第三章金属材料的结构

合集下载

金属材料第三章结晶

金属材料第三章结晶

第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。

§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。

结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。

结构起伏是金属结晶的结构条件。

二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。

单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。

由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn低于理论结晶温度Tm的现象称为过冷。

液态金属过冷是结晶的必要条件。

过冷度:△T=Tm-Tn, 其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。

四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。

热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。

利用最小自由焓原理分析结晶过程。

两相自由焓差是相变的驱动力。

金属结晶的热力学条件:固相自由焓必须低于液相自由焓。

热力学条件与过冷条件的一致性。

§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。

一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。

第三章合金的结构与相图

第三章合金的结构与相图
硬性和耐磨性,是高合金钢和 结
硬质合金中的重要组成相。

如:W2C, VC, TiC, MoC, TiN, VN 等。
35
② 间隙化合物
当(d非 /d过)>0.59时,形成
的间隙化合物一般具有复杂的 晶格结构。 如:Fe3C, dC/dFe =0.61, 正交 晶格 特点: 熔点、硬度更高
作用: 在钢中也起强化相作用。
27
1. 根据溶质原子在溶剂晶格中分布情况的不同, 可将固溶体分为( )和( )。 2. 相是指合金中( )与( )均匀一致的组成部分。 3. 固溶体与金属间化合物在晶体结构和力学性能 方有何不同?
28
特点与变化
晶粒的大小与形状无 明显的变化; 位错密度变化不大; 电阻明显降低; 强度硬度略有降低,
可能形成无限固溶体;
对于间隙固溶体,则只能形成有限固溶体。
18
3 按溶质原子在固溶体中分布是否有规律分
➢ 无序固溶体:溶质原子呈无序分布的固溶体; ➢ 有序固溶体:溶质原子呈有序分布的固溶体; ➢间隙固溶体都 是无序固溶体。
19
(三)、影响固溶体结构形式和溶解度的因素
1. 原子大小
溶剂与溶质的原子直径差别:
铁原子 碳原子
通常固溶体不能用一个化学式表示
12
(一). 溶质元素在固溶体中的溶解度
固溶体的浓度: 溶质原子溶于固溶体中的量,称为固溶体的浓度。
质量百分比: C=(溶质元素的质量/固溶体的质量)100% 原子百分比: C=(溶质元素的原子数/固溶体的总原子数)100%
固溶体的溶解度: 在一定条件下,溶质元素在固溶体中的极限浓度称 为溶质元素在固溶体中的溶解度。
31
1、金属间化合物的种类

金属材料微观结构及其力学性能分析

金属材料微观结构及其力学性能分析

金属材料微观结构及其力学性能分析第一章介绍金属材料是工业生产中应用最广泛的材料之一。

金属材料的性能取决于其微观结构。

了解金属材料的微观结构对于优化其力学性能具有重要的意义。

本文将对金属材料的微观结构及其力学性能进行分析。

第二章金属材料的微观结构2.1 金属晶体结构金属材料的微观结构是由晶体结构组成的。

金属晶体结构分为三类:立方晶系、六方晶系和正交晶系。

立方晶系又分为面心立方和体心立方两种,六方晶系和正交晶系则分别只有一种。

2.2 晶体缺陷金属材料的晶体中经常存在一些缺陷,如点缺陷、线缺陷和面缺陷。

点缺陷包括空位、间隙原子和杂质原子。

线缺陷包括位错和螺旋位错。

面缺陷包括晶界、孪晶和堆垛层错。

2.3 热处理对微观结构的影响热处理可以改变金属材料的微观结构,从而改变其力学性能。

常见的热处理方式包括退火、淬火、正火和强化退火等。

其中,在退火和淬火过程中,晶体内部的点缺陷和线缺陷会发生移动和重新排列,从而形成新的晶界和位错,改变晶粒的大小和形状。

在正火和强化退火过程中,则会使晶粒的尺寸和形状发生变化。

第三章金属材料的力学性能3.1 强度金属材料的强度是指材料在受到外力作用时能够承受的最大应力。

强度取决于晶体的结构和缺陷,晶粒的尺寸和形状,以及金属材料的化学成分和加工工艺。

3.2 塑性塑性是指材料在受到外力作用时能够发生塑性变形的能力。

塑性也是晶体的结构和缺陷、晶粒尺寸和化学成分、加工工艺等因素综合作用的结果。

3.3 韧性韧性是指材料在受到外力作用时能够发生韧性断裂前的能量吸收能力。

韧性既受材料的强度和塑性限制,也受材料的微观结构和缺陷限制。

3.4 硬度硬度是指材料对于压入针或滚动球的抵抗能力。

硬度取决于晶体的结构和缺陷,晶粒尺寸和化学成分等因素的综合作用。

第四章金属材料的力学性能分析方法4.1 确定力学性能的试验方法金属材料的强度、塑性、韧性、硬度等性能可以通过试验来测定。

常见的试验方法包括拉伸试验、压缩试验、弯曲试验、冲击试验和硬度试验等。

材料科学基础第三章典型晶体结构.答案

材料科学基础第三章典型晶体结构.答案
NaCl型结构在三维方向上键力分布比较均匀,因此 其结构无明显解理(晶体沿某个晶面劈裂的现象称 为解理),破碎后颗粒呈现多面体形状。
类似于NaCl型晶体结构的晶体较多,只是晶胞 参数不同而已。
常见的NaCl型晶体都是碱土金属氧化物和过渡 金属的二价氧化物。化学式可写为MO,其中M2+ 是二价金属离子,结构中M2+和O2-分别占据了 NaCl中钠离子和氯离子的位置。这些氧化物有很 高的熔点,尤其是MgO(矿物名称方镁石),其 熔点高达2800℃左右,是碱性耐火材料镁砖中的 主要晶相。
反萤石型结构 :在萤石型结构中正、负离子位置全部互换,并没 有改变结构形式,只是正、负离子位置对调。如Na2O
结构-性能关系:CaF2熔点较低,用作助熔剂/作晶核剂。 质点间 键力较NaCl强 硬度稍高(莫氏4级),熔点1410C,在水中 溶解度小。
表示方法:球体堆积法;坐标法;投影图;配位多面体
连接方式
0,100
50
0,100
75 50
25 0,100
25 0,100
50
75
50
0,100
与金刚石晶胞的对比 ,有什么不同?
同型结构的晶体β-SiC,GaAs,AlP 等
5、-ZnS(纤锌矿)型结构 (AB type)
六方晶系,简单六方格子
C
50
0,100
晶胞在(001)面的投影图
晶胞中由几套等同点?
在坐标为000和坐标为1/4 1/4 3/4 的 原 子 的 环 境 是 不 同 的 , 它们不能独立抽象为一类等同 点,这是两类等同点。最后, 它的布拉维格子仍为面心立方 格子。
这种结构可以看成是由2个面 心立方布拉维格子穿插而成: 这2个面心立方格子(图中的 灰色和红色点)沿体对角线相 对位移动a/4<111>。

土木工程材料(第3章 金属材料)

土木工程材料(第3章 金属材料)

B上 B
A B下
σS
)强化阶段(Ⅳ) 颈缩阶段。每个阶 段都各有其特点。
δ
ε=ΔL/ L
图2.1 低碳钢受拉时应力应变曲线图
– 图2.1中的 B上点是这一阶段的最高点,称为 屈服上限(σ s上); B下点相应的应力称为 屈服下限(σs下),又称屈服点或屈服强度 ,用σs表示。
– 伸长率δ
l1 l0 100%
d
d。
d+2.1d。
α
(a)
(a)试件安装
P
d
(b)
(b)弯曲90°
P
(c)
(c)弯曲180°
(d)
(d)弯曲至两面重合
钢材冷弯试验
第三节 钢的化学成分对钢材性能的影响
①碳(C):
– 当含碳量小于 0.8% 的碳素钢,随着含碳量的 增加,钢的抗拉强度(σb)和硬度(HB)增加 ,而塑性和韧性则相应降低。
l0
– 伸长率δ是衡量钢材塑性的一个指标,它 的数值愈大,表示钢材塑性愈好。
– 伸长率与标距有关。通常钢材拉伸试验 标距取l0= 10d0和 l0= 5 d0,伸长率分别 以δ10和δ5表示。对同一钢材δ5大于δ10。
2.冲击韧性
– 冲击韧性是指钢材抵抗冲击荷载而不破 坏的能力。是以试样缺口处单位横截面 所吸收的功(J/cm2)来表示,即冲击韧 性值,其符号为αk。
有色金属是除黑色金属以外的其他 金属,如铝、铅、锌、铜、锡等金属及
建筑工程上用的钢材包括各类钢结 构用的型钢(如圆钢、角钢、槽钢和工 字钢等)、钢板和钢筋混凝土用钢筋、 钢丝等。
钢材强度高、品质均匀,具有一定 的弹性和塑性变形能力,能够承受冲击 、振动等荷载作用;钢材的加工性能良 好,可以进行各种机械加工,可以通过 切割、铆接或焊接等方式的连接,进行 现场装配。

3 第三章 金属的结晶、变形与再结晶——【工程材料学】

3 第三章 金属的结晶、变形与再结晶——【工程材料学】

(1) 形核
形核方式有两种:均匀形核和非均匀形核。
均匀形核即晶核在液态金属中均匀的形成;非均匀形核 即晶核在液态金属中非均匀的形成。
实际生产中,金属中存在杂质并且凝固过程在容器或铸 型中进行,这样,形核将优先在某些固态杂质表面及容器 或铸型内壁进行,这就是非均匀形核。
非均匀形核所需过冷度显著小于均匀形核,实际金属的 凝固形核基本上都属于非均匀形核。
颗粒钉扎作用的电镜照片
3.2.2 塑性变形对金属组织与性能的影响
一、 塑性变形对金属组织与结构的影响
1. 显微组织的变化 滑移带 孪晶带 晶粒形状
金属在外力作用下发生塑性变形时,随着变形量的增加晶 粒形状发生变化,沿变形方向被拉长或压扁。当拉伸变形量 很大时,只能观察到纤维状的条纹(晶粒变成细条状),称 之为纤维组织。
Hall-Pitch关系:σs =σ0 + Kyd-1/2
三、 合金的塑性变形 根据组织,合金可分为单相固溶体和多相混合物两种。合
金元素的存在,使合金的变形与纯金属显著不同。
奥氏体
珠光体
1. 单相固溶体的塑性变形 单相固溶体合金组织与纯金属相同,其塑性变形过程也与
多晶体纯金属相似。但随溶质含量增加,固溶体的强度、硬度 提高,塑性、韧性下降,称固溶强化。
3.1 金属的结晶及铸件晶粒大小控制
凝固
金属由液态转变为固态的过程。
结晶
结晶是指从原子不规则排列的液 态转变为原子规则排列的晶体状 态的过程。
3.1.1 冷却曲线及结晶一般过程
一、 冷却曲线
温 度
理论冷却曲线
结晶平台(是由结晶潜热导致)
Tm
Tn
△T 过冷度
实际冷却曲线
时间

金属材料概论第三章ppt课件.ppt

金属材料概论第三章ppt课件.ppt

体心立方
面心立方
体心立方
第三节 合金的结晶与相图
合金的应用比纯金属广泛得多
→ 因为合金的强度、硬度、耐磨性等机械性能比纯 金属高许多;某些合金还具有特殊的电、磁、耐 热、耐蚀等物理、化学性能。
学习内容: 一 概念 二 合金相结构 三 二元合金相图
一 概念
1·合金:两种或两种以上的金属,或金属与非金属,经 熔炼或烧结、或采用其它方法组合而成的具有 金属特性的物质。
如果在结晶过程中只有一颗晶核并长大,而不出 现第二颗晶核.那么由这一颗晶核长大的金属, 就是一块金属单晶体。
2、形核和长大 形核: 均质形核:由熔液自发形成新晶核,液体中出现新
相晶核的几率是相同的→ 自发形核
异质形核:新相优先出现于液相中的某些区域的 形核方式 → 非自发形核←杂质(未熔 质点)
长大: 长大过程实质:液体中金属原子向晶核表面迁移过程 长大条件:过冷度
∵结晶初期生成的微小晶粒与
液相间的平衡温度低于大晶
体与液相间的平衡温度— 小
ห้องสมุดไป่ตู้晶体的熔点<大晶体的熔点 温

而通常金属的熔点是与大晶 T
Tm=T大晶粒
△T Tn=T小晶粒
体相对应的 → 结晶过程只能
在金属熔点以下的温度进行
∴过 冷条件下发生!
时间τ
②结晶过程中晶核数目越多,凝固后晶粒数目也越多, 晶粒越细小;反之,晶粒数目越少,晶粒越粗大;
2·组元:组成合金最基本的、独立的物质,简称为元。 一般指组成合金的元素,或稳定的化合物。
例如:黄铜的组元是铜和锌;碳钢的组元是铁和碳, 或是铁和金属化合物Fe3 C
黄铜:Cu与Zn的合金。Zn的含量越高,其强度也较高,

合金的结构与相图(材料第三章)

合金的结构与相图(材料第三章)
组成合金的元素可以全部是 黄铜 金属,也可是金属与非金属。
组成合金的元素相互作用可 形成不同的相。
Al-Cu两相合金
2
相:是指金属或合金中凡成
单相
合金
分相同、结构相同,并与其
它部分有界面分开的均匀组
成部分。
显微组织:是指在显微镜下 观察到的金属中各相或各晶 粒的形态、数量、大小和分 布的组合。
界点标在温度-成分坐标中的成分垂线上。 4. 将垂线上相同意义的点连接起来,并标上相应的数字和字母。
相图中,结晶开始点的连线叫液相线。结晶终了点的连线叫固相16 线。
第三节 匀晶相图
两组元在液态和固 态下均无限互溶时 所构成的相图称二 元匀晶相图。
以Cu-Ni合金为例 进行分析。
Cu-Ni合金相图
17
一、相图分析
相图由两条线构成,上 面是液相线,下面是固 相线。
相图被两条线分为三个 相区,液相线以上为液 相区L ,固相线以下为 固溶体区,两条线之间 为两相共存的两相区 (L+ )。
L
液相线 L
+
固相线
Cu

成分(wt%Ni)
Ni
18
二、合金的结晶过程
除纯组元外,其它成分合金结晶过程相似,以Ⅰ合
图解。又称状态图或平衡图。 相图表示了在缓冷条件下不同成分合金的组织随温度变化的规律,
是制订熔炼、铸造、热加工及热处理工艺的重要依据。
13
1、组元是指组成合金的最简单、最基本、能够独立存
在的物质。
2、合金系是指由两个或两个以 上元素按不同比例配制的一系
列不同成分的合金。多数情况 下组元是指组成合金的元素。 但对于既不发生分解、又不发 生任何反应的化合物也可看作 组元,

化学必修第一册第三章第二节 合金

化学必修第一册第三章第二节 合金

形状记忆合金制成的水龙头 上的温度调节装置
形状记忆合金制成的 移动跳跃的机器人
钛合金
镍钴合金
钛合金、耐热合金和形状记忆合金等新型合金广泛应用于航空航天 、生物工程和电子工业等领域。
练习
1.下列物质,不属于合金的是( D) A.硬铝 B.黄铜 C.钢铁 D.水银
一、金属分类
按色泽分 黑色金属——铁、锰、铬三种。 有色金属——除“铁、锰、铬”三种外。
按密度分 轻金属——密度小于4.5g/cm3——K、Na、Mg、Al等
重金属——密度大于4.5g/cm3——Fe、Cu、Hg、Pb等 金

按熔点分 低熔点金属——K、Na、Mg、Al等
高熔点金属——W、Fe、Cu、Pb等
铁和碳的合金
中碳钢 0.3~0.6% 高碳钢 >0.6%

合金钢: 在碳素钢中加入铬 锰 钨 镍 钼 钴 硅 等合金
阅读教材P74资料卡片
合金钢也叫特种钢,是在碳素钢里适量地加人一种或几种合金元素,使钢的组织 结构发生变化,从而使钢具有各种特殊性能,如强度、硬度大,可塑性、韧性好, 耐磨, 耐腐蚀等。
立即产生气泡,将点燃 的木条放在试管口可观 察到淡蓝色火焰。
反应方程式
偏铝酸钠
两性氧化物:既能与酸反应生成盐和水,又能与碱反应生成盐和水的氧 化物,例如Al2O3。
5、钛合金:
(1)钛:具有银白色金属光泽,密度4.5g/cm3,熔
金属钛
点很高(1725℃),沸点3260℃。具有良好的延性和展
性。在常温下,钛的外形很像钢铁,但远比钢铁坚硬,
纯金属与合金的结构比较
合金化学性质优越:改变纯金属的配比,可以得到不同性能的合金。 合金机械性能优越:如不锈钢的耐腐蚀性比纯铁好

2021新教材高中化学第三章铁金属材料 课件 人教版必修1

2021新教材高中化学第三章铁金属材料 课件 人教版必修1
答案:D 解析:Fe 不能与热水反应,而是与高温水蒸气反应,生成 Fe3O4,溶于稀硫酸后的溶液中含 有 Fe2+能使 KMnO4 溶液褪色。
【典型例题 4】还原铁粉与水蒸气反应的装置如图所示,下列有关该实验的说法正确的是 ()
A.反应生成 FeO B.湿棉花的主要作用是冷却试管,防止炸裂 C.肥皂液的主要作用是检验生成的 H2 D.铁粉与水蒸气反应后,可立即用磁铁将剩余铁粉分离出来
22FFee((OOHH))33=FFee2O2O33+3H3H2O2O Fe(OH)3+3H+=Fe3++3H2O
制备(离子方 程式)
Fe2++2OH-=Fe(OH)2↓
Fe3++3OH-=Fe(OH)3↓
化学方程
转式
4Fe(OH)2+O2+2H2O=4Fe(OH)3
化 现象
白色絮状沉淀迅速变成灰绿色,过一段时间后会有红 褐色物质生成
【情境·思考】 铁是人体必要的微量元素中含量最多的一种(4~5克), 缺铁性贫血已成为仅次于结核病的全球患病率最高,耗 资最大的公共卫生问题。那铁元素在人体中又是以什么 形式存在呢?
一、铁的氢氧化物
1.氢氧化铁和氢氧化亚铁的制备
所加试剂
FeCl3溶液
FeSO4
加入NaOH溶液
实验现象 生成红褐色沉淀
提示:“杓”的主要成分是 四氧化三铁。
3.四氧化三铁
磁性氧 化铁
Fe3O4
黑色晶 体;不溶 于水
点燃
3Fe+2O2
Fe3O4
Fe3O4有固定的组成,属于纯净物,不是混合物。 Fe3O4可看成FeO•Fe2O3,与酸反应时,可看成FeO、 Fe2O3分别与酸反应,然后把两个反应相加。

工程材料与机械制造基础-3-金属的晶体结构与结晶

工程材料与机械制造基础-3-金属的晶体结构与结晶

17:05
金属的结晶
• 纯金属的结晶过程 • 液态金属的结晶过程分为两个阶段:① 形成晶核,② 晶核长大。
17:05
纯金属的结晶过程
• 晶核的形成过程 • 液态金属中存在着原子排列规则的小原子团,它们时 聚时散,称为晶坯。 • 在T0以下, 经一段时间后(即孕育期), 一些大尺寸的 晶坯将会长大,称为晶核。
刃型位错
螺型位错
刃型位错和螺型位错
刃型位错的形成
实际金属的结构
• 刃型位错:当一个完整晶体某晶面以上的某处多出半 个原子面,该晶面象刀刃一样切入晶体,这个多余原 子面的边缘就是刃型位错。 • 半原子面在滑移面以上的称正位错,用“ ┴ ”表示。 • 半原子面在滑移面以下的称负位错,用“ ┬ ”表示。
17:05
{110}
Z (110) (011) (011) (101) (101) Y (110)
X
17:05
金属的晶体结构
立方晶系常见的晶向为:
100 : [100]、 [010]、 [001] 110 : [110]、 [101]、 [011]、 [1 10]、 [1 01]、 [0 1 1] 111 : [111]、 [1 11]、 [1 1 1]、 [111]
密排六方晶格的参数
常见的金属晶格
• 密排六方晶格
晶格常数:底面边长 a 和高 c,
c/a=1.633
1 原子半径 :r a 2 原子个数:6 配位数: 12 致密度:0.74 常见金属: Mg、Zn、 Be、Cd等
常见的金属晶格
三种常见晶格的密排面和密排方向
•单位面积晶面上的原子数称晶面原子密度。
17:05 三斜
金属的晶体结构

2022版新教材高中化学第三章铁金属材料第二节课时1合金课件新人教版必修第一册ppt

2022版新教材高中化学第三章铁金属材料第二节课时1合金课件新人教版必修第一册ppt

A.铁
B.碳
C.铜
D.铝
2.铁和不锈钢都是生活中常见的材料,下列说法中不正确的是 A.铁和不锈钢都能与盐酸反应 B.铁是纯净物,不锈钢是混合物 C.铁和不锈钢中都只含有金属元素 D.不锈钢比铁更耐腐蚀
(C )
3.(2021福建泉州高一期末)用铝箔包装0.1 mol金属钠,用针扎出一些小孔,放
入水中,完全反应后,用排水集气法收集产生的气体,则收集到的气体(标准状
2.(2021福建漳州高一期末)将10 g铁碳合金放入O2中高温灼烧,反应后的气体 通入过量石灰水中得沉淀1.4 g。则此铁碳合金是 ( B ) A.生铁 B.高碳钢 C.中碳钢 D.低碳钢
解析 根据C~CO2~CaCO3可知碳原子的物质的量等于碳酸钙的物质的
量。1.4 g碳酸钙的物质的量为 1.4 g =0.014 mol,碳原子的质量为
应,若同温同压下放出相同体积的气体,则两份铝粉的质量之比为 ( A )
A.1∶1
B.1∶6
C.3∶2
D.2∶3
2.等质量的两份铝分别与足量稀硫酸和足量NaOH溶液反应,若消耗的两溶
液的体积相等,则两溶液的物质的量浓度之比为 ( A )
A.3∶2
B.2∶3
C.1∶1
D.1∶2
解析 两份铝的物质的量相等,设n(Al)=1 mol。
互动探究·关键能力
探究点一 铝与盐酸或氢氧化钠溶液反应
情境探究 铝是一种金属元素,质地坚韧而轻,有延展性,容易导电。纯铝可做超高电压 的电缆。做日用器皿的铝通常称“钢精”“钢种”。 1919年,用铝合金造出 了第一架飞机,从此以后,铝的命运就牢固地与飞机制造业联系在一起了。铝 被誉为“带翼的金属”。在现在的生活中,我们到处都可以看到铝的“影

《材料化学导论》第三章金属材料第一节金属键 第三章 金属材料

《材料化学导论》第三章金属材料第一节金属键 第三章 金属材料

第三章金属材料在一百多种化学元素中,金属大约占80%。

金属材料具有许多宝贵的机械-力学、物理、化学性能,是迄今为止使用最为广泛且用量最多的一种材料。

3.1 金属键金属呈现特有的金属光泽,不透明,是电与热的良导体,具有延性和展性,比重大,强度高,可以焊接和形成合金。

金属的性能是其特定结构的外在反映。

由金属从单原子气态生成液态或固态时所释放出相当大的能量,可以断定金属原子在液态或固态中的相互结合力不是一般原子间的范德瓦耳斯力,而是一种相当强的化学键。

它又是由电负性小的同类原子所组成,从而也排除生成离子键的可能性。

X射线衍射测定结果表明,金属材料中每个金属原子与周围8至12个同等或接近同等距离的原子相紧邻,而每个金属原子的价电子层中只有少数的价电子,显然以这少数价电子来生成8至12个通常的共价键也是难以想象的。

因此,就需要另外提出“金属键”(metallic bond),即使金属原子结合成金属相互作用的模型。

一、“自由电子”模型金属晶体中,金属原子外层价电子受原子核束缚较弱,即电离能低,很容易失去这些价电子而形成正离子和自由电子。

所谓自由电子是指被电离的电子不再束缚于某一原子,而在整个晶体内“自由”运动。

正离子整体共同吸收自由电子而结合在一起。

自由电子就像胶泥似地将许多排列整齐的正离子胶合在一起。

自由电子在金属中的活动范围很大,因此可将金属看成是自由电子气和沉浸在其中的正离子的结合体。

这就是金属键的“自由电子”模型。

用量子力学处理金属键的自由电子模型,就相当于一个三维势箱问题。

在“箱”中的电子可近似作为平动子在整个晶体中作较自由的运动,但在总体上还受由正离子组成的电场所束缚。

由于金属中电子离域范围很大,将会产生很显著的能量降低效应,便成为金属键能的起源。

要指出的是,金属键和离域π键是不很相同的:参与离域π键的原子数一般是有限的,且离域电子的活动范围是沿二维空间,即平面伸展的;而参与金属键的原子数量则是很大的,且离域电子活动范围是沿三维空间伸展的。

第三章金属材料和热处理-pdf

第三章金属材料和热处理-pdf

第三章金属材料及热处理金属材料是现代机械工业使用最广泛的材料,品类繁多,性能各不相同,合理选用金属材料和正确运用热处理方法,可以充分发挥金属材料的机械性能,提高产品的质量。

金属可以分为黑色金属和有色金属,黑色金属主要是指钢和铸铁,以铁和碳为基本组成元素形成铁碳合金,即碳素钢。

在铁碳合金中加入一定量的合金元素,如铬、锰、镍、钴等成为合金钢。

有色金属是指非铁金属及其合金,如铝、铜、铅、锌等金属及其合金。

一、碳素钢的分类、编号和用途碳素钢简称碳钢,是含碳量小于 2.11%的铁碳合金,具有较好的机械性能、良好的锻压性能、焊接性能和切削加]:性能,价格比合金钢低,在机械工业中得到广泛使用。

(一)碳素钢的分类1.按钢的含碳量分类低碳钢——含碳量≤0.25%;中碳钢——含碳量:0.30%-0.55%;高碳钢——含碳量≥0.60%。

2.按钢的质量分类普通碳素钢:硫、磷含量分别≤O.055%和 O.045%优质碳素钢:硫、磷含量均≤0.040%;高级优质碳素钢:S、P含量 0.030%-0.035%。

3.按钢的用途分类碳素结构钢:主要用于制造各种工程构件和机器件,这类钢一般属于低碳钢和中碳钢。

碳素工具钢:主要用于制造各种刀具、量具、模具,这类钢含碳量较高,一般属于高碳钢。

(二)碳素钢牌号和用途1.普通碳素结构钢甲类钢:这类钢出厂时按保证机械性能供应,除硫、磷外不保征化学成分。

甲类钢的牌号以“甲”或“A”字加上阿拉伯序数表示,共 1-7级,即甲 l、甲 2、…、甲 7(或 A1、A2、…、A7),数字越大,强度越高,塑性越差,主要用来制造钢板、角钢、圆钢和工字钢等。

乙类钢:这类钢出厂时按化学成分供应,不保证机械性能。

乙类钢的牌号用“乙”或“旷加上阿拉伯数字表示,也分为 1-7级,即乙 1、乙 1、…、乙 7(或 Dl、u2、…、B7),数字越大,含碳量越高,主要用于制造不重要的零件,一般须经热处理。

2.优质碳素结构钢优质碳素结构钢既要保证钢的化学成分,还要保证机械性能其机械性能,用于制造比较重要的零什。

金属材料与热处理 第三章

金属材料与热处理 第三章

第三单元金属材料的晶体结构与结晶一、名词解释1.晶体晶体是指其组成微粒(原子、离子或分子)呈规则排列的物质。

2.晶格抽象地用于描述原子在晶体中排列形式的空间几何格子,称为晶格。

3.晶胞组成晶格的最小几何单元称为晶胞。

4.单晶体如果一块晶体内部的晶格位向(即原子排列的方向)完全一致,称这块晶体为单晶体。

5.多晶体由许多晶粒组成的晶体称为多晶体。

6.晶界将任何两个晶体学位向不同的晶粒隔开的那个内界面称为晶界。

7.晶粒多晶体材料内部以晶界分开的、晶体学位向相同的晶体称为晶粒。

8.结晶通过凝固形成晶体的过程称为结晶。

9.变质处理变质处理就是在浇注前,将少量固体材料加入熔融金属液中,促进金属液形核,以改善其组织和性能的方法。

10.合金合金是指两种或两种以上的金属元素或金属与非金属元素组成的金属材料。

11.组元组成合金最基本的、独立的物质称为组元。

12.相相是指在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开。

13.组织组织是指用金相观察方法,在金属及其合金内部看到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。

14.定向结晶定向结晶是通过控制冷却方式,使铸件沿轴向形成一定的温度梯度,从而可使铸件从一端开始凝固,并按一定方向逐步向另一端结晶的过程。

15.滑移单晶体塑性变形时,在切应力作用下,晶体内部上下两部分原子会沿着某一特定的晶面产生相对移动,这种现象称为滑移。

二、填空题1.晶体与非晶体的根本区别在于原子排列是否规则。

2.金属晶格的基本类型有体心立方晶格、面心立方晶格与密排六方晶格三种。

3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷三类。

4.金属结晶包括:晶核形成和晶核长大两个过程。

5.金属结晶的必要条件是过冷,金属的实际结晶温度不是一个恒定值。

6.金属结晶时冷却速度越大,过冷度越大,金属的实际结晶温度越低。

7.金属的晶粒愈细小,其强度、硬度越高,塑性、韧性也越好。

第三章 第二节 金属材料教学设计+导学案

第三章 第二节 金属材料教学设计+导学案

第三章《铁金属材料》教学设计第二节金属材料第一课时铁合金铝和铝合金教学思路问题线活动线任务类型关键能力培养指向核心素养培养意图生活中的眼镜介绍,1.你希望你的眼镜架有什么性能?学生思考并回答。

观察体验证据推理。

培养学生发现与提出问题的能力?进一步培养学生利用各种证据(已有知识、生活经验、文献查询)进行推理的能力和意识。

1.眼镜架选什么材料更好?2.合金为什么比纯金属更坚硬?驱动学生思考它们微观结构的差异。

学生结合铁、铝等金属性能思考回答。

观察体验证据推理。

观察微观认知模型。

化学方法和分析能力。

宏观辨识到微观探析的学科素养培养。

从眼镜架材料看人类对材料的认识、改造和使用问题2:你认为哪种材料更适合作为眼镜架?问题1:你希望你的眼镜架有什么性能?问题3:阅读教材,小组讨论选择适宜作眼镜架的材料?问题4:铝合金为何耐腐蚀?能否耐强酸、强碱腐蚀?问题5:了解还有哪些新型合金?问题6:设想未来的眼镜架还可能使用哪些材料?从眼镜架材料看人类对材料的认识、改造和使用第三章第二节金属材料【学习目标】1.结合生活中常见合金的认识经验,阅读教材中合金的结构介绍,了解合金的概念,并能联系纯金属和合金的微观结构解释二者性能的差异。

2.以铁合金为例,能从元素组成上对合金进行分类,并认识不同类型金属材料组成、性能与应用的联系,强化结构决定性能、性能决定用途的观念。

3.了解储氢合金、钛合金等新型合金,感受化学科学对创造更多新材料以满足人类生活需要和促进科技发展的重要作用。

【学习过程】活动一:自主学习展示1.合金的概念和特性概念由两种或两种以上的________(或_____________)熔合而成的具有_____________________特性的物质,如导电性、导热性等。

性能硬度硬度一般____________它的纯金属成分熔点熔点一般_______________它的成分金属与纯金属材料相比,合金具有优良的______________________________2.合金的形成条件形成条件合金是金属在_________状态时相互混合形成的,熔化时的温度需达到成分金属中熔点_____________的金属的熔点,但又不能高__________成分金属中沸点__________的金属的沸点。

工程材料及机械制造基础-3-金属的晶体结构及结晶

工程材料及机械制造基础-3-金属的晶体结构及结晶
工程材料与机械制造基础
第三章 金属的晶体结构与结晶
海洋科学与技术学院 贾 非
Dalian University of Technology
12:39
主要内容
金属的晶体结构 晶体的概念 常见的金属晶格 晶体结构的致密度
实际金属的结构 多晶体结构 晶格缺陷
金属的结晶 金属的结晶过程 金属的同素异构转变 金属铸锭的组织特点
• 刃型位错:当一个完整晶体某晶面以上的某处多出半 个原子面,该晶面象刀刃一样切入晶体,这个多余原 子面的边缘就是刃型位错。
• 半原子面在滑移面以上的称正位错,用“ ┴ ”表示。 • 半原子面在滑移面以下的称负位错,用“ ┬ ”表示。
• 位错密度:单位体积内所包 含的位错线总长度。
= S/V(cm/cm3或1/cm2)
12:39
金属的晶体结构
立方晶系常见的晶面为:
{100} : (100)、(010)、(001)



{110} : (110)、(101)、(011)、(110)、(1 01)、(011)



{111} : (111)、(111)、(111)、(111)
12:39
{110}
Z
(011)
(110) (011) (101)
• 金属的位错密度为104~1012/cm2
• 位错对性能的影响:金属的 塑性变形主要由位错运动引 起,因此阻碍位错运动是强 化金属的主要途径。
• 减少或增加位错密度都可以 提高金属的强度。

金属晶须
退火态 (105-108/cm2)
加工硬化态 (1011-1012/cm2)

实际金属的结构
电子显微镜下的位错

第三章晶体结构

第三章晶体结构
设按六方密堆的O2-分别为OA层与OB层,则-Al2O3中氧与铝 的排列可写成:OAAlDOBAlEOAAlFOBAlDOAAlEOBAlF∥OAAlD…, 从第十三层开始才出现重复。
三.其它晶体结构 1.金刚石结构
金刚石结构为面心立方格 子,碳原子位于面心立方的所 有结点位置和交替分布在立方 体内的四个小立方体的中心, 每个碳原子周围都有四个碳, 碳原子之间形成共价键。
一.面心立方紧密堆积结构
4. CaTiO3(钙钛矿)型结构 钙钛矿结构的通式为ABO3,其中,A2+ 、B4+或A1+ 、B5+金
属离子。CaTiO3在高温时为立方晶系,O2-和较大的Ca2+作面心 立方密堆,Ti4+填充于1/4的八面体空隙。Ca2+占据面心立方的 角顶位置。O2-居立方体六个面中心,Ti4+位于立方体中心。Z=1, CNCa2+=12 CNTi4+=6 ,O2-的配位数为6 (2个Ti4+和 4个Ca2+)。
一.面心立方紧密堆积结构 1. NaCl型结构
Cl-呈面心立方最紧密堆积,Na+则填充于全部的八面体空隙
中,(即阴离子位于立方体顶点和六个面的中心,阳离位于立
方 体 的 中 心 和 各 棱 的 中 央 ) 。 两 者 CN 均 为 6 , 单 位 晶 胞 中 含 NaCl的个数Z=4 ,四面体空隙未填充。
一.面心立方紧密堆积结构 2. β-ZnS(闪锌矿)型结构
S2-位于面心立方的结点位置,Zn2+交错地分布于立方体内 的1/8小立方体的中心,即S2-作面心立方密堆,Zn2+填充于1/2的 四面体空隙之中,CN均为4,Z=4。β -ZnS是由[ZnS4]四面体以 共顶的方式相连而成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1)金属结晶时的过冷现象

图中的T0为理论结晶温度,它是液态金属在 无限缓慢冷却条件下的结晶温度。而实际生 产中,液态金属都是以较快的速度冷却的, 液态金属只能在理论结晶温度以下才开始结 晶,这种实际结晶温度低于理论结晶温度的 现象称为过冷,与T0之差为过冷度△T,即 △T=T0-T1。冷却速度越快,△T越大。特 定金属的过冷度不是一个定值,它随冷却速 度的变化而变化,冷却速度越大,过冷度越 大,金属的实际结晶温度也就越低。

金属晶体中的位错很多,相互连结成网状 分布。位错线的密度可用单位体积内位错 线的总长度表示,位错密度愈大,塑性变 形抗力愈大,因此,目前通过塑性变形, 提高位错密度,是强化金属的有效途径之 一 考虑一下,上节课我们介绍的拉伸特性曲 线中,哪个现象与线缺陷有关?

(3)面缺陷

面缺陷包括晶界和亚晶界。如前所述,晶界是晶 粒与晶粒之间的界面,由于晶界原子需要同时适 应相邻两个晶粒的位向,就必须从一种晶粒位向 逐步过渡到另一种晶粒位向,成为不同晶粒之间 的过渡层,因而晶界上的原子多处于无规则状态 或两种晶粒位向的折衷位置上。另外,晶粒内部 也不是理想晶体,而是由位向差很小的称为嵌镶 块的小块所组成,称为亚晶粒,尺寸为10-4~106cm。亚晶粒的交界称为亚晶界。
晶界ห้องสมุดไป่ตู้作用


晶界处原子排列杂乱,处于高能量状态, 划移变形和位错运动受阻。所以,晶粒越 细,晶界越多,对变形的抗力越大,屈服 强度越高。 随着外力的持续作用,有利于划移和能参 加划移的晶粒增多,塑性变形由更多的晶 粒承担,同时也不会造成不均匀变形而引 起的应力集中,因此,不会开裂。所以, 晶粒越细,塑性变形能力越好。
结合键
分子键(范德华键) 水、陶瓷、塑料,它们的分子或原 子团,自身具有极性,即分子的一部分带 正电,另一部分带负电,这就存在分子相 互吸引的作用力,称为分子键(范德华 键)。结合力很弱,容易被破坏,容易变 形,所以材料具有很好的塑性。
2) 晶体的基本概念


晶体是指基原子具有规则排列的物体 晶体结构是指晶体内部原子规则排列的 方式 晶体结构不同,其性能往往相差很大
过冷度的影响

金属结晶时的冷却速 度愈大,其过冷度便 愈大,不同过冷度 ⊿T对晶核的形成率 N(晶核形成数目 /s•mm3)和成长率 G(mm/s)的影响 如图所示


在图中,我们还从晶核的形成率与成长率之间的 相对关系示意地表达出了几种不同过冷度下所得 到的晶粒度的对比,从中可以得到一个十分重要 的结论即在一般工业条件下(图中曲线的前半部 实线部分),结晶时的冷却速度愈大或过冷度愈 大时,金属的晶粒度便愈细 图中曲线的后半部分,因为在工业实际中金属的 结晶一般达不到这样的过冷度,故用虚线表示, 但近年来通过对金属液滴施以每秒上万度的高速 冷却发现,在高度过冷的情况下,其晶核的形成 率和成长率确能再度减小为零,此时金属将不再 通过结晶的方式发生凝固,而是形成非晶质的固 态金属
其它结合键
离子键
部分陶瓷材料和矿物,依赖离子键 结合在一起。即:两种原子通过得失电子, 而通过库仑力的作用相互吸引。如各种盐、 碱、金属化合物等。结合力很强,因此物 质的熔点、沸点、硬度很高,膨胀系数小, 脆性大。
结合键
共价键
一些陶瓷如金刚石、氧化硅等,依 赖共价键结合在一起。即:两种原子依赖 共用电子对产生的结合力而结合在一起。 属于强键,所以材料硬度很高,脆性大。


由每个晶核长成的晶体称为晶粒,晶粒之 间的接触面称为晶界。晶粒的外形是不规 则的。因此,金属实际上是由很多大小、 外形和晶格排列方向均不相同的晶粒所组 成的多晶体。 晶粒的大小对金属的性能影响很大。因为 晶粒小则晶界就多,而晶界增强了金属的 结合力。因此,一般金属的晶粒越小,强 度、塑性和韧性就越好。生产上常用增加 冷却速度或向液态金属加入某些难熔质点, 以增加晶核数目,而细化晶粒。
(1)点缺陷





点缺陷的具体形式有如下三种。 (1) 空位 晶格中某个原子脱离了平衡位置,形成空结点, 称为空位。当晶格中的某些原子由于某种原因(如热振动 等)脱离其晶格节点将产生此类点缺陷。这些点缺陷的存 在会使其周围的晶格产生畸变。 (2) 间隙原子 在晶格节点以外存在的原子,称为间隙 原子。在金属的晶体结构中都存在者间隙,一些尺寸较少 的原子容易进入晶格的间隙形成间隙原子。 (3) 置换原子 杂质元素占据金属晶格的结点位置称为 置换原子。当杂质原子的直径与金属原子的半径相当或较 大时,容易形成置换原子。 三种点缺陷的形态如图所示。
2) 结晶的过程


液态金属的结晶过程分为晶核形成和晶核 的成长两个阶段。 晶核的形成,一是由液态金属中一些原子 自发地聚集在一起,按金属晶体的固有规 律排列起来称为自发晶核。二是由液态金 属中一些外来的微细固态质点而形成的, 称为外来晶核。


图为金属结晶过程示意图 当液体冷却到结晶温度后,一些短程有序的原子 团开始变得稳定,成为极细小的晶体,称之为晶 核。随后,液态金属的原子就以它为中心,按一 定的几何形状不断地排列起来,形成晶体。晶体 在各个方向生长的速度是不一致的,在长大初期, 小晶体保持规则的几何外形,但随着晶核的长大, 晶体逐渐形成棱角,由于棱角处散热条件比其它 部位好,晶体将沿棱角方向长大,从而形成晶轴, 称为一次晶轴;晶轴继续长大,且长出许多小晶 轴,二次晶轴、三次晶轴、…,成树枝状,当金 属液体消耗完时,就形成晶粒。

实际的金属都是由很多小晶体组成的,这 些外形不规则的颗粒状小晶体称为晶粒。 晶粒内部的晶格位向是均匀一致的,晶粒 与晶粒之间,晶格位向却却彼此不同。每 一个晶粒相当于一个单晶体。晶粒与晶粒 之间的界面称为晶界。这种由许多晶粒组 成的晶体称为多晶体,如图所示。

多晶体的性能在各个方向基本是一致的, 这是由于多晶体中,虽然每个晶粒都是各 向异性的,但它们的晶格位向彼此不同, 晶体的性能在各个方向相互补充和抵消, 再加上晶界的作用,因而表现出各向同性。 这种各向同性被称伪各向同性。

晶粒的尺寸很小,如钢铁材料的晶粒尺寸 一般为10-1~10-3mm左右,必须在显微镜 下才能观察到。在显微镜下才能观察到的 金属中晶粒的种类、大小、形态和分布称 显微组织,简称组织。金属的组织对金属 的力学性能有很大的影响
2) 晶体缺陷

实际上每个晶粒内部,其结构也不是那么 理想,存在着一些原子偏离规则排列的不 完整性区域,这就是晶体缺陷。
未熔杂质的影响

任何金属中总不免含有或多或少的杂质,有的可 与金属一起熔化,有的则不能,而是呈未熔的固 体质点悬浮于金属液体中。这些未熔的杂质,当 其晶体结构在某种程度上与金属相近时,常可显 著地加速晶核的形成,使金属的晶粒细化。因为 当液体中有这种未熔杂质存在时,金属可以沿着 这些现成的固体质点表面产生晶核,减小它暴露 于液体中的表面积,使表面能降低,其作用甚至 会远大于加速冷却增大过冷度的影响
1 、金属的晶体结构
1)金属键 2)晶体的基本概念 3)常见纯金属的晶格类型
1) 金属键
金属元素往往失去最原子外 层的价电子,而变成正离子,失 去的电子形成围绕这些离子的电 子云。电子在电子云中游走,不 与任何离子结合,成为与若干离 子相互吸引的电子。这种结合力 就是金属键。金属弯曲时,原子 只改变位置关系,键不被破坏, 因此,金属的塑性好,电子云的 存在使金属具有良好的导电性和 导热性。
为了便于分析研究各种晶体中原子或分子的 排列情况,通常把原子抽象为几何点,并用许 多假想的直线连接起来,这样得到的三维空间 几何格架,称为晶格,如图所示; 晶格中各边线的交点称为结点; 晶格中各种不同方位的原子面,称为晶面。 组成晶格的最基本几何单元称为晶胞。晶格 可以看成由晶胞堆积而成。



机械制造基础
第三章 金属材料的结构
主讲:仝勖峰 西安电子科技大学
本章内容



金属晶体的基础知识; 金属晶体的实际结构; 金属材料的结晶过程; 合金的相结构; 合金相图的基本概念。
金属材料的化学成分不同,表现出来 的性能是不一致的。即使同一种成分的材 料,经过不同的处理工艺,改变其内部组 织结构,也会导致其性能发生变化。本章 主要介绍金属材料内部组织及其与力学性 能的关系。
(2)线缺陷

如图所示为常见的一种刃型位错。由于该晶体的 右上部分相对于右下部分局部滑移,结果在晶格 的上半部中挤出了一层多余的原子面EFGH,好 象在晶格中额外插入了半层原子面一样,该多余 半原子面的边缘EF便是位错线。沿位错线的周围, 晶格发生了畸变。
位错的移动
刃型位错的滑移运动:在图示的晶体上施加一切应力, 当应力足够大时,有使晶体上部向有发生移动的趋势。假 如晶体中有一刃型位错,显然位错在晶体中发生移动比整 个晶体移动要容易。这种移动的宏观效应就是塑性变形。

体心立方晶格的晶胞是一个立方体,原子 分布在立方体的各结点和中心处。因其晶 格常数a=b=c,故只用一个常数a表示即 可。属于这类晶格的金属有α-Fe、Cr、V、 W、Mo(钼)、Nb(铌)等。
(2)面心立方晶格(Face-centred cubic lattice,简称f.c.c)

面心立方晶格的晶胞也是一个立方体,原 子分布在立方体的各结点和各面的中心处。 这种晶胞中,每个面的对角线上原子紧密 排列。属于这类晶格的金属有γ-Fe、Al、 Cu、Ni、Au(金)、Ag(银)、Pb(铅) 等。
(3)密排六方晶格(Close-packed hexagonal lattice,简称c.p.h)

密排六方晶格的晶胞与简单六方晶胞不同, 在由12个原子所构成的正六面体的上下两 个六边形的中心各有一个原子,在上下底 中间有三个原子。属于这类晶格的金属有 Mg、Zn、Be、Cd(镉)等。
相关文档
最新文档