建筑力学知识点

合集下载

建筑力学基本知识.

建筑力学基本知识.

建筑力学基本知识第十一章静力学基础知识第一节力的概念及基本规律一、力的概念1、力的概念物体与物体之间的相互机械作用。

不能离开物体单独存在,是物体改变形状和运动状态的原因。

2、力的三要素大小(单位N kN)、方向、作用点。

力是矢量。

二、基本规律1、作用力与反作用力原理大小相等、方向相反、作用在同一直线上,分别作用在两个不同的物体上。

相同点:相等、共线;不同点:反向、作用对象不同。

2、二力平衡条件(必要与充分条件)作用在同一刚体(形状及尺寸不变的物体)上两个力,如果大小相等、方向相反、作用在同一直线上,必定平衡。

注意和作用力与反作用力的区别。

非刚体不一定成立。

3、力的平行四边形法则力可以依据平行四边形法则进行合成与分解,平行四边形法则是力系合成或简化的基础,也可以根据三角形法则进行合成与分解。

4、加减平衡力系公理作用在物体上的一组力称为力系。

如果某力与一力系等效,则此力称为力系的合力。

在同一刚体的力系中,加上或减去一个平衡力系,不改变原力系对该刚体的作用效果。

5、力的可传性原理作用在同一刚体上的力沿其作用线移动,不会改变该力对刚体的作用。

力的可传性只适用于同一刚体。

第二节平面汇交力系力系按作用线分布情况分平面力系和空间力系。

力系中各力的作用线都在同一平面内且汇交于一点,这样的力系称为平面汇交力系,是最简单的平面力系。

平面汇交力系的合力可以根据平行四边形法则或三角形法则在图上进行合成也可以进行解析求解。

一、力在坐标轴上的投影F x和F y分别称为力F在坐标轴X和Y上的投影,当投影指向与坐标轴方向相反时,投影为负。

注意:力在坐标轴上的投影F x和F y是代数量,力F的分力F x/和F y/是矢量,二者绝对值相同。

问题:如果F与某坐标轴平行,其在两坐标轴的分量分别是多少?如果两力在某轴的投影相等,能说这两个力相等吗?显然二、合力投影定理121121......nRx x x ix nx ixi nRy y y iy ny iyi F F F F F F F F F F F F ===++++==++++=∑∑ 或者于是,得到合力投影定理如下:力系的合力在任一轴上的投影F Rx 或F Ry ,等于力系中分力在同一轴上的投影的代数和。

建筑力学复习知识要点

建筑力学复习知识要点
平面一般力系的平衡方程及其应用一平衡方程的三种形式1基本形式若平面上有一点a满足x轴不于ab连线垂直则这个力系就不能简化为力偶此力系可能平衡也可能有一个通过a点的合力若平面上有另一点b且满足则这个力可能平衡也可能有一个通过ab两点的合力r
一、《建筑力学》的任务 设计出既经济合理又安全可靠的结构
二、《建筑力学》研究的对象 静力学:构件、结构——外力 材料:构件——内力 结力:平面构件(杆系结构)——外力
二、刚体和平衡的概念。 1、刚体:
2、平衡:
三、力系、等效力系、平衡力系。
1、力系: a、汇交力系 b、力偶系 c、平面力系。(一般)
2、等效力系: a、受力等效——力可 b、变形等效。
M2
P3
3、平衡力系:
M1
a、汇交力系: ΣX=0, ΣY=0
M3
3、单位:国际单位制 N、KN 。
传递性。
P1
P1
T
T
A
A
N
(a)
(b)
图 1-8
在( a)图中,对球体来看:球体虽在A处与墙体有接触,但球体没有运动趋势,所以没有 (运动)反力。在( b)图中,球体与墙在A点不仅有接触点,球体同时还有向左的运动趋势。 二、约束的几种基本类型和约束的性质。 1、柔体约束:方向:指向:背离被约束物体。(拉力) 方位:在约束轴线方位。表示:T。 2、光滑接触面:方向:指向:指向被约束物体。(压力)
( 4 )力系 p, p , p 组成两个基本单元,一是力 p ,一是 p 和 p 组成的力偶,其力偶矩为
M pd
因此,作用于A点的力P可用作用于O点的力 p 和力偶矩 M F d 来代替。
即: M 0( P )= M 0( P X )+ M0( P Y) 由此得:合力对力系作用平面内某一点的力矩等于各分力对同一点力矩的代数和。 讲例题

建筑力学基础知识ppt课件

建筑力学基础知识ppt课件

可编辑ppt
59
2.力矩
一个力作用在具有固定的物体上,若力的作用线不通过
固定轴时,物体就会产生转动效果。
如图所示,力F使扳手
绕螺母中心O转动的效应, 既与力F的大小有关,又与
F d
该力F的作用线到螺母中心
O的垂直距离d有关。可用两
.
者的乘积来量度力F对扳手 O
的转动效应。
M
转动中心O称为力矩中心,简称矩心。矩心到力
足分别为a′和b′,线段a′b′称为力F在
坐标轴y上的投影,用Y表示。 可编辑ppt
B F
A
a FXx b x
53
1. 力在坐标轴上的投影 X=±Fcosα Y=±Fsinα
F X2Y2
tan Y
X
y
B b’
YFy
F
A
a’
O a FXx b x
力与x轴的夹角为α, α为锐角
可编辑ppt
54
投影正、负号的规定: 当从力的始端的投影a到终端的投影b的方向与坐标
F
=
= B
F1
F F2
B
F1
A
A
A
可编辑ppt
18
力的平行四边形法则
作用在物体上同一点的两个力,可以合成为仍作用于该 点的一个合力,合力的大小和方向由以原来的两个力为邻 边所构成的平行四边形的对角线矢量来表示。
力的平行四边形法则
力的三角形法则
可编辑ppt
19
三力平衡汇交定理
一刚体受共面不平行的三力作用而平衡时,此三力的作
(c)
FA(RA)
(e)
可编辑ppt
34
可编辑ppt
35
可编辑ppt

建筑力学基础

建筑力学基础

1.1 力的性质与力在坐标轴上的投影1.1.1 力的概念1. 定义力是物体间的相互机械作用。

这种机械作用使物体的运动状态或形状尺寸发生改变。

力使物体的运动状态发生改变称为力的外效应;力使物体形状尺寸发生改变称为力的内效应。

2. 力的三要素及表示方法在工程实践中,物体间机械作用的形式是多种多样的,如重力、压力、摩擦力等。

力对物体的效应(外效应和内效应)取决于力的大小、方向和作用点,这三者被称为力的三要素。

力是一个既有大小又有方向的物理量,称为力矢量。

用一条有向线段表示,线段的长度(按一定比例尺)表示力的大小;线段的方位和箭头表示力的方向;线段的起始点(或终点)表示力的作用点,如图1-1-1所示。

力的国际单位为牛顿(N)。

图1-1-13.力系与等效力系若干个力组成的系统称为力系。

如果一个力系与另一个力系对物体的作用效应相同,则这两个力系互称为等效力系。

若一个力与一个力系等效,则称这个力为该力系的合力,而该力系中的各力称为这个力的分力。

已知分力求其合力的过程称为力的合成,已知合力求其分力的过程称为力的分解。

平面力系:平面力系——各力作用线都在同一平面内的力系。

空间力系——各力作用线不在同一平面内的力系。

汇交力系——作用线交于一点的力系。

平行力系——作用线相互平行的力系。

一般力系——作用线既不完全交于一点又不完全平行的力系。

4.平衡与平衡力系平衡是指物体相对于地球处于静止或匀速直线运动的状态。

若一力系使物体处于平衡状态,则该力系称为平衡力系。

1.1.2 刚体的概念所谓刚体,是指在外力作用下,大小和形状保持不变的物体。

这是一个理想化的力学模型,事实上是不存在的。

实际物体在力的作用下,都会产生程度不同的变形。

但微小变形对所研究物体的平衡问题不起主要作用,可以忽略不计,这样可以使问题的研究大为简化。

静力学中研究的物体均可视为刚体。

1.2 静力学公理公理1 二力平衡公理作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等,方向相反,且作用在同一条直线上。

建筑力学知识点总结

建筑力学知识点总结

建筑力学知识点总结一、静力平衡静力平衡是建筑力学中的基础知识点,它涉及到建筑结构各部分之间的受力关系。

在静力平衡中,我们需要掌握以下内容:1. 应力分析:建筑结构受到不同方向的力,需要进行应力分析,并确定各部分的受力情况。

2. 受力分析:对不同形状、结构的建筑进行受力分析,包括梁、柱、板、框架等。

3. 各种受力形式:拉力、压力、剪力、弯矩等受力形式的分析和计算。

4. 杆件受力:对杆件在受力时的受力情况进行分析,包括张力、挠度、位移等。

5. 平衡条件:在建筑结构中,各部分之间需要满足外力和内力平衡的条件,需要进行平衡分析。

二、结构稳定性结构稳定性是建筑力学中的重要知识点,它涉及到建筑结构在承受外部荷载时的稳定性情况。

在结构稳定性中,我们需要掌握以下内容:1. 稳定条件:建筑结构需要满足一定的稳定条件,包括受力平衡、几何稳定、材料稳定等。

2. 稳定性分析:对不同形式的建筑结构进行稳定性分析,包括平面结构、空间结构、倾斜结构等。

3. 屈曲分析:对建筑结构在受力时的屈曲情况进行分析和计算,包括临界载荷、屈曲形式等。

4. 建筑高度:建筑结构的高度对其稳定性有一定的影响,需要进行高度稳定性分析。

5. 结构材料:不同材料的建筑结构在受力时的稳定性情况有所不同,需要进行材料稳定性分析。

三、弹性力学弹性力学是建筑力学中的重要分支,它涉及到建筑结构在受力时的弹性变形情况。

在弹性力学中,我们需要掌握以下内容:1. 弹性模量:建筑结构在受力时的弹性模量情况对其受力性能有一定的影响,需要进行弹性模量分析和计算。

2. 应变分析:建筑结构在受力时会产生一定的应变,需要进行应变分析和求解。

3. 弹性极限:建筑结构在受力时会产生一定的弹性极限,需要进行弹性极限分析和计算。

4. 应力-应变关系:建筑结构在受力时的应力和应变之间存在一定的关系,需要进行应力-应变关系分析和求解。

5. 弹性能力:建筑结构的弹性能力对其受力性能有一定的影响,需要进行弹性能力分析和评定。

建筑力学总结

建筑力学总结

建筑力学总结一、建筑力学概述建筑力学是研究建筑结构在受到外部荷载作用下的变形、应力和破坏等问题的一门学科。

它是现代建筑工程设计和施工的基础,包括静力学、动力学和稳定性等方面。

二、静力学静力学是建筑力学的基础,主要研究建筑结构在静止状态下的平衡条件和受力情况。

其中,平衡条件包括平衡方程、支反力平衡、杆件内部受力平衡等;受力情况包括弯曲、剪切、轴向拉伸或压缩等。

在实际工程中,需要根据不同荷载情况进行结构分析和设计。

三、动力学动力学是建筑结构在受到外部荷载作用下的振动特性和响应规律。

其中,振动特性包括固有频率、振型等;响应规律包括自由振动和强迫振动等。

在实际工程中,需要考虑地震、风荷载等因素对结构的影响。

四、稳定性稳定性是指建筑结构在受到外部荷载作用下的承载能力和变形能力。

其中,承载能力包括抗弯承载力、抗剪承载力、抗压承载力等;变形能力包括刚度和变形限制等。

在实际工程中,需要考虑结构的稳定性和安全性。

五、常见结构类型常见的建筑结构类型包括框架结构、拱形结构、索结构和悬索结构等。

其中,框架结构是最常见的一种,由水平和垂直杆件组成;拱形结构则是一种受压弯曲的结构,具有较好的稳定性;索结构则是由钢缆组成的轻型建筑,适用于大跨度场馆等。

六、建筑材料建筑材料对于建筑力学来说至关重要。

常见的建筑材料包括混凝土、钢材、木材和砖块等。

不同材料具有不同的特性,在设计和施工中需要根据实际情况进行选择。

七、总体设计流程建筑力学在实际工程中需要遵循一定的设计流程,主要包括以下几个步骤:确定荷载;选择结构类型和材料;进行设计计算;进行模拟分析;进行结构优化和验算等。

八、实际应用建筑力学在实际工程中具有广泛的应用,包括房屋建筑、桥梁、隧道、大型场馆等。

在这些工程中,建筑力学的应用可以保证结构的稳定性和安全性,同时也能够提高工程质量和效率。

九、结语建筑力学是现代建筑工程设计和施工的基础,它涉及到静力学、动力学和稳定性等方面。

在实际工程中,需要根据不同荷载情况进行结构分析和设计,并考虑材料特性以及稳定性和安全性等因素。

建筑力学的知识点公式总结

建筑力学的知识点公式总结

建筑力学的知识点公式总结1. 受力分析在建筑力学中,受力分析是非常基础的知识点,它是分析结构在外力作用下的受力和变形情况。

受力分析的基本原理是平衡条件,即结构受力平衡,外力和内力之和为0。

常见的受力分析问题包括梁的受力分析、柱的受力分析、桁架的受力分析等。

2. 弹性力学弹性力学是研究材料在外力作用下的变形和应力、应变关系的学科。

在建筑力学中,弹性力学是非常重要的知识点,它涉及了材料的力学性质、变形规律和材料的弹性极限等。

弹性力学的基本公式包括胡克定律、杨氏模量、泊松比等。

3. 结构力学结构力学是研究结构在外力作用下的受力和变形情况的学科。

在建筑力学中,结构力学包括了梁的受力分析、柱的受力分析、框架结构的受力分析等。

结构力学的基本公式包括静力平衡方程、变形公式、内力计算公式等。

4. 桥梁力学桥梁力学是研究桥梁结构在外力作用下的受力和变形情况的学科。

在建筑力学中,桥梁力学是一个重要的分支学科,它涉及了桥梁的受力分析、变形分析、挠度计算等。

桥梁力学的基本公式包括桁架结构的受力分析公式、桁架结构的位移计算公式等。

5. 基础力学基础力学是研究基础在外力作用下的受力和变形情况的学科。

在建筑力学中,基础力学是非常重要的知识点,它涉及了基础的受力分析、变形分析、承载力计算等。

基础力学的基本公式包括基础的受力分析公式、基础的变形计算公式等。

综上所述,建筑力学是土木工程学科中的重要基础学科之一,它涉及了受力分析、弹性力学、结构力学、桥梁力学和基础力学等多个方面的知识。

掌握建筑力学的知识对于土木工程师来说是非常重要的,它可以帮助工程师更好地设计和施工结构,确保结构的安全性和稳定性。

建筑力学的知识点和公式虽然繁多,但只有通过实践和不断的学习,才能真正掌握其中的精髓。

建筑力学基础知识

建筑力学基础知识
销C 受力图。 【解】根据受力情况可以判断杆AC、BC均为二力杆。画出
AC、BC杆、销C受力图。如图1-20(b)、(c)、 (d) 所示。
图1-20
【例1-5】梁AD和DG用铰链D连接,用固定铰支座A,可动铰 支座C、G与大地相连,如图1-21(a)所示,试画出梁AD、DG
及整梁AG的受力图。
图1-21
力的平行四边形法则
力的三角形法则
三力平衡汇交定理
一刚体受共面不平行的三力作用而平衡时,此三力的作
用线必汇交于一点。
证明:
F1
A1 A A2
A3
F2
=
F1
A
F2
A3
F3
F3
作用与反作用定律
两个相互作用物体之间的作用力与反作用力大小相等, 方向相反,沿同一直线且分别作用在这两个物体上。
三、约束与约束反力
必将D处的约束反力画上,因为对整体而言它是内力。
物体的受力图举例
【1】重量为FW 的小球放置在光滑的斜面上,并 用绳子拉住,如图(a)所示。画出此球的受 力图。
【解】以小球为研究对象,解除小球的约束,画 出分离体,小球受重力(主动力)FW,并画出, 同时小球受到绳子的约束反力(拉力)FTA和斜 面的约束反力(支持力)FNB(图(b))。
【例1-1】
【例1-2】简支梁AB,跨中受到集中力的作用不计梁自重,如图118(a)所示,试画出梁的受力图。 【解】(1)取AB梁为研究对象,解除约束,画脱离体简图;
(2)画主动力F;
(3)画约束反力:如图1-18(b)所示。
(a)
ห้องสมุดไป่ตู้
(b)
图1-18
【例1-3】
【例1-4】如图1-20(a)所示,某支架由杆AC、BC通过销C 连结在一起,设杆、销的自重不计,试分别画出AC、BC杆、

建筑力学知识点归纳总结

建筑力学知识点归纳总结

建筑力学知识点归纳总结一、建筑力学概述建筑力学是研究建筑结构受力、变形和稳定的一门工程学科,主要包括静力学、材料力学、结构力学和工程力学等内容。

在建筑工程中,建筑力学是一个非常重要的学科,它对建筑结构的设计、施工和使用具有重要的指导意义。

二、静力学基础知识1.力,力是物体受到的外部作用而产生的相互作用,是矢量量。

2.力的作用点,力作用的位置称为力的作用点。

3.力的方向,力的方向是力的作用线,是力的矢量方向。

4.力的大小,力的大小又叫力的大小,是力的矢量大小。

5.平衡,如果物体受到的所有外力的合力为零,则物体处于平衡状态。

6.受力分析,受力分析是指对受力物体进行力的平衡分解和求解的过程。

7.力的合成,力的合成是指将几个力按照一定规律组合成一个力的过程。

8.力的分解,力的分解是指将一个力按照一定规律分解成几个分力的过程。

9.力的共线作用,共线力是指作用在一个平面上的几个力共线的情况,此时可以采用平行四边形法则计算合力。

三、材料力学基础知识1.材料的分类,建筑材料一般分为金属材料、非金属材料、复合材料等。

2.拉伸应力和应变,拉伸应力是指物体在拉伸力作用下单位横截面积所受的力,拉伸应变是指单位长度的伸长量。

3.拉压比强度,拉压比强度是指材料的拉伸强度和压缩强度的比值。

4.剪切应力和应变,剪切应力是指物体在剪切力作用下单位横截面积所受的力,剪切应变是指单位长度的变形量。

5.剪应力比强度,剪应力比强度是指材料的抗剪强度和抗拉强度的比值。

6.弹性模量,弹性模量是指材料在拉伸和压缩时产生的应力与应变之比。

7.材料的破坏模式,材料主要包括拉伸、压缩、剪切、扭转等几种破坏模式。

四、结构力学基础知识1.刚性和柔性,建筑结构在受力下表现出的抗变形能力称为刚性,某些结构在受力下产生较大变形,称为柔性。

2.受力构件,建筑结构中的受力构件主要包括梁、柱、墙、板等。

3.梁的受力状态,梁在受力状态下通常会受到弯矩、剪力和轴力的作用。

建筑力学知识点.doc

建筑力学知识点.doc

修建力学第一章序言1. 工程中习气把自动效果于修建物上的外力称为荷载。

例如自重,风压力,水压力,土压力等。

(首要评论会集荷载、均匀荷载)2. 在修建物中,接受并传递荷载而起骨架效果的部分称为结构。

3. 结构按几许特征分:一,杆件结构。

可分为:平面和空间结构。

它的轴线长度远大于横截面的宽度和高度。

二,板壳结构。

(薄壁结构)三,实体结构。

4. 修建力学要进行静力剖析即由效果于物体上的已知力求出不知道力。

5. 强度指结构和构件反抗损坏的才能,刚度指结构和构件反抗变形的才能。

安稳性指结构和构件坚持原有平衡状况的才能。

6. 修建力学的根本任务是研讨结构的强度,刚度,安稳性问题。

为此供给相关的核算方法和试验技能。

为构件挑选适宜的资料,合理的截面方式及尺度,以及研讨结构的组成规则和合理方式。

第二章刚体静力剖析根底1. 静力学正义。

一,二力平衡。

(只适应于刚体,对刚体体系、变形体不适应。

)二,加减平衡力系。

(只适应于刚体,对刚体体系、变形体不适应。

)三,三力平衡汇交。

2. 平面内力对点之矩。

一,合力矩定理3. 力偶。

性质:一,力偶对物体不发生移动效应,故力偶没有合力。

它既不能与一个力等效或平衡。

二,任一力偶可在其效果面内恣意移动。

4. 束缚:施加在非自在体上使其位移受到限制的条件。

一般所说的支座或支承为束缚。

一物体(如一刚性杆)在平面内确认其方位需求两个笔直方向的坐标和杆件的转角。

因而,对应的束缚力是相对的。

约束类型:1、一个位移的约束及约束力。

a)柔索约束。

b)理想光滑面约束。

C)活动(滚动)铰支座。

D)链杆约束。

2、两个位移的约束及约束力。

A) 光滑圆柱形铰链束缚。

B)固定铰支座束缚。

3、三个位移的束缚及束缚力。

A )固定端。

4、一个位移及一个转角的束缚及束缚力。

A)定向支座(将杆件用两根相邻的等长、平行链杆与地上相连接的支座)。

第五章弹性变形体静力剖析根底1.变性固体的根本假定。

接连性假定:固体资料的整个体积内毫无空地的充溢物体。

建筑力学笔记

建筑力学笔记

建筑力学笔记建筑力学是研究建筑结构的静力学和弹性力学性质的学科,它是建筑设计与施工中不可或缺的重要学科之一。

通过建筑力学的研究,可以掌握建筑物的力学性能,确保建筑物在各种外力作用下保持稳定和安全。

一、建筑力学的基本概念和原理建筑力学的基本概念和原理包括静力学和弹性力学两个方面。

1. 静力学静力学研究物体在平衡状态下受力的分布和作用力之间的关系。

建筑物主要受到重力和水平荷载的作用,静力学可以通过计算和分析建筑物的平衡条件,确定建筑结构的受力情况。

2. 弹性力学弹性力学是研究物体在外力作用下发生形变和变形的力学学科。

建筑物在受到外力作用时,会发生形变和变形,弹性力学可以通过计算和分析建筑物的应力、应变和变形,确定建筑结构的稳定性和安全性。

二、建筑力学的应用建筑力学在建筑设计和施工中有广泛的应用。

下面介绍几个典型的应用场景。

1. 结构设计结构设计是建筑力学的核心内容之一。

通过建筑力学的研究,可以确定建筑物的结构形式、使用材料和尺寸,确保建筑物能够承受设计荷载并保持稳定。

2. 施工计划建筑力学可以帮助制定合理的施工计划。

在建筑物施工过程中,需要考虑建筑结构的稳定性和安全性。

通过建筑力学的分析,可以确定施工过程中需要采取的支撑措施和施工顺序,减少施工期间的风险。

3. 结构检测与监测建筑物在使用过程中,会受到各种外力的作用,可能会出现裂缝、变形等问题。

建筑力学可以通过检测和监测建筑物的应力、应变和变形,及时发现问题并采取相应的维修和加固措施,保证建筑物的安全使用。

三、建筑力学的发展趋势随着建筑技术的不断进步和建筑物的不断发展,建筑力学也在不断发展和完善。

以下是建筑力学的一些发展趋势。

1. 建筑结构的轻量化随着材料科学的进步,新型材料的应用使建筑结构变得更加轻量化。

轻量化的建筑结构可以减小其自重,提高抗震能力,降低施工成本,因此建筑力学研究中也越来越注重轻量化结构的分析和优化。

2. 大数据和人工智能的应用大数据和人工智能技术的发展为建筑力学的研究提供了新的机会。

建筑力学基础知识

建筑力学基础知识

第1章建筑力学基础1.1力的性质、力在坐标轴上的投影1.1.1 力的定义力,是人们生产和生活中很熟悉的概念,是力学的基本概念。

人们对于力的认识,最初是与推、拉、举、掷时肌肉的紧张和疲劳的主观感觉相联系的。

后来在长期的生产和生活中,通过反复的观察、实验和分析,逐步认识到,无论在自然界或工程实际中,物体机械运动状态的改变或变形,都是物体间相互机械作用的结果。

例如,机床、汽车等在刹车后,速度很快减小,最后静止下来;吊车梁在跑车起吊重物时产生弯曲,等等。

这样,人们通过科学的抽象,得出了力的定义:力是物体间相互的机械作用,这种作用的结果是使物体的机械运动状态发生改变,或使物体变形。

物体间机械作用的形式是多种多样的,大体上可以分为两类:一类是通过物质的一种形式而起作用的,如重力、万有引力、电磁力等;另一类是由两个物体直接接触而发生的,如两物体间的压力、摩擦力等。

这些力的物理本质各不相同。

在力学中,我们不研究力的物理本质,而只研究力对物体的效应。

一个力对物体作用的效应,一般可以分为两个方面:一是使物体的机械运动状态发生改变,二是使物体的形状发生改变,前者叫做力的运动效应或外效应。

后者叫做力的变形效应或内效应。

就力对物体的外效应来说,又可以分为两种情况。

例如,人沿直线轨道推小车使小车产生移动,这是力的移动效应;人作用于绞车手柄上的力使鼓轮转动,这是力的转动效应。

而在一般情况下,一个力对物体作用时,既有移动效应,又有转动效应。

如打乒乓球时,如果球拍作用于乒乓球的力恰好通过球心,只有移动效应;如果此力不通过球心,则不仅有移动效应,还有绕球心的转动效应。

1.1.2 力的三要素实践证明,力对物体的作用效应取决于力的大小、方向和作用点。

这三者称为力的三要素。

即:1.力的大小力的大小表示物体间机械作用的强弱程度,它可通过力的运动效应或变形效应来度量,在静力学中常用测力器和弹性变形来测量。

为了度量力的大小,必须确定力的单位。

建筑力学复习知识要点

建筑力学复习知识要点

建筑力学复习知识要点建筑力学是研究建筑结构在外力作用下的力学性能,并进行力学分析和计算的科学。

在建筑工程中,建筑力学是一个重要的学科,掌握建筑力学的基本知识对于工程设计和结构安全至关重要。

本文将介绍建筑力学的复习知识要点,以帮助读者巩固相关知识。

一、静力学要点1.力的平衡:对于任何物体或者结构体系,力的合力和力的转矩都必须为零。

2.支反力的计算:通过平衡条件可以计算出结构的支反力,包括支座反力和内力。

3.杆件的静力学:静力学中常用的杆件包括简支梁、悬臂梁和悬链线等,可以通过力的平衡和几何关系计算出相关参数。

4.力的分解与合成:任何力都可以分解成平行于坐标轴方向的分力,也可以将多个力合成为一个力。

二、应力与应变要点1.应力:应力是物体内部单位面积上的力,可以分为正应力和剪应力,常用的应力计算公式包括拉伸应力、压缩应力和剪切应力等。

2.应变:应变是物体变形的程度,可以分为线性应变和剪切应变,常用的应变计算公式包括线性应变和剪切应变的定义公式。

3.杨氏模量:杨氏模量是材料线性弹性变形性能的度量,可以通过应力和应变之间的关系进行计算。

4.泊松比:泊松比是材料在拉伸或压缩时沿横向的收缩程度,可以用于计算体积变形。

三、梁的静力学要点1.弯矩与剪力:在受力作用下,梁产生弯曲和剪切,弯矩和剪力是梁内部的力,可以通过受力平衡和几何关系计算出来。

2.梁的挠度:梁在弯曲时会发生挠度,可以通过力的平衡和弹性力学方程计算出梁的挠度,常用的挠度计算方法包括梁的悬臂挠度和梁的弹性挠度。

3.梁的支座反力:在计算梁的支座反力时,需要考虑梁的几何形状、受力情况和边界条件等因素。

四、桁架的静力学要点1.桁架的分析方法:桁架是由杆件和节点组成的结构,可以采用静力平衡和杆件等效等方法进行分析,求解杆件的内力和节点的支反力。

2.桁架的稳定性:在分析桁架时,需要考虑桁架的稳定性问题,判断桁架是否会发生失稳和崩塌。

五、静力学平衡、应力与应变计算的综合问题1.静力学平衡、应力与应变计算的综合问题常涉及到多个力的平衡、杆件的静力学分析、应力和应变的计算等多个方面,需要综合运用不同的知识和方法进行求解。

建筑力学基础知识

建筑力学基础知识

• 力有以下两个作用: • 力矩也有两个作用:
(1) 改变物体的运动状 (1)改变物体的旋转
态;
状态;
(2) 使物体产生变形。 (2)使物体产生扭转 或弯曲变形。
平面力系的平衡条件
平面一般力系平衡的必要与充分条件是:力系的主矢 和力系对平面内任一点的主矩都等于零。即
R 0 MO 0
平面一般力系平衡的充分必要条件也可以表述为:力 系中所有各力在两个坐标轴上的投影的代数和都等于零, 而且力系中所有各力对任一点力矩的代数和也等于零。
合力与分力
若一个力与一个力系等效。则这个力 称为该力系的合力,而力系中的各个力称 为该合力的一个分力。
平面力系的分类 平面平行力系:
各力作用线平行的力系。
平面一般力系:
各力作用线既不汇交又不平行的平面力系。
➢ 静力学公理
公理一 二力平衡公理
作用于刚体上的两个力,如果大小相等、方向相 反、且沿同一作用线,则它们的合力为零,此时, 刚体处于静止或作匀速直线运动。
对扳手的转动效应。转动中
.
M
心O称为力矩中心,简称矩
心。矩心到力作用线的垂直
距离d,称为力臂。
显然,力F对物体绕O点转动的效应,由下列因素决定: (1)力F的大小与力臂的乘积。 (2)力F使物体绕O点的转动方向。
力矩公式: MO(F) = ± Fd
力矩符号规定:使物体绕矩心产生逆时针方向转动的力矩 为正,反之为负。
力对物体作用效应: 一是使物体的应。 二是使物体的形状发生改变,叫做力的变
形效应或内效应。
力的三要素: 力的大小 、力的方向 、力的作用点 。
力的图示法:
力具有大小和方向, 所以说力是矢量(vector )。 可以用一带箭头的直 线段将力的三要素 表示出来,

建筑力学复习知识点

建筑力学复习知识点

建筑力学复习知识点本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March建筑力学期末复习知识点一、理论力学部分1、力的概念、理论力学基本假定2、刚体和质点3、静力学公理(四个)4、力的合成多边形法则及三角形法则5、三力平衡定理6、力的分解及合力投影定理8、两个同向平行力的合成方法及结论9、将一个力分解成两个同向平行力的方法及结论10、两个不等的方向平行力的合成及结论11、力偶及力偶矩的概念,平面力偶系的合成及平衡条件12、平面力系的简化方法及结论,主矢及主矩的概念13、平面汇交力系的平衡方程及表达形式14、物体系统平衡问题的解法(分离体、外力及内力的概念)15、滑动摩擦定律及其应用(掌握课上所讲例题)16、自锁的概念17、空间一力在直角坐标系内的投影及分解方法18、空间力系合成的解析方法19、空间内一力对轴之矩的定义及计算20、空间内一力对点之矩的定义及计算21、力矩关系定理22、平行力系的中心与重心的概念,中心与重心的计算公式围绕以上知识点要求掌握课上所讲全部例题。

二、材料力学部分1、材料力学的基本假定2、变形的分类描述方法3、荷载分类方法4、应力的概念、截面法的概念5、杆件的基本变形形式6、轴力图的作法及虎克定律的应用、拉压符号规定7、对于轴向拉伸和压缩的杆件,有什么基本假定8、掌握拉压杆斜截面上的应力计算公式9、应力状态的概念10、拉压杆的强度条件表示方法及可解决的问题11、掌握材料的全应力应变曲线所描述的材料力学性质(比例极限、弹性极限、屈服极限、强度极限)12、拉压杆应变能的计算方法13、应力集中的概念及圣维南原理14、剪切实用计算的方法(只掌握铆钉连接计算即可)15、剪应力互等定理,纯剪单元体斜截面上的应力计算公式16、剪切虎克定律及应用17、扭矩的概念、关于扭矩的符号规定及扭矩图的做法18、等直圆杆扭转时的基本假定(平面假定,个节目之间距离不变)19、等直圆杆在扭转时横截面上任一点处切应力的计算公式、极惯性矩的概念20、等直圆杆在扭转时,扭转角的计算公式及刚度条件21、等直圆杆在扭转时应变能的计算方法23、对于梁的弯曲,掌握以下概念:纵向对称面、纵向对称轴、中性轴24、支座类型及梁的计算简图25、剪力与弯矩的概念及符号规定26、剪力图及弯矩图的做法27、荷载、剪力及弯矩三者之间的微分关系28、利用上述关系定性做剪力图及弯矩图的方法29、利用叠加法做剪力图及弯矩图的方法30、梁截面上的正应力计算公式及强度条件31、梁截面上的剪应力计算公式及强度条件32、梁的挠度及转角的概念挠度与弯矩之间的符号规定33、梁的挠曲线近似微分方程的应用34、梁的弯曲应变能的计算35、什么是静定问题与超静定问题,超静定次数34、平面应力状态与空间应力状态的概念及表示方法35、平面单元斜截面上正应力及剪应力计算公式及其分析36、主应力、主平面的概念,主应力计算公式37、主应力以应力圆表示的方法(摩尔圆)围绕以上知识点要求掌握课上所讲全部例题。

建筑力学的基本知识

建筑力学的基本知识

➢ 子情境二 结构计算简图
一、常见约束和支座
1、约束和约束反力
约束:限制非自由物体运动的物体称为约束物体, 简称约束。
约束反力:由于约束限制了被约束物体的运动,在 被约束物体沿着约束所限制的方向有运动或者运动 趋势时,约束必然对被约束物体有力的作用,以阻 碍被约束物体的运动或运动趋势。这种力称为约束 反力,简称反力。
又不能相对转动。
2)支座的简化 根据实际构造和约束情况,参照上述介绍的支座内容 进行恰当的简化。
3)荷载的简化 将实际结构构件上所受到的各种荷载简化为作业在构 件纵轴上的线荷载、集中荷载或力偶。在简化时注意 力的大小、方向、作用点。
几种常见的约束及其反力
1)柔体约束 用柔软的皮带、绳索、
链条阻碍物体运动而构 成的约束叫柔体约束。 柔体约束只能受拉力, 不能受压力,所以约束 反力一定通过接触点, 沿着柔体中心线背离被 约束物体的方向,且恒 为拉力。
T
P
P
S1 S'1
S2 S'2
2)光滑接触面约束 当两物体在接触处的摩擦力很小而略去不
建筑结构的支座通常分为固定铰支座,活动铰支 座,和固定(端)支座三类。
1.固定铰支座
图1.18(a)是固定铰支座的示意图。构件与支座用光滑的圆柱 铰链联接,构件不能产生沿任何方向的移动,但可以绕销钉转 动,可见固定铰支座的约束反力与圆柱铰链约束相同,即约束 反力一定作用于接触点,通过销钉中心,方向未定。固定铰支 座的简图如图1.18(b)所示。约束反力如图1.18(c)所示,可以用 FRA和一未知方向角α表示,也可以用一个水平力FXA和垂直力FYA 表示。
计时,其中一个物体就是另一个物体的光滑 接触面约束。光滑接触面的约束反力过接触 点,沿着接触面的公法线指向被约束的物体, 只能是压力。

建筑力学基础知识

建筑力学基础知识

坐标轴y上的投影,用Y表示。
1 力在坐标轴上的投影 X=±Fcosα Y=±Fsinα
F X2Y2
tan Y
X
y
B b’
YFy
F
A
a’
O a FXx b x
力与x轴的夹角为α, α为锐角
投影正 负号的规定: 当从力的始端的投影a到终端的投影b的方向与坐
标图轴中的力正F的向投一影致X时、;Y该均投取影正取值正。值;反y 之取负值;
等于0;即力的作用线通过矩心;
合力矩定理 平面汇交力系的合力对平面内任一点之矩;等于该
力系中的各分力对同一点之矩的代数和;
M O ( F ) M O ( F 1 ) M O ( F 2 ) M O ( F n ) M O ( F )
例18
例19
物体实际发生相互作用时;其作用力是连续 分布作用在一定体积和面积上的,这种力称为分 布力,也叫分布荷载;
在受力分析时,当约束被人为地解除时,即人 为地撤去约束时,必须在接触点上用一个相应的约 束反力来代替。
在物体的受力分析中,通常把被研究的物体的 约束全部解除后单独画出,称为脱离体。把全部主 动力和约束反力用力的图示表示在分离体上,这样 得到的图形,称为受力图。
正确对物体进行受力分析并画出其受力图;是求解 力学问题的关键;
(2)在保持力偶矩的大小和转向不变的条件下,可 以任意改变力偶中力的大小和力偶臂的长短,而 不改变力偶对物体的转动效应。
力偶的合成 作用在同一平面内的一群力偶组成平面力偶系; 力偶对物体的作用效应只有转动效应;而转
B b’
YFy
F
A
a’
两种特殊情形:
O a FXx b x
⑴当力与坐标轴垂直时;力在该轴上的投影为零;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑力学知识点
第一章绪论
1、在建筑物中,承受并传递荷载而起骨架作用的部分称为结构。

2、建筑力学要进行静力分析即由作用于物体上的已知力求出未知力。

3、强度指结构和构件抵抗破坏的能力,刚度指结构和构件抵抗变形的能力。

稳定性指结构和构件保持原有平衡状态的能力。

4、建筑力学的基本任务是研究结构的强度,刚度,稳定性问题。

为此提供相关的计算方法和实验技术。

为构件选择合适的材料,合理的截面形式及尺寸,以及研究结构的组成规律和合理形式。

第二章静力学基本概念
1、力的概念:物体间相互作用。

2、力的三要素:大小、方向和作用点
3、力系:作用在物体上的一群力或一组力
4、平衡状态:物体相对于地球静止或匀速直线运动状态
5、平衡力系:若物体在某一力系作用下保持平衡状态
6、等效力系:作用在物体上的一个力系,如果可以用另一个力系来代替,而不改变力系对物体的作用效果
7、二力平衡公理:两个力大小相等,方向相反,作用在同一直线。

注意:二力体(二力构件):仅在两点受力作用且处于平衡的刚体。

二力杆可能是直杆,也可能是曲杆。

8、加减平衡力系公理:作用在刚体上的任意力系中,加上或去掉任何一个平衡力系,并不改变原力系对刚体的作用效果。

9、推论(力的可传性原理):作用于刚体上的力可沿其作用线移动到刚体内任意一点,而不会改变该力对刚体的作用。

10、力的平行四边形原则:作用在物体上的两个力若作用线交于一点,可以合成一个合力,合力也作用在该点上,其大小和方向由这两个力为邻边所构成的平行四边形的对角线确定。

注意:力的平行四边形是力系合成或简化的基础
11、作用与反作用定理:大小相等,方向相反,沿同一直线且分别作用在两个相互作用的物体上。

12、约束:对非自由体(被约束的物体)的某些位移起限制作用的物体,约束反力的方向必与该约束所能阻碍的位移方向相反。

13、自由体:可在空间自由运动不受任何限制的物体
14、约束类型:(1)柔性约束;(2)光滑接触面;(3)圆柱铰链约束;(4)链杆约束;(5)可动铰支座;(6)固定铰支座约束;(7)固定端。

15、荷载分类
(1)作用时间——恒载和活载
(2)作用范围——分布荷载和集中荷载
(3)作用位置——固定荷载和移动荷载
(4)作用性质——静力荷载和动力荷载
第三章平面力系
1、平面汇交力系的平衡方程:在坐标轴上的投影的代数和分别为0。

2、一般力系的平衡方程:主矢和主距都等于零。

3、力是矢量,投影、力矩和力偶距是代数量。

4、力矩:力的大小与力臂的乘积;单位N▪m。

推论:(1)力的大小或力臂为零,则力矩为零;
(2)力沿作用线移动时,力矩不变。

5、力矩的作用效果,能使物体移动,也能使物体转动。

6、力偶:大小相等,方向相反,不共线平行的二个力。

7、力偶作用效果,使物体发生转动。

8.、力偶的基本性质:(1)力偶没有合力,所以不能用一个力代替。

(2)力偶对其作用面内任一点之矩恒等于力偶矩,且与矩心位置无关;(3)在同一平面内的两个力偶,如果它们的力偶矩大小相等,转向相同,则这两个力偶等效,称为力偶的等效条件;(4)力偶在坐标轴上的投影和为零。

推论:(1)力偶可以在其作用面内任意移转,而不改变它对物体的作用;
(2)在保持力偶距大小不变的条件下,可改变力的大小和力偶臂的长短,,而不改变它对物体的转动效应。

9、平面力偶系合成的结果是一个合力偶。

10、力的平移定理:作用在刚体上的一个力F,可以平移到同一刚体上的任一点O,但须同时附加一个力偶,其力偶矩等于原力F对新作用点O的矩。

(一个力可等效于同平面的一个力和一个力偶)
11、平面一般力系向作用面内任一点简化的结果是一个力和力偶。

12、力的作用线既不汇交于一点,又不相互平行的力系称为空间一般
力系。

13、平面平行力系的简化结果是主矢和主距,平面平行力系可看成一般力系的特殊情况。

第四章材料力学
1、杆件变形的基本形式:轴向拉伸和轴向压缩、剪切、扭转和弯曲。

2、内力:这种相互作用力由于物体受到外力作用而引起的。

3、轴力:作用线与杆轴线相重合的内力
4、应力:内力在一点处的分布集度。

5、截面法三个步骤:截取、代替、平衡。

6、轴向拉伸时,杆件横截面上各点处产生的正应力,且大小相等。

7、胡克定律(虎克定律),两种表达形式。

E——弹性模量,表示材料抵抗弹性变形的能力
EA——杆件的抗拉(压)刚度
8、低碳钢的拉伸试验
(1)弹性阶段,a点对应的应力称为材料的弹性极限;(2)屈服阶段,屈服低限称为屈服极限;(3)强化阶段,最高点d对应的应力称为强度极限;(4)劲缩阶段
9、塑性指标(试件断裂后所遗留下来的塑性变形大小,常用来衡量材料的塑性指标)
(1)延伸率(2)截面收缩率
10、极限应力:任何一种构件材料都存在一个能承受力的固有极限。

注意:塑性材料,屈服极限表示;脆性材料,强度极限表示;
11、容许应力和安全系数
12、解决轴向拉(压)杆的强度计算的三类问题:强度校核、截面选择、确定容许荷载。

第五章梁的弯曲
1、纵向对称平面:梁的对称轴与梁轴线所组成的平面。

2、平面弯曲:作用在梁上的所有外力都位于纵向对称平面内,梁变形后,轴线将在纵向对称平面内弯曲,成为一条曲线。

这种梁的弯曲平面与外力作用面相重合的弯曲,称为平面弯曲。

3、梁的分类:悬臂梁、简支梁、外伸梁。

4、梁的内力:剪力和弯矩。

5、截面法求内力步骤:(1)计算支座反力;(2)截段梁;(3)研究对象受力图;(4)平衡方程。

6、剪力的正负号:使脱离体有顺时针方向转动趋势时规定为正;反之为负。

7、弯矩的正负号:使脱离体产生向下凸的变形时规定为正;反之向上为负;
8、强度条件引起的三类问题:(1)校核强度;(2)截面设计;(3)确定许可荷载;。

相关文档
最新文档