七年级(下册)数学计算题及解答题

合集下载

2017七年级下册数学(有答案)计算题(较难8题)

2017七年级下册数学(有答案)计算题(较难8题)

绝密★启用前2016-2017学年度???学校5月月考卷试卷副标题xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)请点击修改第II 卷的文字说明 )解不等式组.【答案】(1)5;(2)﹣2<x≤1. 【解析】 试题分析:(1)分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可;(2)分别求出两个不等式的解集,求其公共解.试题解析:(1)解:原式=1+分 =5 2分 (2)∵解不等式①得:x≤1, 2分 解不等式②得:x >﹣2, 2分 ∴不等式组的解集为﹣2<x≤1. 1分考点:1.实数的运算;2.特殊角的三角函数值;3.整数的指数幂;4.解一元一次不等式组. 2.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?【答案】24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.【解析】略3.如图所示,把一张长方形纸片ABCD 沿EF 折叠后,ED 与BC 的交点为G ,D ,C 分别落在D′,C′的位置上,若∠EFG =55°,求∠1与∠2的度数.【答案】∠1=70°,∠2=110°【解析】由题意可得∠3=∠4.因为∠EFG =55°,AD ∥BC ,所以∠3=∠4=∠EFG =55°,所以∠1=180°-∠3-∠4=180°-55°×2=70°.又因为AD ∥BC ,所以∠1+∠2=180°,即∠2=180°-∠1=180°-70°=110° 4.取一张正方形纸片ABCD ,如图(1)折叠∠A ,设顶点A 落在点A′的位置,折痕为EF ;如图(2)折叠∠B ,使EB 沿EA′的方向落下,折痕为EG .试判断∠FEG 的度数是否是定值,并说明理由. 【答案】为定值【解析】由折叠可知,∠FEA′=∠FEA ,∠GEB =∠GEA′.因为∠A′EB +∠A′EA =180°,所以即∠FEG 的度数为定值.5.如图所示,点O 在直线AB 上,OE 平分∠COD ,且∠AOC ︰∠COD ︰∠DOB =1︰3︰2,求∠AOE 的度数.【答案】75度【解析】因为∠AOC ︰∠COD ︰∠DOB =1︰3︰2, 所以设∠AOC =x°,则∠COD =3x°,∠DOB =2x°.又因为AB 为直线,所以∠AOC +∠COD +∠DOB =180°,即x +3x +2x =180,x =30.所以∠AOC =30°,∠COD =3x°=90°. 因为OE 平分∠COD AOE =∠AOC +∠COE =30°+45°=75°.6.阅读:如图1所示,因为CE ∥AB ,所以∠1=∠A ,∠2=∠B ,所以∠ACD =∠1+∠2=∠A +∠B ,这是一个有用的事实.请用这个结论在如图2所示的四边形ABCD 内过点D 引一条和边AB 平行的直线,求∠A +∠B +∠C +∠ADC 的度数.【答案】∠A +∠B +∠C +∠ADC =360°【解析】如图,过点D 作DE ∥AB ,交BC 于点E , 则∠A +∠2=180°,∠B +∠3=180°. 又∠3=∠1+∠C ,所以∠A +∠B +∠C +∠1+∠2=360°, 即∠A +∠B +∠C +∠ADC =360°.7.如图所示,小东和小明分别在河的两岸,他们想知道河的两岸EF 和MN 是否平行,每人拿来了一个测角仪和两根标杆,那么就现有的条件,小东和小明能否判断河的两岸EF 和MN 平行?说说你的方案.【答案】能判断EF ∥MN【解析】通过目测使四个标杆在同一条直线上,A ,B ,C ,D 分别表示标杆的位置,两人用测角仪分别测出∠ABE 和∠DCM 的大小.若∠ABE +∠DCM =180°,则EF ∥MN ,反之不平行.8.一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y 轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a ,b}叫做这一平移的“平移量”;“平移量”{a ,b}与“平移量”{c ,d}的加法运算法则为{a ,b}+{c ,d}={a +c ,b +d}. 解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1};(2)动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到A ,再按照“平移量”{1,2}平移到B ;若先把动点P 按照“平移量”{1,2}平移到C ,再按照“平移量”{3,1}平移,最后的位置还是点B 吗?在图(1)中画出四边形OABC ;(3)如图(2),一艘船从码头O 出发,先航行到湖心岛码头P(2,3),再从码头P 航行到码订…………○………线…………○…__考号:___________订…………○………线…………○…头Q(5,5),最后回到出发点O .请用“平移量”加法算式表示它的航行过程.【答案】(1) {4,3};{4,3}. (2)如图,最后的位置仍是B .(3) {2,3}+{3,2}+{-5,-5}={0,0}.【解析】(1)根据平移量加法的运算法则{3,1}+{1,2}={4,3};{1,2}+{3,1}={4,3}. (2)根据平移变换的方法作图,可发现最后的位置仍是B .(3)从O 出发到P(2,3),先向右平移2个单位,再向上平移3个单位,可知“平移量”为{2,3},同理得到从P 到Q 的“平移量”为{3,2},从Q 到O 的“平移量”为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.。

(完整版)七年级下册数学计算题和解答题

(完整版)七年级下册数学计算题和解答题

七年级数学下册复习试卷——计算题&解答题姓名__________ 班别___________ 座号___________一、计算题:1、)2()9()3(32422ab b a b a -⋅-÷2、 ()()733222x x x ÷⋅-3、)2()(b a b a -++-4、22(1)3(2)x x x ---+5、,4)12(332312++--x x x 6、)346(21)21(3223223ab b a a ab b a a ++-+-7、(x+2)(y+3)-(x+1)(y-2) 8、22)2)(2(y y x y x ++-9、x(x -2)-(x+5)(x -5) 10、⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 22411、)94)(32)(23(22x y x y y x +--- 12、()()3`122122++-+a a13、()()()2112+--+x x x 14、(x -3y)(x+3y)-(x -3y)215、23(1)(1)(21)x x x +--- 16、22)23()23(y x y x --+17、22)()(y x y x -+ 18、x y y x ÷-+])3[(2219、0.125100×810020、()xyxy xy y x 183********÷--21、3022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛ 22、(1211200622332141)()()()-⨯+----二、用乘法公式计算下列各题:23、999×1001 24、1992-25、298 26、2010200820092⨯-三、解答题::27、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。

28、化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。

北师大版数学七年级下册解答题专题训练50题(含答案)

北师大版数学七年级下册解答题专题训练50题(含答案)

北师大版数学七年级下册解答题专题训练50题含答案一、解答题1.计算:(1)( y 2 )3 ÷ y 6 ·y ;(2) y 4 + ( y 2 )4 ÷ y 4 -(- y 2 )2 . 【答案】(1)y ;(2)y 4.【分析】(1)根据幂的乘方和同底数幂除法计算;(2)根据幂的乘方和同底数幂除法计算;.【详解】(1)(y 2)3÷y 6y=y 6÷y 6×y=1·y=y(2)y 4+(y 2)4÷y 4-(-y 2)2=y 4+y 8÷y 4-y 4=y 4+y 4-y 4=y 4【点睛】本题考查了幂运算中幂的乘方和同底数幂相除,以及合并同类项,注意不要出现符号错误.2.计算:(1)223235394ab a b a b ⎛⎫-⋅-⋅- ⎪⎝⎭; (2)()3421xy xy xy ⋅-+-;(3)化简:()()22232a b ab b b a b --÷--. (4)2201420132015-⨯.22201420141=-+1=【点睛】本题考查的是整式的运算,需要熟练掌握整式的运算法则.3.如图,在三角形ABC 中,25A ∠=︒,点D 为AB 上一点,点E 为三角形ABC 外一点,且25ACE ∠=︒,点F 为线段CD 上一点,连接EF ,且//EF BC .(1)若80B ∠=︒,求BCE ∠的度数;(2)若2E DCE ∠=∠,23BCD DCE ∠=∠,求B ∠的度数.4.先化简...,再求值:((3)a a a a +--,其中3a =-.【答案】33a -,-12【分析】根据平方差公式、单项式乘多项式的运算法则把原式化简,把a 的值代入计算即可.【详解】解:原式2233a a a =--+33a =-,当3a =-时,原式=()33312⨯--=-.【点睛】本题考查的是整式的化简求值,掌握平方差公式、单项式乘多项式的运算法则是解题的关键.5.计算:(1)(2x +3y )(2x ﹣3y )﹣(x ﹣2y )(4x +y )(2)(x ﹣3)(3x ﹣4)﹣(x ﹣2)2 【答案】(1)7xy ﹣7y 2(2)2x 2﹣9x +8【分析】(1)根据整式的乘法运算法则及乘法公式即可化简求解;(2)根据整式的乘法运算法则及乘法公式即可化简求解.【详解】(1)(2x +3y )(2x ﹣3y )﹣(x ﹣2y )(4x +y )=(2x )2﹣(3y )2﹣(4x 2+xy ﹣8xy ﹣2y 2)=4x 2﹣9y 2﹣4x 2﹣xy +8xy +2y 2=7xy ﹣7y 2.(2)解:原式=3x 2﹣9x ﹣4x +12﹣(x 2﹣4x +4)=3x 2﹣13x +12﹣x 2+4x ﹣4=2x 2﹣9x +8.【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及公式的运用.6.计算:()102122 3.1422--⎛⎫+---- ⎪⎝⎭.7.如图,在平面直角坐标系xOy 中,点()0,0O ,()1,2A -,()2,1B .(1)在图中画出AOB ∆关于y 轴对称的11A OB ∆,并直接写出点1A 和点1B 的坐标; (2)在x 轴上存在点P ,使得PA PB +的值最小,直接写出点P 的坐标,并画出图形.【答案】(1)11A OB ∆见见解析,1A 的坐标为()1,2;1B 的坐标为()2,1-;(2)()1,0P ,画图见解析【分析】(1)根据关于y 轴的对称点的特点,分别作出点A 和点B 关于y 轴的对称点,再与点O 首尾顺次连接即可得;(2)作点B 关于x 轴的对称点B′,连接AB′,与x 轴的交点即为所求点P ,AB′的长即为PA+PB 的最小值.【详解】(1)如图所示,∠A 1OB 1即为所求;由图知A 1的坐标为(1,2),B 1的坐标为(-2,1);(2)由图知,点P 即为所求,点P 的坐标P(1,0) .【点睛】本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并根据轴对称变换的定义和性质得出变换后的对应点位置.8.如图,BM ,CN 分别是钝角ABC 的高,点Q 是射线CN 上的点,点P 在线段BM 上,且BP AC =,CQ AB =,请问AP 与AQ 有什么样的关系?请说明理由.【答案】AP AQ =且AP AQ ⊥,理由见解析.【分析】先证明ABP ACQ ∠=∠,再证明()ACQ PBA SAS ≌△△,可得AP AQ =,Q PAB ∠=∠.再证明90PAB NAQ ∠+∠=︒,可得90QAP ∠=︒,从而可得结论.【详解】解:AP AQ =且AP AQ ⊥.理由如下:∠BM AC ⊥,CN AB ⊥,∠90ABP BAM ∠+∠=︒,90ACQ CAN ∠+∠=︒,,BAM CAN ∠=∠∠ABP ACQ ∠=∠.在ACQ 和PBA △中,,,,AC PB ACQ PBA QC AB =⎧⎪∠=∠⎨⎪=⎩∠()ACQ PBA SAS ≌△△,∠AP AQ =,Q PAB ∠=∠.∠90Q NAQ ∠+∠=︒,∠90PAB NAQ ∠+∠=︒,∠90QAP ∠=︒,∠AP AQ ⊥,∠AP AQ =,AP AQ ⊥.【点睛】本题考查的是三角形的全等的判定与性质,掌握三角形全等的判定方法是解题的关键.9.如图:AB=AD , ∠BAC=∠DAC ,求证:∠ABC∠∠ADC .【答案】见解析【分析】根据SAS 推出两三角形全等即可.【详解】解:证明:在∠ABC 和∠ADC 中,AC AC BAC DAC AB AD =⎧⎪∠=∠⎨⎪=⎩,∠∠ABC∠∠ADC (SAS ).【点睛】本题考查了全等三角形的判定的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .10.如图,AD∠BC 于D ,EG∠BC 于G ,∠E=∠3,试说明∠1=∠2的理由.【答案】见解析【分析】根据平行线的性质即可求解.【详解】∠AD∠BC 于D ,EG∠BC 于G ,∠AD∠EG ,∠∠E=∠2,∠1=∠3,∠∠E=∠3∠∠1=∠2【点睛】此题主要考查平行线的性质,解题的关键是熟知平行线的性质.11.已知2310x x --=,求代数式2(2)5(1)3x x x x -++-的值.【答案】6【分析】先对代数式进行化简,然后由2310x x --=可得231x x -=,进而整体代入求值即可.【详解】解:()()22513x x x x -++-=2244553x x x x x -+++-=2624x x -+,∠2310x x --=,∠231x x -=,把231x x -=代入原式得:原式=()22342146x x -+=⨯+=. 【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键. 12.化简再求值:()()()2353535y y y -+++,其中.0.4y =【答案】30【分析】先根据平方差公式和完全平方公式计算,然后合并同类项,再把0.4y =代入计算即可.【详解】原式=2292593025y y y -+++=3018y +当0.4y =时原式=300.418⨯+=30【点睛】本题考查了整式的化简求值,熟练掌握平方差公式和完全平方公式是解答本题的关键.13.如图,点C ,E ,F ,B 在同一条直线上,CE=BF ,AB=DC ,∠B=∠C ,证明:AE=DF .【答案】证明见解析【分析】先由CE =BF 推导出BE =CF ,即可根据全等三角形的判定定理“SAS ”证明∠ABE ∠∠DCF ,再根据全等三角形的对应边相等即可得证.【详解】证明:∠CE =BF∠CE +EF =BF +EF∠CF =BE在△ABE 和△CDF 中CF BE B C AB DC =⎧⎪∠=∠⎨⎪=⎩∠△ABE ∠∠CDF∠AE =DF【点睛】此题考查全等三角形的判定及性质,熟练掌握和运用全等三角形的判定定理是解题的关键.14.先化简,再求值:()()()222a b ab b b a b a b --÷-+-,其中0.5a =,1b =-. 【答案】22,1a b b --+【分析】先进行整式混合运算,再代入求值即可.【详解】解:原式()()2222a a b a b =----2222a a b a b =---+22a b b =--+当0.5a =,1b 时原式()()220.511=-⨯--+-111=-++1=.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.15.计算:(1)22237353y y y y ++-+-;(2)(2)2(35)x y x y ---+.【答案】(1)284y y -++(2)712x y -【分析】(1)直接合并同类项即可;(2)先去括号,再合并同类项.(1)222+3+73+53y y y y --()()()22=23+3+5+73y y y y --2-;=+8+4y y(2)()()---223+5x y x y()---x y x y26+10--x y x y=2+610-.x y=712【点睛】本题主要考查了整式的混合运算,掌握合并同类项是解答本题的关键.16.阅读并完成下列证明:如图,已知AB∠CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∠DE证明:∠AB∠CD(已知)∠∠C=∠B()又∠∠B=55°(已知)∠C=°()∠∠D=125°(已知)∠∠BC∠DE()【答案】两直线平行,内错角相等,55,等量代换;∠C+∠D=180°,同旁内角互补,两直线平行.【分析】先根据AB∠CD得出∠C的度数,再由∠C+∠D=180°即可得出结论.【详解】解:BC∠DE证明:∠AB∠CD(已知)∠∠C=∠B(两直线平行,内错角相等)又∠∠B=55°(已知)∠C=55°(等量代换)∠∠D=125°(已知)∠∠C+∠D=180°∠BC∠DE(同旁内角互补,两直线平行)【点睛】本题主要考查了平行线的性质与判定的综合应用,解题时注意:两直线平行,内错角相等;同旁内角互补,两直线平行.17.如图所示有8张卡片,分别写有1,2,3,4,5,6,8,9这八个数字,将它们背面朝上洗匀后,任意抽出一张.(1)P(抽到数字9)=;(2)P(抽到两位数)=;(3)P(抽到的数大于5)=;(4)P(抽到偶数)=.【详解】1)1)大于)118.心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足关系式y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,则学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.【答案】(1)59;(2)用8分钟提出概念与用10分钟提出概念相比,学生的接受能力减弱了;用15分钟提出概念与用10分钟提出概念相比,学生的接受能力增强了.【分析】(1)知道接受能力y 与提出概念所用的时间x 之间满足函数关系式,令x =10,求出y ,(2)求出x =8和15时,y 的值,然后和x =10时,y 的值比较.【详解】解:(1)当x =10时,y =-0.1x 2+2.6x +43=-0.1×102+2.6×10+43=59.(2)当x =8时,y =-0.1x 2+2.6x +43=-0.1×82+2.6×8+43=57.4<59,所以用8分钟提出概念与用10分钟提出概念相比,学生的接受能力减弱了. 当x =15时,y =-0.1x 2+2.6x +43=-0.1×152+2.6×15+43=59.5>59.所以用15分钟提出概念与用10分钟提出概念相比,学生的接受能力增强了.【点睛】本题考查了求函数值,理解对于x 的每一个取值,y 都有唯一确定的值与之对应是解答本题的关键.19.如图,已知点B ,E ,C ,F 在一条直线上,AB DF B F BE FC =∠=∠=,,.(1)求证:ABC DFE ∆≅∆; (2)连接AF BD ,求证:∥AF BD .【答案】(1)见解析(2)见解析【分析】(1)由“SAS ”可证ABC DFE ∆≅∆;(2)结合(1),得到,ACB DEF AC DE ∠=∠=,进而得出ACF DEB ∠=∠,利用“SAS ”证明ACF DEB ∆≅∆,根据全等三角形的性质及平行线的判定定理即可得解.【详解】(1)证明:∠BE CF =,∠BE EC CF EC +=+,即BC EF =,在ABC ∆和DFE ∆中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∠ABC DFE ∆≅∆(SAS );(2)证明:如图,∠ABC DFE ∆≅∆,∠ACB DEF AC DE ∠=∠=,,∠ACF DEB ∠=∠,在ACF ∆和DEB ∆中,AC DE ACF DEB FC BE =⎧⎪∠=∠⎨⎪=⎩,∠ACF DEB ∆≅∆(SAS ),∠AFC DBE ∠=∠,∠∥AF BD .【点睛】此题考查了全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.20.下列两个多项式相乘,哪些可用平方差公式,哪些不能?能用平方差公式计算的,写出计算结果.(1)(23)(32)a b b a --; (2) (23)(23)a b a b -++;(3) (23)(23)a b a b ---+; (4) (23)(23)a b a b +-;(5) (23)(23)a b a b ---; (6) (23)(23)a b a b +--.【答案】(2)、(3)、(4)、(5)可以用平方差公式计算,(1)、(6)不能用平方差公式计算,结果见解析【分析】根据平方差公式()()22a b a b a b +-=-进行判断求解即可【详解】解:(2)、(3)、(4)、(5)可以用平方差公式计算,(1)、(6)不能用平方差公式计算.(2) ()()2323a b a b -++=()23b -()22a =2294b a -. (3) ()()2323a b a b ---+=()22a --()23b =2249a b -. (4) ()()2323a b a b +-=()22a -()23b =2249a b -. (5) ()()2323a b a b ---=()23b --()22a =2294b a -. 【点睛】本题考查平方差公式的运用,掌握运用平方差公式所满足的条件,以及熟练运用公式是解题关键.21.若()()2224x nx x x ++-的乘积中不含3x 项,求n 的值. 【答案】4n =【分析】先根据整式的乘法运算算出结果,然后令3x 项前面的系数为零,求出n 的值.【详解】解:()()2243322244428x nx x x x x nx nx x x ++-=-+-+-()()4324248x n x n x x =+-+--,∠乘积中不含3x 项,∠40n -=,4n =.【点睛】本题考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算方法.22.已知:a =b =222a b ab +-.23.计算:(1)4a (2a ﹣b )﹣(2a+b )(2a ﹣b )(2)(2x+1)2﹣2(x ﹣1)(x+3)【答案】(1)4a 2﹣4ab+b 2;(2)2x 2+7【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)根据完全平方公式和多项式乘多项式可以解答本题.【详解】解:(1)4a (2a ﹣b )﹣(2a+b )(2a ﹣b )=8a 2﹣4ab ﹣4a 2+b 2=4a 2﹣4ab+b 2;(2)(2x+1)2﹣2(x ﹣1)(x+3)=4x 2+4x+1﹣2x 2﹣6x+2x+6=2x 2+7.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.24.先化简,再求值:()()()()22232332x x x x x --+-++,其中5x =. 【答案】213x +,23【分析】根据整式的混合运算法则计算即可化简,再将5x =代入化简后的式子求值即可.【详解】解:()()()()22232332x x x x x --+-++222(44)(2)9(36)x x x x x ⎡⎤=-+--++⎣⎦ 222444936x x x x x =-+-+++213x =+将5x =代入213x +,得:原式251323=⨯+=.【点睛】本题考查整式的化简求值.掌握整式的混合运算法则是解题关键. 25.如图,ABC 中,1∠、2∠分别是ABC ∠、ACB ∠的外角,已知1+2=264∠∠︒.(1)过点A 作直线MN ,使MN BC ∥,其中点M 在点A 的左侧,点N 在点A 的右侧.(尺规作图,保留痕迹)(2)求MAB ∠与NAC ∠的度数之和.【答案】(1)图见解析(2)+=96MAB NAC ∠∠︒【分析】(1)根据作一个角等于已知角的作图方法,在点A 的右侧作NAC ACB ∠=∠,则AN 所在的直线即为所求的直线MN ;(2)由已知条件可得180+180=264ACB ABC -∠-∠︒︒︒,即+=96ACB ABC ∠∠︒,根据平行线的性质可得MAB ABC ∠=∠,NAC ACB ∠=∠,进而可得+=96MAB NAC ∠∠︒.【详解】(1)解:如图,直线MN 即为所求,(2)解:1+2=264∠∠︒,180+180=264ACB ABC ∴-∠-∠︒︒︒,+=96ACB ABC ∴∠∠︒,MN BC ∥,MAB ABC ∴∠=∠,NAC ACB ∠=∠,+=96MAB NAC ∴∠∠︒.【点睛】本题考查作图—复杂作图、平行线的性质,熟练掌握平行线的性质以及作一个角等于已知角的作图方法是解答本题的关键.26.如图,OD 平分∠BOC ,OE 平分∠AOC .若∠BOC =70°,∠AOC =50°.求出∠D0E 及其补角的度数.【答案】60°,120°【详解】试题分析:先根据角平分线的性质求得∠DOC 、∠COE 的度数,即可求得∠D0E 的度数,再根据补角的定义求解即可.∠OD 平分∠BOC ,OE 平分∠AOC ,∠BOC =70°,∠AOC =50°∠∠DOC =35°,∠COE =25°∠∠DOE =∠DOC+∠COE =60°∠∠DOE 的补角的度数=180°-60°=120°.考点:角平分线的性质,补角的定义点评:解题的关键是熟练掌握角的平分线把角分成相等的两个小角,且都等于大角的一半.27.(1)计算:2020213(3)(1)π-+-+-;(2)化简:()2()3m n m m n ---.28.计算:()()()()()213331x x x x x -++---- 【答案】2211x x +-【分析】利用完全平方公式、平方差公式、多项式乘多项式展开,再合并同类项即可.【详解】解:()()()()()213331x x x x x -++---- ()22221933x x x x x x =-++----+22221933x x x x x x =-++--++-2211x x =+- 【点睛】此题考了整式的混合运算,熟练掌握乘法公式是解题的关键.29.如图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)观察图2,请你直接写出下列三个代数式22(),(),a b a b ab +-之间的等量关系为_______;(2)运用你所得到的公式解答下列问题:∠若,m n 为实数,且2m n +=-,3=-mn ,求m n -的值.∠如图3,12,S S ,分别表示边长为,p q 的正方形的面积,且,,A B C 三点在一条直线上,若1220,6S S AB p q +==+=,求图中阴影部分的面积.【答案】(1)(a +b )2=4ab +(a ﹣b )2;(2)∠m ﹣n =4或m ﹣n =﹣4;∠阴影部分面30.如图,AD平分∠BAC,点E在AD上,连接BE、CE.若AB=AC,BE=CE.求证:∠1=∠2.【答案】见解析【分析】由题意可证∠ABE∠∠ACE,可得∠AEB=∠AEC,则可得∠1=∠2.【详解】∠AB=AC,BE=CE,AE=AE,∠∠ABE∠∠ACE(SSS),∠∠AEB=∠AEC,∠∠1=∠2.【点睛】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定是本题的关键.31.(1)比较x2+4与4x的大小:(用“>”或“=”或“<”或“≥”或“≤”号填空)∠当x=1时,x2+44x;∠当x=2时,x2+44x;∠当x=﹣1时,x2+44x;∠自己再任意取一些x的值,计算后猜想:x2+44x.(2)无论x取什么值,x2+4与4x总有这样的大小关系吗?请说明理由.【答案】(1)∠>;∠=;∠>;∠≥;(2)存在这样的关系,理由见解析【分析】(1)∠将x=1代入即可比较大小;∠将x=2代入即可比较大小;∠将x=-1代入即可比较大小;∠再任意取一些x的值,计算即可;(2)理由作差法和完全平方公式即可得出结论.【详解】解:(1)∠当x=1时,x2+4=1+4=5,4x=4,∠x2+4>4x;∠当x=2时,x2+4=4+4=8,4x=8,∠x2+4=4x;∠当x=﹣1时,x2+4=1+4=5,4x=﹣4,∠x2+4>4x;∠当x=-2时,x2+4=4+4=8,4x=-8,∠x2+4>4x;当x =0时,x 2+4=0+4=4,4x =0,∠x 2+4>4x ;再任意取一些x 的值,计算后可以得到:x 2+4≥4x ,故答案为:∠>;∠=;∠>;∠≥;(2)存在这样的关系,理由如下:x 2+4﹣4x =(x ﹣2)2,∠(x ﹣2)2≥0,∠x 2+4≥4x .【点睛】此题考查的是有理数的比较大小和完全平方公式,掌握利用作差法比较大小和完全平方公式是解决此题的关键.32.(1)33145214747⎛⎫⎛⎫⎛⎫-+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)223(3)3(2)|5|-÷-+⨯-+-(3)一个角的余角的3倍比它的补角小10,求这个角的度数.【点睛】此题考查了有理数的混合运算,余角和补角的知识,属于基础题,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.33.先化简,再求值:2(2)(2)(2)(2)x y x y x y y ⎡⎤-+-+÷⎣⎦,其中122x y =-=,.34.通过报刊、互联网等途径查找资料,写一段涉及较多量的短文,找出其中的变量和常量,并说明你的理由.【答案】见详解【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】一次乌龟与兔子举行500m 赛跑,比赛开始不久,兔子就遥遥领先,当兔子以50m /min 的速度跑了4min 时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10m /min 的速度匀速爬向终点.46min 后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣!等它再以60m /min 的速度跑向终点时,它比乌龟晚了5min .500m 、乌龟的速度10m /min 等在整个变化过程中是常量,兔子的速度是变量.【点睛】本题考查了常量与变量的知识,属于基础题,变量是指在程序的运行过程中随时可以发生变化的量.35.()(2)()()x y x y x y x y -+-+-. 【答案】2x xy -.【分析】先提取公因式(x -y ),再根据单项式乘以多项式法则计算即可得答案.【详解】解:()(2)()()x y x y x y x y -+-+-=()(2)x y x y x y -+--=()x x y -=2x xy -.【点睛】本题考查整式的运算,熟练掌握运算法则是解题关键.36.如图,直线AB 、CD 相交于点O ,∠DOE =∠BOD ,OF 平分∠AOE .(1)判断OF 与OD 的位置关系,并说明理由;(2)若∠AOC :∠AOD =1:4,求∠EOF 的度数.37.计算:(1)()()35232x x x x ⋅+-+. (2)()()64310210-⨯⨯⨯(3)先化简,再求值:()()()3234233232x y y x y x ⎡⎤---⎣⎦,其中2x =,1y =; (4)已知328m n +=,求84m n ⋅的值. 【答案】(1)6x(2)10610-⨯(3)()13321y x --,(4)82(或256)【分析】(1)根据同底数幂的乘法进行计算,然后合并同类项即可求解;(2)根据同底数幂的乘法进行计算即可求解;(3)根据幂的乘方,同底数幂的乘法进行计算,然后将字母的值代入进行计算即可求解;(4)逆用幂的乘方,同底数幂的乘法进行计算即可求解.【详解】(1)()()35232x x x x ⋅+-+ 556x x x =-+6x =;(2)()()64310210-⨯⨯⨯()()64321010=-⨯⨯⨯10610=-⨯.(3)()()()3234233232x y y x y x ⎡⎤---⎣⎦ ()67(22)33y x y x =--1332()y x =-当2x =,1y =时,原式13312(1)2=⨯-⨯=-.(4)∠328m n +=∠()()323232884222222m n m n m n m n +⋅=⋅=⋅==.(或256) 【点睛】本题考查了幂的运算,代数式求值,掌握同底数幂的乘法,幂的乘方,积的乘方运算法则是解题的关键.38.生活中,有人喜欢把传送的便条折成“”形状,折叠过程按图∠、∠、∠、∠的顺序进行(其中阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图∠)长为26厘米,分别回答下列问题:(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M 与点A 的距离为3厘米,那么在图∠中,BE =__________厘米;在图∠中,BF =__________厘米;在图∠中,BM =__________厘米.(2)如果长方形纸条的宽为x 厘米,现不但要折成图∠的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点A 的距离(结果用x 表示).39.如图,已知OB 平分AOC ∠,OA OD ⊥于点O ,且1:22:5∠∠=,求1∠的度数.【答案】60°【分析】先由垂直的定义得到∠AOD=90°,再由BO 平分∠AOC ,得到∠AOB=∠1,然后设∠AOB=2x ,则∠2=5x ,∠1=2x ,再利用周角的定义得到2x+2x+5x+90°=360°,解得x 的值,即可计算出∠1的度数.【详解】∠OA∠OD ,∠∠AOD=90°,∠BO 平分∠AOC ,∠∠AOB=∠1,设∠AOB=2x ,则∠2=5x ,∠1=2x ,∠2x+2x+5x+90°=360°,解得x=30°∠∠1=2x=60°.【点睛】本题考查了角的计算:利用几何图形计算几个角的和或差,也考查了角平分线的定义.40.先化简,再求值:()()()2222253433a a b ab a ab a b ab ----+,其中2a =-,3b =. 【答案】-432.【分析】运用单项式乘以单项式及积的乘方法则进行化简后,代入数值即可.【详解】原式322223221554129a b a b a b a b a b =-+--322310a b a b =-当2a =-,3b =时,原式432=-【点睛】本题考查的是整式的化简求值,掌握整式的各运算法则是关键.41.已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.42.已知x 为实数.y 、z 与x 的关系如表格所示:根据上述表格中的数字变化规律,解答下列问题:(1)当x 为何值时,y=430?(2)当x 为何值时,y=z ?【答案】(1)x=12;(2)x=-3或15【分析】由图片中的信息可得出:当x 为n(n ≥3)时,y 应该表示为30×n+70,z 就应该表示为2×(n-2)(5+n);那么由此可得出(1)(2)中所求的值.【详解】解:∠y=30×x+70,z=2×(x﹣2)(5+x)(1)当x=12时,y=30×12+70=430;(2)∠y=z,即30×x+70=2×(x﹣2)(5+x),解得:x=﹣3或15.【点睛】本题考查了用表格表示变量之间的关系,中等难度,从例子中找到规律是解题关键.43.某学校为了了解九年级学生寒假的阅读情况,随机抽取了该年级的部分学生进行调查,统计了他们每人的阅读本数,设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:请根据以上信息回答下列问题:(1)分别求出统计表中的x,y的值;(2)求扇形统计图中“优秀”类所在扇形的圆心角的度数;(3)如果随机去掉一个数据,求众数发生变化的概率,并指出众数变化时,去掉的是哪个数据.【答案】(1)x=11,y=3;(2)28.8°;(3)去掉的数据是5.【分析】(1)先根据被调查学生中“一般”档次的有13人,所占比例是26%,求出共调查的学生数,再根据良好占60%进行求解x,再用总人数减去各数即可求出y;(2)先求出优秀的占比,再乘以360°即可得出“优秀”类所在扇形的圆心角的度数;(3)由表格可知,原来的众数是5,只有去掉一个数据5,众数才会变为5和6,故可求出去掉一个数时众数发生变化的概率.【详解】(1)由表可知被调查学生中“一般”档次的有13人,所占比例是26%,所以共36028.8= ,只有去掉一个数据5,众数才会变为44.若a=553, b=444, c=335,比较a,b,c 的大小.(用“<”来连接) 【答案】c <a <b .【分析】分别根据积的乘方法则把A 、B 、C 化成同指数的幂,再进行比较即可.【详解】∠a=355=(35)11=24311,b=444=(44)11=25611,c=533=(53)11=12511,125<243<256,∠c <a <b .【点睛】此题考查幂的乘方与积的乘方,解题的关键是熟知以下概念:(1)同底数幂相乘法则,同底数幂相乘,底数不变指数相加;(2)积的乘方法则,积的乘方等于各因数的乘方的积.45.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数” (1)请说明28是否为“神秘数”;(2)下面是两个同学演算后的发现,请选择一个....“发现”,判断真假,并说明理由. ∠小能发现:两个连续偶数22k +和2k (其中k 取非负整数)构造的“神秘数”也是4的倍数.∠小仁发现:2016是“神秘数”.提示:(2)中两个发现,只需解答其中一个,若两个都做,按“小能发现”的解答计分.【答案】(1)是,证明见解析;(2)∠由2k +2和2k 构造的“神秘数”是4的倍数,且是奇数倍. 证明见解析;∠2016是“神秘数”是假命题,证明见解析.【分析】对于(1)结合神秘数的定义,看是否可以将28写成两个连续偶数的平方差,即可得出答案;(2) 对于∠,两个连续偶数构造的神秘数为(2k+2)2-(2k)2,化简看是否是4的倍数; 对于∠,结合神秘数的定义,看是否可以将2016写成两个连续偶数的平方差,即可得出答案; 【详解】(1)28是“神秘数”,理由如下:∠28=82-62∠28是“神秘数”(2)当选择∠时,(2k +2)2-(2k)2=(2k +2-2k)(2k +2+2k)=4(2k +1), ∴由2k +2和2k 构造的“神秘数”是4的倍数,且是奇数倍.∠当选择∠时,2016是“神秘数”是假命题,理由: ()()222k 2-2k +=224k +8k+4-4k=8k+4,令8k+4=2016,得k=251.5,∠k 为须整数,∠k=251.5不符合实际,舍去,∠201 6是“神秘数"错误.【点睛】本题主要考查完全平方公式和平方差公式,能熟练利用完全平方公式和平方差公式进行计算;46.如图,AC 与BD 相交于点O ,AO=DO ,,求证:.【答案】见解析【详解】试题分析:先由条件,证出OB=OD,然后利用:“SAS”可证明∠ABC∠∠DCB .试题解析:证明:因为,所以OB=OD,又因为AO=DO ,所以AC=BD,在∠ABC 与∠DCB 中,{12AC DBBC CB=∠=∠=,所以∠ABC∠∠DCB (SAS ).考点:全等三角形的判定.47.如图,在Rt ABC 与Rt ABD 中,斜边AD 与斜边BC 相交于点O .请你添加一个条件(不再添加其他线段,不再标注或使用其他字母),使AC BD =,并根据你添加的条件给出证明.【答案】C D ∠=∠.(答案不唯一)【分析】从角、边两个角度去思考所要添加的条件,答案不唯一,只要合理即可.【详解】解:条件:C D ∠=∠(答案不唯一).证明:在CAB △与DBA 中,∠C D ∠=∠,CAB DBA ∠=∠,AB BA =,∠CAB DBM ≌△△(AAS ),∠AC BD =.【点睛】本题考查了三角形添加添加条件型的全等,熟练掌握三角形全等的判定定理是解题的关键.48.如图所示,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线,(1)如果∠AOC=28°,∠MON=35°,求出∠AOB 的度数;(2)如果∠MON=n°,求出∠AOB 的度数;(3)如果∠MON 的大小改变, ∠AOB 的大小是否随之改变?它们之间有怎样的大小关系?请写出来.【答案】(1)70°; (2)2n° ; (3)∠AOB 随∠MON 大小的改变而改变, ∠AOB=2∠MON49.近年来,“在初中数学教学中使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了若干名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和统计图:(1)统计表中的m= ;(2)统计图中表示“影响不大”的扇形的圆心角度数为 度;(3)从这次接受调查的学生中随机调查一人,恰好是持“影响很大”看法的概率是多少?50.计算:(1)()()36x y x --(2)()422682x x y x -÷;(3)()()12x x -+;(4)()()33x y x y +--+. 【答案】(1)-6x 2+18xy ;(2)3x 2-4y ;(3)x 2+x -2;(4)x 2-y 2+6y -9.【分析】(1)直接利用单项式乘以多项式运算法则计算得出答案;(2)直接利用整式的除法运算法则计算得出答案;(3)直接利用多项式乘以多项式计算得出答案;(4)直接利用乘法公式计算得出答案.【详解】解:(1)(x -3y )(-6x )=-6x 2+18xy ;(2)(6x 4-8x 2y )÷2x 2=3x 2-4y ;(3)(x -1)(x +2)=x2+2x-x-2=x2+x-2;(4)(x+y-3)(x-y+3)=[x+(y-3)][x-(y-3)]=x2-(y-3)2=x2-y2+6y-9.【点睛】此题主要考查了整式的混合运算,正确运用乘法公式是解题关键.。

初一数学绝对值计算题及答案过程-七年级下册数学去绝对值计算题

初一数学绝对值计算题及答案过程-七年级下册数学去绝对值计算题

初一数学绝对值计算题及谜底过程之迟辟智美创作例1求下列各数的绝对值:(1)-38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a-2(a<2);(6)a-b.例2判断下列各式是否正确(正确入“T”,毛病入“F”):(1)|-a|=|a|;( )(2)-|a|=|-a|;( )(4)若|a|=|b|,则a=b;( )(5)若a=b,则|a|=|b|;( )(6)若|a|>|b|,则a>b;( )(7)若a>b,则|a|>|b|;( )(8)若a>b,则|b-a|=a-b.( )例3判断对错.(对的入“T”,错的入“F”)(1)如果一个数的相反数是它自己,那么这个数是0.( )(2)如果一个数的倒数是它自己,那么这个数是1和0.( )(3)如果一个数的绝对值是它自己,那么这个数是0或1.( )(4)如果说“一个数的绝对值是负数”,那么这句话是错的.( )(5)如果一个数的绝对值是它的相反数,那么这个数是负数.( )例4 已知(a-1)2+|b+3|=0,求a、b.例5填空:(1)若|a|=6,则a=______;(2)若|-b|=0.87,则b=______;(4)若x+|x|=0,则x是______数.例6 判断对错:(对的入“T”,错的入“F”)(1)没有最年夜的自然数.( )(2)有最小的偶数0.( )(3)没有最小的正有理数.( )(4)没有最小的正整数.( )(5)有最年夜的负有理数.( )(6)有最年夜的负整数-1.( )(7)没有最小的有理数.( )(8)有绝对值最小的有理数.( )例7 比力下列每组数的年夜小,在横线上填上适当的关系符号(“<”“=”“>”)(1)|-0.01|______-|100|;(2)-(-3)______-|-3|;(3)-[-(-90)]_______0;(4)当a<3时,a-3______0;|3-a|______a -3.例8在数轴上画出下列各题中x的范围:(1)|x|≥4;(2)|x|<3;(3)2<|x|≤5.例9 (1)求绝对值不年夜于2的整数;(2)已知x是整数,且2.5<|x|<7,求x.例10解方程:(1) 已知|14-x|=6,求x;*(2)已知|x+1|+4=2x,求x.*例11 化简|a+2|-|a-3|1,解:(1)|-38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=-a;(4)∵b>0,∴3b>0,|3b|=3b;(5)∵a<2,∴a-2<0,|a -2|=-(a-2)=2-a;说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子暗示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.分析:判断上述各小题正确与否的依据是绝对值的界说,所以思维应集中到用绝对值的界说来判断每一个结论的正确性.判数(或证明)一个结论是毛病的,只要能举出反例即可.如第(2)小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第(6)小题中取a=-1,b=0,在第(4)、(7)小题中取a=5,b=-5等,都可以充沛说明结论是毛病的.要证明一个结论正确,须写出证明过程.如第(3)小题是正确的.证明步伐如下:此题证明的依据是利用|a|的界说,化去绝对值符号即可.对证明第(1)、(5)、(8)小题要注意字母取零的情况.2,解:其中第(2)、(4)、(6)、(7)小题不正确,(1)、(3)、(5)、(8)小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明事理和依据,步伐都要较为严格、规范.而判断一个结论是毛病的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.3,解:(1)T.(2)F.-1的倒数也是它自己,0没有倒数.(3)F.正数的绝对值都即是它自己,所以绝对值是它自己的数是正数和0.(4)T.任何一个数的绝对值都是正数或0,不成能是负数,所以这句话是错的.(5)F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0.说明:解判断题时应注意两点:(1)必需“紧扣”概念进行判断;(2)要注意检查特殊数,如0,1,-1等是否符合题意.分析:根据平方数与绝对值的性质,式中(a-1)2与|b+3|都是非负数.因为两个非负数的和为“0”,当且仅当每个非负数的值都即是0时才华成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出.4,解:∵(a-1)2≥0,|b+3|≥0,又(a-1)2+|b+3|=0 ∴a-1=0且b+3=0∴a=1,b=-3.说明:对任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题过程中经经常使用到.分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数.5,解:(1)∵|a|=6,∴a=±6;(2)∵|-b|=0.87,∴b=±0.87;(4)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.说明:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数界说,至少要认识到以下四点:6,解:(1)T.(2)F.数的范围扩展后,偶数的范围也随之扩展.偶数包括正偶数,0,负偶数(-2,-4,…),所以0不是最小的偶数,偶数没有最小的.(3)T.(4)F.有最小的正整数1.(5)F.没有最年夜的负有理数.(6)T.(7)T.(8)T.绝对值最小的有理数是0.分析:比力两个有理数的年夜小,需先将各数化简,然后根据法则进行比力.7,解:(1)|-0.01|>-|100|;(2)-(-3)>-|-3|;(3)-[-(-90)]<0;(4)当a<3时,a-3<0,|3-a|>a-3.说明:比力两个有理数年夜小的依据是:①在数轴上暗示的两个数,右边的数总比左边的数年夜,正数年夜于0,年夜于一切负数,负数小于0,小于一切正数,两个负数,绝对值年夜的反而小.②两个正分数,若分子相同则分母越年夜分数值越小;若分母相同,则分子越年夜分数值越年夜;也可将分数化成小数来比力.。

七年级数学下册 专题 解一元一次不等式组(计算题50题)(解析版)

七年级数学下册 专题 解一元一次不等式组(计算题50题)(解析版)

七年级下册数学《第九章不等式与不等式组》专题解一元一次不等式组(计算题共50题)1.(2022秋•越秀区校级期末)解不等式组:5−1>4+2≥2−4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:5−1>4+2①≥2−4②,由①得:x>3,由②得:x≤4,则不等式组的解集为3<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(20231≤3+2.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.1−≤3+2,由3K23>1得x>53,由4x﹣5≤3x+2得x≤7,故不等式组的解集为53<x≤7.【点评】本题考查了解一元一次不等式组.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(20233−1−2<K56.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x≥3x﹣1得:x≥−12,解不等式r23−2<K56得:x<3,则不等式组的解集为−12≤x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(20231≤−+1+23.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.1≤−+1①+23②,由①得:x≤23,由②得:x>﹣1,则不等式组的解集为﹣1<x≤23.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2023•陕西模拟)解不等式组:2+5≤3(+2)−1<2.【分析】分别解两个不等式,然后根据大小小大中间找确定不等式组的解集.【解答】解:2+5≤3(+2)①−1<2②,解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为:﹣1≤x<3.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分得到不等式组的解集.6.(2023•安徽模拟)解不等式组2+1≤4−−1<32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:2+1≤4−s−1<32②,由①得x≤1,由②得:x>﹣2,则不等式组的解集为﹣2<x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023≥+1≤.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣5≥x+1,得:x≥3,由3K42≤x,得:x≤4,则不等式组的解集为:3≤x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2023−3)≤−1>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−3)≤s−1>0②,解不等式①得:x≥113,解不等式②得:x>3,则不等式组的解集为x≥113.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−1)≤4−1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:≥−12,不等式②得:x<4,∴不等式组的解集为:−12≤<4.【点评】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.10.(20233≤13−2<−1.【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.3≤13①−2<−1②,由①得x≤2,由②得x>﹣2,∴不等式组的解集为﹣2<x≤2.【点评】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023+2)≥2+51<K22并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,将解集表示在数轴上,根据数轴求得不等式的解集即可求解.【解答】解:解不等式①得,x≥﹣1,解不等式②得,x>0,所以不等式组的解集为x>0.这个不等式组的解集在数轴上表示如图:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,数形结合是解题的关键.12.(20232)>8+9①2>r23②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①,得:x<32,解不等式②,得:x>﹣5,则不等式组的解集为﹣5<x<32.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(2023−7<3(+1)−1≥7−32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−7<3(+1)①−1≥7−32t,解不等式①得:x<5,解不等式②得:x≥4,则不等式组的解集为4≤x<5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2023•碑林区校级三模)解不等式组:2(−2)≤3−1−2r13>+1.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:2(−2)≤3−①1−2r13>+1②,解①得:x≤73,解②得x<−15.故不等式组的解集是:x<−15.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,15.(2023−1)<72≥.【分析】先解每个不等式,再求两个不等式解集的公共部分即可.−1)<7①+2≥t,解不等式①得,x<3,解不等式②得,x≤2,∴不等式组的解集为x≤2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.16.(2023•香洲区校级一模)解不等式组:4−2≤3(+1)①1−K12<4②.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:由①得x≤5,由②得x>2,故不等式组的解集为2<x≤5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(20231<−+21+23.【分析】分别将每个一元一次不等式求解,然后求出公共解集即可.【解答】解:解不等式2x﹣1<﹣x+2,得x<1,解不等式K12<1+23,得x>﹣5,故不等式组的解集是:﹣5<x<1.【点评】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(20232≥4+1K32+1.【分析】分别解两个不等式,求解集的公共部分即可.2≥4+1①K32+1②解不等式①得:x≥﹣1,解不等式②得:x<3.∴不等式组的解集为﹣1≤x<3.【点评】本题考查解一元一次不等式组,解题关键是熟练掌握解一元一次不等式的步骤.19.(20233)<41≤2r13.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.3)<4s−1≤2r13②,由①得:x>﹣3,由②得:x≤1,∴不等式组的解集为﹣3<x≤1.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.20.(20231≤7−32K12+1.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后写出相应的整数解即可.1≤7−32①K12+1②解不等式①,得:x≤4,解不等式②,得:x>﹣1,∴不等式组的解集是﹣1<x≤4.【点评】本题考查解一元一次不等式组,熟练掌握解一元一次不等式的方法是解答本题的关键.1.(2023•河北区一模)解不等式组2>−4①+3≤5②.请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】根据解一元一次不等式组的方法,可以解答本题.【解答】解:2>−4①+3≤5②,解不等式①,得x>﹣2,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:故原不等式组的解集为﹣2<x≤2.故答案为:x>﹣2,x≤2,﹣2<x≤2.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集,掌握解一元一次不等式组的方法是关键.2.(2023•河西区模拟)解不等式组+5≥4,①4≥7−6.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:+5≥4①4≥7−6②,解不等式①,得x≥﹣1,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:∴原不等式组的解集:﹣1≤x≤2.故答案为:x≥﹣1;x≤2;﹣1≤x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2023<7①2≥+1②请按下列步骤完成解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)解不等式①,得x<4;(2)解不等式②,得x≥3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为3≤x<4,故答案为:x<4,x≥3,3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2023•南昌模拟)解不等式组3<92>−3+5,并将解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:解不等式3x<9可得:x<3;解不等式2x>﹣3x+5可得:x>1;故原不等式组的解集是1<x<3.其解集在数轴上表示如下所示:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.5.(2023+3>−K13≤1,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2x+3>x得:x>﹣3,由2−K13≤1得:x≤4,则不等式组的解集为﹣3<x≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2023春•东台市月考)解不等式组并将其解集在数轴上表示:3−2<42(−1)≤3+1.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:3−2<4①2(−1)≤3+1②,由①得:x<2,由②得:x≥﹣3,则不等式组的解集为﹣3≤x<2..【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.7.(20232>3(−1)≤7−,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.2>3(−1)①≤7−t,解不等式①得:x>−12,解不等式②得:x≤5,∴不等式组的解集为:−12<x≤5,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.8.(2023•鼓楼区校级模拟)解不等式组,并把它的解集表示在数轴上:−1)≤3(1+p①−K12②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:x≤5,解不等式②得:x>﹣1,则不等式组的解集为﹣1<x≤5,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023<6K12,并把它的解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.<6①K12②,由①得,x<1,由②得,x>﹣1,故不等式组的解集为﹣1<x<1,在数轴上表示为:【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.10.(2023>3(−1).【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解;解不等式5x+3>3(x﹣1),得:x>﹣3,解不等式8r29>,得x<2,则不等式组的解集为﹣3<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023•蜀山区校级模拟)解不等式组:3−1≥+1+4<4−2.并在数轴上表示它的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣1≥x+1得:x≥1,由x+4<4x﹣2得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(20234≥2−1,并将解集在数轴上表示出来.【分析】分别计算出方程组中两个不等式的解集,两个解集的公共部分就是不等式组的解集.4≥2−1①②解不等式①,得:x<﹣1;解不等式②,得:x≤3;在数轴上表示为:∴这个不等式组的解集为x<﹣1.【点评】此题考查一元一次不等式组的解集,在数轴上表示不等式的解集,解题关键在于掌握运算法则.13.(2023−3<4s14≤r12②,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,然后根据数轴上不等式组的解集表示出来即可.−3<4①14≤r12②,解不等式①,得:x<3,解不等式②,得:x≥﹣2,∴该不等式组的解集为:﹣2≤x<3,把该不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法以及数轴上表示不等式的解集,解题关键是熟练掌握确定不等式组解集的口诀:同大取大、同小取小、大小小大中间找、大大小小找不到.14.(2022−1<3(−1)K22≥13,并把解集在数轴上表示出来.【分析】首先解每一个不等式,求得每一个不等式的解集,即可求得该不等式组的解集,再在数轴上表示出来即可.【解答】解:由5x﹣1<3(x﹣1)得:5x﹣1<3x﹣3,解得x<﹣1,由23−K22≥13得:4x﹣3x+6≥2,解得x≥﹣4,故原不等式组的解集为﹣4≤x<﹣1,把解集在数轴上表示出来,如下图:【点评】此题主要考查了解一元一次不等式组,关键是正确掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.在数轴上表示解集时,“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(20231)<3−2①1≤r22②并将其解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.1)<3−2①−1≤r22②,解不等式①,得:x<2,解不等式②,得:x≥﹣6,∴原不等式组的解集是﹣6≤x<2,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.1.(20233)≤−4在数轴上表示出它的解集,并求出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出整数解即可.3)≤−4①t ,由①得:x ≤2,由②得:x >﹣2,∴不等式组的解集为﹣2<x ≤2,解集表示在数轴上,如图所示:则不等式组的整数解为﹣1,0,1,2.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.2.(2023•鼓楼区一模)解不等式组4(−1)>3−22−3≤5,并写出该不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:4(−1)>3−2①2−3≤5②,解①得x >2,解②得x ≤4.则不等式组的解集是:2<x ≤4.则整数解是:3,4.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(2022秋•道县期末)解不等式组3−2<4①2(−1)≤3+1②,并求出它的非负整数解.【分析】【先分别解不等式,求出不等式组的解集,然后找出负整数解.【解答】解:解①得:x<2,解②得:x≥﹣3,∴不等式组的解集为﹣3≤x<2,∴不等式组的非负整数解为0,1.【点评】本题考查了解一元一次不等式组,解题关键是求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小无解了.4.(2022≤3(+1)≥−1的最大整数解.【分析】先求出不等式组的解集,再求出最大整数解即可.【解答】解:由5x﹣1≤3(x+1),得:x≤2;由1+23≥−1,得:x≤4;∴不等式组的解集为:x≤2,∴不等式组的最大整数解为:2.【点评】本题考查求不等式组的整数解.正确的求出不等式组的解集,是解题的关键.5.(2022秋•湘潭县期末)求不等式组4−7<5(−1)2≤18−3+7的正整数解.【分析】先求出不等式组的解集,再求出正整数解即可.【解答】解:4−7<5(−1)①2≤18−3+7②,解不等式①得:x>﹣2,解不等式②得:x≤5,∴不等式组的解集为:﹣2<x≤5,其中正整数解是1,2,3,4,5.【点评】本题考查了解不等式组及不等式组的解集,熟练掌握不等式组的解法是解决问题的关键.6.(2023•长清区校级开学)解不等式组:2+>7−4<4+2,并求出所有整数解的和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2+x>7﹣4x,得:x>1,由x<4+2,得:x<4,则不等式组的解集为1<x<4,所有整数解的和为2+3=5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023−1)≥1−1,并写出它的所有非负整数解.【分析】分别求出两个不等式的解集,然后求出两个解集的公共部分,再写出范围内的非负整数解即可.−1)≥1①−1②,解不等式①得,x≤1,解不等式②得,x>﹣3,所以不等式组的解集是﹣3<x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.(2022秋•鄞州区期末)解不等式组:−4<2+3−2≤1,并求出所有满足条件的整数之和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣4<2x,得x>﹣4,由x+3−2≤1,得:x≤﹣1,则不等式组的解集为﹣4<x≤﹣1,不等式组的整数解的和为﹣3﹣2﹣1=﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−2)>4≥3r26−1并写出该不等式组的最小整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣3(x﹣2)>4,得:x<1,由2K13≥3r26−1,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,∴该不等式组的最小整数解为﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2023−1)≥1−5r12<1,并写出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出整数解即可.−1)≥1①−5r12<1②,由①得:x≤1,由②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,则不等式组的整数解为0,1.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(2022+22r15,并直接写出这个不等式组的所有负整数解.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可写出这个不等式组的所有负整数解.+2①2r15②,解不等式①,得:x<1,解不等式②,得:x>﹣3,∴该不等式组的解集为﹣3<x<1,∴这个不等式组的所有负整数解是﹣2,﹣1.【点评】本题考查解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.12.(2022春•大兴区校级期中)解不等式组4(+1)≤7+10−5<K83,并求出这个不等式组的所有的正整数解.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:4(+1)≤7+10①−5<K83②,解不等式①得:x≥﹣2,解不等式②得:x<72,所以不等式组的解集为:−2≤<72,所以不等式组的所有正整数解为:1,2,3.【点评】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.13.(2023−5r12≤1<3(+1),在数轴上表示它的解集,并写出它的最大整数解和最小整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.−5r12≤1①<3(+1)②,∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,在数轴上表示不等式组的解集为:,∴不等式组的最大整数解为:1,最小整数解为:﹣1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解题的关键是掌握不等式组的解法.14.(2022•会东县校级模拟)解不等式组3(−1)<5+1(−1)≥2−4并求它的所有的非负整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.【解答】解:3(−1)<5+1①(−1)≥2−4②,解①得x>﹣2,解②得x≤3.则不等式组的解集是:﹣2<x≤3.则非负整数解是:0,1、2、3.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(2023•鼓楼区模拟)解关于x的不等式组:4(+1)≤7+102−3<K12,并求出它所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数求其和即可.【解答】解:4(+1)≤7+10①2−3<K12②,解不等式①得,x≥﹣2,解不等式②得,x<53,所以不等式组的解集为﹣2≤x<53,所以原不等式组的整数解是﹣2、﹣1、0、1,所以所有整数解的和为﹣2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)(1)计算题:0011 -330(2017)()3π-+-+ (2)计算题: 124(2)22x x x x ---÷++ (3)解不等式组:3(2)41123x x x x --≤⎧⎪-+⎨<⎪⎩ 【答案】(1)4(2)答案见解析(3)答案见解析【解析】试题分析:(1)根据绝对值、特殊角的三角函数值、零指数幂、负整数指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题;(3)根据解一元一次不等式组的方法可以解答本题.试题解析:解:(1)原式﹣2﹣1+3 =3+1﹣2﹣1+3=4;(2)原式=2212224x x x x x-+-+⋅+-()() =44224x x x x x ()()+-+⋅+- =﹣(x +4)=﹣x ﹣4;(3)324{1123x x x x --≤-+()①<②,解不等式①,得:x ≥1,解不等式②,得:x <5,∴原不等式组的解集是1≤x <5.32.(1)化简:(31a +﹣a+1)÷2441a a a -++. (2)解不等式组:1422123x x x x ->+⎧⎪+⎨>⎪⎩ 【答案】(1)22a a +-- ,(2)x <﹣1 【解析】【分析】(1)括号内先进行通分,然后进行分式的加减法运算,最后再进行分式的乘除法运算即可;(2)分别求出每一个不等式的解集,然后再确定出解集的公式部分即可得不等式组的解集.【详解】(1)原式=()()()23111·12a a a a a --+++- =()()()2221·12a a a a a +-++- =22a a+-; (2)1422123x x x x ->+⎧⎪⎨+>⎪⎩①②, 由①得:x <﹣1,由②得:x <14, 所以原不等式组的解集为:x <﹣1.33.“中华紫薇园”景区今年“五一”期间开始营业,为方便游客在园区内游玩休息,决定向一家园艺公司采购一批户外休闲椅,经了解,公司出售两种型号休闲椅,如下表:景区采购这批休闲椅共用去56000元,购得的椅子正好可让1300名游客同时使用.(1)求景区采购了多少条长条椅,多少条弧形椅?(2)景区现计划租用A、B两种型号的卡车共20辆将这批椅子运回景区,已知A型卡车每辆可同时装运4条长条椅和11条弧形椅,B型卡车每辆可同时装运12条长条椅和7条弧形椅.如何安排A、B两种卡车可一次性将这批休闲椅运回来?(3)又知A型卡车每辆的运费为1200元,B型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.【答案】(1)采购了100条长条椅,200条弧型椅;(2)有三种方案,见解析;(3)最省钱的租车方案是租用A型卡车15辆、B型卡车5辆,最低运费为23250元.【解析】试题分析:(1)设景区采购长条椅x条,弧型椅y条,然后根据游客人数和花费钱数两个等量关系列出方程组求解即可;(2)设租用A型卡车m辆,则租用B种卡车(20﹣m)辆,根据两种型号卡车装运的休闲椅的数量不小于两种休闲椅的数量列出不等式组,求解即可,再根据车辆数是正整数写出设计方案;(3)设租车总费用为W元,列出W的表达式,再根据一次函数的增减性求出最少费用.试题解析:解:(1)设景区采购长条椅x 条,弧型椅y 条,由题意得: 35130016020056000x y x y +=⎧⎨+=⎩,解得:100200x y =⎧⎨=⎩. 答:采购了100条长条椅,200条弧型椅;(2)设租用A 型卡车m 辆,则租用B 种卡车(20﹣m )辆,由题意得:4122010011720200m m m m +-≥⎧⎨+-≥⎩()(),解得:15≤m ≤17.5,由题意可知,m 为正整数,所以,m 只能取15、16、17,故有三种租车方案可一次性将这批休闲椅运回来,可这样安排:方案一:A 型卡车15辆,B 型卡车5辆,方案二:A 型卡车16辆,B 型卡车4辆,方案三:A 型卡车17辆,B 型卡车3辆;(3)设租车总费用为W 元,则W =1200m +1050(20﹣m )=150m +21000.∵150>0,∴W 随m 的增大而增大.又∵15≤m ≤17.5,∴当m =15时,W 有最小值,W 最小=150×15+21000=23250,∴最省钱的租车方案是租用A 型卡车15辆、B 型卡车5辆,最低运费为23250元.点睛:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,读懂题目信息,理解数量关系并确定出等量关系和不等量关系是解题的关键,(3)利用一次函数的增减性和自变量的取值范围求最值是常用的方法.34.解不等式组:2132x x x +≥⎧⎨+>⎩,并在所给的数轴上表示解集.【答案】-1≤x<3【解析】分析:根据不等式的解法,先分别求解两个不等式的解集,再根据不等式组的解集的确定方法求出不等式的解集,并表示在数轴上即可.详解:解不等式①,得:1x ≥-解不等式②,得:3x <在数轴上表示解集为:点睛:此题主要考查了不等式组的解法,关键是明确不等式组的解集的确定方法:都大取大,都小取小,大小小大取中间,大大小小无解.35.(1)计算:(﹣12)﹣1﹣°+(π﹣4)0 (2)解不等式组3(2)64113x x x x --≥⎧⎪-⎨+>⎪⎩.并写出它的整数解. 【答案】(1)0;(2)整数解为2 , 3【解析】分析:(1)先分别计算有理数的负指数幂、绝对值、特殊角的三角函数值以及零次幂,最后再计算加减即可求得答案;(2)分别求出每个不等式的解集,然后再取它们的公共部分,进而求出整数解即可本题解析:(1)(﹣)﹣1﹣|1﹣|+2sin60°+(π﹣4)0=-2﹣+1+2×+1=-2﹣+1++1=0.(2)解:由①得2x ≥由②得4x <∴此不等式组的解集为24x ≤<整数解为2, 336.求不等式组231320x x -≤⎧⎨+>⎩的解集. 【答案】223x -<≤. 【解析】分析:分别解不等式,找出解集的公共部分即可.详解:231,320x x -≤⎧⎨+>⎩①②解不等式①,得 2x ≤;解不等式②,得2 3x >-; 原不等式组的解集为223x -<≤. 点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.37.解不等式组2(1)31132x x x x +≤-⎧⎪+⎨<⎪⎩【答案】x ≥3.【解析】分析:首先分别求出每一个不等式的解,从而得出不等式组的解集. 详解:解不等式①:2x+2≤3x-1 即x ≥3; 解不等式②:2x<3(x+1) 即x>-3;∴该不等式组的解集为x ≥3.点睛:本题主要考查的是不等式组的解法,属于基础题型.理解不等式的性质是解题的关键.38.(1)解不等式组:22(1)43x x x x --⎧⎪⎨≤-⎪⎩< (2)解方程:3323x x x x --=- 【答案】(1)0<x ≤3(2)x=32或x=-32 【解析】试题分析:()1分别解不等式找出解集的公共部分即可.()2设3x y x -=,方程变形为:32y y ,-=解方程求出y 的值,再代入3x y x -=,求出x ,注意检验.试题解析:(1)()2214,3x x x x <①②⎧--⎪⎨≤-⎪⎩由①得:0x >,由②得:3x ≤,则不等式组的解集为03x <≤;(2)设3x y x-=,方程变形为:32y y ,-= 去分母得:2230y y --=,解得:1y =-或3y ,= 可得31x x -=-或33x x-=, 解得:32x =或32x =-, 经检验32x =与32x =-都是分式方程的解. 39.解不等式组12655x x x ->⎧⎨≤+⎩①② 请结合题意填空,完成本题的解答. (Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为 .【答案】(Ⅰ)x >3;(Ⅰ)x ≤5;(Ⅰ)见解析;(Ⅰ)3<x ≤5.【解析】【分析】【详解】解:(Ⅰ)解不等式Ⅰ,得:x >3;(Ⅰ)解不等式Ⅰ,得:x ≤5;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为3<x ≤5.40.解不等式(组),并把它的解集在数轴上表示出来: (1)0.10.81120.63x x x ++-<-; (2)13(1)8321232x x x x --<-⎧⎪--⎨≤-⎪⎩ 【答案】(1) x <3 ;(2) -2<x ≤2【解析】分析:(1)根据一元一次不等式的解法思路有移项、化简(同乘除)可求得;(2)根据求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)可求得.详解:(1)x 0.1x 0.8x 1120.63++-<-, 化简得:2x −x 86+<1−x 13+, 去分母得:3x −(x+8)<6−2(x+1),去括号得:3x −x −8<6−2x −2,移项合并得:4x<12,化系数为1得:x<3.在数轴上表示得:(2)()1318x 3x 21232x x ⎧--<-⎪⎨--≤-⎪⎩①②,由①得:x>−2,由②得:x⩽2,∴原不等式组的解集为:−2<x⩽2;在数轴上表示为:点睛:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。

最新北师大版七年级下册数学期末复习计算题练习试题以及答案

最新北师大版七年级下册数学期末复习计算题练习试题以及答案

七年级下册计算题练习试题一、选择题。

1、下列计算正确的是( )A 、623x x x =•B 、22x 2x 2=)(C 、623x x =)(D 、4x x 5=-2、下列计算正确的是( )A 、933a a a =•B 、224a a a =÷)(﹣C 、632a 2a 2﹣)(﹣=D 、422a 3a a 2=+ 3、若关于x 2-2(k -1)x+9是完全平方式,则k 等于( )。

A 、±1 B 、±3 C 、﹣1或3 D 、4或﹣24、在多项式中,与﹣x -y 相乘的结果是x 2-y 2的多项式是( ) A 、﹣x+y B 、x+y C 、x -y D 、﹣x -y5、下列计算正确是( )A 、22a 6a 3=)(B 、1052a a a =•C 、1234x x =)(D 、326a a a =÷ 6、下列计算正确的是( )A 、a a a 23=÷B 、923a 4a 2=)(C 、4a 2a 22-)-(=D 、523a a a =+ 7、下列计算正确的是( )A 、1055a a a =+B 、623a a a =•C 、67a a a =÷D 、33x 2x 2=)( 8、下列计算正确的是( )A 、532x x x =+B 、632x x =)(﹣C 、236x x x =÷D 、632x x x =• 9、下列运算正确的是( )A 、222a 2a a 3=-B 、326a a a =÷C 、623a a a =•D 、532a a =)( 10、下列计算正确的是( )A 、222y x y x +=+)(B 、633x x x =•C 、326x x x =÷D 、422x 6x 3=)(11、下列计算正确的是( )A 、a 12a 4a 3=•B 、326a a a =÷C 、1243a a =)(﹣D 、1243a a a =•12、已知a+b=5,ab=3,则22b a +等于( ) A 、6 B 、8 C 、19 D 、25 13、下列计算正确的是( )A 、1x 41x 222+=+)(B 、4842b a 8b a 2=)(﹣C 、6x 63x 22x 32-))(-(=+D 、222a 8a 4a 4=+14、下列计算正确的是( )A 、3a 422=-aB 、222x y x y +=+)(C 、m m3m 4y y y =÷)()(D 、842x 12x 6x 2=• 二、填空题。

初一数学绝对值计算题及答案过程-七年级下册数学去绝对值计算题

初一数学绝对值计算题及答案过程-七年级下册数学去绝对值计算题

初一数学绝对值盘算题及答案进程之羊若含玉创作例1求下列各数的绝对值:(1)-38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a-2(a<2);(6)a-b.例2断定下列各式是否正确(正确入“T”,错误入“F”):(1)|-a|=|a|;( )(2)-|a|=|-a|;( )(4)若|a|=|b|,则a=b;( )(5)若a=b,则|a|=|b|;( )(6)若|a|>|b|,则a>b;( )(7)若a>b,则|a|>|b|;( )(8)若a>b,则|b-a|=a-b.( )例3断定对错.(对的入“T”,错的入“F”)(1)如果一个数的相反数是它自己,那么这个数是0.( )(2)如果一个数的倒数是它自己,那么这个数是1和0.( )(3)如果一个数的绝对值是它自己,那么这个数是0或1.( )(4)如果说“一个数的绝对值是负数”,那么这句话是错的.( )(5)如果一个数的绝对值是它的相反数,那么这个数是负数.( )例4 已知(a-1)2+|b+3|=0,求a、b.例5填空:(1)若|a|=6,则a=______;(2)若|-b|=0.87,则b=______;(4)若x+|x|=0,则x是______数.例6 断定对错:(对的入“T”,错的入“F”)(1)没有最大的自然数.( )(2)有最小的偶数0.( )(3)没有最小的正有理数.( )(4)没有最小的正整数.( )(5)有最大的负有理数.( )(6)有最大的负整数-1.( )(7)没有最小的有理数.( )(8)有绝对值最小的有理数.( )例7 比较下列每组数的大小,在横线上填上适当的关系符号(“<”“=”“>”)(1)|-0.01|______-|100|;(2)-(-3)______-|-3|;(3)-[-(-90)]_______0;(4)当a<3时,a-3______0;|3-a|______a -3.例8在数轴上画出下列各题中x的规模:(1)|x|≥4;(2)|x|<3;(3)2<|x|≤5.例9 (1)求绝对值不大于2的整数;(2)已知x是整数,且2.5<|x|<7,求x.例10解方程:(1) 已知|14-x|=6,求x;*(2)已知|x+1|+4=2x,求x.*例11 化简|a+2|-|a-3|1,解:(1)|-38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=-a;(4)∵b>0,∴3b>0,|3b|=3b;(5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a;说明:分类讨论是数学中的重要思想办法之一,当绝对值符号内的数(用含字母的式子暗示时)无法断定其正、负时,要化去绝对值符号,一般都要进行分类讨论.剖析:断定上述各小题正确与否的依据是绝对值的界说,所以思维应集中到用绝对值的界说来断定每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第(6)小题中取a=-1,b=0,在第(4)、(7)小题中取a=5,b=-5等,都可以充分辩明结论是错误的.要证明一个结论正确,须写出证明进程.如第(3)小题是正确的.证明步调如下:此题证明的依据是应用|a|的界说,化去绝对值符号即可.对于证明第(1)、(5)、(8)小题要注意字母取零的情况.2,解:其中第(2)、(4)、(6)、(7)小题不正确,(1)、(3)、(5)、(8)小题是正确的.说明:断定一个结论是正确的与证明它是正确的是相同的思维进程,只是在证明时需要写明道理和依据,步调都要较为严格、规范.而断定一个结论是错误的,可依据概念、性质等知识,用推理的办法来否认这个结论,也可以用举反例的办法,后者有时更为轻便.3,解:(1)T.(2)F.-1的倒数也是它自己,0没有倒数.(3)F.正数的绝对值都等于它自己,所以绝对值是它自己的数是正数和0.(4)T.任何一个数的绝对值都是正数或0,不成能是负数,所以这句话是错的.(5)F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0.说明:解断定题时应注意两点:(1)必须“紧扣”概念进行断定;(2)要注意检讨特殊数,如0,1,-1等是否相符题意.剖析:依据平方数与绝对值的性质,式中(a-1)2与|b+3|都是非负数.因为两个非负数的和为“0”,当且仅当每个非负数的值都等于0时才干成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出.4,解:∵(a-1)2≥0,|b+3|≥0,又(a-1)2+|b+3|=0 ∴a-1=0且b +3=0∴a=1,b=-3.说明:对于任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题进程中经经常使用到.剖析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数.5,解:(1)∵|a|=6,∴a=±6;(2)∵|-b|=0.87,∴b=±0.87;(4)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.说明:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来懂得这个概念.对绝对值的代数界说,至少要认识到以下四点:6,解:(1)T.(2)F.数的规模扩大后,偶数的规模也随之扩大.偶数包含正偶数,0,负偶数(-2,-4,…),所以0不是最小的偶数,偶数没有最小的.(3)T.(4)F.有最小的正整数1.(5)F.没有最大的负有理数.(6)T.(7)T.(8)T.绝对值最小的有理数是0.剖析:比较两个有理数的大小,需先将各数化简,然后依据轨则进行比较.7,解:(1)|-0.01|>-|100|;(2)-(-3)>-|-3|;(3)-[-(-90)]<0;(4)当a<3时,a-3<0,|3-a|>a-3.说明:比较两个有理数大小的依据是:①在数轴上暗示的两个数,右边的数总比左边的数大,正数大于0,大于一切负数,负数小于0,小于一切正数,两个负数,绝对值大的反而小.②两个正分数,若分子相同则分母越大分数值越小;若分母相同,则分子越大分数值越大;也可将分数化成小数来比较.。

北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)

北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)

北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)班级________姓名________学号________评价等次________一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )17.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确; ∴错误的为D . 故选D . 5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−5 13 )5故选:C .首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6, 得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a 2+2ab =2×32+2×3×3=36. (2)当a =−3,b =3时,2a 2+2ab =2×(−3)2+2×(−3)×3=18−18=0. 所以2a 2+2ab 的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。

七年级下册北师大版数学计算题

七年级下册北师大版数学计算题

七年级下册北师大版数学计算题一、有理数混合运算(1 - 5题)1. 计算:( - 2)+3 - ( - 5)- 解析:- 首先去括号,根据去括号法则,-(-5)=5。

- 则原式变为-2 + 3+5。

- 按照从左到右的顺序计算,-2+3 = 1,1 + 5=6。

2. 计算:- 3×( - 4)+( - 28)÷7- 解析:- 先计算乘除运算。

- 根据乘法法则,-3×(-4)=12;根据除法法则,-28÷7=-4。

- 再计算加法,12+( - 4)=12 - 4 = 8。

3. 计算:( - 2)^3+(-3)×[(-4)^2 - 2]- 解析:- 先计算指数运算。

- (-2)^3=-8,(-4)^2 = 16。

- 则原式变为-8+( - 3)×(16 - 2)。

- 先算括号里的16-2 = 14。

- 再计算乘法-3×14=-42。

- 最后计算加法-8+( - 42)=-8-42=-50。

4. 计算:(1)/(2)×( - 4)+( - (2)/(3))×( - 6)- 解析:- 先计算乘法运算。

- (1)/(2)×(-4)=-2,(-(2)/(3))×(-6)=4。

- 再计算加法-2 + 4=2。

5. 计算:0 - 2^3÷( - 4)^3-(1)/(8)- 解析:- 先计算指数运算,2^3 = 8,( - 4)^3=-64。

- 则原式变为0-8÷(-64)-(1)/(8)。

- 计算除法8÷(-64)=-(1)/(8)。

- 再计算0-(-(1)/(8))-(1)/(8)=0+(1)/(8)-(1)/(8)=0。

二、整式的加减(6 - 10题)6. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,3a-5a=(3 - 5)a=-2a,2b - b=(2 - 1)b=b。

七年级下册数学计算题库及答案

七年级下册数学计算题库及答案

七年级下册数学计算题库及答案以下是七年级下册数学计算题库及答案:一、整数的加减乘除1. 计算:-5+8-(-9)=?答案:122. 计算:-7-(-10)+2-(-5)=?答案:63. 如果a=5,b=-3,c=-2,则(a-b)(a+c)+(a-b)(-b+c)的值为多少?答案:-324. 计算-7÷(4-3)×2=?答案:-14二、小数的加减乘除1. 计算:0.65+0.24-0.56=?答案:0.332. 计算:0.16-0.08+0.5=?答案:0.583. 用两个不同的小数表示21.6,并求它们的和。

答案:12.3+9.3=21.64. 线段长度为10.62厘米,将它分为4段,每段长度保留一位小数,求每段长度。

答案:2.7厘米、2.7厘米、2.6厘米、2.6厘米三、分数的加减乘除1. 计算:2/3-1/4+5/6=?答案:12. 计算:3/4÷2/3=?答案:9/8或1又1/83. 计算:1/3+1/5-1/2=?答案:-1/15或-0.0674. 计算(2/5)×(1/3)×(5/6)=?答案:1/9或0.111四、百分数的运算1. 用百分数表示:5/8答案:62.5%2. 计算:40%-20%+15%=?答案:35%3. 将72%转换为分数。

答案:18/254. 将1 1/4转换为百分数。

答案:125%五、有理数的比大小1. 将-3、-1.5、-2/3、0、1/2、2/3从小到大排列。

答案:-3、-1.5、-2/3、0、1/2、2/32. 对于以下四个数:-1.25,-1 1/2,-1.2,-1.5,其中哪两个相等?答案:-1.25和-1.23. 对于两个有理数a和b,如果a+b=0且a>b,则a和b的大小关系是什么?答案:a>-1/2,b<-1/24. 在数轴上标出以下三个数的位置大小关系:-0.5,0,|-0.5|答案:|-0.5|<0<-0.5六、数学问题的解法1. 一个整数加上2再乘以3的结果为12,这个整数是多少?答案:22. 平均年龄为15岁的一家4口,其中3个人的年龄分别为13岁、15岁、17岁,则另外一个人的年龄是多少?答案:19岁3. Lisa和Lucy去购物,两人分别花了自己的钱和父母给的钱。

七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)

七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)

七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8=﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=4+3+3=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−125(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−27=5+3﹣(−23)=5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×+52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+1681(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×+(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(11+−1);(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=27+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−×|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.−(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×−172−82÷=0.2×54−15÷(−15)=14+75=7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)(−2)2×3(−8)(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×23×=2×32−8×14=3﹣2=1(3)9+|1−2|−27×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−913(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

七年级下册数学计算题1000道及答案

七年级下册数学计算题1000道及答案

七年级下册数学计算题1000道及答案18x+23y=230374x-y=1998答案:x=27 y=7944x+90y=779644x+y=3476答案:x=79 y=4876x-66y=408230x-y=2940答案:x=98 y=5167x+54y=854671x-y=5680答案:x=80 y=5942x-95y=-141021x-y=1575答案:x=75 y=4847x-40y=85334x-y=2006答案:x=59 y=4819x-32y=-178675x+y=4950答案:x=66 y=9597x+24y=7202 58x-y=2900答案:x=50 y=98 )42x+85y=636263x-y=1638答案:x=26 y=62 85x-92y=-251827x-y=486答案:x=18 y=44 79x+40y=2419 56x-y=1176答案:x=21 y=19 80x-87y=215622x-y=880答案:x=40 y=12 91x+70y=5845 95x-y=4275答案:x=45 y=25 29x+44y=5281 88x-y=3608答案:x=41 y=93 25x-95y=-435540x-y=2000答案:x=50 y=59 54x+68y=328478x+y=1404答案:x=18 y=34 48x-54y=-318624x+y=1080答案:x=45 y=99 36x+77y=761947x-y=799答案:x=17 y=91 13x-42y=-271731x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 62x-98y=-256446x-y=2024答案:x=44 y=54 79x-76y=-438826x-y=832答案:x=32 y=91 63x-40y=-82142x-y=546答案:x=13 y=41 69x-96y=-120942x+y=3822答案:x=91 y=78 85x+67y=7338 11x+y=308答案:x=28 y=74 78x+74y=12928 14x+y=1218答案:x=87 y=83 39x+42y=533159x-y=5841答案:x=99 y=35 29x+18y=1916 58x+y=2320答案:x=40 y=42 40x+31y=604345x-y=3555答案:x=79 y=9345x+y=3780答案:x=84 y=93 45x-30y=-145529x-y=725答案:x=25 y=86 11x-43y=-1361 47x+y=799答案:x=17 y=36 33x+59y=3254 94x+y=1034答案:x=11 y=49 89x-74y=-2735 68x+y=1020答案:x=15 y=55 94x+71y=751778x+y=3822答案:x=49 y=41 28x-62y=-493446x+y=552答案:x=12 y=85 75x+43y=8472答案:x=82 y=54 41x-38y=-118029x+y=1450答案:x=50 y=85 22x-59y=82463x+y=4725答案:x=75 y=14 95x-56y=-401 90x+y=1530答案:x=17 y=36 93x-52y=-852 29x+y=464答案:x=16 y=45 93x+12y=882354x+y=4914答案:x=91 y=30 21x-63y=8420x+y=1880答案:x=94 y=30 48x+93y=975638x-y=950答案:x=25 y=9299x-67y=401175x-y=5475答案:x=73 y=48(x^4-2x²+1)÷(x²+2x+1)答案:(x-1)²18x+23y=230374x-y=1998答案:x=27 y=7944x+90y=779644x+y=3476答案:x=79 y=4876x-66y=408230x-y=2940答案:x=98 y=5167x+54y=854671x-y=5680答案:x=80 y=5942x-95y=-141021x-y=1575答案:x=75 y=4834x-y=2006答案:x=59 y=48 19x-32y=-1786 75x+y=4950答案:x=66 y=95 97x+24y=7202 58x-y=2900答案:x=50 y=98 )42x+85y=636263x-y=1638答案:x=26 y=62 85x-92y=-251827x-y=486答案:x=18 y=44 79x+40y=2419 56x-y=1176答案:x=21 y=19 80x-87y=215622x-y=880答案:x=40 y=12 91x+70y=5845答案:x=45 y=25 29x+44y=528188x-y=3608答案:x=41 y=93 25x-95y=-435540x-y=2000答案:x=50 y=59 54x+68y=328478x+y=1404答案:x=18 y=34 48x-54y=-318624x+y=1080答案:x=45 y=99 36x+77y=761947x-y=799答案:x=17 y=91 13x-42y=-271731x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 62x-98y=-2564 46x-y=2024答案:x=44 y=54 79x-76y=-4388 26x-y=832答案:x=32 y=91 63x-40y=-82142x-y=546答案:x=13 y=41 69x-96y=-120942x+y=3822答案:x=91 y=78 85x+67y=7338 11x+y=308答案:x=28 y=74 78x+74y=12928 14x+y=1218答案:x=87 y=83 39x+42y=533159x-y=5841答案:x=99 y=3529x+18y=1916 58x+y=2320答案:x=40 y=42 40x+31y=604345x-y=3555答案:x=79 y=93 47x+50y=859845x+y=3780答案:x=84 y=93 45x-30y=-145529x-y=725答案:x=25 y=86 11x-43y=-1361 47x+y=799答案:x=17 y=36 33x+59y=3254 94x+y=1034答案:x=11 y=49 89x-74y=-2735 68x+y=1020答案:x=15 y=55 94x+71y=751778x+y=3822答案:x=49 y=41 28x-62y=-493446x+y=552答案:x=12 y=85 75x+43y=847217x-y=1394答案:x=82 y=54 41x-38y=-118029x+y=1450答案:x=50 y=85 22x-59y=82463x+y=4725答案:x=75 y=14 95x-56y=-401 90x+y=1530答案:x=17 y=36 93x-52y=-852 29x+y=464答案:x=16 y=45 93x+12y=882354x+y=4914答案:x=91 y=3021x-63y=8420x+y=1880答案:x=94 y=3048x+93y=975638x-y=950答案:x=25 y=9299x-67y=401175x-y=5475答案:x=73 y=48(x^4-2x²+1)÷(x²+2x+1) 答案:(x-1)²。

七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)

七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)

七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)−=4,3+=16;(2)−=2,3+5=14.【分析】(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,即可求出y的值,则x的值也就迎刃而解了;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,即可求出x的值,则y的值也就可以求出了.【解答】解:(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,解得y=1.将y=1代入x=y+4中得x=5,故方程组的解为:=5=1;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,解得x=3.将x=3代入y=x﹣2,得y=1.故方程组的解为:=3=1.【点评】本题主要考查了二元一次方程组的解法,解题的关键是掌握代入法解方程.2.用代入法解下列方程组:(1)2−=33+2=8;(2)+=103−2=5.【分析】两方程组利用代入消元法求出解即可.【解答】解:(1)2−=3①3+2=8②,由①得:y=2x﹣3③,把③代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入③得:y=4﹣3=1,则方程组的解为=2=1;(2)+=10①3−2=5②,由①得:u=10﹣v③,把③代入②得:3(10﹣v)﹣2v=5,解得:v=5,把v=5代入①得:5+u=10,解得:u=5,则方程组的解为=5=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.用代入法解下列方程组:(1)3−=2,9+8=17;(2)3−4=10+3=12.【分析】(1)由①得出y =3x ﹣2③,把③代入②得出9x +8(3x ﹣2)=17,求出x ,再把x =1代入③求出y 即可;(2)由②得出x =12﹣3y ③,把③代入①得出3(12﹣3y )﹣4y =10,求出y ,再把y =2代入③求出x 即可.【解答】解:(1)3−=2①9+8=17②,由①,得y =3x ﹣2③,把③代入②,得9x +8(3x ﹣2)=17,解得:x =1,把x =1代入③,得y =3×1﹣2,即y =1,所以原方程组的解是=1=1;(2)3−4=10①+3=12②,由②,得x =12﹣3y ③,把③代入①,得3(12﹣3y )﹣4y =10,解得:y =2,把y =2代入③,得x =12﹣3×2,即x =6,所以原方程组的解是=6=2.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.4.用代入法解下列方程组.(1)+2=4=2−3;(2)−=44+2=−2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)+2=4①=2−3②,把②代入①得:x +2(2x ﹣3)=4,解得:x =2,把x =2代入②得:y =4﹣3=1,则方程组的解为=2=1;(2)方程组整理得:−=4①2+=−1②,①+②得:3x =3,解得:x =1,把x =1代入①得:1﹣y =4,解得:y =﹣3,则方程组的解为=1=−3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用代入法解下列方程组:(1)5+4=−1.52−3=4(2)4−3−10=03−2=0【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)5+4=−1.5①2−3=4②,由②得:x =3r42③,把③代入①得:15r202+4y =﹣1.5,去分母得:15y +20+8y =﹣3,移项合并得:23y =﹣23,解得:y =﹣1,把y =﹣1代入③得:x =12,则方程组的解为=12=−1;(2)方程组整理得:4−3−10=0①=23t ,把②代入①得:83y ﹣3y ﹣10=0,去分母得:8y ﹣9y ﹣30=0,解得:y=﹣30,把y=﹣30代入②得:x=﹣20,则方程组的解为=−20=−30.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.用代入法解下列方程组:(1)−=42+=5;(2)3−=29+8=17;(3)3+2=−86−3=−9.【分析】各方程组利用代入消元法求出解即可.【解答】解:(1)−=4①2+=5②,由①得:x=y+4③,把③代入②得:2(y+4)+y=5,解得:y=﹣1,把y=﹣1代入③得:x=﹣1+4=3,则方程组的解为=3=−1;(2)3−=2①9+8=17②,由①得:y=3x﹣2③,把③代入②得:9x+8(3x﹣2)=17,解得:33x=33,解得:x=1,把x=1代入③得:y=3﹣2=1,则方程组的解为=1=1;(3)3+2=−8①2−=−3②,由②得:y=2x+3③,把③代入①得:3x+2(2x+3)=﹣8,解得:x=﹣2,把x=﹣2代入②得:﹣4﹣y=﹣3,解得:y=﹣1,则方程组的解为=−2=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.用代入法解下列方程组:(1)3+2=11,①=+3,②(2)4−3=36,①+5=7,②(3)2−3=1,①3+2=8,②【分析】(1)将方程②代入方程①进行求解;(2)将方程②变形为y=﹣5x+7,再代入方程①进行求解;(3)将方程①变形为y=2K13,再代入方程②进行求解.【解答】解:(1)将方程②代入方程①得,3(y+3)+2y=11,解得y=25,把y=25代入②得,x=175,∴该方程组的解为=175=25;(2)将方程②变形为y=﹣5x+7③,把③代入①得,4x﹣3(﹣5x+7)=36,解得x=3,将x=3代入③得,y=﹣5×3+7,解得y=﹣8,∴该方程组的解为=3=−8;(3)将方程①变形为y=2K13③,把③代入②得,3x+2×2K13=8,解得x=2,将x =2代入③得,y =2×2−13,解得y =1,∴该方程组的解为=2=1.【点评】此题考查了利用代入法解二元一次方程组的能力,关键是能直接或将某方程变式后进行代入消元求解.8.用代入法解下列方程组:(1)5+2=15①8+3=−1②;(2)3(−2)=−172(−1)=5−8.【分析】(1)用代入消元法解二元一次方程组即可;(2)用代入消元法解二元一次方程组即可.【解答】解:(1)5+2=15①8+3=−1②,由①得,y =15−52③,将③代入②得,8x +15−52×3=﹣1,解得,x =﹣47,将x =﹣47代入①得,y =125,∴方程组的解为=−47=125;(2)3(−2)=−172(−1)=5−8,整理得,3−=−11①2−5=−6②,由①得,x =3y +11③,将③代入②得,y =﹣28,将y =﹣28代入①得,x =﹣73,∴方程组的解为=−73=−28.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.9.用代入法解下列方程组:(1)=6−53−6=4(2)5+2=15+=6(3)3+4=22−=5(4)2+3=73−5=1【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)=6−5s3−6=4②,把①代入②得3(6﹣5y)﹣6y=4,解得y=23,∴x=6−5×23=83,所以方程组的解为=83=23;(2)5+2=15①+=6②,由②得x=6﹣y③,把③代入①,得y=5,∴x=6﹣5=1,所以原方程组的解为=1=5;(3)3+4=2①2−=5②,由②得y=2x﹣5③,把③代入①得,解得x=2,∴y=2×2﹣5=﹣1,所以原方程组的解为=2=−1;(4)2+3=7①3−5=1②,由①得x=7−32③,把③代入②得解得y=1,∴x=7−3×12=2,所以原方程组的解为=2=1.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.10.用代入法解下列方程组:(1)2+=3+2=−6;(2)+5=43−6=5;(3)2−=63+2=2;(4)5+2=113−=−9;【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)2+=3①+2=−6②,由①得y=3﹣2x,把y=3﹣2x代入②得x+2(3﹣2x)=﹣6,解得x=4,∴y=3﹣2×4=﹣5.∴方程组的解为=4=−5.(2)+5=4①3−6=5②,由①得x=4﹣5y,把x=4﹣5y代入②得3(4﹣5y)﹣6y=5,解得y=13,∴x=4﹣5×13=73.∴方程组的解为=73=13.(3)2−=6①3+2=2②,由①得y=2x﹣6,把y=2x﹣6代入②得3x+2(2x﹣6)=2,解得x=2,∴y=2x﹣6=2×2﹣6=﹣2.方程组的解为=2=−2.(4)5+2=11①3−=−9②,由②得x=3y+9,把x=3y+9代入①得5(3y+9)+2y=11,解得y=﹣2,∴x=3×(﹣2)+9=3.∴方程组的解为=3=−2.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.1.用加减法解下列方程组:(1)4−=143+=7(2−2=7−3=−8【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)4−=14①3+=7②,①+②得:7x=21,解得:x=3,把x=3代入②得:y=﹣2,则方程组的解为=3=−2;(2−2=7①−3=−8②,①﹣②得:y=15,把y=15代入①得:x=74,则方程组的解为=74=15.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.用加减法解下列方程组:(1)2+7=53+=−2(2)5=123=−2(37=127=13【分析】(1)由②得出n=﹣2﹣3m③,把③代入①得出2m+7(﹣2﹣3m)=5,求出m,把m=﹣1代入③求出n即可;(2)②﹣①×2得出13v=﹣26,求出v,把v=﹣2代入①求出u即可;(3)整理后①+②得出28x=35,求出x,②﹣①求出y即可.【解答】解:(1)2+7=5①3+=−2②由②得:n=﹣2﹣3m③,把③代入①得:2m+7(﹣2﹣3m)=5,解得:m=﹣1,把m=﹣1代入③得:n=1,所以原方程组的解是:=−1=1;(2)2−5=12①4+3=−2②②﹣①×2得:13v=﹣26,解得:v=﹣2,把v=﹣2代入①得:2u+10=12,解得:u=1,所以原方程组的解是:=1=−2;(3)整理得:14−6=21①14+6=14②,①+②得:28x=35,解得:x=54,②﹣①得:12y=﹣7,解得:y=−712,所以原方程组的解是:=54=−712.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3.用加减法解下列方程组:(1)−=53+4=−1.2+=4;(2)−2=3【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)−=5①2+=4②,①+②得:3x =9,解得:x =3,把x =3代入①得:3﹣y =5,解得:y =﹣2,则方程组的解为=3=−2;(2)−2=3①3+4=−1②,①×2+②得:5x =5,解得:x =1,把x =1代入①得:1﹣2y =3,解得:y =﹣1,则方程组的解为=1=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.用加减法解下列方程组:(1)4−3=11,2+=13;(2)−=3,2+3(−p =11【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)4−3=11①2+=13②,①+②×3得:10x =50,解得:x =5,把x =5代入①得:20﹣3y =11,解得:y =3,所以方程组的解为=5=3;(2)方程组整理得:−=3①3−=11②,②﹣①得:2x =8,解得:x =4,把x=4代入①得:4﹣y=3,解得:y=1,所以方程组的解为=4=1.【点评】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用加减法解下列方程组:(1)3+2=76−2=11(2)2+=33+=4.【分析】各个方程组利用加减消元法求出解即可.【解答】解:(1)3+2=7①6−2=11②,①+②得:9μ=18,即μ=2,把μ=2代入①得:6+2t=7,解得:t=12,则方程组的解为=2=12;(2)2+=3①3+=4②,②﹣①得:a=1,把a=1代入①得:2+b=3,解得:b=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3−4=04+=8;(2+=3−32=−1.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3−4=0①4+=8②,①+②得:4y=8,解得:y=2,把y=2代入②得:4x+2=8,解得:x=32,则方程组的解为=32=2;(2)方程组整理得:2+=3①−3=−2②,①×3+②得:7x=7,解得:x=1,把x=1代入①得:2+y=3,解得:y=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法是代入消元法与加减消元法.7.(2022秋•陕西期末)用加减法解下列方程组:(1)−=33−8=14;(2+2=10=1+r13.【分析】(1)根据加减消元法解二元一次方程组即可求解;(2)将第二个方程去分母化简,然后根据加减消元法解二元一次方程组即可求解.【解答】解:(1)−=3①3−8=14②,①×3﹣②得:﹣3y+8y=9﹣14,解得:y=﹣1,将y=﹣1代入①得:x+1=3,解得:x=2,∴原方程组的解为:=2=−1;(2+2=10①=1+r13②,由②得3x=6+2(y+1),即3x﹣2y③,①﹣③得:4y=2,解得:=12,①+③得:6x=18,解得:x=3,∴原方程组的解为:=3=12.【点评】本题考查了加减消元法解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.8.用加减法解下列方程组:(1)+3=,2(+1)−=6;(2)+=2800,96%+64%=2800×92%.【分析】(1)先用第二个方程减去第一个方程即可得到x 的值,然后将x 的值代入任意一个方程,解方程即可得到y 的值;(2)先对方程组进行化简可得+=2800①3+2=8050②,易得两个方程中y 的系数存在2倍关系,故只需用方程②减去方程①乘2的积即可得到关于x 的方程,解方程即可.【解答】解:(1)+3=,①2(+1)−=6.②②﹣①,得x ﹣1=6,∴x =7,x =7代入①得y =10,所以原方程组的解为=7=10.(2)原方程化简得+=2800,①3+2=8050.②②﹣①×2,得﹣x =﹣2450,∴x =2450,将x =2450代入①得:y =350,∴原方程组的解为:=2450=350.【点评】本题考查二元一次方程组的解法,利用正确的方法求解是本题的关键.9.用加减法解下列方程组:(1)−=5,①2+=4;②(2)−2=1,①+3=6;②(3)2−=5,①−1=12(2−1).②【分析】(1)利用加减消元法解答即可;(2)利用加减消元法解答即可;(3)利用加减消元法解答即可.【解答】解:(1)−=5①2+=4②,①+②得:3x=9,解得:x=3,把x=3代入①得:3﹣y=5,解得:y=﹣2,所以方程组的解为:=3=−2;(2)−2=1①+3=6②,②﹣①得:5y=5,解得:y=1,把y=1代入①得:x﹣2=1,解得:x=3,所以方程组的解为:=3=1;(3)2−=5①−1=12(2−1)②,由②得:2x﹣2y=1③,①﹣③得:y=4,把y=4代入①得:2x﹣4=5,解得:x=92,所以方程组的解为:=92=4.【点评】此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.10.用加减法解下列方程组:(1)+3=62−3=3(2)7+8=−57−=4(3)−1=3(−2)+4=2(+1)(4+4=1−3=−1.【分析】各方程组整理后,利用加减消元法求出解即可.【解答】解:(1)+3=6①2−3=3②,①+②得:3x=9,即x=3,把x=3代入①得:y=1,则方程组的解为=3=1;(2)7+8=−5①7−=4②,①﹣②得:9y=﹣9,即y=﹣1,把y=﹣1代入①得:x=37,则方程组的解为=37=−1;(3)方程组整理得:3−=5①2−=2②,①﹣②得:x=3,把x=3代入①得:y=4,则方程组的解为=3=4;(4)方程组整理得:4+3=12①3−2=−6②,①×2+②×3得:17x=6,即x=617,①×3﹣②×4得:17y=60,即y=6017,则方程组的解为=617=6017.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2−5=14①3+5=16②(加减法).=−t(代入法);(2)2+3=9①【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把②代入①得:2x+5x=14,解得:x=2,把x=2代入②,得:y=﹣2,则原方程组的解是=2=−2;(2)①×3得:6x+9y=27③,②×2得:6x+10y=32④,④﹣③得:y=5,把y=5代入①得:2x+15=9,解得:x=﹣3,则原方程组的解是=−3=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.(2022春•安岳县校级月考)解下列方程组:(1)3−=75+2=8(用代入法);(23=104=5(用加减法).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)3−=7①5+2=8②,由①得:y=3x﹣7③,把③代入②得:5x+2(3x﹣7)=22,解得:x=2,把x=2代入①得:6﹣y=7,解得:y=﹣1,则方程组的解为=2=−1;(2)方程组整理得:3+4=120①4−3=60②,①×3+②×4得:25m=600,解得:m=24,把m=24代入①得:72+4n=120,解得:n=12,则方程组的解为=24=12.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2022春•大连期中)用指定的方法解下列方程组:(1)−3=42+=13(代入法);(2)5+2=4+4=−6(加减法).【分析】(1)利用代入法解方程组;(2)利用加减消元法解方程组.【解答】解:(1)−3=4①2+=13②,由①得x =3y +4③,把③代入②,得2(3y +4)+y =13,解得y =57,∴x =3×57+4=617,∴方程组的解为=617=57;(2)5+2=4①+4=−6②,①×2﹣②,得9x =14,解得x =149,把x =149代入②,得149+4y =﹣6,解得y =−179.∴方程组的解为=149=−179.【点评】本题考查了解二元一次方程组,做题的关键是掌握加减消元法,和代入消元法解二元一次方程组.4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5−=113+=7(代入消元法);(2)2−5=245+2=31(加减消元法).【分析】(1)由方程①,得b =5a ﹣11,再代入方程②求出未知数a ,进而得出未知数b ;(2)用方程①×2﹣②×5,可消去未知数y ,求出未知数x ,进而得出y 的值.【解答】解:(1)5−=11①3+=7②,由①,得b =5a ﹣11③,把③代入②,得3a +5a ﹣11=7,解得a =94,把a=94代入③,得b=14,故方程组的解为=94=14;(2)2−5=24①5+2=31②,①×2﹣②×5,得29x=203,解得x=7,把x=7代入①,得y=﹣2,故方程组的解为=7=−2.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2+3=11①=+3②(代入消元法);(2)3−2=2①4+=10②(加减消元法).【分析】(1)利用代入消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)2+3=11①=+3②,把②代入①得:2(y+3)+3y=11,解得y=1,把y=1代入②得:x=1+3=4,故原方程组的解是:=4=1;(2)3−2=2①4+=10②,②×2得:8x+2y=20③,①+③得:11x=22,解得x=2,把x=2代入②得:8+y=10,解得y=2,故原方程组的解是:=2=2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握.6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)−2=22+3=12(代入法);(2)6−5=36+=−15(加减法).【分析】(1)整理后由①得出n =2m ﹣4③,把③代入②得出2m +3(2m ﹣4)=12,求出m ,再把m =3代入③求出n 即可;(2)②﹣①得出6t =﹣18,求出t ,再把t =﹣3代入①求出s 即可.【解答】解:(1)整理得:2−=4①2+3=12②,由①,得n =2m ﹣4③,把③代入②,得2m +3(2m ﹣4)=12,解得:m =3,把m =3代入③,得n =2×3﹣4=6﹣4=2,所以原方程组的解是=3=2;(2)6−5=3①6+=−15②,②﹣①,得6t =﹣18,解得:t =﹣3,把t =﹣3代入①,得6s +15=3,解得:s =﹣2,所以原方程组的解是=−2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键,解二元一次方程组的方法有代入消元法和加减消元法两种.7.(2022春•泰安期中)用指定的方法解下列方程组(1)3+4=19−=4(代入消元法);(2)2+3=−53−2=12(加减消元法);(3−9)=6(−2)r13=2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3+4=19①−=4②,由②得:x =y +4③,把③代入①得:3(y +4)+4y =19,解得:y=1,把y=1代入③得:x=1+4=5,则方程组的解为=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,则方程组的解为=2=−3;(3)方程组整理得:5−6=33①3−4=28②,①×2﹣②×3得:x=﹣18,把x=﹣18代入①得:﹣90﹣6y=33,解得:y=−412,则方程组的解为=−18=−412.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3+2=143+4=17.(加减法)=+3;(代入法)(2)2+3=12【分析】(1)用代入消元法解方程组即可;(2)用加减消元法解方程组即可.【解答】解:(1)3+2=14①=+3②,将②代入①,得3y+9+2y=14,解得y=1,将y=1代入②得x=4,∴方程组的解为=4=1;(2)2+3=12①3+4=17②,①×3得,6x+9y=36③,②×2得,6x+8y=34④,③﹣④,得y=2,将y=2代入①得,x=3,∴方程组的解为=3=2.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题的关键.9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)=2−33+2=8(代入法);(2)3+4=165−6=33(加减法).【分析】(1)把①代入②得出x的值,再把x的值代入①求出y的值,从而得出方程组的解;(2)①×3+②×2得出19x=114,求出x,把x=6代入①求出y即可.【解答】解:(1)=2−3①3+2=8②,把①代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入①得:y=1,则原方程组的解是:=2=1.(2)3+4=16①5−6=33②,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:18+4y=16,解得:y=−12,所以方程组的解=6=−12.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.10.用指定的方法解下列方程组:(1)3+4=19−=4(代入法);(2)2+3=−53−2=12(加减法).【分析】(1)由②得出x=4+y③,把③代入①得出3(4+y)+4y=19,求出y,把y =1代入③求出x即可;(2)①×2+②×3得出13x=26,求出x,把x=2代入①求出y即可.【解答】解:(1)3+4=19①−=4②,由②得:x=4+y③,把③代入①得:3(4+y)+4y=19,解得:y=1,把y=1代入③得:x=4+1=5,所以方程组的解是=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,所以方程组的解=2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.1.(2022•苏州模拟)用适当的方法解下列方程组.(1)+2=9−3=1;(2−34=1−p−(−4p=4.【分析】(1)利用加减消元法,方程组可化为:7y=28,解得:y=4,将y=4代入①得:x=1;(2)先将方程组化为:8−9=12①8−5=4②,利用加减消元法解得:y=﹣2,将y=﹣2代入①得:=−34.【解答】解:(1)+2=9①−3=1②①×3+②得:7y=28,解得:y=4,将y=4代入①得:x=1,即方程的解为:=1=4;(2)原方程组可化为:8−9=12①8−5=4②,①﹣②得:﹣4y=8,解得:y=﹣2,将y=﹣2代入①得:=−34,即方程的解为:=−34=−2.【点评】本题主要考查的是二元一次方程组的解法,利用合适的方法解方程组即可.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)=2−14+3=7;(2)3+2=22+3=28,.【分析】(1)方程组利用代入消元法求解即可;(2)用方程①×3﹣②×2,可消去未知数y,求出未知数x,进而得出y的值.【解答】解:(1)=2−1①4+3=7②,把①代入②,得4(2y﹣1)+3y=7,解得y=1,把y=1代入①,得x=1,故原方程组的解为=1=1;(2)3+2=2①2+3=28②,①×3﹣②×2,得5x=﹣50,解得x=﹣10,把x=﹣10代入①,得y=16,故原方程组的解为=−10=16.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.3.用适当的方法解下列方程组:(1)+2=0,3+4=6;(2=21)−=11(3)+0.4=40,0.5+0.7=35;(4K4=−14,5(r1)12=2.【分析】(1)由x+2y=0可用y表示x,利用代入消元法求第一个方程组的解.同理解(2)(3)利用加减消元法求方程组的解.(4)对于关于m、n的方程,将其化为整系数方程时,给第一个方程两边同时乘12,给第二个方程两边同时乘12.利用加减消元法求方程组的解.【解答】解:(1)+2=0,①3+4=6;②由①,得x=﹣2y,③把③代入②,得﹣6y+4y=6,解得y=﹣3,把y=﹣3代入①,得x=6.∴原方程组的解为=6=−3;(2=2s1)−=11②由①,得x+1=6y,③把③代入②,得12y﹣y=11,解得y=1.把y=1代入③,得x+1=6,解得x=5.∴原方程组的解为=5=1;(3)+0.4=40,①0.5+0.7=35;②②×2,得x+1.4y=70,③③﹣①,得y=30.把y=30代入①,得x+0.4×30=40,解得x=28.∴原方程组的解为=28=30;(4K4=−14,5(r1)12=2,原方程组化为:+7=−3,①2−5=13,②,①×2﹣②,得19n=﹣19,解得n=﹣1.把n=﹣1代入①,得m﹣7=﹣3,解得m=4.∴原方程组的解为=4=−1.【点评】此题主要考查了解二元一次方程组的方法,灵活运用代入消元法和加减消元法是解题的关键.4.(2022•天津模拟)用适当的方法解下列方程组:(1)+=52−=4;(2=r24−K33=112.【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1)+=5①2−=4②,由①,可得:x=5﹣y③,③代入②,可得:2(5﹣y)﹣y=4,解得y=2,把y=2代入③,可得:x=5﹣2=3,∴原方程组的解是=3=2.(2=r24①−K33=112②,由①,可得:4x﹣3y=2③,由②,可得:3x﹣4y=﹣2④,③×4﹣④×3,可得7x=14,解得x=2,把x=2代入③,可得:4×2﹣3y=2,解得y=2,∴原方程组的解是=2=2.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2−3=7−3=7.(2)0.3+0.4=40.2+2=0.9.【分析】(1)利用加减法消元法解二元一次方程组即可;(2)先整理方程,再利用加减消元法解二元一次方程组即可.【解答】解:(1)2−3=7①−3=7②,①﹣②得x =0,把x =0代入②得0﹣3y =7,解得y =−73,∴方程组的解为=0=−73;(2)整理原方程组得3+4=40①2−9=−20②,①×2﹣②×3得35q =140,q =4,把q =4代入②得2p ﹣36=﹣20,解得p =8,∴方程组的解为=8=4.【点评】本题考查了解二元一次方程组,做题关键是掌握加减消元法和代入消元法解二元一次方程组.6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)+=52+=8;(2)2+3=73−2=4.【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【解答】解:(1)+=5①2+=8②,由①,可得:x =5﹣y ③,③代入②,可得:2(5﹣y )+y =8,解得y =2,把y =2代入③,解得x =3,∴原方程组的解是=3=2.(2)2+3=7①3−2=4②,①×2+②×3,可得13x=26,解得x=2,把x=2代入①,解得y=1,∴原方程组的解是=2=1.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)+2=93−2=−1(2)2−=53+4=2【分析】(1)利用加减消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)+2=9①3−2=−1②,①+②得:4x=8,解得:x=2,把x=2代入①得:2+2y=9,解得:y=72,故原方程组的解是:=2=72;(2)2−=5①3+4=2②,①×4得:8x﹣4y=20③,②+③得:11x=22,解得:x=2,把x=2代入①得:4﹣y=5,解得:y=﹣1,故原方程组的解是:=2=−1.【点评】本题主要考查解二元一次方程组,解答的关键是熟练掌握解二元一次方程组的方法.8.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2+3=16①+4=13②;(2)2r3=3K28=3.【分析】(1)②×2﹣①得出5y=10,求出y,再把y=2代入②求出x即可;(2)整理后得出得2+=9①3−2=24②,①×2+②得出7s=42,求出s,再把s=6代入①求出t即可.【解答】解:(1)2+3=16①+4=13②,②×2﹣①,得5y=10,解得:y=2,把y=2代入②,得x+8=13,解得:x=5,所以方程组的解为=5=2;(2)整理方程组,得2+=9①3−2=24②,①×2+②,得7s=42,解得:s=6,把s=6代入①,得12+t=9,解得:t=﹣3,所以方程组的解为=6=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)=2−1+2=−7(2+3=7+2=8【分析】(1)用代入消元解二元一次方程组即可;(2)用加减消元解二元一次方程组即可;【解答】解:(1)=2−1①+2=−7②,把①代入②得,x+2(2x﹣1)=﹣7,解得x=﹣1,将x=﹣1代入①得y=﹣3,∴方程组的解为=−1=−3.(2)整理得3+4=84①2+3=48②,①×2﹣②×3得,﹣y=24,解得y=﹣24,将y=﹣24代入②得x=60,∴方程组的解为=60=−24.【点评】本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.10.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3+2=9−=8;(2=r25=7.【分析】(1)由②可得x=8+y③,再把③代入①,可得y的值,然后把y的值代入③求出x的值即可;(2)方程组整理后可得+5=0①2−5=7②,利用①+②可得x的值,然后把x的值代入①求出y的值即可.【解答】解:(1)3+2=9①−=8②,由②得,x=8+y③,将③代入①得,3(8+y)+2y=9,解得,y=﹣3,把y=﹣3代入③得,x=5,则方程组的解为=5=−3;(2)方程组整理得:+5=0①2−5=7②,①+②得:3x=7,解得:x=73,把x=73代入①得:y=−715,则方程组的解为=73=−715.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.先阅读材料,然后解方程组:材料:解方程组+=4①3(+p+=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以=2=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组−−1=0①4(−p−=5②.【分析】根据阅读材料中的方法求出方程组的解即可.【解答】解:由①得:x﹣y=1③,把③代入②得:4﹣y=5,即y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为=0=−1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.(2021秋•乐平市期末)解方程组3−2=8⋯⋯⋯①3(3−2p+4=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得=2=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2−3=123(2−3p+5=26.【分析】利用整体代入法的求解方法进行解答即可.【解答】解:2−3=12①3(2−3p+5=26②,把①代入②得:3×12+5y=26,解得y=﹣2,把y=﹣2代入①得:2x+6=12,解得x =3,故原方程组的解是:=3=−2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握与运用.3.先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1.③,然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0=−1这种方法被称为“整体代入法”,请用这5=0=2+1.【分析】利用整体代入法解方程组即可.5=0①=2+1②,由①得,2x ﹣3y =﹣5,③,把③代入②得,10+37=2y +1,解得,y =37,把y =37代入③得,x =−137,则方程组的解为:=−137=37.【点评】本题考查的是二元一次方程组的解法,掌握整体代入法解方程组的一般步骤是解题的关键.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1,③然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0①=−1②这种方法被称为“整体代入法”,2=02=9.【分析】仿照所给的题例先把①变形,再代入②中求出y 的值,进一步求出方程组的解即可.2=0①+2=9②,由①得,2x﹣3y=2③,代入②得2+57+2y=9,解得y=4,把y=4代入③得,2x﹣3×4=2,解得x=7.故原方程组的解为=7=4.【点评】本题考查的是在解二元一次方程组时整体思想的应用,利用整体思想可简化计算.5.先阅读,然后解方程组.解方程组−−1=0①4(−p−=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2−3−2=03(2−3p+=7.【分析】把2x﹣3y看作一个整体,代入第二个方程求出y的值,进而求出x的值即可.【解答】解:2−3−2=0①3(2−3p+=7②,把①变形得:2x﹣3y=2③,③代入②得:6+y=7,即y=1,把y=1代入③得:x=2.5,则方程组的解为=2.5=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.1.用换元法解下列方程组+2=12−1=34【分析】方程组利用换元法求出解即可.【解答】解:设1=a,1=b,方程组变形为2+2=12①5−=34②,①+②×2得:12a=2,解得:a=16,把a=16代入②得:b=112,则方程组的解为=16=112,即=6=12.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.用换元法解下列方程组:(1)3(p+2(−p=36(−4(−p=−16(2+r53=2−(+5p=5.【分析】(1)令x+y=m、x﹣y=n得关于m、n的方程组,解得m、n的值,从而可得关于x、y的方程组,求解可得;(2)令x﹣4y=a、x+5y=b得关于a、b的方程组,解该方程组可得a、b的值,从而可得关于x、y的方程组,求解可得.【解答】解:(1)令x+y=m,x﹣y=n,则原方程组可化为:3+2=36−4=−16,解得:=8=6,即+=8−=6,解得:=7=1;(2)令x﹣4y=a,x+5y=b,+3=2−=5,解得:=6=−3,即:−4=6+5=−3,解得:=2=−1.【点评】本题主要考查换元法解方程组的能力,熟练而准确地解方程组是基础,正确找到共同的整体加以换元是关键.3.(2022春•云阳县期中)阅读探索:解方程组(−1)+2(+2)=62(−1)+(+2)=6解:设a﹣1=x,b+2=y原方程组可以化为+2=62+=6,解得=2=2,即:−1=2+2=2∴=3=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(4−1)+2(5+2)=102(4−1)+(5+2)=11;(2)能力运用已知关于x,y的方程组1+1=12+2=2的解为=6=7,求关于m、n的方程组1(−2)+1(+3)=12(−2)+2(+3)=2的解.【分析】(1)仿照“阅读探索“的思路,利用换元法进行计算即可解答;(2)仿照“阅读探索“的思路,利用换元法进行计算即可解答.【解答】解:(1)设4−1=x,5+2=y,∴原方程组可变为:+2=102+=11,解这个方程组得:=4=3,−1=45+2=3,所以:=20=5;(2)设−2=+3=,可得:−2=6+3=7,解得:=8=4.【点评】本题考查了解二元一次方程组,二元一次方程组的解,理解并掌握例题的换元法是解题的关键.4.在学过了二元一次方程组的解法后,+K10=3①−K10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8+2=90③2+8=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即=13=−7小刚:设r6=m,K10=n,则+=3③−=−1④③+④得m=1,③﹣④得m=2,=1=2,所以+=6−=20,所以=13=−7.小芳:①+②得2(rp6=2,即x+y=6.③①﹣②得2(Kp10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y=﹣7,即=13=−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2r37=1−2r37=5.【分析】设3K26=m,2r37=n,方程组整理后求出m与n的值,即可确定出x与y 的值.【解答】解:设3K26=m,2r37=n,方程组整理得:+=1①−=5②,①+②得:2m=6,即m=3,①﹣②得:2n=﹣4,即n=﹣2,=32r3=−2,整理得:3−2=182+3=−14,解得:=2=−6.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(−1)+2(+2)=62(−1)+(+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为+2=62+=6,解这个方程组得=2=2,即−1=2+2=2,所以=3=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3−1)+2(5+2)=43(3−1)−(5+2)=5.(3)能力运用已知关于x,y的方程组1+1=12+2=2的解为=3=4,请直接写出关于m、n的方程组1(+2)−1=12(+2)−2=2的解是.【分析】(2)仿照(1)的思路,利用换元法进行计算即可解答;(3)仿照前两个题的思路,利用换元法进行计算即可解答.【解答】解:(2)设3−1=x,5+2=y,∴原方程组可变为:+2=43−=5,解这个方程组得:=2=1,−1=25+2=1,所以:=9=−5;(3)设+2=−=,可得:+2=3−=4,解得:=1=−4.。

湘教版七年级数学(下)《多项式的运算》测试题及参考答案

湘教版七年级数学(下)《多项式的运算》测试题及参考答案

第四章《多项式的运算》测试卷班次: 姓名:一、填空题 (每题3分)1、(2a 2-3a-1)-2(a 2-2a+3)=2、 多项式323292057y xy x y x -++--1按字母y 升幂排列为 。

3、x ·x 2·x 3·x 4= ;(-x 3)2(-x 2)3= ;(-3x 2)3·(-31x )= (a +2)(a -2)(4+a 2)=4、已知a m =2,a n =3,则a m+n = ,a 3m = , a 3m+2n =5、4x 2y ·(-3xy 2z)= (x+2)(x-3)= (31ab 2-6a 2b)·(-3ab)=6、(2a+3b )(2a-3b)= (2x-3y)2=7、已知a b ab +==21,,则(a+b )2= , a 2+b 2= ,()a b -=2______。

8、如果12++mx x 是一个完全平方式,则常数m=9、如果a —a 1=3,则a 2+21a = ;如果a+a 1=3,则a 2+21a= 10、(2+1)(22+1)(24+1)…(2128+1)= ,它的个位数字是 。

二、选择题(每题3分)11. 下列计算正确的是( )A. a a a ·33=B. 3a+2a=5a 2C. ()a a 235=D. a a a 5552+=12.下面计算中,正确的是( )A .(m-1)(m-2)=m 2+2B .(1-2a )(2+a )=2a 2-3a+2C .(x+y )(x-y )=x 2-y 2D .(x+y )(x+y )=x 2+y 213.计算(a-b )(a-b )其结果为( )A .a 2-b 2B .a 2+b 2C .a 2-2ab+b 2D .a 2-2ab-b 214、下列各式不能运用平方差公式进行计算的是( )A 、(m-n )(n+m)B 、(m-n )(-n-m)C 、(m-n )(-m+n)D 、(m+n )(-m+n)15、22011·(-21)2010=( )A 、1B 、-1C 、2D 、-216、已知a = 355 b = 444 c = 533则有( )A .a < b < cB .c < b < aC .a < c < bD .c < a < b17.已知(x+3)(x-2)=x 2+ax+b ,则a 、b 的值分别是( )A .a=-1,b=-6B .a=1,b=-6C .a=-1,b=6D .a=1,b=618.下列计算不正确的是( )A 、222)(y x xy =B 、2221)1(x x x x +=- C 、 22))((b a a b b a -=+- D 、 2222)(y xy x y x ++=--19、如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )。

沪科版七年级数学下册计算题专项训练(含答案)

沪科版七年级数学下册计算题专项训练(含答案)

沪科版七年级数学下册计算题专项训练(含答案)1.计算:2)-2\times3-1+(\pi-2018)\div\left(\dfrac{1}{33}-1\right)$$ 2-6-1+(\pi-2018)\div\dfrac{32}{33}$$5+(\pi-2018)\times\dfrac{33}{32}$$2.计算:32-3+(-1)^{2013}\times(\pi-3)-\dfrac{1}{2}$$32-3+(\pi-3)-\dfrac{1}{2}$$pi-38.5$$3.计算:9(a-1)^2-(3a+2)(3a-2)$$9(a^2-2a+1)-(9a^2-4)$$9a^2-18a+9-9a^2+4$$18a+13$$4.计算:2a+b)(b-2a)-(a-3b)^2$$2ab-b^2-4a^2+2ab-(a^2-6ab+9b^2)$$5a^2-2b^2+8ab-9b^2$$5.分解因式:1)$$x^3y-2x^2y^2+xy^3$$xy(x^2-2xy+y^2)$$xy(x-y)^2$$2)$$x^2-4x+4-y^2$$x-2)^2-y^2$$x-y-2)(x+y-2)$$6.解不等式组:begin{cases}x-3(x-1)<7\\2x-3x\leq3\end{cases}$$化简得:begin{cases}-2x<4\\-x\leq3\end{cases}$$解得:$-2<x\leq3$,解集在数轴上表示为区间$(−2,3]$。

7.解不等式组:begin{cases}1+2x>x-1\\1+2x>3\end{cases}$$化简得:begin{cases}x>0\\x>-1\end{cases}$$解得:$x>0$,解集在数轴上表示为区间$(0,+\infty)$。

8.解分式方程:dfrac{x^2-111}{x+2}-\dfrac{x+1}{2x+23}=0$$化简得:dfrac{x^2-111}{x+2}=\dfrac{3x+35}{2x+23}$$解得:$x=-\dfrac{25}{2}$。

沪科版七年级数学下册计算题专项训练(含答案)

沪科版七年级数学下册计算题专项训练(含答案)

七年级下册计算题专项训练(一)1.计算:1012)31()2018(3)32(---÷-+⨯π2.计算:1020132)21()3()1(33---⨯-+-+-π3.计算:)23)(23()1(92-+--a a a4.计算:2)3()2)(2(b a a b b a ---+5.分解因式:(1)32232xy y x y x +-(2)2244y x x -+-6.解不等式组:⎪⎩⎪⎨⎧-≤-<--33227)1(3x x x x x ,并把解集在数轴上表示出来.7.解不等式组:⎪⎩⎪⎨⎧->+≥-+13212)2(3x x x x ,并把解集在数轴上表示出来.8.解分式方程:12111+-=-+x x x 9.解分式方程:112112=---+x x x10.先化简再求值:)121(212-+÷+-x x x ,其中31=x .11.先化简,再求值:xx x x x x x x 1)2412(2222÷+-+-+-,且x 为满足23<<-x 的整数.七年级下册计算题专项训练(二)1.计算:2302)1()21()3(2---++-÷-π2.计算:022)2016(9)31(2----+--π3.计算:)1)(1()2()1(2-+--++x x x x x4.计算:)2()(2x y x y x --+5.分解因式(1)m m m 9548123+-(2))()(22x y b y x a -+-6.解不等式组:⎪⎩⎪⎨⎧+≤-<-6123132x x x x 并把解集在数轴上表示出来.7.解不等式组:⎪⎩⎪⎨⎧->-≤-2132221x x x x ,并把解集在数轴上表示出来.8.解分式方程:4161222-=-+-x x x 9.解分式方程:x x x -=+--2412410.先化简,再求值:)1(1222x x x x x x -÷-+-,其中2-=x11.先化简,再求值:213249622----+⋅-+-a a a a a a a ,其中4-=a七年级下册计算题专项训练(三)1.计算:3202)1()14.3()3(-+----π2.计算:102)31(9)14.3(2---+--+π3.计算:2)1(2)32(---x x x4.计算:)1)(2()6)(7(+---+x x x x5.分解因式(1)x x x 9623+-(2))(4)(2x y y x a -+-6.解不等式组:⎪⎩⎪⎨⎧+<+-≤-312261512x x x ,并把解集在数轴上表示出来.7.解不等式组:⎪⎩⎪⎨⎧->+≤--13214)2(3x x x x ,并把解集在数轴上表示出来.8.解分式方程:2441231412--+=-+x x x x 9.解分式方程:12322=-+-x x x10.先化简,再求值:442)2121(2+-÷++-a a a a a ,其中4-=a11.先化简,再求值:)252(2932--+÷-+m m m m m ,其中4=m .参考答案七年级下册计算题专项训练(一)1.1213 2.﹣93.﹣18a +13 4.ab b a 68522+--5.(1)2)(y x xy - (2))2)(2(y x y x --+-6.由①得,2->x ;由①得,53≥x ,故此不等式组的解集为:53≥x .7.解不等式①,得x ≥2,解不等式①得,得x <4,①原不等式组的解集是2≤x <4.8.经检验:x =3是原方程的解,所以原方程的解是x =3.9.经检验当x =﹣2时,1﹣x 2≠0,所以x =﹣2是原方程的根.10.原式=1﹣x ,当31=x 时,原式=32. 11.原式=2x ﹣3由于x ≠0且x ≠1且x ≠﹣2所以x =﹣1,原式=﹣2﹣3=﹣5 七年级下册计算题专项训练(二)1. 52. 13.x 2+24.2x 2+y 2 5.(1)2)13(9-m m (2)))()((b a b a y x -+-6.①不等式组的解集是﹣2≤x <37.不等式组的解集为﹣3<x ≤1.8.检验:当x =﹣2时,(x +2)(x ﹣2)=0,①x =﹣2是原方程的增根,原方程无解.9.经检验x =1是原方程的根,所以原方程的解是x =1.10.原式111-=+=x 11.原式=3122=--a 七年级下册计算题专项训练(三)1.917-2. 419- 3.x ﹣24.2x ﹣40 5.(1)2)3(-x x (2))2)(2)((-+-a a y x6.不等式组的解集为:﹣2<x ≤3.7.不等式组的解集是1≤x <4.8.经检验:x =6不是增根,①原方程的根是x=6.9.经检验x =1是原方程的解,所以原方程的解是x =1.10.原式=322=+-a a11.原式=33-m m=12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册复习试卷——计算题&解答题
姓名__________ 班别___________ 座号___________
一、计算题:
1、)2()9()3(32422ab b a b a -⋅-÷
2、 ()
()
733
222x x x ÷⋅-
3、)2()(b a b a -++-
4、22(1)3(2)x x x ---+
5、,4)12(3323
12++--x x x 6、)346(2
1)21(322322
3ab b a a ab b a a ++-+-
7、(x+2)(y+3)-(x+1)(y-2) 8、22)2)(2(y y x y x ++-
9、x(x -2)-(x+5)(x -5) 10、⎪⎭

⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 224
11、)94)(32)(23(22x y x y y x +--- 12、()()3`122122
++-+a a
13、()()()2112
+--+x x x 14、(x -3y)(x+3y)-(x -3y)2
15、23(1)(1)(21)x x x +--- 16、22)23()23(y x y x --+
17、22)()(y x y x -+ 18、x y y x ÷-+])3[(2
2
19、0.125100
×8
100
20、()
xy
xy xy y x 183********÷--
21、30
2
2
)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛ 22、(12112006
22
332141)
()()()-⨯+----
二、用乘法公式计算下列各题:
23、999×1001 24、1992-
25、298 26、2010200820092⨯-
三、解答题::
27、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。

28、化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2
x y =-=。

29、化简求值)(]42)2)(2[(22xy y x xy xy ÷+--+,其中4
1
,4-==y x 。

30、若x+y=1,()的值求求2
22,3y x y x -=+。

31、已知0106222=++-+b a b a ,求20061
a b
-的值。

32、如图,AE ∥BC ,∠B=∠C=050,求∠DAC 的度数(5分)。

33、如图,BD 是∠ABC 的平分线,ED ∥BC ,∠FED =∠BDE,则EF 也是∠AED 的平分线。

完成下列推理过程: ∵ BD 是∠ABC 的平分线,(已知)
∴ ∠ABD=∠DBC( ) ∵ ED ∥BC(已知)
∴ ∠BDE=∠DBC( ) ∴ ∠ABD=∠BDE(等量代换) 又∵∠FED=∠BDE (已知)
∴ EF ∥BD( ), ∴ ∠AEF=∠ABD( ) ∴ ∠AEF=∠FED( ), ∴ EF 也是∠AED 的平分线
A
E B C D
F (第33题)
34、如图是可自动转动的转盘(转盘被分成8个在相等的扇形)。

当指针指向阴影区域,
则甲胜;当指针指向空白区域,则乙胜。

你认为这个游戏对双方公平吗?为什么?
如果不公平,请你修改游戏规则使得这个游戏对甲乙双方都公平。

(第34题)
35、一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠ B,∠ D应分别是20°和30°,康师傅量得∠ BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?
36、裁剪师傅将一块长方形布料ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=60°,求∠CFE的度数.
(第36题)
37、如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.
38、如图,已知△ACF ≌△DBE ,∠E=30°,AD=9cm ,BC=5cm ,求∠F 的度数和AB 的长.
39、如图,在△ABC 中,D ,E 分别是边AC ,BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数.
40、如图,已知A 、B 、C 、D 在一条直线上,AB =CD , AE ∥DF ,BF ∥EC ,求证:∠E =∠F.
41、已知:如图AE=AC , AD=AB ,∠EAC=∠DAB ,求证:△EAD ≌△CAB .
F
E
D
C
B
A
(第40题) A
C
B
E
D
(第41题)
(第38题)
(第39题)
42、如图,已知AB=AC ,AD=AE ,求证:BD=CE.
43、如图,已知AB ∥DC ,AB=DC ,BE=DF ,指出图中的一对全等三角形,并说明理由。

B C
44、△ABC 中,AB=AC ,D 是AB 边上的一点,DE 垂直平分AC ,∠A=040,求∠BDC 的度数。

45、如图,在△ABC 中,AB 的垂直平分线交AC 于D ,如果 △cm ,求△ABC 的周长。

(第42题)
(第43题) (第45题)
46、图为一位旅行者在早晨8时从
城市出发到郊外所走的路程与时间的变
化图.根据图像回答问题:
(1)9时,10时30分,12时所走的
路程分别是多少?
(2)他休息了多长时间?
(3)他从休息后直至到达目的地这段
时间的平均速度是多少?
(第46题)
47、如图,它表示甲乙两人从同一个地点出发后的情况。

到十点时,甲大约走了13千米。

根据图象回答:
(1)甲是几点钟出发?
(2)乙是几点钟出发,到十点时,他大约走了多少千米?
(3)到十点为止,哪个人的速度快?
(4)两人最终在几点钟相遇?
(5)你能将图象中得到信息,编个故事吗?
(第47题)
48、一种豆子每千克售2元,豆子总的售价y (元)与所售豆子的质量x (kg)之间的关系
(2)当豆子卖出5 kg 时,总价是多少?
(3)如果用x 表示豆子卖出的质量,y 表示总价,按表中给出的关系,用一个式子把x 和y 之间的关系表示出来.
(4)当豆子卖出20 kg 时,总价是多少?
49、如图,把一个面积为1的正方形分成两个面积为2
1
的长方形,再把其中一个面积为
21的长方形分成两个面积为41的正方形,再把其中一个面积为41的正方形分成两个面积为8
1
的长方形,如此进行下去, 用图形揭示的规律计算: (1)计算;32
1
161814121++++ (2)计算:25611281641321161814121+
+++++++……+n 2
1
专业整理
WORD 完美格式
50、请分别补充下列轴对称图形的另一部分.(虚线为对称轴)。


⑵ ⑶
51、请在下面的网格中画出图
(1)、图(2) 52、请在下图中画出△EFG,使△EFG 关于直线AB 对称的图形。

与△
(第46题) A B。

相关文档
最新文档