Utilization7.7Testing and Balancing7.8Owning and Operating Costs7.9Building CommissioningSECTION 8.0—AIR-CONDITIONING ANDREFRIGERATION SYSTEM COMPONENTS8.1Positive Displacement Compressors8.2Centrifugal Machines8.3Absorption and Heat-Operated Machines8.4Air-to-Refrigerant Heat Transfer Equipment8.5Liquid-to-Refrigerant Heat Exchangers8.6Cooling Towers and Evaporative Condensers8.7Combustion Gas Turbine Inlet Air Cooling Systems8.8Refrigerant System Controls and Accessories8.9Residential Refrigerators and Food Freezers8.10Mechanical Dehumidification Equipment and Heat Pipes 8.11Unitary and Room Air Conditioners and Heat Pumps 8.12Desiccant Dehumidification and Components SECTION 9.0—BUILDING APPLICATIONS9.1Large-Building Air-Conditioning Systems9.2Industrial Air Conditioning9.3Transportation Air Conditioning9.4Applied Heat Pump/Heat Recovery Systems9.5Residential and Small-Building Applications9.6Healthcare Facilities9.7Educational Facilities9.8Large-Building Air-Conditioning Applications9.9Mission Critical Facilities, Technology Spaces andElectronic Equipment9.10Laboratory Systems9.11Clean Space9.12Tall BuildingsTG9.JF Justice FacilitiesSECTION 10.0—REFRIGERATION SYSTEMS10.1Custom-Engineered Refrigeration Systems10.2Automatic Icemaking Plants and Skating Rinks10.3Refrigerant Piping10.4Ultralow-Temperature Systems and Cryogenics10.5Refrigerated Distribution and Storage Facilities10.6Transport Refrigeration10.7Commercial Food and Beverage Cooling Display andStorage10.8Refrigeration Load Calculations10.9Refrigeration Application for Foods and BeveragesTG10.MOC Immiscible-Oil Refrigerant SystemsASHRAE Research: Improving the Quality of LifeThe American Society of Heating, Refrigerating and Air-Condi-tioning Engineers is the world’s foremost technical society in the fields of heating, ventilation, air conditioning, and refrigeration. Its members worldwide are individuals who share ideas, identify needs, support research, and write the industry’s standards for test-ing and practice. The result is that engineers are better able to keep indoor environments safe and productive while protecting and pre-serving the outdoors for generations to come.One of the ways that ASHRAE supports its members’ and indus-try’s need for information is through ASHRAE Research. Thou-sands of individuals and companies support ASHRAE Research annually, enabling ASHRAE to report new data about material properties and building physics and to promote the application of innovative technologies.Chapters in the ASHRAE Handbook are updated through the experience of members of ASHRAE Technical Committees and through results of ASHRAE Research reported at ASHRAE meet-ings and published in ASHRAE special publications and in ASHRAE Transactions.For information about ASHRAE Research or to become a mem-ber, contact ASHRAE, 1791 Tullie Circle, Atlanta, GA 30329; tele-phone: 404-636-8400; .PrefaceThe 2005 ASHRAE Handbook—Fundamentals covers basic principles and data used in the HV AC&R industry. Research spon-sored by ASHRAE and others continues to generate new informa-tion to support the HV AC&R technology that has improved the quality of life worldwide. The ASHRAE Technical Committees that prepare these chapters strive not only to provide new information, but also to clarify existing information, delete obsolete materials, and reorganize chapters to make the Handbook more understand-able and easier to use.This edition includes a new chapter (26), Insulation for Mechan-ical Systems, and an accompanying CD-ROM containing not only all the chapters in both I-P and SI units, but also the vastly expanded and revised climatic design data described in Chapter 28.Some of the major revisions and additions are as follows:•Chapter 2, Fluid Flow, has new examples on calculating pressure loss, flow, and pipe sizes, and new text on port-shape friction fac-tors in laminar flow.•Chapter 3, Heat Transfer, contains updated convection correla-tions; more information on enhanced heat transfer, radiation, heat exchangers, conduction shape factors, and transient conduction; a new section on plate heat exchangers; and several new examples.•Chapter 4, Two-Phase Flow, has new information on boiling and pressure drop in plate heat exchangers, revised equations for boil-ing heat transfer and forced-convection evaporation in tubes, and a rewritten section on pressure drop correlations.•Chapter 7, Sound and Vibration, contains expanded and clarified discussions on key concepts and methods throughout, and updates for research and standards.•Chapter 12, Air Contaminants, contains a rewritten section on bioaerosols, added text on mold, and updated tables.•Chapter 14, Measurement and Instruments, has a new section on optical pyrometry, added text on infrared radiation thermometers, thermal anemometers, and air infiltration measurement with tracer gases, as well as clarified guidance on measuring flow in ducts.•Chapter 20, Thermophysical Properties of Refrigerants, has newly reconciled reference states for tables and diagrams, plus diagrams for R-143a, R-245fa, R-410A, and R-507A.•Chapter 25, Thermal and Water Vapor Transmission Data, con-tains a new table relating water vapor transmission and relative humidity for selected materials.•Chapter 26, Insulation for Mechanical Systems, a new chapter, discusses thermal and acoustical insulation for mechanical sys-tems in residential, commercial, and industrial facilities, includ-ing design, materials, systems, and installation for pipes, tanks, equipment, and ducts.•Chapter 27, Ventilation and Infiltration, updated to reflect ASHRAE Standards 62.1 and 62.2, has new sections on theshelter-in-place strategy and safe havens from outdoor air quality hazards.•Chapter 28, Climatic Design Information, extensively revised, has expanded table data for each of the 4422 stations listed (USA/Canada/world; on the CD-ROM accompanying this book), more than three times as many stations as in the 2001 edition.•Chapter 29, Residential Cooling and Heating Load Calculations, completely rewritten, presents the Residential Load Factor (RLF) method, a simplified technique suitable for manual calculations, derived from the Heat Balance (HB) method. A detailed example is provided.•Chapter 30, Nonresidential Cooling and Heating Load Calcula-tions, rewritten, has a new, extensively detailed example demon-strating the Radiant Time Series (RTS) method for a realistic office building, including floor plans and details.•Chapter 32, Energy Estimating and Modeling Methods, includes new information on boilers, data-driven models, combustion chambers, heat exchangers, and system controls, and a new sec-tion on model validation and testing.•Chapter 33, Space Air Diffusion, has a rewritten, expanded sec-tion on displacement ventilation.•Chapter 34, Indoor Environmental Modeling, rewritten, retitled, and significantly expanded, now covers multizone network air-flow and contaminant transport modeling as well as HV AC com-putational fluid dynamics.•Chapter 35, Duct Design, includes new guidance on flexible duct losses, balancing dampers, and louvers.•Chapter 36, Pipe Sizing, has new text and tables on losses for ells, reducers, expansions, and tees, and the interactions between fit-tings.This volume is published, both as a bound print volume and in electronic format on a CD-ROM, in two editions: one using inch-pound (I-P) units of measurement, the other using the International System of Units (SI).Corrections to the 2002, 2003, and 2004 Handbook volumes can be found on the ASHRAE Web site at and in the Additions and Corrections section of this volume. Corrections for this volume will be listed in subsequent volumes and on the ASHRAE Web site.To make suggestions for improving a chapter or for information on how you can help revise a chapter, please comment using the form on the ASHRAE Web site; or e-mail mowen@; or write to Handbook Editor, ASHRAE, 1791 Tullie Circle, Atlanta, GA 30329; or fax 404-321-5478.Mark S. OwenEditor。

最新en14362-1-翻译汇总

最新en14362-1-翻译汇总

E N14362-1-2012翻译1 范围这个欧洲标准描述一个用于检测可能不只用于制造或处理某些日用品的某些特定偶氮染料程序,这些纺织纤维使用或不使用萃取的方法可以达到还原裂解。

不使用萃取的方法就可以达到还原裂解的偶氮染料用于:-------有纤维质的纤维(举例来说棉,纤维胶)-------蛋白质纤维(举例来说羊毛,丝绸)-------人造的纤维(举例来说聚酰胺,丙烯酸)使用萃取的方法可以达到还原裂解的偶氮染料用于使用分散染料的人造纤维。

下列的人造纤维可以被分散染料染色:聚酯纤维,醋酸纤维,三醋酸基纤维,丙烯酸和含氯纤维。

对于一定的用纤维素和(或)蛋白质并混合人造纤维制造的日用品必须要先萃取染料。

本方法适用于所有的染色纺织品,例如染料,印刷和涂层纺织品。

2 相关标准下面相关文档对于这份欧洲标准的应用是不可缺少的。

对于有限期的相关标准,仅适用于所引用的版本。

对于无限期的相关标准,适用于相关文档(包括任何修订)的最新版本。

EN ISO 3696:1995,分析实验用水—规格和测试方法(ISO 3696:1987)3 概要某些偶氮染料可以豁免,偶氮组分被还原裂解成一种或多种下列芳香胺,这些芳香胺在欧洲议会的法规和建立一个化学品管理的化学品的登记、评估、批准、限制委员会(REACH)2006年12月18日的相关法规No 1907/2006下是被禁止的.表1----REACH法规1907/2006/附件17下描述的芳香胺4 原理从纺织品中选出有色测试样品,测试样品依据分散染料萃取的方法和(或)其他种类染料直接还原的方法测试。

根据测试样品的纤维的种类(纯净的纤维或混合的纤维)和颜色的处理(染色或印刷的过程)使用2种方法中的1种或结合2种方法。

相应地,如果测试样品在依据2种方法中的1种应用时不褪色,则另一种方法被采用。

当分散染料萃取着色剂方法被使用时,着色剂在使用氯苯回流下先从顶部位置的纤维里萃取出来。

萃取液经浓缩后用甲醇转移到反应器中,后面在70℃柠檬酸盐缓冲溶液(PH=6)中使用连二亚硫酸钠还原.如果纺织样品在使用氯苯萃取后没有完全褪色,把样品和分散染料中的甲醇溶液加入反应器中一起还原。

邻苯二甲酸酯类的特性及在食品中的限量分析_黄婵媛

邻苯二甲酸酯类的特性及在食品中的限量分析_黄婵媛

收稿日期:2013-11-20;修稿日期:2014-02-28作者简介:黄婵媛(1987-),女,硕士,研究方向为食品安全,通信地址:510110广东广州市越秀区八旗二马路38号前座301,E-mail :hcy2011@gmail.com 。

邻苯二甲酸酯类的特性及在食品中的限量分析黄婵媛,蔡玮红,莫锡乾(广州市质量监督检测研究院,广州510110)摘要:邻苯二甲酸酯类(PAEs )物质,作为塑料添加剂已有将近80年的历史,普遍存在于大气飘尘、工业废水、河流、土壤以及固体废弃物中,并已在食品、饮用水、人体体液中被检出,是一种全球最普遍的环境激素类污染物。

简要介绍了邻苯二甲酸酯类的特性,对国内外邻苯二甲酸酯类增塑剂在食品中的限量规定进行了分类和比较,客观分析了标准法规现状和存在的问题,并提出了建议。

关键词:邻苯二甲酸酯;特性;限量规定;标准法规中图分类号:TS201.6文献标志码:A 文章编号:1005-1295(2014)02-0066-04doi :10.3969/j.issn.1005-1295.2014.02.017The Toxicity and Limited Provisions of Phthalate Esters in FoodHUANG Chan-yuan ,CAI Wei-hong ,MO Xi-qian(Guangzhou Quality Supervision and Testing Institute ,Guangzhou 510110,China )Abstract :Phthalate esters (PAEs ),as plastic additives ,have a history of nearly 80years.They are com-monly found in airborne particulates ,industrial wastewater ,rivers ,soil and solid waste ,and have been detected in food ,drinking water and body fluids.They are common worldwide environmental hormone pollutants.Re-views on the characteristics of phthalates ,limited provisions and problems of domestic laws were elaborated and some suggestions were given.Key words :Phthalate ester ;characteristic ;limited provision ;regulation0引言邻苯二甲酸酯类化合物是应用于塑料工业的主要增塑剂和软化剂,可以使塑料的柔韧性增强,容易加工,可用于工业用途[1]。

(ASHRAE) 90.1-2013 MINIMUM EFFICIENCY REQUIREMENTS

(ASHRAE) 90.1-2013  MINIMUM EFFICIENCY REQUIREMENTS
Electrically Operated Unitary Heat Pumps: Minimum Efficiency Requirements
Equipment Type
Size Category
Heating Section Type
Subcategory or Rating Condition
Electric resistance (or none)
Split system and single package
12.4 EER and 13.6 IEER
All other
Split system and single package
12.2 EER and 13.4 IEER
≥760,000 Btu/ha
Electric resistance (or none)
Split system and single package
12.2 EER and 13.5 IEER
All other
Split system and single package
12.0 EER and 13.3 IEER
aAir conditioners with size equal to or greater than 240,000 Btu/h are not covered by federal purchasing requirements. Minimum efficiency presented is consistent with ASRHAE 90.1-2013.
Central Air Conditioners and Light Commercial Heating and Cooling Equipment

AHRI700中文版

AHRI700中文版

AHRI-700标准及附录12016版制冷剂产品说明空调系统,制热及制冷系统研究院出版地址:2111,wilson boulevard, Suite 500, Arlington, VA 22201, USA网址:PH: 703 524 8800FX: 703 562 1942AHRI700-2016标准及附录1,制冷剂产品说明,2016年9月版AHRI700-2016标准附录1(2016年9月版),有关于制冷剂产品的说明,其中就AHRI700-2016版的如下部分内容做出修改。

这部分修改包含并增加了(增加的部分请见底纹颜色加深的相关文字)以下制冷剂R447B,R449C,R452B,R452C,R454C,R456A,R457A,R458A,R513B,及R515A,分别见于AHRI700-2016标准第二节之表2A及表3. 附录1已正式加入AHRI700标准2016再版发行的内容中生效。

具体变化包含:2.1.4. 非共沸混合制冷剂:R-401A; R-401B; R-402A; R-402B; R-403A; R-403B; R-404A; R-405A; R-406A; R-407A; R-407B; R-407C; R-407D; R-407E; R-407F; R-407G; R-408A; R-409A; R-409B; R-410A; R-410B;R-411A; R-411B; R-412A; R-413A; R-414A; R-414B; R-415A; R-415B; R-416A; R-417A; R-417B; R-417C;R-418A; R-419A; R-419B; R-420A; R-421A; R-421B; R-422A; R-422B; R-422C; R-422D; R-422E; R-423A;R-424A; R-425A; R-426A;R-427A; R-428A; R-429A; 430A; R-431A; R-434A; R-435A; R-437A; R-438A; R-439A; R-440A; R-442A;R-444A; R-444B; R-445A; R-446A; R-447A; R-447B; R-448A; R-449A; R-449B; R-449C; R-450A; R-451A; R-451B; R-452A; R-452B; R-452C; R-453A; R-454A; R-454C; R-454B; R-455A; R-456A; R-457A; andR-458A2.1.6. 共沸混合制冷剂:R-500; R-502; R-503; R-507A; R-508A; R-508B; R-509A; R-510A; R-511A; R-512A; R-513A; R-513B; and R-515A.重要安全免责说明AHRI并未设置安全标准条款,因此不对任何产品的安全性给予认证或担保,所有产品组成,或体系设计,产品的测试,评判或操作均与此标准/指导意见保持一致。

ASHRAE- 62.1-2007

ASHRAE- 62.1-2007

ASHRAE STANDARD American Society of Heating, Refrigeratingand Air-Conditioning Engineers, Inc.1791 T ullie Circle NE, Atlanta, GA 30329Ventilation for Acceptable Indoor Air QualityANSI/ASHRAE Stand ard 62.1-2007(Supersed es ANSI/ASHRAE Stand ard 62.1-2004)Includes ANSI/ASHRAE Addenda listed in Appendix ISee Appendix I for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, and the American National Standards Institute.This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions,including procedures for timely, documented, consensus action on requests for change to any part of the stan-dard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site, , or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305.E-mail: orders@. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada).© Copyright 2007 ASHRAE, Inc.ISSN 1041-2336ASHRAE STANDARDS COMMITTEE 2006–2007David E. Knebel, Chair Stephen D. Kennedy, Vice-Chair Michael F . Beda Donald L. Brandt Steven T. Bushby Paul W. Cabot Hugh F . Crowther Samuel D. Cummings, Jr.Robert G. Doerr Roger L. Hedrick John F . Hogan Eli P . Howard, III Frank E. Jakob Jay A. Kohler James D. Lutz Carol E. Marriott Merle F . McBride Mark P . Modera Ross D. Montgomery H. Michael Newman Stephen V . Santoro Lawrence J. Schoen Stephen V . Skalko Bodh R. Subherwal Jerry W. White, Jr.James E. Woods Richard D. Hermans, BOD ExO Hugh D. McMillan, III, COClaire B. Ramspeck, Assistant Director of Technology for Standards and Special ProjectsSPECIAL NOTEqÜáë=^ãÉêáÅ~å=k~íáçå~ä=pí~åÇ~êÇ=E^kpF=áë=~=å~íáçå~ä=îçäìåí~êó=ÅçåëÉåëìë=ëí~åÇ~êÇ=ÇÉîÉäçéÉÇ=ìåÇÉê=íÜÉ=~ìëéáÅÉë=çÑ=íÜÉ=^ãÉêáÅ~åpçÅáÉíó=çÑ=eÉ~íáåÖI=oÉÑêáÖÉê~íáåÖ=~åÇ=^áêJ`çåÇáíáçåáåÖ=båÖáåÉÉêë=E^peo^bFK=Consensus =áë=ÇÉÑáåÉÇ=Äó=íÜÉ=^ãÉêáÅ~å=k~íáçå~ä=pí~åÇ~êÇëfåëíáíìíÉ=E^kpfFI=çÑ=ïÜáÅÜ=^peo^b=áë=~=ãÉãÄÉê=~åÇ=ïÜáÅÜ=Ü~ë=~ééêçîÉÇ=íÜáë=ëí~åÇ~êÇ=~ë=~å=^kpI=~ë= ëìÄëí~åíá~ä=~ÖêÉÉãÉåí=êÉ~ÅÜÉÇ=ÄóÇáêÉÅíäó=~åÇ=ã~íÉêá~ääó=~ÑÑÉÅíÉÇ=áåíÉêÉëí=Å~íÉÖçêáÉëK=qÜáë=ëáÖåáÑáÉë=íÜÉ=ÅçåÅìêêÉåÅÉ=çÑ=ãçêÉ=íÜ~å=~=ëáãéäÉ=ã~àçêáíóI=Äìí=åçí=åÉÅÉëë~êáäó=ìå~åáãáíóK `çåëÉåëìë=êÉèìáêÉë=íÜ~í=~ää=îáÉïë=~åÇ=çÄàÉÅíáçåë=ÄÉ=ÅçåëáÇÉêÉÇI=~åÇ=íÜ~í=~å=ÉÑÑçêí=ÄÉ=ã~ÇÉ=íçï~êÇ=íÜÉáê=êÉëçäìíáçåKÒ=`çãéäá~åÅÉ=ïáíÜ=íÜáëëí~åÇ~êÇ=áë=îçäìåí~êó=ìåíáä=~åÇ=ìåäÉëë=~=äÉÖ~ä=àìêáëÇáÅíáçå=ã~âÉë=Åçãéäá~åÅÉ=ã~åÇ~íçêó=íÜêçìÖÜ=äÉÖáëä~íáçåK^peo^b=çÄí~áåë=ÅçåëÉåëìë=íÜêçìÖÜ=é~êíáÅáé~íáçå=çÑ=áíë=å~íáçå~ä=~åÇ=áåíÉêå~íáçå~ä=ãÉãÄÉêëI=~ëëçÅá~íÉÇ=ëçÅáÉíáÉëI=~åÇ=éìÄäáÅ=êÉîáÉïK ^peo^b=pí~åÇ~êÇë=~êÉ=éêÉé~êÉÇ=Äó=~=mêçàÉÅí=`çããáííÉÉ=~ééçáåíÉÇ=ëéÉÅáÑáÅ~ääó=Ñçê=íÜÉ=éìêéçëÉ=çÑ=ïêáíáåÖ=íÜÉ=pí~åÇ~êÇK=qÜÉ=mêçàÉÅí`çããáííÉÉ=`Ü~áê=~åÇ=sáÅÉJ`Ü~áê=ãìëí=ÄÉ=ãÉãÄÉêë=çÑ=^peo^bX=ïÜáäÉ=çíÜÉê=ÅçããáííÉÉ=ãÉãÄÉêë=ã~ó=çê=ã~ó=åçí=ÄÉ=^peo^b=ãÉãÄÉêëI=~ääãìëí=ÄÉ=íÉÅÜåáÅ~ääó=èì~äáÑáÉÇ=áå=íÜÉ=ëìÄàÉÅí=~êÉ~=çÑ=íÜÉ=pí~åÇ~êÇK=bîÉêó=ÉÑÑçêí=áë=ã~ÇÉ=íç=Ä~ä~åÅÉ=íÜÉ=ÅçåÅÉêåÉÇ=áåíÉêÉëíë=çå=~ää=mêçàÉÅí`çããáííÉÉëK=qÜÉ=^ëëáëí~åí=aáêÉÅíçê=çÑ=qÉÅÜåçäçÖó=Ñçê=pí~åÇ~êÇë=~åÇ=péÉÅá~ä=mêçàÉÅíë=çÑ=^peo^b=ëÜçìäÇ=ÄÉ=Åçåí~ÅíÉÇ=ÑçêW~K=áåíÉêéêÉí~íáçå=çÑ=íÜÉ=ÅçåíÉåíë=çÑ=íÜáë=pí~åÇ~êÇI ÄK=é~êíáÅáé~íáçå=áå=íÜÉ=åÉñí=êÉîáÉï=çÑ=íÜÉ=pí~åÇ~êÇIÅK=çÑÑÉêáåÖ=ÅçåëíêìÅíáîÉ=ÅêáíáÅáëã=Ñçê=áãéêçîáåÖ=íÜÉ=pí~åÇ~êÇI=çêÇK=éÉêãáëëáçå=íç=êÉéêáåí=éçêíáçåë=çÑ=íÜÉ=pí~åÇ~êÇKDISCLAIMER^peo^b=ìëÉë=áíë=ÄÉëí=ÉÑÑçêíë=íç=éêçãìäÖ~íÉ=pí~åÇ~êÇë=~åÇ=dìáÇÉäáåÉë=Ñçê=íÜÉ=ÄÉåÉÑáí=çÑ=íÜÉ=éìÄäáÅ=áå=äáÖÜí=çÑ=~î~áä~ÄäÉ=áåÑçêã~íáçå=~åÇ=~ÅÅÉéíÉÇáåÇìëíêó=éê~ÅíáÅÉëK=eçïÉîÉêI=^peo^b=ÇçÉë=åçí=Öì~ê~åíÉÉI=ÅÉêíáÑóI=çê=~ëëìêÉ=íÜÉ=ë~ÑÉíó=çê=éÉêÑçêã~åÅÉ=çÑ=~åó=éêçÇìÅíëI=ÅçãéçåÉåíëI=çêëóëíÉãë=íÉëíÉÇI=áåëí~ääÉÇI=çê=çéÉê~íÉÇ=áå=~ÅÅçêÇ~åÅÉ=ïáíÜ=^peo^bÛë=pí~åÇ~êÇë=çê=dìáÇÉäáåÉë=çê=íÜ~í=~åó=íÉëíë=ÅçåÇìÅíÉÇ=ìåÇÉê=áíë=pí~åÇ~êÇëçê=dìáÇÉäáåÉë=ïáää=ÄÉ=åçåÜ~ò~êÇçìë=çê=ÑêÉÉ=Ñêçã=êáëâKASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS^peo^b=pí~åÇ~êÇë=~åÇ=dìáÇÉäáåÉë=~êÉ=Éëí~ÄäáëÜÉÇ=íç=~ëëáëí=áåÇìëíêó=~åÇ=íÜÉ=éìÄäáÅ=Äó=çÑÑÉêáåÖ=~=ìåáÑçêã=ãÉíÜçÇ=çÑ=íÉëíáåÖ=Ñçê=ê~íáåÖéìêéçëÉëI=Äó=ëìÖÖÉëíáåÖ=ë~ÑÉ=éê~ÅíáÅÉë=áå=ÇÉëáÖåáåÖ=~åÇ=áåëí~ääáåÖ=ÉèìáéãÉåíI=Äó=éêçîáÇáåÖ=éêçéÉê=ÇÉÑáåáíáçåë=çÑ=íÜáë=ÉèìáéãÉåíI=~åÇ=Äó=éêçîáÇáåÖçíÜÉê=áåÑçêã~íáçå=íÜ~í=ã~ó=ëÉêîÉ=íç=ÖìáÇÉ=íÜÉ=áåÇìëíêóK=qÜÉ=ÅêÉ~íáçå=çÑ=^peo^b=pí~åÇ~êÇë=~åÇ=dìáÇÉäáåÉë=áë=ÇÉíÉêãáåÉÇ=Äó=íÜÉ=åÉÉÇ=Ñçê=íÜÉãI ~åÇ=ÅçåÑçêã~åÅÉ=íç=íÜÉã=áë=ÅçãéäÉíÉäó=îçäìåí~êóKfå=êÉÑÉêêáåÖ=íç=íÜáë=pí~åÇ~êÇ=çê=dìáÇÉäáåÉ=~åÇ=áå=ã~êâáåÖ=çÑ=ÉèìáéãÉåí=~åÇ=áå=~ÇîÉêíáëáåÖI=åç=Åä~áã=ëÜ~ää=ÄÉ=ã~ÇÉI=ÉáíÜÉê=ëí~íÉÇ=çê=áãéäáÉÇI íÜ~í=íÜÉ=éêçÇìÅí=Ü~ë=ÄÉÉå=~ééêçîÉÇ=Äó=^peo^bKASHRAE Standing Standard Project Committee 62.1Cognizant TC: TC 4.3, Ventilation Requirements and InfiltrationSPLS Liaison: Donald L. BrandtDennis A. Stanke, Chair Roger L. Hedrick, Vice-Chair David S. Butler, Sr., Chair (2003-2005)Leon E. Alevantis Michael G. Apte Michael Beaton Lynn G. Bellenger David C. Bixby Hoy R. Bohanon, Jr.Mark P . Buttner Waller S. Clements James L. Coggins David R. Conover Leonard A. Damiano Richard A. Danks Francis J. Fisher, Jr.Francis Michael Gallo John R. Girman Scott Douglas Hanson Donald C. Herrmann Thomas P . Houston Eli P . Howard, III Roger L. Howard Don MacMillan Chris R. Magee Carl A. Marbery John K. McFarland Christopher O. Muller John E. Osborn R. Dean Rasmussen Walter L. Raynaud Lisa J. Rogers Lawrence J. Schoen Sitaraman Chandra Sekhar Harris M. Sheinman Dennis M. Siano Anthony J. Spata Jan Sundell Wayne R. Thomann Dilip Y . Vyavaharkar Michael W. Woodford*Denotes members of voting status when the document was approved for publication.CONTENTSANSI/ASHRAE Standard 62.1-2007,Ventilation for Acceptable Indoor Air QualitySECTION PAGE cçêÉïçêÇKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK O N==mìêéçëÉKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK O O==pÅçéÉKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK P P==aÉÑáåáíáçåëKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK P Q==lìíÇççê=^áê=nì~äáíóKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK R R==póëíÉãë=~åÇ=bèìáéãÉåíKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK R S==mêçÅÉÇìêÉëKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK NN T==`çåëíêìÅíáçå=~åÇ=póëíÉã=pí~êíJréKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK NT U==léÉê~íáçåë=~åÇ=j~áåíÉå~åÅÉKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK NU V==oÉÑÉêÉåÅÉëKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK OM kçêã~íáîÉ=^ééÉåÇáñ=^W=jìäíáéäÉJwçåÉ=póëíÉãëKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK OM fåÑçêã~íáîÉ=^ééÉåÇáñ_W=pìãã~êó=çÑ=pÉäÉÅíÉÇ=^áê=nì~äáíó=dìáÇÉäáåÉëKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK OP fåÑçêã~íáîÉ=^ééÉåÇáñ`W=o~íáçå~äÉ=Ñçê=jáåáãìã=mÜóëáçäçÖáÅ~ä=oÉèìáêÉãÉåíëÑçê=oÉëéáê~íáçå=^áê=_~ëÉÇ=çå=`l O=`çåÅÉåíê~íáçåKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK PN fåÑçêã~íáîÉ=^ééÉåÇáñ=aW=^ÅÅÉéí~ÄäÉ=j~ëë=_~ä~åÅÉ=bèì~íáçåë=Ñçê=rëÉ=ïáíÜ=íÜÉ=f^n=mêçÅÉÇìêÉKKKKKKKKKKKKKKKKKKKKKKK PP kçêã~íáîÉ=^ééÉåÇáñ=bW=sÉåíáä~íáçå=o~íÉë=Ñçê=eÉ~äíÜ=`~êÉ=c~ÅáäáíáÉëKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK PQ fåÑçêã~íáîÉ=^ééÉåÇáñ=cW=pÉé~ê~íáçå=çÑ=bñÜ~ìëí=lìíäÉíë=~åÇ=lìíÇççê=^áê=fåí~âÉëKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK PR fåÑçêã~íáîÉ=^ééÉåÇáñ=dW=^ééäáÅ~íáçå=~åÇ=`çãéäá~åÅÉKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK PS fåÑçêã~íáîÉ=^ééÉåÇáñ=eW=açÅìãÉåí~íáçåKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK PU fåÑçêã~íáîÉ=^ééÉåÇáñ=fW=^ÇÇÉåÇ~=aÉëÅêáéíáçå=fåÑçêã~íáçåKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK QNNOTEWhen addenda, interpretations, or errata to this standard have been approved, they can be downloaded free of charge from the ASHRAE Web site at .© Copyright 2007 American Society of Heating,Refrigerating and Air-Conditioning Engineers, Inc.1791 Tullie Circle NEAtlanta, GA 30329All rights reserved.(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.) FOREWORDANSI/ASHRAE Standard 62.1-2007 is the latest edition of Standard 62. The 2007 edition combines Standard 62.1-2004 and the eight approved and published addenda to the 2004 edition, thereby providing an easy-to-use consolidated stan-dard. Specific information on the content of each addendum and approval dates for each addendum are included in infor-mative Appendix I at the end of this standard.First published in 1973, Standard 62.1 is now updated on a regular basis using ASHRAE’s continuous maintenance pro-cedures. According to these procedures, Standard 62.1 is con-tinuously revised by addenda that are publicly reviewed, approved by ASHRAE and ANSI, and published in a supple-ment approximately 18 months after each new edition of the standard, or in a new, complete edition of the standard, pub-lished every three years.Standard 62.1 has undergone some key changes over the years, reflecting the ever-expanding body of knowledge, expe-rience, and research related to ventilation and air quality. While the purpose of the standard has remained consistent—to specify minimum ventilation rates and other measures intended to provide indoor air quality that is acceptable to human occupants and that minimizes adverse health effects—the means of achieving this goal have evolved. In its first edi-tion the standard adopted a prescriptive approach to ventila-tion by specifying both minimum and recommended outdoor airflow rates to obtain acceptable indoor air quality for a variety of indoor spaces. I n its 1981 edition, the standard reduced minimum outdoor airflow rates and introduced an alternative performance-based approach, the I ndoor Air Quality (IAQ) Procedure, which allowed for the calculation of the amount of outdoor air necessary to maintain the levels of indoor air contaminants below recommended limits. Today the standard still retains the two procedures for ventilation design, the IAQ Procedure and the Ventilation Rate Procedure.In its 1989 edition, and in response to a growing number of buildings with apparent indoor air quality problems, the standard increased minimum outdoor airflow rates signifi-cantly and introduced a requirement for finding outdoor air intake flow requirements for multiple-zone, recirculating sys-tems. The 1999 and 2001 editions made several minor changes and clarifications that did not impact the minimum required outdoor airflow rates. I n its 2004 edition—the last time the standard was published in its entirety—the standard modified the I AQ Procedure to improve enforceability, but more significantly, it modified the Ventilation Rate Procedure, changing both the minimum outdoor airflow rates and the pro-cedures for calculating both zone-level and system-level out-door airflow rates.The 2007 edition of the standard updates, revises and improves it in several ways, without changing minimum out-door airflow rates. The standard:•Clarifies dehumidification analysis requirements in Sec-tion 5.10, and offers exceptions to the 65% RH limit requirement and to the net-positive intake-airflow requirement (Addendum 62.1a).•Corrects occupant category inconsistencies among Tables 5-2, 6-1, and 6-4, and provides additional infor-mation for several occupancy categories (Addendum62.1b).•Updates references and clarifies the text in informative Appendix B, particularly as related to subjective evalua-tion of air quality (Addendum 62.1c).•Updates the information presented in Table 4-1, to be consistent with the U.S. EPA National Ambient Air Quality Standards (NAAQS) as published at the time the addendum was approved, adding PM 2.5 as a criteria pollutant and adding the eight-hour standard for ozone (Addendum 62.1d).•ncludes a new informative appendix, Appendix H, which summarizes the documentation requirements in the body of the standard thus providing a single point of reference for users (Addendum 62.1e).•Updates the purpose and scope of the standard to make them consistent with changes that have already been incorporated into the body of the standard. Specifically, it: excludes single-family houses and multiple-family structures of three or fewer stories from the scope, removes specific minimum outdoor airflow rates for areas that contain smoking or environmental tobacco smoke (ETS), and excludes thermal comfort require-ments (Addendum 62.1f).•Requires proper design for buildings that contain both ETS and ETS-free areas, by requiring (briefly): classifi-cation of areas based on expected presence of ETS, pressurization of ETS-free areas, separation of ETS and ETS-free areas, and cautionary signage for ETS-areas (Addendum 62.1g).•Adds requirements for residential spaces in buildings with more than three stories to Table 6-1, and deletes Tables E-2 and E-3 from Appendix E, which provided ventilation requirements for residences and vehicles (Addendum 62.1h).For more specific information on these changes and on other revisions made to the standard by other addenda, refer to Informative Appendix I at the end of this standard. Users of the standard are encouraged to use the continuous mainte-nance procedure to suggest changes for further improvements.A form for submitting change proposals is included in the back of this edition. The project committee for Standard 62.1 will take formal action on all change proposals received.1.PURPOSE1.1The purpose of this standard is to specify minimum ven-tilation rates and other measures intended to provide indoorair quality that is acceptable to human occupants and that min-imizes adverse health effects.1.2This standard is intended for regulatory application to new buildings, additions to existing buildings, and those changes to existing buildings that are identified in the body of the standard.1.3This standard is intended to be used to guide the improvement of indoor air quality in existing buildings.2.SCOPE2.1This standard applies to all spaces intended for human occupancy except those within single-family houses, multi-family structures of three stories or fewer above grade, vehi-cles, and aircraft.2.2This standard defines requirements for ventilation and air-cleaning system design, installation, commissioning, and operation and maintenance.2.3Additional requirements for laboratory, industrial,health care, and other spaces may be dictated by workplace and other standards, as well as by the processes occurring within the space.2.4Although the standard may be applied to both new and existing buildings, the provisions of this standard are not intended to be applied retroactively when the standard is used as a mandatory regulation or code.2.5This standard does not prescribe specific ventilation rate requirements for spaces that contain smoking or that do not meet the requirements in the standard for separation from spaces that contain smoking.2.6Ventilation requirements of this standard are based on chemical, physical, and biological contaminants that can affect air quality.2.7Consideration or control of thermal comfort is not included.2.8This standard contains requirements, in addition to ven-tilation, related to certain sources, including outdoor air, con-struction processes, moisture, and biological growth. 2.9Acceptable indoor air quality may not be achieved in all buildings meeting the requirements of this standard for one or more of the following reasons:a.because of the diversity of sources and contaminants in indoor air;b.because of the many other factors that may affect occu-pant perception and acceptance of indoor air quality, such as air temperature, humidity, noise, lighting, and psycho-logical stress;c.because of the range of susceptibility in the popula-tion; andd.because outdoor air brought into the building may be unacceptable or may not be adequately cleaned.3.DEFINITIONS (SEE FIGURE 3.1)acceptable i ndoor ai r quali ty: air in which there are no known contaminants at harmful concentrations as deter-mined by cognizant authorities and with which a substantial majority (80% or more) of the people exposed do not express dissatisfaction.ai r-cleani ng system: a device or combination of devices applied to reduce the concentration of airborne contaminants,such as microorganisms, dusts, fumes, respirable particles,other particulate matter, gases, and/or vapors in air.Figure 3.1Ventilation system.。

ASHRAE_228-2023简介及与我国相关标准的对比

ASHRAE_228-2023简介及与我国相关标准的对比

2023年第12期(总第51卷㊀第394期)No.12in2023(TotalVol.51ꎬNo.394)建筑节能(中英文)JournalofBEEʏ标准规范Standards&Specificationsdoi:10.3969/j.issn.2096 ̄9422.2023.12.020收稿日期:2023 ̄06 ̄26ꎻ㊀修回日期:2023 ̄12 ̄19∗基金项目:基于城乡统筹发展的绿色宜居标准化体系和可持续发展路径研究与示范(2021SFGC0204)ASHRAE228-2023简介及与我国相关标准的对比∗王㊀昭1әꎬ㊀田㊀浩2ꎬ㊀贾瑞远3ꎬ㊀李㊀萌1ꎬ㊀李㊀震1(1.山东省建筑科学研究院有限公司ꎬ济南㊀250014ꎻ2.山东省建设监理咨询有限公司ꎬ济南㊀250014ꎻ3.东营市住房和城乡建设局ꎬ山东㊀东营㊀257055)摘要:㊀介绍了美国«零能耗和零碳建筑评价标准»(ASHRAE228 2023)的概况ꎬ标准提出了 净零能耗 建筑和 净零碳 建筑的定义ꎬ用于判定新建建筑与既有建筑的设计方案或运行状态是否达到净零能耗或净零碳排放ꎮ标准为跨建筑和跨场地边界的能量与碳的流动提出了量化计算方法ꎬ并对利用场外可再生能源和购买碳补偿制定了规则和限制条件ꎮ从适用范围㊁场地边界㊁能耗计算㊁碳排放计算㊁碳补偿5个方面介绍了该标准的主要技术内容ꎮ通过与我国«近零能耗建筑技术标准»«碳中和建筑评价导则»等标准对比发现ꎬ中美两国零能耗建筑和零碳建筑理念总体相通ꎬ但在计算方法存在不同ꎮ探讨了我国零碳(能耗)建筑评价体系存在的问题ꎬ提出了进一步完善标准体系的建议ꎮ关键词:㊀零能耗建筑ꎻ㊀零碳建筑ꎻ㊀可再生能源中图分类号:㊀TU201 5㊀㊀㊀文献标志码:㊀A㊀㊀㊀文章编号:㊀2096 ̄9422(2023)12 ̄0120 ̄03OverviewofASHRAE228 ̄2023anditsComparisonwithRelevantStandardsinChinaWANGZhao1ꎬTIANHao2ꎬJIARuiyuan3ꎬLIMeng1ꎬLIZhen1(1.ShandongAcademyofBuildingResearchꎬJinan250014ꎬChinaꎻ2.ShandongConstructionSupervisionConsultingCo.ꎬLtd.ꎬJinan250014ꎬChinaꎻ3.DongyingHousingandUrbanRuralDevelopmentBureauꎬDongying257055ꎬShandongꎬChina)㊀㊀Abstract:ThegeneralopinionofMethodofEvaluatingZeroNetEnergyandZeroNetCarbonBuildingPerformance(ASHRAE228 ̄2023)ispresentedꎬwhichsetsrequirementsforevaluatingwhetherabuildingorgroupofbuildingsmeetsadefinitionof zeronetenergy orwhetherthosebuildingsmeetadefinitionof zeronetcarbon .Itprovidesaconsistentmethodofexpressingqualificationsforzeronetenergyandzeronetcarbonbuildingsassociatedwiththedesignofnewbuildingsandtheoperationofexistingbuildings.Off ̄siterenewableEnergyprocurementlimitandCreditedCarbonOffsetlimitaregiven.Itsmaintechnicalcontentsfromfiveperspectivesofsiteꎬscopeꎬboundaryꎬsourceenergyꎬgreenhousegasemissionsꎬcarbonoffset.Comparingwithtechnicalstandardfornearlyzeroenergybuildingsandassessmentguidelineforcarbon ̄neutralbuildinginChinaꎬthezeroenergyandcarbonconceptofUSAisgenerallysimilartoChinesestandardsꎬbutthemethodofcalculationisdifferent.TheproblemsexistingintheassessmentsystemofzerocarbonbuildinginChinaarediscussedwithsuggestionsforfurtherimprovementtheassessmentsystem.㊀㊀Keywords:zeronetenergybuildingꎻzeronetcarbonbuildingꎻrenewableenergy0 引言习近平总书记在2020年9月22日的联合国大会上郑重宣布ꎬ中国政府在减缓气候变化方面将在2030年之前实现碳达峰ꎬ力争2060年实现碳中和ꎮ根据相关数据ꎬ建筑运行碳排放约占全社会碳排放的22%ꎬ零碳建筑将成为建筑领域降低化石能源消耗的重要形式之一ꎮ目前我国已经开展了关于零能耗建筑和零碳王昭ꎬ等:ASHRAE228-2023简介及与我国相关标准的对比建筑定义㊁计算边界和技术指标的相关研究[1-10]ꎬ并颁布实施了«近零能耗建筑技术标准»和«碳中和建筑评价导则»[11ꎬ12]等技术文件ꎮ«零碳建筑评价标准»㊁«零碳医院评价标准»㊁«零碳社区评价标准»㊁«零碳园区评价标准»和«零碳校园评价标准»等系列评价标准正在编制过程中ꎮ为了给我国零碳建筑系列标准的制定和完善提供借鉴ꎬ本文介绍了美国最新的零能耗建筑和零碳建筑评价标准ꎬ并与我国相关标准进行比较ꎮ1㊀标准概况美国2023年2月发布首个零能耗和零碳建筑标准 MethodofEvaluatingZeroNetEnergyandZeroNetCarbonBuildingPerformance (ASHRAE228-2023)[13]ꎮ该标准规定了单体建筑或建筑群在运行过程中是否符合 零能耗建筑 或 零碳建筑 的评估流程ꎬ提出了场地边界上能源㊁碳流测量和平衡的计算方法ꎮ同时对场地外可再生能源利用和碳补偿做了技术要求ꎮ该标准共分为9章及6个附录ꎮ主要技术内容包括:①目的ꎻ②适用范围ꎻ③术语和符号ꎻ④管理㊁执行和合规ꎻ⑤场地边界能量流动计算ꎻ⑥建筑一次能源计算ꎻ⑦建筑温室气体排放计算ꎻ⑧场地边界外可再生能源利用确认和碳抵消限额ꎻ⑨规范性引用文件ꎮ附录包括:A基本信息表ꎻB场地边界外可再生能源利用信息表ꎻC建筑隐含能(碳)计算ꎻD能源转换系数ꎻE温室气体全球变暖潜值ꎻF资料性引用文件ꎮ2㊀技术要求2 1㊀适用范围ASHRAE228适用于建筑运行阶段的能耗和碳排放计算ꎮ另外碳排放计算包含了制冷剂泄漏对于全球变暖影响ꎮ中国城市科学研究会«碳中和建筑评价导则»评价分为两个层级ꎬ建筑运行碳中和评价㊁建筑全生命期的碳中和评价ꎮ其中建筑运行碳是建筑运行阶段使用能源产生的碳排放ꎬ建筑全生命期阶段又包括了建筑材料生产阶段隐含碳㊁建造阶段隐含碳㊁使用阶段隐含碳和报废阶段隐含碳等四部分ꎮ但两个层级评价都不包括制冷剂泄漏造成的全球变暖影响ꎮ中国工程建设标准化协会标准«零碳建筑及社区技术规程»(征求意见稿)分为3个层级ꎬ分别是零碳建筑㊁全生命期零碳建筑㊁气候中性建筑ꎮ其中零碳建筑计算建筑运行阶段碳排放量和补偿量小于等于零的建筑ꎬ这个概念和ASHRAE228中的零碳建筑范围是一致的ꎮ只有气候中性建筑才计算制冷剂泄漏的全球变暖影响ꎮ2 2㊀场地边界和边界线内的能量流动ASHRAE228场地边界是由单体建筑㊁建筑的一部分或建筑群组成ꎬ并且通过内部道路连接且所有权或者控制权为同一单位或者部门ꎮ计算场地边界基本和我国的建筑红线概念一致ꎮASHRAE228中场地边界和边界线内的能量流动如图1所示ꎮ图1㊀场地边界输入和输出能源示意图㊀㊀场地边界的能量流动包含输入㊁输出和其他三个方面:(1)输入能源包括场地边界外非可再生能源的输入㊁边界外特定的能源输入(例如企业自备电厂输入电力ꎬ其能源换算系数和碳排放因子与社会平均系数差异明显)㊁边界内的交通工具能耗(如边界内使用的叉车㊁输送带等)㊁边界内园林绿化设备能耗ꎬ默认值0 0189kW h/(m2 a)ꎮ(2)输出能源包括场地边界内非可再生能源输出㊁边界内可再生能源输出㊁场地内对交通工具的能源输出(电动车充电能耗应在建筑能耗中扣除)ꎮ(3)其他项包括场地边界外的可再生能源㊁边界内自用非可再生能源ꎮ2 3㊀建筑能耗计算ASHRAE228建筑能耗计算都要折算为一次能源后再进行评价ꎬ与«近零能耗建筑技术标准»(GB/T51350 2019)中把各种能源利用能源换算系数统一换算为标准煤当量的概念是一致的ꎬ但在具体的计算过程中存在部分差异ꎮASHRAE228场地内净能耗如式(1)所示:Enet= (EimpˑSFimp)-[ (EexpˑSFexp)+ (ErecˑSFrecˑDFrec)](1)式中:Enet为场地内净能耗量ꎻEimp为输入场地边界内的各种能源消耗量ꎻSFimp为输入边界内的各种能源的能源换算系数ꎻEexp为输出边界外的各种能源消耗量ꎻSFexp为输出边界外的各种能源的能源换算系数ꎻErec为场地边界外可再生能源输入ꎻSFrec为边界外可再生能源的能源换算系数ꎻDFrec为边界外可再生能源输入的折算因子(对于2022年以后运行的可再生能源设施默认值0 95)ꎮWANGZhaoꎬetal.OverviewofASHRAE228 ̄2023anditsComparisonwithRelevantStandardsinChina«近零能耗建筑技术标准»(GB/T51350 2019)中规定零能耗建筑是建筑本体和周边可再生能源产能量不应小于建筑年终端能源消耗量ꎮ建筑终端能源消耗是指全部能源消耗ꎬ包括供暖㊁通风㊁供冷㊁照明㊁生活热水㊁电梯㊁插座和炊事等ꎮ两者对比分析ꎬ国外标准考虑边界内的能源输入和输出更为全面ꎬ包含了场地边界内运输工具能耗㊁场地内园林绿化设备能耗㊁场地内电动车充电能耗㊁场界外可再生能源输入折算等内容ꎮ我国近零能耗建筑技术标准更侧重与建筑本体能耗ꎬ对发生在建筑红线和建筑本体之间的能耗考虑较少ꎮ2 4㊀建筑碳排放计算ASHRAE228场地内净碳排放如式(2)所示:GHGnet=[ð(EimpˑGEFimp)+ð(REFleakˑGEFref)]-[ð(EexpˑGEFexp)+(ErecˑGEFrecˑDFrec)+CCO](2)式中:GHGnet为场地内净碳排放ꎻEimp为输入边界内的各种能源消耗量ꎻGEFimp为输入边界内的各种能源碳排放因子ꎻREFleak为边界内制冷剂泄漏量ꎻGEFref为制冷剂温室气体排放因子ꎻEexp为输出边界外的各种能源消耗量ꎻGEFexp为输出边界外的各种能源碳排放因子ꎻErec为边界外可再生能源输入ꎻGEFre为边界外可再生能源输入碳排放因子ꎻDFrec为边界外可再生能源折算因子ꎻCCO为碳抵消ꎮ2 4 1㊀边界内制冷剂泄漏量计算ASHRAE228给出了不同机组类型制冷剂泄漏量的简化算法ꎬ如表1所示ꎮ表1㊀典型机组每年制冷剂泄漏比例序号机组类型每年泄漏比例/%1超市制冷设备302冷库制冷设备153冷水机组54屋顶式空气调节机组65分体热泵和空调26变制冷剂流量空调系统107其他制冷(空调系统)2㊀㊀中国工程建设标准化协会标准«零碳建筑及社区技术规程»(征求意见稿)附录B温室气体排放计算方法中没有给出制冷剂泄漏量的计算方法ꎮ2 4 2㊀信用碳补偿限额碳补偿是建筑业主通过购买其他地区/项目的碳减排量ꎬ用于补偿其无法减少的温室气体ꎮASHRAE228给出了碳补偿的限值ꎬ如式(3)所示:CCOɤð(REFleakˑGEFref)+[0 20ˑð(EimpˑGEFimp)](3)式中:CCO为碳补偿ꎻEimp为输入边界内的各种能源消耗量ꎻGEFimp为输入边界内的各种能源碳排放因子ꎻREFleak为边界内制冷剂泄漏量ꎻGEFref为制冷剂温室气体排放因子ꎮ«碳中和建筑评价导则»和«零碳建筑及社区技术规程»(征求意见稿)也明确指出零碳建筑可引入绿色电力交易㊁碳交易等方式ꎮ同时也指出要预防采用碳减排产品抵消碳排放的做法ꎬ逃避自身应进行节能减碳的义务ꎬ避免 漂绿 嫌疑ꎬ但尚未给出如何保证的技术措施ꎬ美国标准的做法可供借鉴ꎮ2 4 3㊀全球变暖潜值选取全球变暖潜能值(GWP)用来表示和比较消耗臭氧层物质对全球气候变暖影响力大小的一种量值ꎮ表示在一定时间内(20年㊁100年㊁500年)ꎬ某种温室气体的温室效应对应于相同效应CO2的质量ꎬCO2的GWP为1 0ꎮ通常基于100年计算GWPꎬ记作GWP100ꎮGWP20比GWP100数值上要明显高ꎮ考虑到当前碳达峰的紧迫性ꎬ有必要研究确定选取GWP20和GWP100哪个指标更合理ꎮ不同制冷剂全球变暖潜值如表2所示ꎮ表2㊀典型制冷剂全球变暖潜值序号制冷剂类型GWP100(kgCO2/kg制冷剂)GWP20(kgCO2/kg制冷剂)1HCFC-22176056902HCFC-123793253HCFC-134a130041403㊀对我国零能耗和零碳建筑评价标准体系建议㊀㊀美㊁中两国的零能耗和零碳建筑评价标准体系在总体相通㊁大体相当的同时ꎬ也各有侧重和特色ꎮ为适应我国对外发展战略需求ꎬ接轨国际标准体系ꎬ在具体技术点上ꎬ美国标准一些方式方法和技术参数ꎬ也有一定参考借鉴价值ꎬ具体如下:(1)计算边界的输入和输出能源类别应更加明确ꎬ如边界内运输工具能耗㊁边界内园林绿化设备能耗㊁边界内电动车充电㊁场界外可再生能源折算等都进行了考虑ꎮ(2)建筑运行阶段是否考虑制冷剂泄漏影响需要探讨ꎬ计算方法需要进一步研究ꎮ(3)信用碳补偿是否规定限值需要进一步研究ꎬ避免 飘绿 现象ꎮ(下转第142页)NIELiwuꎬetal.NumericalSimulationofSeismicPerformanceofExternalCompositeWallandIntegralSystem参考文献:[1]卜式.装配整体式保温复合墙体系龙骨间距优化和抗震性能研究[D].长沙:长沙理工大学ꎬ2019.[2]丁发兴ꎬ王恩ꎬ吕飞ꎬ等.考虑组合作用的钢-混凝土组合梁抗剪承载力[J].工程力学ꎬ2021ꎬ38(7):86-98.[3]徐鹏辉.新型冷弯薄壁型钢复合钢皮剪力墙抗震性能研究[D].南京:东南大学ꎬ2017.[4]齐芮.角撑加强型冷弯薄壁型钢组合墙体抗震性能研究[D].沈阳:沈阳建筑大学ꎬ2020.[5]李禹东ꎬ王春刚ꎬ张壮南.夹心冷弯薄壁型钢组合墙体抗剪性能有限元分析[C]//中国钢结构协会结构稳定与疲劳分会第17届(ISSF-2021)学术交流会暨教学研讨会论文集ꎬ2021:112-116. [6]GB50011 2010ꎬ建筑抗震设计规范[S].2010.[7]李元齐ꎬ马荣奎.冷弯薄壁型钢龙骨式剪力墙抗震性能简化及精细化数值模拟研究[J].建筑钢结构进展ꎬ2017ꎬ19(6):25-34. [8]李宁.冷弯薄壁型钢新型龙骨体系住宅抗震性能分析[D].沈阳:沈阳建筑大学ꎬ2018.[9]黄智光ꎬ苏明周ꎬ何保康ꎬ等.冷弯薄壁型钢三层房屋振动台试验研究[J].土木工程学报ꎬ2011ꎬ44(2):72-81.[10]陈倩楠.多层加劲轻钢龙骨体系抗震性能分析[D].沈阳:沈阳建筑大学ꎬ2020.[11]白峻昶ꎬ靳金平.时程分析用地震波选取的探讨[J].山西建筑ꎬ2007ꎬ33(3):62-63.[12]马荣奎ꎬ李元齐.低层冷弯薄壁型钢龙骨体系房屋抗震性能有限元分析[J].建筑结构学报ꎬ2014ꎬ35(5):40-47.[13]王春刚ꎬ李宁ꎬ张壮南.刚性斜撑对冷弯薄壁型钢结构住宅体系抗震性能的影响研究[J].钢结构ꎬ2017ꎬ32(12):45-51.[14]JGJ227 2011ꎬ低层冷弯薄壁型钢房屋建筑技术规程[S].2011.ә作者简介(通讯作者):聂立武(1979)ꎬ男ꎬ辽宁阜蒙人ꎬ毕业于哈尔滨工业大学ꎬ土木工程专业ꎬ硕士ꎬ教授ꎬ研究方向为新型建筑材料(Nieliwu2008@163.com)ꎮ(上接第73页)[3]侯越斌ꎬ宋国涛ꎬ陈黎凤ꎬ等.洛阳市某老旧小区改造节能效果模拟分析[J].城市住宅ꎬ2021ꎬ28(9):229-231.[4]肖敏ꎬ张云艳ꎬ李翰宇ꎬ等.基于BIM的长沙市城镇老旧小区既有住宅外墙和外窗节能改造研究[J].建筑节能(中英文)ꎬ2022ꎬ50(5):111-117.[5]李芳德ꎬ张伟捷ꎬ王艳ꎬ等.夏热冬暖地区农村建筑节能改造与装配式建筑应用分析[J].建筑结构ꎬ2021ꎬ51(S1):1059-1065. [6]金国辉ꎬ赵茜健.呼包鄂地区住宅建筑围护结构节能潜力的DeST正交模拟[J].土木工程与管理学报ꎬ2016ꎬ33(6):63-66. [7]黄莺ꎬ王昭俊.基于DeST对夏热冬冷地区农宅能耗的分析[J].建筑技术开发ꎬ2016ꎬ43(6):85-87.[8]彭靖.基于BIM技术的老旧住宅建筑节能改造研究[J].产业创新研究ꎬ2022ꎬ(2):83-85.[9]孟山青ꎬ刘靖ꎬ袁涛ꎬ等.基于DeST的忻州市某农村住宅节能改造分析[J].建筑技术开发ꎬ2016ꎬ43(4):66-68.[10]王乙茜.基于DeST-H的成都市乡村住宅能耗模拟与节能改造研究[J].建筑与文化ꎬ2022ꎬ(5):49-51.[11]李旻阳ꎬ王青平ꎬ宁炜.基于DeST的被动式居住建筑能耗模拟分析[J].建筑技术开发ꎬ2016ꎬ43(4):62-65.[12]朱赛鸿ꎬ余兴也.基于DeST的天津既有农宅节能改造经济效益研究[J].建筑节能(中英文)ꎬ2022ꎬ50(6):121-125.[13]徐寿松.从住宅节能中要回 三峡电站 [J].环境经济ꎬ2006ꎬ(S1):102.[14]周祖红.LED光源技术特性与节能环保效益分析[J].湖南水利水电ꎬ2018ꎬ(1):58-60.ә作者简介(通讯作者):何军(1990)ꎬ男ꎬ安徽合肥人ꎬ建筑与土木工程专业ꎬ硕士ꎬ工程师ꎬ研究方向为绿色建筑技术与建筑节能(411759008@qq.com)ꎮ(上接第122页)参考文献:[1]徐伟ꎬ孙德宇ꎬ路菲ꎬ等.近零能耗建筑定义及指标体系研究进展[J].建筑科学ꎬ2018ꎬ34(4):1-9.[2]徐伟ꎬ杨芯岩ꎬ张时聪.中国近零能耗建筑发展关键问题及解决路径[J].建筑科学ꎬ2018ꎬ34(12):165-173.[3]江亿ꎬ胡姗.中国建筑部门实现碳中和的路径[J].暖通空调ꎬ2021ꎬ51(5):1-13.[4]张时聪ꎬ刘常平ꎬ王珂ꎬ等.零碳建筑定义及碳排放计算边界研究[J].建筑科学ꎬ2022ꎬ38(12):283-290.[5]张时聪ꎬ王珂ꎬ杨芯岩ꎬ等.低碳㊁近零碳㊁零碳居住建筑碳排放控制指标研究[J].建筑科学ꎬ2023ꎬ39(2):11-19.[6]张时聪ꎬ王珂ꎬ徐伟.低碳㊁近零碳㊁零碳公共建筑碳排放控制指标研究[J].建筑科学ꎬ2023ꎬ39(2):1-10.[7]张时聪ꎬ王珂ꎬ徐伟.建筑碳排放标准化计算的电力碳排放因子取值研究[J].建筑科学ꎬ2023ꎬ39(2):46-57.[8]董建锴ꎬ高游ꎬ孙德宇ꎬ等.建筑领域碳中和相关定义㊁目标及技术路线概览[J].暖通空调ꎬ2023ꎬ53(10):69-78.[9]冯国会ꎬ吴苏洋ꎬ常莎莎.零碳建筑及其关键技术分析[J].节能ꎬ2023ꎬ42(5):68-72.[10]娄中凯ꎬ孙留存ꎬ苏卫江ꎬ等.净零碳建筑实施路径探索 以济南领秀城檀樾项目为例[J].建筑经济ꎬ2022ꎬ43(S2):322-325. [11]中国建筑科学研究院有限公司.GB/T51350 2019ꎬ近零能耗建筑技术标[S].北京:中国建筑工业出版社ꎬ2019.[12]中国城市科学研究会.碳中和建筑评价导则[EB/OL].(2022-06-15)[2023-11-13]http://www.chinasus.org/index.php?c=content&a=show&id=997[13]ANSI/ASHRAE.ANSI/ASHRAEStandard228-2023ꎬStandardMethodofEvaluatingZeroNetEnergyandZeroNetCarbonBuildingPerformance[S].PeachtreeCornersꎬGA:AmericanNationalStandardsInstituteꎬ2023.ә作者简介(通讯作者):王昭(1972)ꎬ男ꎬ山东济南人ꎬ暖通空调专业ꎬ硕士ꎬ主要从事建筑节能㊁暖通空调㊁绿色建筑等方面的研究(sdjkt@163.com)ꎮ。

Belimo 空气控制系统技术文档说明书

Belimo 空气控制系统技术文档说明书

T e c h .D o c - 01/20 - S u b j e c t t o c h a n g e . © B e l i m o A i r c o n t r o l s (U S A ), I n c .Input/Output SpecificationsType Name Description Electrical Specifi cation Input RSupply HotAC 24 V, ± 20%, 50/60HzInputG/OCCFan Signal (occupied)On/Off, AC 24 V, ± 20%, 50/60Hz Input C Supply Common CommonInput Y1Cooling requirement Stage 1On/Off, AC 24 V, ± 20%, 50/60Hz Input Y2Cooling requirementStage 2On/Off, AC 24 V, ± 20%, 50/60Hz Input W1/O/B Heating requirement Stage 1On/Off, AC 24 V, ± 20%, 50/60Hz Input SAT ±Supply Air TemperatureSensorType: 10K NTC (Type II thermistor)Input OAT ±Outdoor Air Temperature Type: 10K NTC (Type II thermistor)InputOAH ±Outdoor Air HumidityDC 0...10 VAuto Detection: Sensor present if voltage 0.5...10 VInput RAT ±Return Air Temperature Type: 10K NTC (Type II thermistor)Input RAH ±Return Air Humidity DC 0...10 VAuto Detection: Sensor present if voltage 0.5 (10V)Output CC1Compressor 1RTU Stage 1Mechanical Cooling Circuitry 100'000 cycles @ inrush currentof 3A, normal current 1.5A Impedance for Auto detection @ 24 V:<60O Ω @ 60Hz <80O Ω @ 50HzOutputCC2Compressor 2RTU Stage 2Mechanical CoolingCircuitry100'000 cycles @ inrush currentof 3A, normal current 1.5A Impedance for Auto detection @ 24 V:<60O Ω @ 60Hz <80O Ω @ 50HzOutput Act 1Actuator supply common Common Output Act 2Actuator supply hot AC 24 V, 50/60Hz Output Act 3Actuator control output DC 2...10 V Input Act 5Actuator feedback signalDC 2...10 VInstallationYou can mount the ZIP Economizer in any orientation; it is recommended that you mount it in a position that will allow full utilization of the LCD and key pad and proper clearance for installation, servicing, wiring, and removal.Take the overall dimensions of 6.63" [168.5] x 7.12" [181] x 2" [50.8] and mount in the interior of the RTU in a convenient location that you can access. Secure the ZIP utilizing #8 self-tapping screws (included). A minumum of two tabs need to be secured, one which is a top tab. Ideally secure all four tabs. Wire the electrical connection using ¼” female insulated spade connectors to prevent corrosion.Technical DataPower supplyAC 24 V ± 20%, 50/60 Hz; Class 2 power source Power consumption rating*4 VA base control (ECON-ZIP-BASE)5.5 VA base control with Energy Module (ECON-ZIP-BASE + ECON-ZIP-EM)5 VA base control with Communication Module (ECON-ZIP-BASE + ECON-ZIP-COM)6.5 VA base with Energy Module andCommunication Module. (ECON-ZIP-BASE + ECON-ZIP-EM + ECON-ZIP-COM)Rated impulse voltage 330 VConnectors ¼” male spade connectors Environmental RoHS, conformally coated Software classA Control pollution degree 3Temperature input signal NTC 10k Ω, Type IIHumidity5 to 95% RH non-condensingHumidity input signal DC 0...10 V; corresponds to 0...100%HousingNEMA 1Housing materialUL94-5VAAmbient temperature range -40...+158°F [-40...+70°C]Storage temperature range -40...+176°F [-40...+80°C]Display2x16 character LCD; LED backlight; transflectiveDisplay op. range**-22...+176°F [-30...+80°C]Agency listing cULus acc. to UL873, CAN/CSA C22.2, No. 24-93Energy code compliantASHRAE 90.1, CA Title 24, NECBDimensions (Inches [mm])7.12 [181]2.42 [61.6]0.18 [4.6]6.04 [153.4]5.5 [140]6.63 [168.5]2 [50.8]0.16 [4.1]ECON-ZIP-BASEZIP Economizer™ Base Module* The power consumption is for the control only and does not include connected loads such as actuator, compressors, fans, and sensors. For transfomer sizing, the power consumption of these attached components must be included.** At low temperature the display has decreased response time. Below -22°F [-30°C] it will not function.T e c h .D o c - 01/20 - S u b j e c t t o c h a n g e . © B e l i m o A i r c o n t r o l s (U S A ), I n c .ECON-ZIP-BASEZIP Economizer™ Base Module Wiring DiagramsR CG OCC W1O/B Y1Y2ACT1ACT2ACT3ACT5R C R CG/OCC W1/O/B Y1Y2CC1CC2OAT+OAT-OAH+OAH-SAT+SAT-RAT+RAT-RAH+RAH--SR1 -Common2 + Hot3 Y Input, 2 to 10V 5 U Output, 2 to 10VACT 1ACT 2ACT 3ACT 5R CY1Y2ECON-ZIP-10K Supply Air TempSAT +SAT -OAT + OAT -CC1CC2OCC W1RTU Stage 1 Mechanical CoolingCircuitryRTU Stage 2 Mechanical CoolingCircuitryECON-ZIP-10K Outside Air TempTHERMOSTATRTU TERMINALECON-ZIP-BASE575251535659R CG OCCW1O/B Y1Y2ACT1ACT2ACT3ACT5R C R CG/OCC W1/O/B Y1Y2CC1CC2OAT+OAT-OAH+OAH-SAT+SAT-RAT+RAT-RAH+RAH--SR1 -Common2 + Hot3 Y Input, 2 to 10V 5 U Output, 2 to 10VACT 1ACT 2ACT 3ACT 5R CY1Y2ECON-ZIP-10K Supply Air Temp SAT +SAT -CC1CC2OCC W1RTU Stage 1 Mechanical CoolingCircuitry RTU Stage 2 Mechanical CoolingCircuitryECON-ZIP-TH Outside Air EnthalpyT (+)T (-)24 V (R)RH (+)RH (-)OAT + OAT -OAH + OAH - RECON-ZIP-BASETHERMOSTATRTU TERMINAL57505251535659When the thermostat is not equipped with occupancy control, "Fan On" output "G" shall be wired to the ECON-ZIP-BASE.W1 must be wired for Heat Pump operation if conventional thermostat is used in conjunction with Defrost Board. If Thermostat and RTU use O/B control reversing valve position, O/B must be wired to W1 on ECON-ZIP-BASE.Existing refrigeration safety devices may exist, consult RTU wiring diagram515253If RTU is not a Heat Pump using a conventional thermostat and it is desired to record heating operation hours, connect W1 to ECON-ZIP-BASE.56Actuators can be mounted in parallel with the ACT3 output from the ZIP Economizer. The ACT5 feedback input should be wired to the Outside Air damper actuator feedback wire.57Iso relay may be required with certain RTU manufacturers.59Power source should be the same as ECON-ZIP-BASE.50When the thermostat is not equipped with occupancy control, "Fan On" output "G" shall be wired to the ECON-ZIP-BASE.Existing refrigeration safety devices may exist, consult RTU wiring diagram5153If RTU is not a Heat Pump using a conventional thermostat and it is desired to record heating operation hours, connect W1 to ECON-ZIP-BASE.56W1 must be wired for Heat Pump operation if conventional thermostat is used in conjunction with Defrost Board. If Thermostat and RTU use O/B control reversing valve position, O/B must be wired to W1 on ECON-ZIP-BASE.52Actuators can be mounted in parallel with the ACT3 output from the ZIP Economizer. The ACT5 feedback input should be wired to the Outside Air damper actuator feedback wire.57Thermostat with two (2) stages of cooling required. Thermostats with mercury switches are not compatible with the ZIP Economizer.58Iso relay may be required with certain RTU manufacturers.59T e c h .D o c - 01/20 - S u b j e c t t o c h a n g e . © B e l i m o A i r c o n t r o l s (U S A ), I n c .R CG/OCCW1/O/BY1Y2ACT1ACT2ACT3ACT5R C R CG/OCC W1/O/B Y1Y2CC1CC2OAT+OAT-OAH+OAH-SAT+SAT-RAT+RAT-RAH+RAH--SR1 -Common2 + Hot3 Y Input, 2 to 10V 5 U Output, 2 to 10VACT 1ACT 2ACT 3ACT 5R CY1Y2ECON-ZIP-10K Supply Air Temp SAT +SAT -OAT + OAT -CC1CC2G/OCC W1/O/BRTU Stage 1 Mechanical CoolingCircuitry RTU Stage 2 Mechanical CoolingCircuitryECON-ZIP-TH Outside Air EnthalpyECON-ZIP-THRAT+T (+)T (-)24 V (R)RH (+)RH (-)RAT-RAH+RAH-RT (+)T (-)24 V (R)RH (+)RH (-)OAH + OAH - RECON-ZIP-BASETHERMOSTATRTU TERMINAL5859R CG/OCC W1/O/BY1Y2ACT1ACT2ACT3ACT5R C R CG/OCC W1/O/B Y1Y2CC1CC2OAT+OAT-OAH+OAH-SAT+SAT-RAT+RAT-RAH+RAH--SR1 -Common2 + Hot3 Y Input, 2 to 10V 5 U Output, 2 to 10VACT 1ACT 2ACT 3ACT 5R CY1Y2ECON-ZIP-10K Supply Air TempSAT +SAT -OAT + OAT -THERMOSTATRTU TERMINALCC1CC2G/OCC W1/O/BRTU Stage 1 Mechanical CoolingCircuitry RTU Stage 2 Mechanical CoolingCircuitryECON-ZIP-10K Outside Air TempECON-ZIP-10K Return Air TempRAT+ECON-ZIP-BASE57RAT-59Power source should be the same as ECON-ZIP-BASE.50When the thermostat is not equipped with occupancy control, "Fan On" output "G" shall be wired to the ECON-ZIP-BASE.Existing refrigeration safety devices may exist, consult RTU wiring diagram5153If RTU is not a Heat Pump using a conventional thermostat and it is desired to record heating operation hours, connect W1 to ECON-ZIP-BASE.56W1 must be wired for Heat Pump operation if conventional thermostat is used in conjunction with Defrost Board. If Thermostat and RTU use O/B control reversing valve position, O/B must be wired to W1 on ECON-ZIP-BASE.52Actuators can be mounted in parallel with the ACT3 output from the ZIP Economizer. The ACT5 feedback input should be wired to the Outside Air damper actuator feedback wire.57Thermostat with two (2) stages of cooling required. Thermostats with mercury switches are not compatible with the ZIP Economizer.58Iso relay may be required with certain RTU manufacturers.59Power source should be the same as ECON-ZIP-BASE.50When the thermostat is not equipped with occupancy control, "Fan On" output "G" shall be wired to the ECON-ZIP-BASE.Existing refrigeration safety devices may exist, consult RTU wiring diagram5153If RTU is not a Heat Pump using a conventional thermostat and it is desired to record heating operation hours, connect W1 to ECON-ZIP-BASE.56W1 must be wired for Heat Pump operation if conventional thermostat is used in conjunction with Defrost Board. If Thermostat and RTU use O/B control reversing valve position, O/B must be wired to W1 on ECON-ZIP-BASE.52Actuators can be mounted in parallel with the ACT3 output from the ZIP Economizer. The ACT5 feedback input should be wired to the Outside Air damper actuator feedback wire.57Thermostat with two (2) stages of cooling required. Thermostats with mercury switches are not compatible with the ZIP Economizer.58Iso relay may be required with certain RTU manufacturers.59ECON-ZIP-BASEZIP Economizer™ Base Module Wiring DiagramsT e c h .D o c - 01/20 - S u b j e c t t o c h a n g e . © B e l i m o A i r c o n t r o l s (U S A ), I n c .ZIP EconomizerQuick SetupMoves up through the menu on the same level. Will increase values by one increment at a time. When setting values holding key down willfast scrollMoves down through the menu on the same level. Will decrease values by one increment at a time. When setting values holding key down will fast scroll. Enter sub menu level. Start editing a setting. Store an entered value. esc Escape sub menu tonext higher level.Cancel current actions.iShow additional information on thecurrent menu Itemwhen “i” appears inlower right of display.Moves down through the menu on the same level.Will decrease values by one increment at a time. When setting values holding key down will fast scroll.Enter sub menu level.Start editing a setting. Store an entered value. esc Escape sub menu to next higher level.Cancel current actions.iShow additional information on the current menu Item when “i” appears in lower right of display.Functions1. “Monitor Live Conditions” is used to display settings and live values.2. “Settings” is used to parameterize the ZIP Economizer. (Note: Devices 1 is for CC1, CC2, EF, IF; Devices 2 is for OAH, RAH)3. “Present Devices” is used to verify that the ZIP Economizer's Auto Detected connections are terminated properly. If connected device is not shown, verify wiring. If wiring has continuity and device is verifi ed operational re-enter “Settings” and enable missing device by changing from “Auto” to “Available” or “Installed”.4. “Alarms” is used to view current and historical alarms and delete inadvertently caused alarms.5. “Service and Commissioning” submenu is used to operate the RTU in “Manual Mode” or to perform “Acceptance Test”. “Settings” must to be completed to access.6. “Status” is a display of the current operating mode. It can beaccessed by pressing ”esc”. The action of pressing any key will drop the user down from Status to the next level, so repeatedly pressing “esc” will toggle the display between Status and Monitor Live Conditions. (Note: If status “Setup incomplete” is displayed the RTU cooling operation will be disabled and additional parameters must be set to achieve “Setup complete”.)1. Shut off power to RTU before beginning installation.2. Note orientation, opening rotation, and spring return rotation of damper assembly. Mount Actuator to Outside Air and Return Damper assembly. To ensure tight outside air shutoff; while tightening actuator clamp push damper closed.3. Terminate required Inputs and Outputs(I/O): For the ZIPEconomizer to function correctly, the following I/O, at a minimum, are required to be terminated, wired, and functioning (R, C, Y1, Y2, G, CC1, OAT, SAT, ACT1, ACT2, ACT3, ACT5). See wiring diagrams.4. Sensor confi guation: The ZIP Economizer automatically detects sensors attached and automatically confi gures for single dry bulb, single enthalpy, differential dry bulb and differential enthalpy.“Settings” is the menu displayed when the ZIP Economizer is fi rstpowered. Press “OK” to parameterize required settings. Reference above Keypad Key defi nition instructions and navigate as needed.WARNING Live Electrical Components!During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. H ave a qualifi ed licensed electrician or other individual who has been properly trained in handling live electrical components perform these t asks. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.T e c h .D o c - 01/20 - S u b j e c t t o c h a n g e . © B e l i m o A i r c o n t r o l s (U S A ), I n c .1. ZIP Code US or Canada (sets the free cooling changeover high limit and temperature units F/C)a. When the Zip Code submenu is displayed enter “OK” to begin “US” Zip Code parameterization. If “Canada” Postal Code is desired press the up/down arrow to access.i. Press OK to access digit 1 (flashing) then use the up/down arrow to parameterize; enter OK when complete. Repeat until all digits are complete. If a mistake is made press “esc” andrepeat from beginning.ii. When all Zip Code or Postal Code digits are entered press “esc” to move up a level then press the up/down arrow to access next settings parameter.2. Vent Min Pos (Outdoor Air Damper Ventilation Minimum Position)a. When the “Vent Min Pos” submenu is displayed press “OK” toparameterize (flashing).b. Use the up/down arrow to parameterize, press “OK” whencomplete. The actuator will immediately drive the damper to the minimum position.3. Additional Parameters may require setting. The ZIP Economizer will auto-detect added Devices such as a CO2 sensor etc. When the ZIP Economizer detects a new device, it will prompt the user in the Status level; navigate to Settings and parameterize blank fi elds. If the devices are connected upon fi rst start up their settings will require parameterization then.4. When all parameters have been set, the ZIP Economizer will show “Setup Complete” if there are still parameters to set, there will be no action. You can verify by pushing esc until status level is reached and it will display “Setup Incomplete”. If this is the case, re-enter settings menu and use up down arrows to fi nd the parameter with blank fi elds and parameterize as described above. Note: you may enter parameters in any order - eg: Vent min Pos before ZIP Code - If the RTU is a heat pump or uses a 2 speed indoor fan, these paramaters should be enabled fi rst, otherwise the logic may go to Setup Complete prematurely.The ZIP Economizer has built in commissioning processes found in Acceptance Test.1. Economizer Test. Use “Economizer Test” to verify RTU Integrated Economizer operation. Navigate to the “Service and Commissioning” menu, press “OK”; press the down arrow to access “Acceptance Test”. Press OK again when “Economizer Test” appears. Press “OK” again to confi rm running test. Follow prompts during test. This test will open damper to 100%, enable power exhaust fan (if connected), enable 1st stage of Mechanical Cooling, reverse this process and then drive to Vent Min Position. When used with a Belimo actuator, the actuator will speed up to reduce test time.2. Manual Mode is used to override outputs after entering a “Timeout” duration.3. Damper Scaling. The test will re-scale the control signal range to maximum resolution (0...100%) over the calibrated (reduced) angle. When using a Belimo actuator, the actuator will speed up to reduce test time.Note: Failure to identify obstructions or improper setup of damper assembly may result in an improper scaling and operation of the damper.)Additional testing can be found later in this document.1. When all entries have been completed, the ZIP Economizer will switch to Status display and show “Setup Complete”, and will immediately show a “Damper scaling starts in 10secs” and will countdown to 0 (be aware, at 0 the damper will start to move at high speed ). A message will scroll saying “Damper scaling for better operation if obstruction is present rescale damper in commissioning menu”. (For detailed instructions on this – please see the section “Service and Commissioning” below. This will open damper to 100% (re-scale control signal if needed). (Note: failure to identify obstructions or improper setup of damper assembly may result in an improper scaling and operation of the damper.)Once scaling is complete, a message will appear saying “Damper scaling successful”. The ZIP will then show “maximum at80° = 100%” That message will show maximum rotation of the damper. This process ensures the damper is always operating and displayed from 0...100%.2. Once the message has appeared, the actuator immediately closes the damper and a countdown begins, until the unit starts to operate in Automatic Mode (be aware, when countdown complete, the RTU will respond to thermostat calls which may enable mechanical cooling).ZIP EconomizerQuick Setup。

LEED V4和LEED V3得分点主要变化摘要

LEED V4和LEED V3得分点主要变化摘要

Prerequisite
Credit
• New credit. • Encourages early analysis of energy and water systems to inform design. • New credit. • Encourages selection of a LEED ND certified site. • Gives project teams a streamlined path to earn LT points. • Credit title renamed from “Site Selection”. • Credit language clarified. • Option for projects located on protected sites to earn credits through sensitive land best management practices. • Credit incorporates requirements from “Brownfield Remediation”. • Encourages selection of sites with development constraints. • Credit title renamed from “Development Density and Community Connectivity”. • Multiple thresholds to reward different density levels and amounts of diverse uses. • Projects earn points in the density and the diverse uses options separately. • Warehouse and distribution center requirements added to encourage development near commercial or industrial sites or near transportation infrastructure. • Credit title renamed from “Alternative Transportation— Public Transportation Access”. • Multiple thresholds to reward varying transit service levels. • Metric of radius changed to walk distance. • Frequency of transit included in metric. • Credit title renamed from “Alternative Transportation— Bicycle Storage and Changing Rooms” • Added a requirement to be located at a bicycle-accessible site or bicycle network. • Credit title renamed from “Alternative TransportationParking Capacity”. • Minimum parking requirements reference levels in the ITE Transportation Planning Handbook. • Option for No New Parking omitted. • Credit title renamed from “Alternative Transportation— Low-Emitting and Fuel-Efficient Vehicles”. • 3% of parking spaces must be reserved for green vehicles. P a g e | 10

暖通美标购买清单ASHRAE Standards List

暖通美标购买清单ASHRAE Standards List

ASHRAE Standards List美国暖通空调和制冷工程师协会标准目录Complete Set of StandardsStandard 15-2001 -- Safety Standard for Refrigeration Systems (ANSI approved) [CONTINUOUS MAINTENANCE STANDARD]Standard 15-2001 User’s ManualStandard 16-1983 (RA 99) -- Method of Testing for Rating Room Air Conditioners and Packaged Terminal Air Conditioners (ANSI approved)Standard 17-1998 (RA2003) -- Method of Testing Capacity of Thermostatic Refrigerant Expansion Valves (ANSI approved)Standard 18-1987 (RA 97) -- Methods of Testing for Rating Drinking-Water Coolers with Self-Contained Mechanical Refrigeration (ANSI approved)Standard 20-1997 -- Method of Testing for Rating Remote Mechanical-Draft Air-Cooled Refrigerant Condensers (ANSI approved)Standard 22-2003 –- Methods of Testing for Rating Water-Cooled Refrigerant Condensers (ANSI Approved) Standard 23-1993 -- Methods of Testing for Rating Positive Displacement Refrigerant Compressors and Condensing Units (ANSI approved)Standard 24-2000 -- Methods of Testing for Rating Liquid Coolers (ANSI approved)Standard 25-2001 -- Methods of Testing Forced Convection and Natural Convection Air Coolers for Refrigeration (ANSI Approved)Standard 26-1996 -- Mechanical Refrigeration and Air-Conditioning Installations Aboard Ship (ANSI approved)Standard 28-1996 (RA 02) -- Method of Testing Flow Capacity of Refrigerant Capillary Tubes (ANSI approved)Standard 29-1988 (RA 99) -- Methods of Testing Automatic Ice Makers (ANSI approved)Standard 30-1995 -- Method of Testing Liquid-Chilling Packages (ANSI approved)Standard 32.1-1997 -- Methods of Testing for Rating Bottled and Canned Beverage Vending Machines Standard 32.2-2003 Methods if Testing for Rating Pre-Mix and Post Mix Beverage Dispensing Equipment (ANSI Approved)Standard 33-2000 -- Methods of Testing Forced Circulation Air Cooling and Air Heating Coils (ANSI approved)Standard 34-2001 -- Designation and Safety Classification of Refrigerants (ANSI Approved)Standard 35-1992 -- Method of Testing Desiccants for Refrigerant Drying (ANSI approved)Standard 37-1988 -- Methods of Testing for Rating Unitary Air-Conditioning and Heat Pump Equipment Standard 40-2002 -- Methods of Testing for Rating Heat-Operated Unitary Air-Conditioning and Heat-Pump Equipment (ANSI approved)Standard 41.1-1986(RA 2001) -- Standard Method for Temperature Measurement (ANSI Approved) Standard 41.2-1987 (RA 92) -- Standard Methods for Laboratory Airflow Measurement (ANSI approved) Standard 41.3-1989 -- Standard Method for Pressure Measurement (ANSI approved)Standard 41.4-1996 -- Standard Method for Measurement of Proportion of Lubricant in Liquid Refrigerant Standard 41.6-1994 (RA 2001) -- Standard Method for Measurement of Moist Air Properties (ANSI Standard 41.7-1984 (RA 2000) -- Method of Test for Measurement of Flow of Gas (ANSI approved) Standard 41.8-1989 -- Standard Methods of Measurement of Flow of Liquids in Pipes Using Orifice Standard 41.9-2000 -- Calorimeter Test Methods for Mass Flow Measurements of Volatile Refrigerants Standard 41.10-2003 – Flow Meter Test Methods for Mass Flow Measurement of Volatile Refrigerants (ANSI Standard 51-1999 - Laboratory Methods of Testing Fans for Aerodynamic Performance Rating (AMCA Standard 210-99) (ANSI approved)Standard 52.1-1992 -- Gravimetric and Dust-Spot Procedures for Testing Air-Cleaning Devices Used in General Ventilation for Removing Particulate Matter (ANSI approved)Standard 52.2-1999 -- Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size (ANSI approved)Standard 55-1992 -- Thermal Environmental Conditions for Human Occupancy (ANSI approved) Standard 58-1986 (RA 99) -- Method of Testing For Rating Room Air Conditioner and Packaged Terminal Air Conditioner Heating Capacity (ANSI approved)Standard 62-2001 -- Ventilation for Acceptable Indoor Air Quality (ANSI Approved)Standard 62-2001 – Ventilation for Acceptable Indoor Air Quality (Spanish Edition)Standard 63.1-1995 (RA 01) -- Method of Testing Liquid Line Refrigerant Driers (ANSI approved)Standard 63.2-1996 -- Method of Testing Liquid Line Filter-Drier Filtration Capability (ANSI approved) Standard 64-1995 -- Methods of Testing Remote Mechanical-Draft Evaporative Refrigerant Condensers Standard 68-1997, Laboratory Method of Testing to Determine the Sound Power in a Duct (AMCA Standard 330-97) (ANSI approved)Standard 70-1991 -- Method of Testing for Rating the Performance of Air Outlets and Inlets (ANSI approved) Standard 72-1998 -- Method of Testing Open Refrigerators (ANSI approved)Standard 74-1988 -- Method of Measuring Solar-Optical Properties of MaterialsStandard 78-1985 (RA 03) -- Method of Testing Flow Capacity of Suction Line Filters and Filter-Driers (ANSI Standard 79-2002 -- Method of Testing for Rating Fan-Coil Conditioners (ANSI approved)Standard 84-1991 -- Method of Testing Air-to-Air Heat Exchangers (ANSI approved)Standard 86-1994 (RA 01) -- Methods of Testing the Floc Point of Refrigeration Grade Oils (ANSI approved) Standard 87.1-1992 -- Method of Testing Fan Vibration -- Blade Vibrations and Critical Speeds (ANSI Standard 87.2-2002 -- In-Situ Method of Testing Propeller Fans for Reliability (ANSI Approved)Standard 87.3-2001 -- Methods of Testing Propeller Fan Vibration -- Diagnostic Test Methods (ANSI Standard 90.1-2001 (I-P Version) -- Energy Standard for Buildings Except Low-Rise Residential Buildings (IESNA cosponsored; ANSI approved; Continuous Maintenance Standard), I-P EditionStandard 90.1-2001 (SI edition) -- Energy Standard for Buildings Except Low-Rise Residential Buildings (IESNA cosponsored; ANSI approved; Continuous Maintenance Standard), SI EditionStandard 90.1-2001 User’s ManualStandard 90.2-1993 User's ManualStandard 90.2-2001 -- Energy-Efficient Design of Low-Rise Residential Buildings (ANSI Approved) Standard 93-2003 -– Methods of Testing to Determine the Thermal Performance of Solar Collectors (ANSI Standard 94.1-2002 -- Method of Testing Active Latent-Heat Storage Devices Based on Thermal Performance (ANSI Approved)Standard 94.2-1981 (RA 2002) -- Method of Testing Thermal Storage Devices with Electrical Input and Thermal Output Based on Thermal Performance (ANSI Approved)Standard 94.3-1986 (RA 2002) -- Method of Testing Active Sensible Thermal Energy Devices Based on Thermal Performance (ANSI Approved)Standard 95-1987 -- Methods of Testing to Determine the Thermal Performance of Solar Domestic Water Heating SystemsStandard 96-1980 (RA 1989) -- Methods Of Testing To Determine The Thermal Performance Of Unglazed Flat-Plate Liquid-Type Solar Collectors (ANSI approved)Standard 97-1999 (RA2003) -- Sealed Glass Tube Method to Test the Chemical Stability of Materials for Use Within Refrigerant Systems (ANSI approved)Standard 99-1987 -- Refrigeration Oil DescriptionStandard 100-1995 -- Energy Conservation in Existing Buildings (IESNA cosponsored, ANSI approved) Standard 103-1993 -- Method of Testing for Annual Fuel Utilization Efficiency of Residential Central Furnaces and Boilers (ANSI approved)Standard 105-1984 (RA 99) -- Standard Methods of Measuring and Expressing Building Energy Performance (ANSI approved)Standard 109-1986 (RA 2003) -- Methods of Testing to Determine the Thermal Performance of Flat-Plate Solar Collectors Containing a Boiling Liquid (ANSI approved)Standard 110-1995 -- Method of Testing Performance of Laboratory Fume Hoods (ANSI approved) Standard 111-1988 -- Practices for Measurement, Testing, Adjusting, and Balancing of Building Heating, Ventilation, Air-Conditioning, and Refrigeration SystemsStandard 113-1990 -- Method of Testing for Room Air Diffusion (ANSI approved)Standard 114-1986 -- Energy Management Control Systems InstrumentationStandard 116-1995 -- Methods of Testing for Rating Seasonal Efficiency of Unitary Air Conditioners and Heat Pumps (ANSI approved)Standard 117-2002 -- Method of Testing Closed Refrigerators (ANSI Approved)Standard 118.1-2003 – Method of Testing for Rating Commercial Gas, Electric, and Oil Service Water Heating Equipment (ANSI Approved)Standard 118.2-1993 -- Method of Testing for Rating Residential Water Heaters (ANSI approved) Standard 119-1988 (RA 94) -- Air Leakage Performance for Detached Single-Family Residential Buildings (ANSI approved)Standard 120-1999 -- Method of Testing to Determine Flow Resistance of HVAC Ducts and Fittings (ANSI Standard 124-1991 -- Methods of Testing for Rating Combination Space-Heating and Water-Heating Appliances (ANSI approved)Standard 125-1992 (RA 2000) -- Method of Testing Thermal Energy Meters for Liquid Streams in HVAC Systems (ANSI approved)Standard 126-2000 -- Method of Testing HVAC Air Ducts (ANSI approved) (SMACNA standard)Standard 127-2001 -- Method of Testing for Rating Computer and Data Processing Room Unitary Air-Conditioners (ANSI Approved)Standard 128-2001 -- Method of Rating Unitary Spot Air Conditioners (ANSI Approved)Standard 129-1997 (RA 02) -- Measuring Air Change Effectiveness (ANSI Approved)Standard 130-1996 -- Methods of Testing for Rating Ducted Air Terminal Units (ANSI approved)Standard 133-2001 -- Method of Testing Direct Evaporative Air Coolers (ANSI Approved)Standard 135-2001 -- BACnet®-A Data Communication Protocol for Building Automation and Control Networks (ANSI Approved)Standard 135.1-2003 – Method of Test for Conformance to BACnet®Standard 136-1993 (RA 2001) -- A Method of Determining Air Change Rates in Detached Dwellings (ANSI Standard 137-1995 (RA 2001) -- Methods of Testing for Efficiency of Space-Conditioning/Water-Heating Appliances that Include a Desuperheater Water Heater (ANSI approved)Standard 139-1998 -- Method of Testing for Rating Desiccant Dehumidifiers Utilizing Heat for the Regeneration Process (ANSI approved)Standard 140-2001 -- Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ANSI approved)Standard 143-2000 -- Method of Test for Rating Indirect Evaporative Coolers (ANSI approved)Standard 146-1998 -- Method of Testing and Rating Pool Heaters (ANSI approved)Standard 147-2002 -- Reducing the Release of Halogenated Refrigerants from Refrigerating and Air-Conditioning Equipment and Systems (ANSI Approved)Standard 149-2000 -- Laboratory Methods of Testing Fans Used to Exhaust Smoke in Smoke Management Systems (ANSI approved)Standard 150-2000 -- Method of Testing the Performance of Cool Storage Systems (ANSI approved) Standard 151-2002 -- Practices for Measuring, Testing, Adjusting, and Balancing Shipboard HVAC&R Systems (ANSI Approved)Standard 154-2003 – Ventilation for Commercial Cooking Operations (ANSI Approved)Standards BinderCodesIndividual State ACP Table(s)Standard 90.1-89 - Energy Code for Commercial and High-Rise Residential Buildings (Based on ASHRAE/IES 90.1-1989): Complete Set of ACP Tables (does not include code)Standard 90.1-89 - Energy Code for Commercial and High-Rise Residential Buildings (Based onStandard 90.2-93 - Energy Code for New Low-Rise Residential Buildings Based on ASHRAE 90.2-1993 Superseded StandardsStandard 32.2-1997 -- Methods of Testing for Rating Pre-Mix and Post-Mix Soft-Drink Vending and Dispensing Equipment (ANSI approved)Standard 15-1994 -- Safety Code for Mechanical RefrigerationStandard 17-1998 -- Method of Testing Capacity of Thermostatic Refrigerant Expansion Valves (ANSI Standard 22-1992 -- Methods of Testing for Rating Water-Cooled Refrigerant Condensers (ANSI approved) Standard 25-1990 -- Methods of Testing Forced Convection and Natural Convection Air Coolers for Standard 28-1996 -- Method of Testing Flow Capacity of Refrigerant Capillary Tubes (ANSI approved)Standard 33-1978 -- Methods of Testing Forced Circulation Air Cooling and Air Heating CoilsStandard 34-1997 -- Designation and Safety Classification of RefrigerantsStandard 40-1980(RA 92) -- Methods of Testing for Rating Heat-Operated Unitary Air-Conditioning Standard 41.1-1986(RA 91) -- Standard Method for Temperature MeasurementStandard 41.6-1994 -- Method for Measurement of Moist Air PropertiesStandard 51-1985 -- Laboratory Methods of Testing Fans for RatingStandard 62-1989 -- Ventilation for Acceptable Indoor Air QualityStandard 62-1999 -- Ventilation for Acceptable Indoor Air Quality [CONTINUOUS MAINTENANCE Standard 68-1986 -- Laboratory Method of Testing to Determine the Sound Power in a DuctStandard 78-1985 (RA 97) -- Method of Testing Flow Capacity of Suction Line Filters and Filter-Driers (ANSI Standard 79-1984 (RA 91) -- Methods of Testing For Rating Room Fan-Coil Air ConditionersStandard 90.1-1989 -- Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings (Non- Windows version)Standard 90.1-1989 -- Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings Standard 90.1-1999 -- (I-P Edition) Energy Standard for Buildings Except Low-Rise Residential Buildings (IESNA cosponsored; ANSI approved)Standard 90.1-1999 (S-I Version) -- Energy Standard for Buildings Except Low-Rise Residential Buildings (IESNA cosponsored; ANSI approved) , S - I EditionStandard 90.1-1999 User’s ManualStandard 90.2-1993 -- Energy-Efficient Design of New Low-Rise Residential BuildingsStandard 93-1986 (RA 91) -- Methods of Testing to Determine the Thermal Performance of Solar Collectors (ANSI approved)Standard 94.1-1985(RA 91) -- Method of Testing Active Latent-Heat Storage Devices Based on Thermal Performance (ANSI approved)Standard 94.2-1981 (RA 96) -- Method of Testing Thermal Storage Devices with Electrical Input and Thermal Output Based on Thermal Performance (ANSI approved)Standard 94.3-1986(RA 96) -- Method of Testing Active Sensible Thermal Energy Storage Devices Based on Thermal Performance (ANSI approved)Standard 97-1999 -- Sealed Glass Tube Method to Test the Chemical Stability of Materials for Use Within Refrigerant Systems (ANSI approved)Standard 109-1986 (RA 96) -- Methods of Testing to Determine the Thermal Performance of Flat-Plate Solar Collectors Containing a Boiling Liquid (ANSI approved)Standard 117-1992 -- Method of Testing Closed Refrigerators (ANSI approved)Standard 118.1-1993 -- Method of Testing for Rating Commercial Gas, Electric, and Oil Water Heaters Standard 127-1988 -- Method of Testing for Rating Computer and Data Processing Room Unitary Air-Standard 128-1989 -- Method of Rating Unitary Spot Air ConditionersStandard 129-1997 -- Measuring-Air Change EffectivenessStandard 135-1995 -- BACnet® - A Data Communication Protocol for Building Automation and Control Networks [CONTINUOUS MAINTENANCE STANDARD]制冷系统的安全标准(ANSI认证)[连续维修标准]房间空调末端的检测方法(ANSI认证)恒温制冷剂膨胀阀容量检测方法(ANSI认证)自给式水冷冷却器检测方法(ANSI认证)远程风冷制冷剂冷凝器检测方法(ANSI认证)水冷式制冷剂冷凝器检测方法(ANSI 认证)容积式制冷压缩机和冷凝机组检测方法(ANSI认证)液体冷却器检测方法(ANSI认证)强制对流和自然对流制冷空气冷却器检测方法(ANSI认证)船泊机械制冷和空调装置(ANSI认证)制冷剂冷媒管流量检测方法(ANSI认证)自动制冰机检测方法(ANSI认证)液体冷却包检测方法(ANSI认证)强制循环空气冷却和空气加热线圈检测方法(ANSI认证)制冷剂的命名和安全分类制冷干燥剂检测方法单元式空调和热泵设备检测方法单体热动力空调和热泵设备检测方法实验室气流测量标准方法压力测量标准方法湿空气性质的标准测量方法气体流量检测方法风机气动性能测试检测方法空气净化除尘效率人居热环境房间空调末端制热量的检测方法(ANSI认证)通风——可接受室内空气质量PDF ANSI/AS HRAE Standard 62.1-2007制冷干燥剂检测方法液体管路干燥过滤器过滤能力远程制冷剂冷凝器检测方法实验室测试风管噪声标准测量进出风口性能测试开放式制冷器太阳能风机盘管空调测试方法空气-空气热交换器测试方法制冷剂油闪点风机震动、叶片临界转速螺旋风扇螺旋风机震动低层住宅节能标准低层住宅节能设计太阳能潜热存储热存储设备电热性能热能设备热性能太能热热水系统太阳能玻璃管冷冻机油建筑物能源保护住宅锅炉建筑节能标准太阳能实验室测量通风柜性能建筑采暖通风空调制冷系统的测试、调整实例房间空气扩散检测能源管理控制仪表空调、热泵季节效率住宅热水空调管道、配件电阻检测组合空间暖气和热水设备热能仪表通风管道检测方法计算机和数据控制室空调检测方法空调机评价管道式空气处理器测试直接蒸发式空气冷却器楼宇自动化蓄冷系统性能测试空调制冷系统实例商业烹饪间通风。

深圳建科大楼(2014公共建筑节能最佳实践案例)--朱颖心、林波荣

深圳建科大楼(2014公共建筑节能最佳实践案例)--朱颖心、林波荣

32
小结

被动优先的策略,强调依靠与自然的融合 ,营造舒适、人性的办公环境 充分应用了在亚热带气候条件下,影响人 体舒适度的主要特征,融合到建筑及系统 的设计、运营之中,取得了较好的节能效 果和较高的舒适度和满意度。
33
谢谢聆听!
Corridor stairs
Office
Indoor service
在6层的空中花园 办公区
Meeting Printer Hot water N
办公区
Office
15m
会议/打印/开水
17.5m
高层楼层的平台和走廊
室外的开水间
4
300座会议厅的可开启外墙与敞开式楼梯
5
中间平台遮阳情况
屋顶花园遮阳
单位面积电耗 (kWh/m2) 32.7 181.1 9.7 60.2 62.1 -
花园
(忽略)
9
同类办公楼单位面积电耗比较
kWh/m2
2007深圳统计(57栋) 建科院大楼2011.11-2012.10 103.6
60.2
统计样本的最小值为全年总电耗~50kWh/m2的两座建筑,其使用状况与舒适情况不清楚。 可能是采用分体空调、人员密度较低、没有完全使用、室内环境不舒适的建筑。除这两个建筑 外,其他建筑单位面积能耗都高于60kWh/m2,均高于建科大楼。
Air temperature (oC)
30 29 28 27 26 25 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Time 3

在基于WELL标准的办公环境提升

在基于WELL标准的办公环境提升

建设科技CONSTRUCTION SCIENCE AND TECHNOLOGY2019年2月合刊总第377期实践应用在基于WELL 标准的办公环境提升"陈诚(深圳市建筑科学研究院股份有限公司,广东深圳518049)[摘 要]健康建筑已经成为人们越来越关注的对象,美国国际WELL 建筑研究所(简称IWBI)制定的WELL 健康建筑标准为健康建筑的设计提供了系统的要求。

如今,人们在追求更好的工作环境,本文以某办公室改造项目为实例,探讨如何更好地在办公空间中应用WELL 建筑标准,营造全面的健康环境。

[关键词]WELL 建筑标准;办公环境提升;实践Office Environment Improvement Based on WELL StandardChen Cheng(Shenzhen Institute of B uilding Research Co.、Lfd., Shenzhen, 518049, Guangdong )Abstract:There is an increasing focus on health building. WELL Building Standard developed by the International WELL Institute of Buildings (IWBI) providing a systematic requirement for the design of health buildings. Today, people are pursuing a better working environment, hereby taking an office renovation project as an exampleto explore how to better apply WELL Building Standard in office space and create a comprehensive healthy environment.Keywords: WELL Building Standard, office environment improvement, practice.1 引言随着经济的发展,人们不仅关注建筑和环境的关系,更关注建筑和人之间的关系。

ASHRAE

ASHRAE

ASHRAEASHRAE标准部分内容整理一、ASHRAE52.2 —1999标准及空气过滤器1999年,美国采暖制冷空调工程师协会(ASHRAE)颁布了一项新的空气过滤器测试方法,ASHRAE52.2—1999标准《一般通风用空气洁净设备分级粒径效率的测试方法》。

该标准改变了传统的空气洁净设备全效率的测试方法,打开了通向建立实际过滤器技术规范的大门。

1、效率检测方法检测空气过滤器效率的方法有很多:如比色法、计重法、浓度法(包括钠焰法、油雾法、荧光法、DOP法)以及粒子计数法等。

由于采用的尘源不同,每种方法所能测量的粒径范围不同,因而使用各种方法的检测的结果差异很大。

所以给出过滤器效率时,必须注明所用尘源种类和检测方法。

各国标准采用的检测方法大致如下:1964年美国过滤器研究所(AFI)标准和美国国家标准局(NRS)标准、1968年美国ASHRAE 协会制定的ASHRAE52—68标准,1976年制定的ASHRAE52—76标准,1992年制定的ANSVASHRAE52.1—1992标准以及欧洲空气处理设备制造商协会标准EUROVENT4/5和欧洲标准化协会CEN EN779标准等都采用大气尘比色法与人工尘计重法;中国国家标准GB12218—89采用大气尘分组计数法与人工尘计重法。

可见,在过去40年里,过滤器效率检测方法主要采用大气尘比色法和人工尘计重法。

所谓大气尘比色法,就是以大气尘为尘源,利用滤纸采样前后通光量的变化来测量过滤器效率。

这种过滤器效率被称为大气尘比色效率。

所谓人工尘计重法是以人工尘为尘源,通过测量过滤前后人工尘质量的变化来测定过滤器效率,这时的过滤效率被称为人工尘计重效率。

人工尘的主要成分是经过筛选的规定地区的尘土,并混入规定量的碳黑和短纤维测试期间,分为几个阶段进行发尘,直至达到所要求的终阻力。

测量各阶段的过滤效率,得到过滤器效率随容尘量的变化曲线。

人工尘计重法主要用于对过滤器容尘量及容尘后效率、阻力的变化情况进行测试。

ASHREA Standard 90_1_2010 Applicability to Datacom

ASHREA Standard 90_1_2010 Applicability to Datacom
© 2011, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (). All rights reserved. This publication may not be reproduced in whole or in part; may not be distributed in paper or digital form; and may not be posted in any form on the Internet without ASHRAE’s expressed written permission. Inquires for use should be directed to publisher@.
2ANSI/ASHRAE/IES Standard 90.1-2010 Applicability to Datacom
tion Code (IECC). Prior to 2010, all building construction except residential and process cooling applications (i.e., datacom, etc.) were required to comply with this standard. With the 2010 version of Standard 90.1, requirements will become mandatory for compliance on datacom projects as soon as the standard is adopted and enforced by various authorities having jurisdiction (AHJs). In addition, it is likely that Standard 90.1-2010 will be adopted by the ICC during the 2012 update cycle for the ICC codes. The ICC codes are then adopted by the various states. The current adoption cycle for the ICC codes in each state can be viewed online. Review of current energy code requirements in the relevant jurisdiction to determine whether Standard 90.1-2010 applies is highly recommended before beginning any new datacom project. (Note: Sometimes jurisdictions adopt slight variations to Standard 90.1 or have developed their own versions, which may vary from the original.) When Standard 90.1 is adopted, the AHJ will often require paperwork demonstrating compliance. This is usually documentation completed by the project licensed professional engineer indicating compliance with the various portions of Standard 90.1 that apply to the project, as well load calculations and modeling calculations if the performance path is used. The AHJ may then use this paperwork to issue the necessary project permits. The details of the permitting process and required paperwork vary from jurisdiction to jurisdiction, so it’s important to obtain requirements early in the project either when building a new data center or renovating an existing data center with HVAC upgrades. The three main components of Standard 90.1-2010 compliance are as follows: 1. 2. 3. Mandatory provisions—applies to all projects Prescriptive (code minimum) or performance path (known as the Energy Cost Budget Method [ECB])—must comply with one or the other Appendix G—exceeding 90.1 prescriptive requirements (generally used for LEED® certification; however, LEED for data centers is not available as of the publication of this paper)

ASHRAEIESNA Standard 901-2004:ashraeiesna标准

ASHRAEIESNA Standard 901-2004:ashraeiesna标准

Existing Building Renovations 8% 10% 12% 14% 16% 18% 20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40% 42% 44%
© 2008 Trane
Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Section 12: Normative References
Appendices
© 2005 American Standard All rights reserved
ASHRAE Standard 90.1
Section 5: Building Envelope
© 2005 American Standard All rights reserved
© 2008 Trane
ASHRAE Standard 90.12007
Implementation
• Model codes • U.S. government • Outside U.S. • LEED® program
© 2008 Trane
© 2008 Trane
ASHRAE Standard 90.1 and
Option 3: prescriptive compliance path
Advanced Buildings Core Performance Guide
© 2008 Trane
EAC1 – Modeling
Up to 19 points
New Buildings 12% 14% 16% 18% 20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40% 42% 44% 46% 48%

ASHRAE621pdf

ASHRAE621pdf

Loading dock Dumpster Surface below intake Cooling tower exhaust
25 ft 15 ft 1 ft 25 ft

Must limit moisture penetration (using hood, proper velocity, etc.) or manage water that penetrates Prevent moisture intrusion into equipment mounted outdoors Must use bird screens and prevent bird nesting

Control to assure proper ventilation under any operating condition

5.4 Airstream Surfaces

Use materials that have documented resistance to microbial growth and erosion


2. Scope

2.1 All spaces intended for human occupancy excluding low-rise residential (62.2) 2.2 Defines requirements for ventilation, air-cleaning design, commissioning, installation and O&M 2.3 Additional requirements and other standards may apply (labs, healthcare, industrial, etc.) 2.4 May be applied to both new and existing buildings, not intended to be used retroactively 2.5 Does not prescribe specific ventilation rates for smoking spaces
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档