自修复聚氨酯材料

合集下载

基于热可逆Diels-Alder反应的自修复聚氨酯研究

基于热可逆Diels-Alder反应的自修复聚氨酯研究

基于热可逆Diels-Alder反应的自修复聚氨酯研究基于热可逆Diels-Alder反应的自修复聚氨酯研究自修复材料是一种具有自愈合能力的材料,能够在受损后自动修复并恢复其功能。

近年来,自修复材料一直受到广泛关注,并在许多领域得到了应用,例如电子设备、航空航天和汽车工业。

聚氨酯是一种常用的聚合物,其独特的力学性能和化学稳定性使其成为研究自修复材料的理想选择。

基于热可逆Diels-Alder反应的自修复聚氨酯通过热诱导的化学反应来实现自修复能力。

Diels-Alder反应是一种具有独特的热可逆性质的反应,能够在适当的温度条件下进行断裂和重组。

这种反应的热可逆性使其成为自修复材料非常有利的选择。

为了制备一个具有自修复能力的聚氨酯材料,首先需要合成一个可实现Diels-Alder反应的功能单元。

一种常用的方法是引入二烯和丙烯酸单体,通过热诱导的Diels-Alder反应形成一个热可逆的交联结构。

这种交联结构的热动力学和动力学特性可调,可以通过调节材料的成分和反应条件来获得不同的自修复性能。

研究表明,自修复聚氨酯材料的性能受到许多因素的影响,例如交联密度、交联结构和结晶度等。

高交联密度会导致材料的刚性增加,降低自修复能力。

交联结构的选择也对自修复性能有很大影响,一些交联结构能够提供更高的自修复效率。

另外,自修复聚氨酯材料的结晶度也对其自修复性能有显著影响。

高结晶度的材料可以提供更好的自修复效果,因为结晶区域能够提供更多的交联点。

此外,研发自修复聚氨酯材料的关键是实现反应的热可逆性。

首先要选择合适的二烯和丙烯酸单体,以确保反应具有适当的活化能和反应速率。

其次,需要确定适当的反应条件,包括温度和时间,以确保Diels-Alder反应能够在合适的条件下进行。

最后,还需要考虑材料的稳定性和降解性能,以确保其在长期使用过程中能够保持自修复能力。

总结起来,基于热可逆Diels-Alder反应的自修复聚氨酯材料具有很大的应用潜力。

自修复聚氨酯材料原理

自修复聚氨酯材料原理

自修复聚氨酯材料的原理是利用可逆动态化学键的交换反应,在聚合物材料受到损伤时,在一定的温度或光照等外界刺激下,实现自修复或再加工。

自修复材料是在材料受损时能从分子层面实现自我愈合作用的一类新型材料,近年来得到了广泛的研究,自修复材料可延长材料的使用寿命,从而提高了材料的耐用性。

自修复材料按其愈合机理可分为两种:外援型自修复和本征自修复。

其中,非共价键自修复包括氢键、配位键等方式,可逆动态化学键包括动态酯交换、动态烯胺键、动态二烯醚键、动态二硫键等方法。

自修复聚氨酯弹性体材料研究方面取得新进展

自修复聚氨酯弹性体材料研究方面取得新进展

图5㊀配方中加入A⁃33后泡沫的温度变化率及上升速率表示时间变化),也说明后期几乎不发生三聚反应㊂这是因为A⁃33是强凝胶催化剂,催化NCO基与OH基反应形成聚氨酯网状结构,导致NCO基团间接触机会少,很难发生三聚反应,导致泡沫发软㊁强度低㊂3㊀结论(1)聚氨酯泡沫反应中不同阶段的速率㊁温度变化㊁高度变化可以体现在Foamat发泡曲线中㊂(2)PIR改性聚氨酯硬泡的发泡试验中上升速率曲线可出现两个峰,针对两个峰的大小及距离可以对配方进行优化设计㊂(3)利用Foamat泡沫起升测试仪可以显示不同沸点的发泡剂在发泡曲线中差异,还可以判定催化剂对聚氨酯发泡的催化选择性㊂参㊀考㊀文㊀献[1]㊀吕晓奇,于大海,朱彦等.浅析聚氨酯泡沫起升试验与反应过程[J].聚氨酯工业,2015,30(1):44-46.[2]㊀刘访艺,王浩臻,蒋小龙,等.HFC⁃245fa对聚氨酯硬泡板材性能影响的研究[J].聚氨酯工业,2017,32(4):27-30.[3]㊀朱吕民,刘益军.聚氨酯泡沫塑料[M].3版.北京:化学工业出版社,2005.[4]㊀刘益军.聚氨酯原料及助剂手册[M].2版.北京:化学工业出版社,2005.[5]㊀江永飞.聚氨酯硬泡中替代CFC-11的发泡剂[J].黎明化工,1995(4):12-14.收稿日期㊀2018-05-27㊀㊀修回日期㊀2018-08-09ApplicationofFoamatFoamRisingInstrumentinPolyurethaneFoamingDOUZhongshan,WANGLei,LIUYongliang,WANGYaoxi,LIXiaojing(WanhuaEnergysavScience&TechnologyGroupCo.Ltd,Yangtai,Shandong264000,China)Abstract:Aserialofstudywerecarriedbasedonapolyisocyanuratemodifiedrigidpolyurethanefoamfunda⁃mentalformula.TheapplicationofFoamatfoamrisinginstrumentonthefoamingcurveindifferentfoamingsystemswithdifferentblowingagent,catalystselectionandexplainingoffoamingphenomenawereintroduced.Keywords:Foamatfoamrisinginstrument;rigidpolyurethanefoam;polyisocyanuratefoam作者简介㊀窦忠山㊀男,1987年出生,本科学历,研究方向为聚氨酯硬泡㊂自修复聚氨酯弹性体材料研究方面取得新进展自修复聚合物材料作为一种智能材料,可以修复在使用过程中因外力作用而产生的裂纹或局部损伤,从而恢复其原有的功能,延长其使用寿命㊂该材料在表面镀层保护㊁生物医药材料㊁锂电池以及航空航天等领域具有潜在的应用前景㊂为了满足不同的应用,研究人员将 牺牲键 引入到聚合物材料中,开发了自修复塑料㊁凝胶或弹性体㊂对于自修复弹性体材料来说,兼顾良好的机械性能㊁高效的自修复效率及优异的光学性能是一个挑战性难题㊂在国家自然科学基金委的支持下,中国科学院化学研究所工程塑料重点实验室研究员董侠等致力于智能材料的开发与应用,取得了系列进展㊂在此基础上,从分子设计角度出发,提出了一种新型自修复设计策略 PhaseLockedDynamicChemicalBonds(相锁定动态化学键) ,成功制备出无色透明㊁可快速自修复的高韧高强聚合物㊂研究工作通过 硬段锁定 和 微相分离控制 相结合的策略展开,设计的含二硫键自愈聚氨酯弹性体(PUDS)呈现出无色透明的优异光学性质,最大拉伸强度可达25MPa,断裂伸长率超过1600%,在温和加热条件下(70ħ),弹性体表面划痕可在60s内迅速恢复,同时表现出良好的重复刮擦自修复功能,经多次刮擦自修复后材料的雾度值仅为0 6%㊂这种无色高透明的自修复特征,使得该材料在光学领域具有重要的应用前景㊂相关成果发表于‘先进材料“㊂㊃63㊃聚氨酯工业㊀㊀㊀㊀㊀第33卷。

浅谈光固化自修复聚氨酯

浅谈光固化自修复聚氨酯

2h
图3-6 DAEPU样条在室温下的形状记忆过程(2 h)
16、自修复聚氨酯涂层形状记忆特性
从冰箱取出后固定螺旋状
60 ℃烘箱中开始回复
15 s
DAEPU样条在60 ℃烘箱中的形状记忆过程(15 s)
17、自修复机理研究
140 ℃(150 ℃ )
KBr共混压片法;烘箱
升温/降温/恒温红外 每
T
+
O
N
O
< 60 ℃
DA reaction
> 90 ℃
retro-DA reaction
O
O NO
反应温和 智能高效 合成灵活 原料易得
Diels-Alder(DA)热可逆过程示意图
DielsAlder
可循环和可修复材料、智能复合材料和智能涂层等
CH
UV
2
light
CH2
CH2
HC
6、光固化自修复
碳纳米管、微脉管、玻璃纤维或纳米粒子等实现自修复功能,该方法需将各种修 复剂体系预先包埋,然后添加到基体中,涂料受损时,在外界刺激(力、pH值、 温度等)作用下导致损伤区域的修复剂释放,从而实现涂料的自我修复。 本征型自修复则不需外加修复体系,而是涂料本身含有特殊的化学键或其它物理 化学性质,如可逆共价键、非共价键、分子扩散等实现自修复功能。该方法不依 赖修复剂,省去了预先修复剂包埋技术等复杂步骤,且对涂料综合性能影响小, 已成为研究热点。
近年来,涂料技术与材料科学的发展紧密相联,各种功能涂料随着材料科学的持 续进步不断涌现,在这种背景下,自修复涂料的理论研究及实际应用均取得了快 速发展。
2、分类
自修复涂料按修复类型主要可分为外援型自修复涂料和本征型自修复涂料。 外援型自修复涂料是指在涂料中通过引入外加组分如含有修复剂体系的微胶囊、

水性聚氨酯-聚丙烯酸酯自修复材料的制备及性能研究

水性聚氨酯-聚丙烯酸酯自修复材料的制备及性能研究

水性聚氨酯-聚丙烯酸酯自修复材料的制备及性能研究水性聚氨酯/聚丙烯酸酯自修复材料的制备及性能研究引言:随着人们对材料功能的不断要求,自修复材料成为研究的热点领域。

在此背景下,水性聚氨酯/聚丙烯酸酯自修复材料因其优秀的性能和环境友好性得到了广泛关注。

本文旨在研究水性聚氨酯/聚丙烯酸酯自修复材料的制备方法并探讨其性能。

一、水性聚氨酯/聚丙烯酸酯自修复材料的制备方法水性聚氨酯/聚丙烯酸酯自修复材料的制备主要分为以下几个步骤:1. 聚合物的合成:采用聚丙烯酸酯和聚氨酯作为主要材料进行合成。

首先,将聚丙烯酸酯和聚氨酯按照一定的配比加入到反应釜中,控制温度和反应时间进行聚合反应,得到聚合物。

2. 自修复涂层的制备:将得到的聚合物与一定比例的溶剂混合,搅拌均匀后得到自修复涂层。

3. 材料的涂覆:将自修复涂层涂覆在需要修复的材料表面,然后进行固化处理,形成稳定的复合材料。

二、水性聚氨酯/聚丙烯酸酯自修复材料的性能1. 自修复性能:通过在材料表面制备自修复涂层,当材料发生裂纹或损伤时,涂层中的自修复剂会自动释放填充到裂纹中,与裂纹中的污染物反应形成新的化学键,从而实现自修复效果。

2. 机械性能:水性聚氨酯/聚丙烯酸酯自修复材料具有优异的强度和韧性,可以抵抗较大的力量作用,并能保持材料的持久性。

3. 环境友好性:与传统的有机溶剂制备的材料相比,水性聚氨酯/聚丙烯酸酯自修复材料使用水作为溶剂,无毒无害,对环境友好。

4. 耐热性能:水性聚氨酯/聚丙烯酸酯自修复材料具有较好的耐高温性能,可以在高温环境下使用。

三、结论水性聚氨酯/聚丙烯酸酯自修复材料通过制备自修复涂层,能够实现对材料的自动修复。

该材料具有良好的机械性能、环境友好性和耐热性能,具有广阔的应用前景。

随着对自修复材料研究的不断深入,水性聚氨酯/聚丙烯酸酯自修复材料有望在航空、汽车、建筑等领域得到更广泛的应用综上所述,水性聚氨酯/聚丙烯酸酯自修复材料是一种具有良好性能和广阔应用前景的材料。

一种可自修复聚氨酯材料及其制备方法与应用[发明专利]

一种可自修复聚氨酯材料及其制备方法与应用[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202010147428.4(22)申请日 2020.03.05(71)申请人 中科院广州化学有限公司地址 510650 广东省广州市天河区兴科路368号申请人 南雄中科院孵化器运营有限公司 国科广化(南雄)新材料研究院有限公司(72)发明人 梁利岩 宋璇 吕茂萍 (74)专利代理机构 广州市华学知识产权代理有限公司 44245代理人 桂婷(51)Int.Cl.C08G 18/32(2006.01)C08G 18/10(2006.01)C08G 18/42(2006.01)C08G 18/48(2006.01)C08G 18/66(2006.01)C08J 5/18(2006.01)C08L 75/06(2006.01)C08L 75/08(2006.01)(54)发明名称一种可自修复聚氨酯材料及其制备方法与应用(57)摘要本发明属于化学品技术领域,具体公开了一种可自修复聚氨酯材料及其制备方法与应用。

该聚氨酯的制备方法通过将含有二硒键的二元醇对二元醇和二异氰酸酯的预聚体进行扩链,得到含有二硒键的聚氨酯。

本发明的聚氨酯为淡黄色固体,具有一定的韧性和强度,同时还具有优异的自修复性能,可以通过简单的热固化应用于日常生活中的涂层等领域,用于替代已有的聚氨酯涂层。

权利要求书1页 说明书5页 附图3页CN 111217974 A 2020.06.02C N 111217974A1.一种可自修复聚氨酯材料,其特征在于结构式如下所示:其中NCO -R -NCO为4,4’-二环己基甲烷二异氰酸酯、二苯基甲烷二异氰酸酯或异佛尔酮二异氰酸酯;HO -R ’-OH为聚丙二醇或聚四氢呋喃;x:y=0.8~1:0.1~0.2,n=2-11。

2.一种制备权利要求1所述可自修复聚氨酯材料的方法,其特征在于具体包括以下制备步骤:将二异氰酸酯、催化剂、溶剂和二元醇混合均匀后进行回流加热反应,然后再加入二硒键二元醇扩链剂并继续加热反应,反应结束后固化得到可自修复聚氨酯材料。

自修复聚氨酯的技术指标

自修复聚氨酯的技术指标

自修复聚氨酯的技术指标你可能没听过“自修复聚氨酯”,对吧?别急,今天我就给你捋捋这个新鲜玩意儿。

这玩意儿就是一种能够自己修复损伤的高科技材料。

想象一下,如果你的手机屏幕不小心摔了个地,那是不是得花大价钱修理?不过如果你用的是自修复聚氨酯做的外壳呢?嘿嘿,屏幕自己就能复原,简直牛掰得不行!看,这个科技简直就像是魔法一样,让我们的大千世界变得更神奇了。

不过,说到自修复聚氨酯的技术指标,这可不是随便说说的哦,里面学问大着呢。

今天就跟着我一起掰掰这些有意思的技术吧。

先说说这“自修复”这事儿。

你要知道,聚氨酯本身是一种非常厉害的材料,既有弹性,又耐用,拿它做鞋底、汽车座椅,或者是家具,基本上都是常规操作。

但传统的聚氨酯一旦受损,怎么办?只能干等着或者直接换掉,挺麻烦的,对吧?可是“自修复聚氨酯”就不一样了。

这东西可不是一成不变的,碰到小损伤时,它能自己恢复原状,就像你不小心把鞋底蹭破了,自己会慢慢修补好一样,真是妙不可言。

那到底啥叫技术指标呢?就是说它有啥硬性要求,能不能真像我们说的那样牛。

你得看它的修复效率。

有些材料自己修复的速度可能跟蜗牛爬一样,慢得让你抓狂;但自修复聚氨酯可不是这么回事。

它的修复速度一般都很快,可以在几小时内自己愈合伤口,速度杠杠的。

它的修复效果也是一绝。

修复后的区域,不仅恢复了外观,还能恢复原本的性能,简直跟新的一样。

打个比方吧,像你摔破了的手机壳,修复后不但看起来没差,甚至还能耐磨,抗压,完全不输新品。

说到这里,你可能会想:“这修复功能好像很神奇,但它到底能承受多大损伤呢?”嘿,答案是挺牛的!一般来说,这种材料的耐损伤性相当强。

它可以承受各种轻微的划痕、碰撞、压迫等小破损,甚至某些材料在特殊情况下能应对大一点的裂纹,修复后完全不见裂痕。

你看,这就是高科技的魅力所在了,不是纸糊的东西,真能扛得住些摔打。

然后,还有一个不得不提的关键指标——自修复聚氨酯的耐温性。

像这种材料对温度变化特别敏感,有的可能在高温下就跟变魔术一样,自己恢复;有的则在低温下保持稳定,修复效率丝毫不打折。

自修复聚氨酯材料的研究进展

自修复聚氨酯材料的研究进展

自修复聚氨酯材料的研究进展
刘亚豪;王源升;杨雪;黄威;李科;王轩
【期刊名称】《材料导报》
【年(卷),期】2024(38)1
【摘要】聚氨酯材料因具有优异的综合性能而得到了广泛应用,但是其在使用过程中不可避免地会产生微裂纹等结构破坏,而自修复技术是解决这一问题的有效方案。

本文阐述了非本征型和本征型自修复的机理,重点综述了本征型自修复材料的设计
方法和研究进展,讨论了不同设计方法对材料自修复性能、力学性能等的影响,最后
针对自修复材料自修复性能和力学性能的平衡问题,探讨了复合型自修复体系的可
行性、设计思路和最新进展,提出了复合型自修复材料是今后的一大发展趋势,并展
望了自修复材料面临的挑战和发展方向。

【总页数】10页(P249-258)
【作者】刘亚豪;王源升;杨雪;黄威;李科;王轩
【作者单位】海军工程大学基础部;海军工程大学舰船与海洋学院;海军工程大学振
动与噪声研究所;海军工程大学船舶振动噪声重点实验室;592941部队
【正文语种】中文
【中图分类】TQ323.8
【相关文献】
1.基于可逆共价键自修复的聚氨酯材料研究进展
2.高强度本征型自修复聚氨酯材料研究进展
3.自修复聚氨酯材料功能化的研究进展
4.热可逆自修复聚氨酯及其复合材料的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

the formation of prenucleation clusters with dimen-sions of 0.6to 1.1nm (step 0).In analogy to the chemistry of calcium phosphate (31),we consider them to be the smallest stable agglomerates of CaCO 3present from the beginning of the reaction.Aggregation of these clusters in solution leads to the nucleation of ACC nanoparticles with a size distri-bution centered around 30nm (step 1).Association of these particles with the template surface initiates the growth of ACC (step 2),using the nanoparticles in their neighborhood as feedstock.Next,randomly oriented nanocrystalline domains are formed inside the otherwise amorphous particles (steps 3and 4).On the basis of the model of Zhang et al .(23),we expect these domains to be unstable and in equi-librium with the amorphous phase.In the last steps,the orientation that is stabilized through the inter-action with the monolayer becomes dominant (step 5)and develops into a single crystal (step 6).This single crystal probably grows by the further addition and incorporation of ions and clusters from solution.The initial experiments of Mann and co-workers showed that the present system could produce cal-cite (11.0)or vaterite (00.1)depending on the pre-cise conditions (16,32).Later,it was demonstrated that rapid CO 2evaporation favors the kinetic product,vaterite (21,22),whereas lower evaporation rates lead to the calcitic form (21).These results are confirmed by our finding of (00.1)oriented vaterite in the present work (i.e.,in a fast-outgassing thin film)and the formation of (11.0)oriented calcite in crystallization dishes (fig.S7)(15)from which CO 2outgassing is slower.Moreover,the observation of randomly oriented vaterite crystals also puts in perspective the synchrotron x-ray scattering exper-iments that showed the formation of randomly oriented crystals from the same system (22).The nanoscopic prenucleation clusters that we visualized are the smallest stable form of CaCO 3and are likely the building blocks of the amorphous precursor particles observed in biomineralization;such particles are also observed in many synthetic systems and are not restricted to calcium carbonate (13,31).As a consequence of their aggregation,ACC nucleates in solution and subsequently assembles at the template.There,it is present as a temporarily stabilized but transient phase that mediates the trans-fer of information from the template to the mineral phase.This occurs through the selective stabiliza-tion of only one of the orientations present,leading to the development of a single crystal.References and Notes1.H.A.Lowenstam,S.Weiner,On Biomineralization (Oxford Univ.Press,New York,1989).2.M.E.Davis,Science 305,480(2004).3.B.L.Smith et al .,Nature 399,761(1999).4.J.Aizenberg et al .,Science 309,275(2005).5.J.R.Young,J.M.Didimus,P.R.Bown,B.Prins,S.Mann,Nature 356,516(1992).6.L.Addadi,D.Joester,F.Nudelman,S.Weiner,Chem.Eur.J.12,980(2006).7.N.A.J.M.Sommerdijk,G.de With,Chem.Rev.108,4499(2008).8.M.Volmer,Kinetik der Phasenbildung (Steinkopff,Dresden,1939).9.Y.Politi,T.Arad,E.Klein,S.Weiner,L.Addadi,Science 306,1161(2004).10.E.Beniash,J.Aizenberg,L.Addadi,S.Weiner,Proc.R.Soc.London Ser.B 264,461(1997).11.B.P.Pichon,P.H.H.Bomans,P.M.Frederik,N.A.J.M.Sommerdijk,J.Am.Chem.Soc.130,4034(2008).12.J.R.I.Lee et al .,J.Am.Chem.Soc.129,10370(2007).13.D.Gebauer,A.Völkel,H.Cölfen,Science 322,1819(2008).14.C.L.Freeman,J.H.Harding,D.M.Duffy,Langmuir 24,9607(2008).15.See supporting material on Science Online.16.S.Mann,B.R.Heywood,S.Rajam,J.D.Birchall,Nature334,692(1988).17.S.Nickell,C.Kofler,A.P.Leis,W.Baumeister,Nat.Rev.Mol.Cell Biol.7,225(2006).18.The sedimentation coefficient s is defined as the velocityv t of the particle per unit gravitational acceleration(centrifugal acceleration:w 2r ,where w is angular velocity and r is the radial distance to the rotation axis).19.F.M.Michel et al .,Chem.Mater.20,4720(2008).20.D.Quigley,P.M.Rodger,J.Chem.Phys.128,221101(2008).21.E.Loste,E.Diaz-Marti,A.Zarbakhsh,F.C.Meldrum,Langmuir 19,2830(2003).22.E.DiMasi,M.J.Olszta,V.M.Patel,L.B.Gower,CrystEngComm 5,346(2003).23.T.H.Zhang,X.Y.Liu,J.Am.Chem.Soc.129,13520(2007).24.Y.Politi et al .,Adv.Funct.Mater.16,1289(2006)m,J.M.Charnock,A.Lennie,F.C.Meldrum,CrystEngComm 9,1226(2007).26.J.Aizenberg,D.A.Muller,J.L.Grazul,D.R.Hamann,Science 299,1205(2003).27.R.Tang et al .,Angew.Chem.Int.Ed.43,2697(2004).28.G.Luquet,F.Marin,C.R.Palevol 3,515(2004).29.L.Brecevic,A.E.Nielsen,J.Cryst.Growth 98,504(1989).30.J.J.J.M.Donners,B.R.Heywood,E.W.Meijer,R.J.M.Nolte,N.A.J.M.Sommerdijk,Chem.Eur.J.8,2561(2002).31.A.S.Posner,F.Betts,Acc.Chem.Res.8,273(1975).32.S.Rajam et al .,J.Chem.Soc.Faraday Trans.87,727(1991).33.Supported by the European Community (project codeNMP4-CT-2006-033277)and the NetherlandsOrganization for Scientific Research (NWO).We thank A.Völkel and H.Cölfen for performing and evaluating the ultracentrifugation measurements;D.Gebauer and A.Verch for time-dependent solution composition determination of the mineralization solutions;F.L.Boogaard,E.J.Creusen,J.J.van Roosmalen,and P.Moeskops for their contribution to the 3Dreconstructions of the tomograms;and P.T.K.Chin for providing the CdSe nanorods.Supporting Online Material/cgi/content/full/323/5920/1455/DC1Materials and Methods SOM Text Table S1Figs.S1to S75December 2008;accepted 30January 200910.1126/science.1169434Self-Repairing Oxetane-Substituted Chitosan Polyurethane NetworksBiswajit Ghosh and Marek W.Urban *Polyurethanes have many properties that qualify them as high-performance polymeric materials,but they still suffer from mechanical damage.We report the development of polyurethane networks that exhibit self-repairing characteristics upon exposure to ultraviolet light.The network consists of an oxetane-substituted chitosan precursor incorporated into a two-component polyurethane.Upon mechanical damage of the network,four-member oxetane rings open to create two reactive ends.When exposed to ultraviolet light,chitosan chain scission occurs,which forms crosslinks with the reactive oxetane ends,thus repairing the network.These materials are capable of repairing themselves in less than an hour and can be used in many coatings applications,ranging from transportation to packaging or fashion and biomedical industries.When a hard or sharp object hits a ve-hicle,it is likely that it will leave a scratch,and for this reason the auto-motive industry looks for coatings with high scratch resistance.Because of their hardness and elasticity,polyurethanes exhibit good scratch re-sistance but can still suffer from mechanical dam-age.An ideal automotive coating would mend itself while a vehicle is driven.To heal mechan-ical damage in plants,suberin,tannins,phenols,or nitric oxide are activated to prevent further lesions (1–3),whereas in a human skin,the outer flow of blood cells is arrested by the crosslink network of fibrin,giving rise to wound-healing (4,5).Concentration gradients or stratification in living organisms inspired the development of spa-tially heterogeneous remendable polymers (6,7),composites containing micro-encapsulated spheres(8–11),encapsulated fibers (12–14),reversible cross-linking (15,16),and microvascular networks (17).One example is epoxy matrices containing a glass hollow fiber filled with a monomer and an initiator with the “bleeding ”ability to heal poly-mer networks during crack formation (12).A sim-ilar phenomenon was used in another approach,in which a micro-encapsulated dicyclopentadiene monomer was introduced in a catalyst-embedded polymer matrix,which healed the crack near the ring opening of the monomer (8–11).Reversibil-ity of Diels-Alder reactions resulted in another approach to thermally repair damaged areas,and approach using malemide-furan adducts (15,16).Mimicking of microvascular structures (17),water-responsive expandable gels (7),and formation of supramolecular assemblies (18)are other ave-nues of remendability.This study departs from previous approaches and reports the development of heterogeneousSchool of Polymers and High Performance Materials,Shelby F.Thames Polymer Science Research Center,The University of Southern Mississippi,Hattiesburg,MS 39406,USA.*To whom correspondence should be addressed.E-mail:marek.urban@13MARCH 2009VOL 323SCIENCE1458REPORTSpolyurethane (PUR)networks based on oxetane-substituted derivative of chitosan (OXE-CHI),which upon reaction with hexamethylene diiso-cyante (HDI)and polyethylene glycol (PEG)(19)form heterogeneous OXE-CHI-PUR net-works.The choice of these components was driven by their ability to serve specific functions;PUR networks provide desirable heterogeneity through polyurethane and polyurea components,and OXE-CHI provides the cleavage of a con-strained four-membered ring (OXE)and ultra-violet (UV)sensitivity through CHI,the latter being a product of deacetylation of chitin,which is the structural element of exoskeletons of crus-taceans (e.g.,crabs and shrimp)occurring in abun-dance in nature.Figure 1illustrates a two-step reaction sequence leading to the OXE-CHI-PUR formation (20).The first step in this investigation was the synthesis of OXE-CHI,in which the pri-mary alcohol of CHI was reacted with chloro-methyl of OXE (21).An OXE ring was reacted to the C 6position of the chitosan molecule,which is confirmed by infrared (IR),Raman,and 13C-NMR (nuclear magnetic resonance)spectroscopy (20)(figs.S1,S2,and S3,respectively).The second step illustrates the reactions leading to the in-corporation of OXE-CHI into trifunctional HDI in the presence of PEG (1:1.4and 1:1.33molar ratios),confirmed by IR and 13C-NMR spectros-copy (20)(figs.S4and S5,respectively).Networks were allowed to crosslink under ambient conditions to form solid films and then were mechanically damaged by creating a scratch.Figure 2A1illustrates a mechanical damage of OXE-CHI-PUR films.When the damaged area is exposed to a 120W fluorescent UV lamp at 302nm wavelength of light for 15(Fig.2A2)and 30(Fig.2A3)min,the damaged area vanishes.The upper portion of Fig.2illustrates IR images of the damaged area,whereas the lower part il-lustrates optical images.Also,IR images of the damaged area exhibit chemical changes resulting from the repair and are shown in figs.S8and S9.A series of controlled experiments were conducted on specimens prepared by varying molar ratios of OXE-CHI with respect to the PUR content (table S1).Optical images shown in Fig.3,A to D,illustrate the results of the experiments conducted under the same UV exposure conditions (0,15,and 30min)conducted on the specimens listed in table S1.These experiments illustrate that the presence of OXE-CHI precursor is the key factor respon-sible for remendability of the network (Figs.2and 3).Neither PUR nor CHI-PUR alone (table S1,specimens A and B)is able to repair the mechanical damage,whereas the presence of co-valently bonded OXE-CHI (table S1,specimens C and D)entities facilitates the self-healingprocess.Fig.1.Synthetic steps involved in the formation of OXE-CHI.1,Reactions of OXE with CHI,leading to the formation of OXE-CHI precursor;2,Reactions of OXE-CHI with HDI and PEG,leading to formations of remendable OXE-CHI-PURnetwork.Fig.2.IR (upper )and optical (lower )images of OXE-CHI-PUR networks recorded as a UV exposure time.A1,0min;A2,15min;A3,30min.(SOM provides details regarding spectroscopic changes detected by IR imaging.)SCIENCEVOL 32313MARCH 20091459REPORTSTable S1also shows the damage width as a function of UV exposure evaluations conducted on the specimens shown in Fig.3.The rate of repair for networks containing half the OXE-CHI pre-cursor concentration is also reduced.Although a cut is a local event at micrometer or smaller scales,the actual cleavage is a molecular-level event.To determine the mechanism of repair and to follow molecular events in the damaged area,we used localized micro-attenuated total reflectance (A TR)Fourier transform IR (FTIR)spectroscopy (22)and internal reflection IR imaging (IRIRI)(23).As shown in figs.S6and S7,the loss of urea and ether linkages of CHI (circled in Fig.1)containing OXE rings results from the UV light exposure of damaged surface areas responsible for repairing.In these experiments,the repair process uses UV lightto recombine free radicals to form crosslinks.In the 280to 400nm range,a fluorescent UV lamp gen-erates approximately 0.3W/m 2per nm power den-sity,whereas the Sun gives off about 0.25W/m 2per nm (24).Thus,the time frames for repair of the Sun exposure are very similar,although the ener-gy density changes as a function of the wavelength of radiation for both sources vary somewhat.As a result of stronger Sun radiation during the summer months in the southern United States,the repair process will be about 3to 4times as fast compared with the equivalent exposure in the northern United States,but for the winter months this difference will be negligible (25).Because crosslinking reactions are not moisture sensitive,dry or humid climate con-ditions will not affect the repair process.The above networks exhibit the ability to self-repair upon expo-sure to UV light,but if exactly the same previously repaired spot is damaged again,the ability for further repair may be limited by the thermosetting character-istics of these networks.We developed a new generation of thermoset-ting polymers that are of considerable technical and commercial importance.The use of the UV portion of the electromagnetic radiation for re-pairing mechanical damages in coatings offers an ambient temperature approach to self-healing —critical in a number of applications and tech-nologies that do not require the placement of other,often elaborate,network components —that is controlled by the chemistries and morphol-ogies of polymer networks.References and Notes1.J.Leon,E.Rojo,J.J.Sanchez-Serrano,J.Exp.Bot.52,1(2001).2.R.F.Diegelmann,M.C.Evans,Front.Biosci.9,283(2004).3.R.Paris,mattina,C.A.Casalongue,Plant Physiol.Biochem.45,80(2007).4.G.Henry,W.Li,W.Garner,D.T.Woodley,Lancet 361,574(2003).5.K.G.Mann,K.Brummel-Ziedins,T.Orefo,S.Butenas,Blood Cells Mol.Dis.36,108(2006).6.P.Sonntag et al .,Nat.Mater.3,311(2004).7.K.Nagaya,S.Ikai,M.Chiba,X.Chao,JSME Int.J.Ser.C 49,379(2006).8.S.R.White et al .,Nature 409,794(2001).9.E.N.Brown,M.R.Kessler,N.R.Sottos,S.R.White,J.Microencapsul.20,719(2003).10.E.N.Brown,S.R.White,N.R.Sottos,J.Mater.Sci.39,1703(2004).11.M.R.Kessler,N.R.Sottos,S.R.White,Composites Part A34,743(2003).12.J.W.C.Pang,I.P.Bond,Compos.Sci.Technol.65,1791(2005).13.J.W.C.Pang,I.P.Bond,Composites Part A 36,183(2005).14.S.R.Trask,H.R.Williams,I.P.Bond,Bioinspir.Biomim.2,P1(2007).15.X.Chen et al .,Science 295,1698(2002).16.R.Gheneim,C.Perez-Berumen,A.Gandini,Macromolecules 35,7246(2002).17.S.K.Toohey,N.R.Sottos,J.A.Lewis,J.S.Moore,S.R.White,Nat.Mater.6,581(2007).18.P.Cordier,F.Tournilhac,C.Soulie-Ziakovic,L.Leiber,Nat.Lett.451,977(2008).19.D.B.Otts,M.W.Urban,Polymer (Guildf.)46,2699(2005).20.Materials and methods and additional data are availableas supporting material on Science Online.21.Y.Wan,K.A.M.Creber,B.Peppley,V.T.Bui,J.Polym.Sci.Part B Polym.Phys 42,1379(2004).22.M.W.Urban,Attenuated Total Reflectance Spectroscopyof Polymers;Theory and Applications (American Chemical Society and Oxford University Press,Washington,DC,1996)23.D.Otts,P.Zhang,M.W.Urban,Langmuir 18,6473(2002).24.Average Optimum Direct Global Radiation,Miami,FL,USA;Atlas Material Testing Technology;.25.National Oceanographic and Atmospheric Administration,2008;/products/stratosphere/uv_index/gif_files/spectrum.gif ().26.These studies were primarily supported by the NationalScience Foundation MRSEC under DMR 0213883and the Materials Research Instrumentation (MRI)Program under DMR 0215873.We thank the Mississippi Division of Marine Resources for partial support.Supporting Online Material/cgi/content/full/323/5920/1458/DC1Materials and Methods SOM TextFigs.S1to S10Table S1References20October 2008;accepted 29January 200910.1126/science.1167391Fig.3.Optical images of mechanically damaged films:PUR (A1,A2,and A3are images after exposure for 0,15,and 30min to UV radiation;HDI/PEG/CHI =1:1.5:0);CHI-PUR (B1,B2,and B3are images after exposure for 0,15,and 30min to UV radiation;HDI/PEG/CHI =1:1.4:0.57×10−4);OXE-CHI-PUR (C1,C2,and C3are images after exposure for 0,15,and 30min to UV radiation;HDI/PEG/OXE-CHI =1:1.4:0.57×10−4);OXE-CHI-PUR (D1,D2,and D3are images after exposure for 0,15,and 30min to UV radiation;HDI/PEG/OXE-CHI =1:1.33:1.17×10−4).13MARCH 2009VOL 323SCIENCE1460REPORTS。

相关文档
最新文档