水中墩承台钢板桩围堰计算书

合集下载

钢板围堰计算书

钢板围堰计算书

目录1设计资料 (1)2钢板桩入土深度计算 (9)2.1内力计算 (9)2.2入土深度计算 (10)3钢板桩稳定性检算 (11)3.1管涌检算 (11)3.2基坑底部隆起验算 (12)跨宁启特大桥跨高水河连续梁主墩承台钢板桩围堰施工计算书1设计资料(1)钢板桩顶高程H1:8.5m ,汛期施工水位:8.0m 。

(2)河床标高H 0:1.63m ;基坑底标高H3:-7.958m ;开挖深度H :15.46m 。

(3)封底混凝土采用C30混凝土,封底厚度为1m 。

(3)坑内、外土的天然容重加权平均值1r 、2r 均为:18.8KN/m 3;内摩擦角加权平均值 20=ϕ;粘聚力C :33KPa22330 5.0218.80.49a c h K γ⨯===⨯。

(4)钢板桩采用国产拉森钢板桩,选用鞍IV 型(新)(见《施工计算手册》中国建筑工业出版社P290页)钢板桩参数 A=98.70cm 2,W=2043cm 3,[]δ=200Mpa ,桩长21m 。

水压:210 6.3763.7/w w p h kN m γ=⨯=⨯= 河床位置处:21263.72330.4917.5/w a p p c K kN m =-=-⨯=基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+⨯+=(5)围囹采用2I56工字钢,支撑采用Ф630螺旋钢管。

2计算资料水压:210 6.3763.7/w w p h kN m γ=⨯=⨯=22330 5.0218.80.49a c h K γ⨯===⨯ 河床位置处:21263.72330.4917.5/w a p p c K kN m =-=-⨯=基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+⨯+=在建立计算模型的时候,采用板单元,根据等刚度的原则将以上的钢板桩截面换算为等效的矩形板截面。

水中墩围堰计算和施工方案

水中墩围堰计算和施工方案

水中墩围堰施工方案一、工程概述京沪高速铁路xx桥段跨xx河为(48+80+80+48)米预应力混凝土连续箱梁。

其中x#、y#主墩位于xx河中。

主墩承台平面尺寸为10.4×18.2米,高度为4米,其上为6.6×12米,厚度1.5米的加台。

主墩桩基为15根Φ1.5米钻孔桩。

承台、墩身具体布置如下:x#、y#墩具体参数如下:二、钢板桩围堰布置x#、y#主墩拟采用钢板桩围堰进行承台、墩身的施工。

钢板桩采用拉森Ⅵ型,其长度为21米。

在考虑承台埋深、河床标高等因素基础上,本方案以x#墩为例,对钢板桩围堰的施工进行详细叙述。

钢板桩的具体布置如下图:三、钢板桩围堰施工方案(一)、插打钢板桩前的准备工作1、每个墩的钻孔桩完成后,移走钻机,清理钻孔平台,钻孔平台留作水下浇注封底砼的工作平台使用;2、对河床进行清理:在桩基施工完成后,对围堰范围内河床进行清理,避免在钢板桩插打位置遇到障碍物;3、钢板桩变形检查:因钢板桩在装卸、运输过程会出现撞伤、弯扭及锁口变形等现象,因此,钢板桩在插打前有必要对其进行变形检查。

对变形严重的钢板桩进行校正并做销口通过检查。

锁口检查方法:用一块长约2米的同类型、同规格的钢板桩作标准,采用卷扬机拉动标准钢板桩平车,从桩头至桩尾作锁口通过检查,对于检查通过的投入使用,不合格的再进行校正或淘汰不用。

钢板桩的其它检查:剔除钢板桩前期使用后表面因焊接钢板、钢筋留下的残渣瘤;4、振动锤检查:振动锤是打拔钢板桩的关键设备,在打拔前一定要进行专门检查,确保线路畅通,功能正常,振动锤的端电压要达到 380-420 V,而夹板牙齿不能有太多磨损;5、涂刷黄油混合物油膏:为了减少插打时锁口间的摩擦和减少钢板桩围堰的渗漏,在钢板桩锁口内涂抹黄油混合物油膏(重量配合比为沥青:黄油:滑石粉:锯末=4:6:10:1)。

(二)、钢板桩围堰的插打钢板桩插打利用50t吊车作为起吊设备,配合DZ90型振动锤的施工方法逐片插打。

某大桥钢板桩围堰受力计算说明书

某大桥钢板桩围堰受力计算说明书

某大桥钢板桩围堰受力计算说明书一、某工程7#、8#水中墩采用钢板桩围堰施工,围堰施工图详见另附图。

略二、已知资料:7#墩承台尺寸为9.1m×9.1m×2.0m,顶面高程为+2.072m,围堰尺寸为11.2m×11.2m,8#墩承台尺寸为9.1m×9.1m×2.0m, 顶面高程为+0.835m,围堰尺寸为11.2m×11.2m。

施工水位按+7. 35m考虑, 7#和8#墩河床标高测时为约+3.15m,则水深均为4.2m。

地质情况自上而下依次为淤泥质粉质粘土、粉土、粉细砂、粉质粘土等。

水文资料:秦淮河地段桥址设计行洪水位11.35m,河段现状流量为:1400m3,行洪流速为1.24~1.3m/s。

目前施工水位为7.35m。

根据河床地质和水文情况及施工要求,7#墩和8#墩均采用长15m、宽0.4m、厚15.5cm的拉森IV型钢板桩, W=2037cm3。

其内支撑7#墩和8#墩均设置三道(详见另附图略),所有围囹均采用2I45a和2I40a工字钢,水平撑及斜撑采用2I40a工字钢,节点采用焊接(施工中严格执行钢结构施工规范)。

三、受力计算:因7# 和8#围堰尺寸相同,而内支撑材料一样,受力情况相差很小,故可只分析验算其中受力最大的8#墩围堰受力情况。

1、荷载计算:河床底部地质为粉细砂、粉质粘土,较为密实,假定钢板桩底部嵌固于承台底封底砼或垫层砼顶标高以下0.5米处,取1米宽板桩计算其侧面荷载,计算至封底砼顶面标高以下0.5米处即-1.665 米处,封底砼厚度根据后计算为1.0米)。

-1.665米处水压力为:ρw h=8.515*10=85.15KN/m2,-1.665米处土压力为:ρw h=4.815*10=48.15KN/m2故-1.665米处总侧面荷载为:p=133.3KN/m2,2、迎水面侧额动水压力计算(流速按1.3m/s考虑,不考虑水流速沿水深方向的变化):每延米板桩壁上动水压力总值:P=10KHV2×B×D/2g=10×2.0×4.2×1.32×1.0×10/(2×9.81)=72.4KN(B按围堰侧面即迎水面1米长度计算)。

水中墩钢板桩围堰计算书

水中墩钢板桩围堰计算书

水中墩钢板桩围堰计算书一、 计算总说明1.计算水位取+2.5m。

2.钢板桩采用IV型拉森桩,长21m,重量75kg/m,截面模量W=2037cm3,允许应力为[σ]=180Mpa。

3.土质按图纸提供参数。

4.钢板桩中支撑不按等反力和等跨弯矩布置,依施工需要安排,即板桩按跨度不等的连续梁计算。

二、 入土深度验算本地质土层为两层较厚的亚粘土中夹了一层粉砂层,且粉砂层较薄,所以本围堰有较好的地质土层。

为安全起见,现按粉砂、细砂土质中不出现涌砂的情况来验算。

不出现涌砂情况时,如图所示基坑内抽水后水头差为h’,由此引起的水渗流,其最短流程为紧靠板桩的h1+h2,故在此流程中,水对土粒渗透的力,其方向应是垂直向上。

现近似地以此流程的渗流来检算坑底的涌砂问题,要求垂直向上的渗透力不超过土在水中的密度,故安全条件如公式所示:K s iρw=K s h’/(h1+h2)×ρw≤ρb式中:K s—安全系数;i—水力梯度;ρb—分别为水的密度及土在水中的密度,g/cm3ρw、ρb=(G-1)(1-n)其中G为土粒的比重;n为土的孔隙率以小数计。

土层按第④层土均质土层计算,入土深等数值见图1.地质剖面图,其中h’=11.7m、h1=10.7m、h2=7.3m、G=2.725g/cm3、安全系数取1.4:K s iρw=1.4×11.7/(7.3+10.7)=0.91ρb=(G-1)(1-n)=(2.725-1)(1-0.78/(1+0.78))=0.970.91<0.97满足要求。

三、 土压力计算按照静止土压力计算钢板桩后土压力:p0=K0rzK0—静止土压力系数,K0=1-sinθ’A点:p0a=r w×h=10×8.3=83kpaB点:p0a=K0(q+r’2h2)=0.778(83+9.4×5.3)=103 kpaC点:p0a= K0(q+r’2h2+r’3h3)=0.669(83+9.4×5.3+8.8×2.2)=102kpaD点:p0a=K0(q+r’2h2+r’3h3+r’4h4)=0.748(83+9.4×5.3+8.8×2.2+9.6×3.2)=137kp 四、 钢板桩计算钢板桩顶标高+4.5m,入土深度7.3m,设置四道支撑,各支撑的中心标高分别为+2.0m、-1.0m、-3.4m、-5.5m。

【精品】深水桩基水中墩钢板桩围堰计算书

【精品】深水桩基水中墩钢板桩围堰计算书

水中墩钢板桩围堰计算书一、计算原则及部分假定1、6#、7#墩分别进行计算,按分层非匀质土计算土压力。

2、各层土均按图纸提供的快剪强度指标和实际层厚采用郎金土压力理论计算土压力,对粘土计入粘聚力的影响,考虑到真粘聚力一般较小,计算取值约为图纸建议值的1/3~2/3。

3、土压采用水、土压力分算法,第7层和第9层土采用水土压力合算法,以上均不考虑渗流效应。

4、墙前被动土压力考虑到摩擦力予以提高,修正系数取 1.2~1.6(根据摩阻角φ值不同取值不同),粘聚力计算部分√Kp不予修正。

5、板桩及支撑强度采用等值梁法计算,按分层开挖支撑力不变法结合连续梁法计算强度和入土深度,6、入土深度最终取1.2倍计算值。

7、计算水位取+2.7m。

8、7#墩第8层与第9层土均为硬塑粘土,合并为9΄层计算。

二、计算参数的确定1、水、土压力参数:(参见图1)亚粘土,软塑,γ=19.1kN/m3,φ=14.3,c=10kPa4亚粘土(粉沙),软塑(松散),γ=19kN/m3,φ=18Ka=0.528,Kp=3.036亚粘土,软塑,γ=19.1kN/m3,φ=6.2,c=10kPa Ka=0.805,Kp=1.49179亚粘土,硬塑,γ=20.1kN/m3,φ=16.2,c=20kPa Ka=0.564,Kp=2.4825亚砂土,软塑,γ=18.7kN/m3,φ=27.2,c=5kPa Ka=0.373,Kp=4.294679-18.5m -4m -5m-9.7m-13m-2.3m-4.9m-9.4m-11.3m -18.5m6#墩7#墩最高通航水位+3m桩顶+3.5m最高水位+3m基底-9.1m承台顶-6.48m图1 水中墩钢板桩围堰地质剖面图亚粘土(粉沙),软塑(松散),γ=19kN/m3,φ=18Ka=0.528,Kp=3.03亚粘土,软塑,γ=19.1kN/m3,φ=6.2,c=10kPaKa=0.805,Kp=1.491亚粘土,硬塑,γ=20kN/m3,φ=15,c=20kPa Ka=0.589,Kp=2.377图2 水中墩钢板桩围堰实际压力线图513167主动土压力线 单位:kPa6#墩计算水位+2.7m238-18.5m13317491057-13m-9.7m271242297基底-9.1m -3.2m-0.8m+2.2mB A -5m6-4m 河床577C 674941857#墩计算水位+2.7m6100163122-18.5m基底-9.1m16190229'-9.5m-11.5m7451325077河床5-5.0m12-2.3m桩顶+3.5mD-5.6m+2.2mAB-0.8m-3.2mCD-5.6m2、钢板桩:选用德国拉森IV 型钢板桩,桩长22m ,重量75㎏/m ,截面模量W=2270cm 3,允许应力[σ]=180Mpa 。

某大桥钢板桩围堰施工方案及计算书

某大桥钢板桩围堰施工方案及计算书

XX河大桥2#、3#墩钢板桩围堰施工方案一、概述XX大桥位于XX市XX镇XX大队窑厂西侧,横跨XX,桥位处河宽约110m。

大桥下部结构主墩采用矩形空心墩,钻孔灌注桩基础,本桥桩基均为摩擦桩。

共有两个水中墩(2#、3#),计32根水中桩,每个墩分左、右幅两个承台。

2#、3#主墩承台顶面标高为-0.648m,承台底面标高为-3.1480m, 河面测时水位为 1.6m,承台尺寸均为16.5×6.7×2.5m,两承台净距7m。

XX大桥水中墩位处河底地质从上到下为亚砂土,该承台底面(基底)为亚砂土,此土质容易造成流砂,给施工带来困难。

本工程水中墩施工采用拉森Ⅳ型钢板桩止水围堰的方案。

施工时要求钢板桩围堰结构密实,不漏水或漏水很少。

钢板桩围堰顶标高3.0m,高于施工水位以上1.4m。

二、钢板桩施工步骤本工程采用单层矩形钢板桩围堰,其中心线平面尺寸18.4m×8.8m。

承台平面尺寸为16.5m×6.7m,桩长12.0m,净入土5.8m。

(一)钢板桩进场钢板桩进场时直接运到工地1、4#台附近,堆放在河岸,用25T 汽车吊和15t浮吊及60kW震动锤进行插打。

在打桩前根据设计桥墩位置,在平台上放出钢板桩围堰的位置线,经监理复核后才能进行打桩。

(二)钢板桩的整理钢板桩运到工地后,须进行检查、分类、编号及登记。

锁口检查:用一块长1.5m~2.0m符合类型、规格的钢板桩作标准,将所有同类型的钢板桩做锁口通过检查。

凡钢板桩有弯曲、破损、锁口不合的均应整修,按具体情况分别用冷弯、热敲、焊补、铆补、割除或接长。

单块桩两侧锁口在插打前均要涂以黄油或热的混合油膏,以减少插打时的摩阻力,并增加防渗性能。

(三)插打与合拢1、导梁安装:施打前必须先制作和安装导梁,可用若干钢板桩或型钢打入河床内,将内导梁焊挂在板桩上面,用以导向,水上平台经检查平面位置后可直接作为外导向。

导向应用较大规格的槽钢或其它型钢制作,必须具有一定竖向和侧向刚度,保证打桩时不变形,正确导向。

钢板桩围堰计算

钢板桩围堰计算

钢板桩围堰计算钢板桩围堰计算本承台位于水下,长31.3米,宽8.6米,高3.5米,采用钢板桩围堰施工。

围堰为矩形单壁钢板桩围堰,采用钢管桩作为定位桩,用型钢连接作为纵横向支撑。

钢板桩采用拉森Ⅲ型钢板桩,围堰为33.3m×10.6m的单承台围堰方案。

1、计算取值1)现有水位为+4.5m,计算时按照常水位以上一米取值,即水位取+5.5米;淤泥厚度为h2=2.0m,水深为6.0m,水头高度h1=5.5m。

h3为钢板桩入土深度。

2)淤泥力学参数根据含水量情况取值,内摩擦角θ=50,粘聚力c=0kpa,容重r2=16.5kN/m3.3)淤泥质亚粘土力学参数根据含水量及孔隙比情况取值,内摩擦角θ=20,粘聚力c=20kpa,容重r2=18.5kN/m3.4)围堰分五层支撑,标高分别为+0.25m、+1.05m、+1.85m、+2.65m、+3.45m。

开挖底标高为±。

5)钢板桩采用拉森Ⅲ型钢板桩,截面尺寸为宽0.462m,高1.36m,每米长钢板桩参数力学性能为壁厚0.04m,截面积0.123m2,重量14.5kg/m,截面模量为320cm3/m。

6)型钢采用A3钢材,允许应力[δ]=140Mpa;钢板桩允许应力[δ]=200Mpa。

7)设计流水速率V=2.61m/s。

水流冲击力p=0.8Aγv2/2gh,其中A为阻水面积,γ为水容重,取10KN/m3,v为水流速度,g为重力加速度,取9.8m/s,h为水深,单位为米。

p=29.47kN/m。

2、静水压力计算现有水位标高为+4.5m,型钢支撑中心标高分别为+4.25m、+3.45m、+2.65m、+1.85m、+1.05m,承台底标高为0.河水静水压力为10×5.5=55kN/m2,取一米进行计算,±0m处的总压力P=1.25(P净水+P动水)=1.25×(29.47+55)=105.59kN/m,安全系数为1.25.3、按简支连续梁计算内力和弯矩,受力形式及弯矩如下图所示:弯矩图示:15.4KNm。

钢板桩围堰计算书

钢板桩围堰计算书

钢板桩围堰计算书根据各部位标高及现场实际情况,现拟对主桥123#墩承台施工所用钢板桩围堰进行验算,围堰为矩形单壁钢板桩围堰,采用钢管桩做定位桩,用型钢连接作为导梁。

承台底标高——990.50 m 钢板桩围堰顶标高——1000.38 m根据公路施工手册桥涵,主要参数如下:坑深H=8.88 m,内摩擦角取φ=28°,支撑形式为(三),一道支撑,水文地质情况为第5种情况。

查板桩计算图5-44,曲线5-5计算如下:支撑形式(三)水文情况第5种h=aH 45°40°35°30°25°20°0.10.20.30.40.50.645°40°35°30°25°20°0.10.20.30.40.5¦ΒH45°40°35°30°25°20°12345¦ΒH曲线5-5⑴固定荷载h =αH =0.38×8.88=3.3744 m(最小入土深度)M=βH3=0.25×8.883= 175.06 KN.mR=ξH2=4.1×8.882=323.3 KN⑵活载(不考虑)⑶支撑间距S1=0.475H+0.16h=0.475×8.88+0.16×3.3744=4.76 mS2=0.525H-0.16h=0.525×8.88-0.16×3.3744=4.12 m⑷板桩选择钢板桩是3号钢,常用容许弯曲应力 [σ]为180 MPaW=M/[σ]= 175.06×1000/180×1.5=648.37 cm3选用德国拉森(Larssen)Ⅱa型钢板桩(W=849 cm3)⑸支撑系统横撑选择型钢,间隔采用l=1.8 m,则内导梁的弯距 M=Rl2/8=323.3×1.82/8=130.94 KN.mW=M/[σ]= 130.94×1000/145=903.03 cm3(型钢[σ]=145 MPa)查手册,型钢采用I36b(W=920.8 cm3)支撑反力为:R×l=23.3×1.8=581.94 KN⑹修正验算考虑静水压力、动水压力及防渗要求,对钢板桩入土深度需加深:最小入土深度h修正=h×1.5=3.3744×1.5=5.06 m⑺基坑坑底安全检算Ksiρw=Ksh1/(h1+h2)ρw≤ρb式中:Ks——安全系数,可取2.0;i——水力梯度;ρw——水的密度(g/cm3);h1——基坑内抽水后水头差;h1、h2——见图示,h1=h2+5.5;ρb——土在水中的密度(g/cm3),ρb=(G-1)(1-n),G为土粒的比重,取G=2.67,n为土的孔隙率,n=e/(1+e),孔隙比e取0.75;ρb=(G-1)(1-n)=(G-1)【1-e/(1+e)】=(2.67-1)【(1-0.75/(1+0.75)】=0.954 g/cm3Ksiρw=Ksh1/(h1+h2)ρw=2×8.88/(9.55+5.5)×1=1.31>ρb入土深度不够,不符合要求。

水中承台钢板桩围堰计算书

水中承台钢板桩围堰计算书

水中承台钢板桩围堰方案一、工程概况太中银铁路东自枢纽的站引出,经的、晋中、吕梁,跨黄河入省市,西进入自治区市,在包兰铁路黄羊湾站接轨至中卫;同时修建定边至的联络线。

正线长约752km,联络线长约192km。

永宁黄河特大桥为全线重点控制工程的两桥一隧之一。

永宁黄河桥中心里程LDK672+962.76,孔跨布置为(2-32m)+(4-24m)+(38-32m)单线简支T梁+(18-48m)单线简支箱梁+(13-96m)简支钢桁结合梁+(5-48m)单线简支箱梁+(4-32m)单线简支T梁,桥长3942.08m。

桥址位于平原中部,横跨黄河,河面宽约800米,最大水深5.7米,流速2.0米/秒,设计水位1111.68米,最高通航水位1111.55米,测时水位1110.09米;63#墩--70#墩处在河中,其中63#墩、67#墩--70#墩处在河中,64#墩--66#墩处在河中的冲积漫滩上,地层多为巨厚的粉、细砂层;承台尺寸均为14.6*14.6*6.5米, 底标高均为1099.06米,每个承台下设16根φ1.5米钻孔桩,基础混凝土均为C30,桥址地质柱状图如下:二、钢板桩围堰方案综述综合考虑河中水文特点与地质情况,从节约成本出发,承台基坑施工拟采用钢板桩围堰方案。

承台平面尺寸为14.6m×14.6m,钢围堰平面尺寸设计为16.8m×16.8m。

方案一:采用2根15米宽0.4m的ISP-Ⅳ钢板桩接长至30m,围堰完成一般冲刷与局部冲刷后,钢板桩埋入砂层6米,未满足钢板桩固结所需求的入土深度,围堰外侧设30根φ800×10mm、30m长钢管桩用于稳定钢板桩围堰,防止其倾覆。

方案二:主要考虑钢板桩较长无法全部打入砂层中时,采用2根12米钢板桩接长至24m,围堰完成一般冲刷与局部冲刷后,河床面至钢板桩围堰底,采用抛填袋装碎石埋没钢板桩围堰,抛填高度为6米,围堰外侧设30根φ800×10mm、30m长钢管桩用于稳定钢板桩围堰,防止其倾覆。

钢围堰计算书--新

钢围堰计算书--新

钢板桩围堰计算书一、 概况15#墩位于张家港河岸,施工期间水位较高。

为了确保施工安全,将采用钢板桩围堰方法施工承台。

如附图所示,由项目提供的资料知: 开挖基坑处土为粘性土,内摩擦角10度,粘聚力为43Mpa ,湿容重为19KN/m 3 。

原地面标高+1.70m ,承台顶标高-1.70m ,承台埋深+3.50m ,承台高+3.20m 。

二、计算荷载1、活载活载按履—50考虑,承台施工时只考虑一台履带吊作业,将车辆荷载换算为土柱高度。

ho=LBNQ γ N---车辆数,N=1Q---车辆总荷载,Q=50t=500KNL---车辆履带着地长度,L=4.5mB---车辆轮宽,B=2.5+0.7=3.2mγ---土容重,γ=19KN/ m则ho=2.35.4195001⨯⨯⨯=1.83m 因此每平方米土柱的荷载为:1.83×1.0×1.0×19=34KN2、固定荷载当υ=100时,由《土质学与土力学》P159页表7-3中查得朗金土压力系数m2=0.704,1/m2=1.420,m=0.839,1/m=1.192=34×0.704-2×0.839×43= -48.218KPac点:p a2=[q+γ(h+t)]m2-2cm=[34+19(6.9+4.8)] ×0704-2×43×0.839=108.28 KPa拉力区高度ho的确定,令p a=0解得ho=2c/γm –q/γ=3.6m求主动土压力合力E AE A=1/2 p a2 (6.9+4.8-3.6)=1/2×108.3×8.1=438.6KN/m求形心C1C1=(6.9+4.8-3.6)/3=2.7m求钢板桩前的被动土压力KEp K Ep =21×21(γt 21m +2c m1)t =41(19×4.8×1.420+2×1.192×43)×4.8 =278.4 KN/m求形心C2C 2=4.8/3=1.6m取1延米长钢板桩计算对C 点取距,求T T[(h-d)+t]+ KEp ×C 2= E A C 1 T=76.2 KN/m钢管桩支撑验算:按υ426mm 钢管桩支撑设计,A=41π(42.62-40.62)=130.69cm 2 I=641π(42.64-40.64)=28287.25 cm 4E=2.1*105Mpa按两端铰接的压杆计算,自由长度为L=12.88/2=6.44米。

围堰计算书

围堰计算书

一、工程概况承台平面尺寸26.9m×17.4m,承台顶高程+15.0m,高5m,基础采用12根Ф2.5m钻孔桩,桥位处地面标高约为+20.0m。

承台施工期间抽水水位约+23.5m,墩身施工期间最高水位+25.0m,最低水位约+16.0m。

围堰采用锁口钢管桩+钢板桩组合结构,围堰尺寸30.14m×19.82m,围堰顶高程+25.5m,底高程-2.0m,总高27.5m。

钢管桩型号Ф820×12mm,钢板桩型号拉森IV,封底混凝土顶高程+10.0m,厚3.2m。

围堰设置两层内支撑,顶层内支撑高程+19.8m,圈梁采用2HN900×300型钢组拼而成,内支撑撑管采用Ф800×12mm圆钢管;底层内支撑高程+16.3m,内支撑撑管采用Ф800×12mm圆钢管,圈梁采用2HN900×300型钢组拼而成(其中除内底层支撑圈梁材质采用Q345B外,内支撑其余结构材质均采用Q235B)。

围堰布置形式如下图所示:图1-1围堰结构布置图围堰主要施工步骤如下:步骤一:拆除钻孔平台,安装拼装牛腿,拼装围堰顶、底层内支撑;步骤二:接高钢护筒,安装吊挂下放系统,低水位时清理河床至+17.0m,下放顶层内支撑至顶层内支撑到达设计位置;步骤三:以顶层内支撑为导向插打钢管桩;步骤四:围堰内二次水下清理河床至+16.0m,继续下放底层内支撑至设计位置并水下抄垫。

步骤五:围堰内吸泥至设计高程(+6.8m),浇筑封底混凝土;步骤六:围堰内抽水,割除钢护筒,凿除桩头,绑扎钢筋,施工承台;步骤七:承台与围堰侧板之间灌砂并在承台顶设置0.6m厚C30混凝土垫块,拆除围堰底层内支撑。

步骤八:绑扎钢筋、立模板,施工第一节墩身(4.3m)。

步骤九:在已施工墩身上安装临时撑管,拆除顶层内支撑中间撑管,完成内支撑转换。

继续绑扎钢筋、立模板,浇筑剩余墩身。

二、设计依据1)《钢结构设计标准》(GB50017-2017);2)《公路桥涵设计通用规范》(GB50010-2015);3)《公路桥涵地基与基础设计规范》(JTG D63-2007);4)《路桥施工计算手册》;5)《公路桥涵施工技术规范》(JTGT F50-2011);6)《焊接标准汇编1996》;7)《钢结构工程施工质量验收规范》(GB50205-2001)。

水中墩承台钢板桩围堰计算书

水中墩承台钢板桩围堰计算书

南昌市绕城高速公路南外环A2标水中墩承台钢板桩围堰(K16+609~K21+380)计算书中国建筑股份有限公司南昌市绕城高速公路南外环A2标项目经理部2014年10月水中墩承台钢板桩围堰计算书一、围堰布置及计算说明1、水中墩承台施工采用筑岛开挖钢板桩围堰支护方案,水位标高为+18.0m,岛面标高为+18.5m。

2、土层主要为淤泥和细砂,均为微透水层,采用水土合算。

3、地面荷载施工机具距离钢板桩边1.5-3.5m时,按20KN/m计算。

4、本钢板桩桩采用拉森Ⅳ型,取1m钢板桩宽度进行检算,截面模量为2200cm3,容许弯曲应力采用210MPa。

5、内支撑支锚刚度及材料抗力计算内支撑采用工50b型钢进行计算A=129cm2,i x=19.4cm,E=210000MPa支撑松弛系数取0.8λ=470/19.4=24.2,ϕ=0.957材料抗力T=0.957⨯0.0129⨯170⨯106⨯2=4197402N=4197KN支锚刚度K T=2⨯2⨯0.8⨯0.0129⨯210000/4.7=1844MN/m6、钢板桩围堰布置图如下:2、支护方案及基本信息2.1、连续墙支护2.5、土层信息 2.6、土层参数2.2、基本信息 2.3、 超载信息2.4、附加水平力信息 水平力 作用类型水平力值 作用深度 是否参与 是否参与 序号(kN) (m) 倾覆稳定 整体稳定内力计算方法 增量法规范与规程 《建筑基坑支护技术规程》 JGJ 120-99 基坑等级 二级 基坑侧壁重要性系数1.00 基坑深度H(m) 5.200 嵌固深度(m) 6.300 墙顶标高(m)0.000 连续墙类型 钢板桩 ├每延米板桩截面 面积A(cm2)236.00 ├每延米板桩壁惯 性矩I(cm4) 39600.00 └每延米板桩抗弯 模量W(cm3)400.00 有无冠梁 无 放坡级数 0 超载个数 1 支护结构上的水平集 中力层号 土类名称 层厚 (m) 重度3 (kN/m ) 浮重度3 (kN/m ) 粘聚力 (kPa) 内摩擦角 (度) 1 淤泥质土 5.50 16.9 6.9 9.00 6.20 2 细砂 5.00 19.0 9.0 --- --- 3砾砂10.0019.09.0 ------土层数 3坑内加固土否 内侧降水最终深度(m) 5.200 外侧水位深度(m)0.500 内侧水位是否随开挖过程变化 是 内侧水位距开挖面距离(m) 0.000 弹性计算方法按土层指定 ㄨ弹性法计算方法m 法超载 序号 类型 超载值 (kPa,kN/m) 作用深度 (m) 作用宽度 (m) 距坑边距 (m) 形式 长度(m) 1 20.000 --- --- --- ------2.7、支锚信息 支锚道数12.8、 土压力模型及系数调整弹性法土压力模型:经典法土压力模型:2.9、工况信息层 号与锚固体摩擦阻力 (kPa) 粘聚力水下 (kPa) 内摩擦角水下(度) 水土计算方 法m,c,K 值抗剪强度(kPa) 1 20.0 9.00 6.20 合算 m 法 1.05 --- 2 25.0 0.00 32.00 合算 m 法 17.28 --- 335.0 2.0028.00合算m 法13.08---层号 土类名称 水土 水压力 调整系数 主动土压力 调整系数 被动土压力 调整系数 被动土压力 最大值(kPa) 1 淤泥质土 合算 1.000 1.000 1.000 10000.000 2细砂 合算 1.000 1.000 1.000 10000.000 3砾砂 合算1.0001.0001.00010000.000支锚 道号 预加力 (kN) 支锚刚度 (MN/m) 锚固体 直径(mm) 工况 号 锚固力 调整系数 材料抗力 (kN) 材料抗力 调整系数 1 0.00 376.32---2~---856.531.00支锚 道号 支锚类型 水平间距 (m) 竖向间距 (m) 入射角 (°) 总长 (m) 锚固段 长度(m) 1内撑 1.0001.000 ---------三、设计结果3.1、结构计算各工况:工况 号 工况 类型 深度 (m) 支锚 道号 1 开挖 1.500 --- 2 加撑 --- 1.内撑 3开挖5.200---3.2、内力位移包络图:3.3、截面验算3.3.1、基坑抗弯检算(不考虑剪力)用弹性计算方法计算最大弯矩为129.39KN.mσ=MW =1292002200=58.73MP a≤210MP a可!3.3.2、内支撑计算内支撑处每米受力为80KN,内支撑在长边方向布置4.9米间距一道,单根支点受力约392KN内撑采用直径530mm,壁厚6mm的钢管。

钢板桩围堰计算书新

钢板桩围堰计算书新

钢板桩围堰计算书新徒骇河大桥钢板桩围堰计算书一、工程概况及围堰布置本钢板桩围堰用于济石高铁禹齐徒骇河大桥水中墩的施工,徒骇河水流平缓的,水深4米左右。

河床为粉质粘土,承台基本标高和河床标高基本一致,施工时开挖至承台下1 米,再进行1 米的混凝土封底。

钢板桩采用拉森Ⅳ型,钢板桩长15 米。

整个围堰采用三层围囹,围囹用八字型结构。

型钢全采用I40 工字钢。

按照从上至下抽水进行围囹的安装。

围囹结构图如下:二、基本参数1、根据图纸提供的地质资料,河床以下土层为2.4m的粉土层,2.2m左右的粉质黏土层,3.2m左右的粉土层,6.3m的粉土。

钢板桩入土到第四层的粉土层。

根据KP,主动土压力规范,估取内摩擦角为25。

,容重为18.5kN/m3,土层粘聚力C=15a系数:405.0)245(2a=-=︒φtgK,被动土压力系数:46.2)245(2p=+=︒φtgK。

二、钢板桩围堰受力验算1. 钢板桩计算:1)围堰结构:钢板桩桩顶设计标高为+17.60米,钢板桩长度为15.0米,钢围堰平面尺寸为17.6×17.6米。

围囹和支撑设置三道,自上而下进行安装。

第一道围囹和支撑安装位于+14.90米,第二道围囹和支撑安装位于+11.9米,第三道围囹和支撑安装位于8.9米,承台底标高+15.43米。

(详见钢围堰平面图)钢板桩入河床10米左右。

承台下进行1米的混凝土封底。

2)基本参数:动水压力计算:每延米板桩截面面积A(cm2) 236.00每延米板桩壁惯性矩I(cm4) 39600.00每延米板桩抗弯模量W(cm3) 2037.00p=K*H*V*Bγ/2g2 式中:p-每延米板壁上的动水压力总值,KN;H-水深,M;v-水流平均速度,m/s;g-重力加速度(9.8m/s);b-板桩宽度(取1米);γ-水的容重,kn/m;k-系数(1.8-2.0)。

p=1.9*4*0.5*1*11/2*9.82 =0.20.2KN 动水压力可假设为作用在水面下1/3水深处的集中力,由于动水压力很小在计算过程中忽略不计。

钢板桩围堰受力计算书

钢板桩围堰受力计算书

钢板桩围堰计算书一、工程概况渭河特大桥67#、68#、69#墩位于河道内,其承台施工适宜于采用钢板桩围堰。

承台尺寸为10.5*6.6*2.5m,拟采用拉森Ⅳ型锁口钢板桩施工,其截面特性为W=2037cm3,【f】=200MPa。

承台处平均水位3.0m,河床为0m。

插打钢板桩前,为减小主动土压力,降低板桩侧土体高度20cm。

67#、68#、69#承台处河床地质情况基本一致,上层为回填粉质粘土,厚度为3m,其次为中砂,厚度6.86m,最下层为细砂,厚度为6m。

粉质粘土容重取17.4 KN/m3,内摩擦角ψ取20°,粘结力c取15mpa,砂的平均容重γ取20KN/m3 ,细砂内摩擦角ψ取20°,粘结力c取0,中砂内摩擦角ψ取32°,粘结力c取0。

取68#墩承台钢围堰进行检算。

二、钢板桩受力分析钢板桩主要承受土压力(外侧为主动土压力,内侧为被动土压力),因水位较低且流速较小,忽略水压力影响,。

一) γ、ψ、c按15.86m范围内加权平均值计算:γ平均=19.5KN/m3ψ平均=(3*20+6.86*32+6*20)/15.86=25.2°C平均=3*15/15.86=2.84kPa主动土压力系数Ka=tan2(45°-25.2°/2)=0.403被动土压力系数Kp=tan2(45°+25.2°/2)=2.483二)确定支撑层数及间距按等弯矩布置确定各层支撑的间距,根据拉森Ⅳ型钢板桩能承受的最大弯矩确定板桩顶悬臂端的最大允许跨度h= 36×σ×W/γ/Ka)=295.4 cmh1=1.1h=295.4*1.1=3.25 mh2=0.88h=2.6 m根据具体情况,确定采用的布置如下图所示三)用盾恩近似法计算板桩的入土深度主动土压力系数Ka=tan2(45°-25.2°/2)=0.403被动土压力系数Kp=tan2(45°+25.2°/2)=2.483由计算简图知DE的斜率Kn=γ(Kp- Ka)=19.5×(2.483-0.403)=40.56e1=FG= KaγH=0.403×19.5×5.83=45.8KN/m2根据公式γ(Kp-Ka)x2 – KaγH x- KaγHL1=019.5*(2.483-0.403) x2-45.8 x-45.8×0.51=0x =1.51m所以板桩的总长度至少为 L=5.83+1.51=7.34m,取9m。

钢板桩围堰支护结构计算书

钢板桩围堰支护结构计算书

钢板桩围堰支护结构验算书设计:校对:审核:二O一七年一月目录目录 (2)一、概述 (1)1.1计算说明 (1)1.2施工流程 (1)1.3计算依据 (1)1.4计算参数及材料选择 (2)1.4.1计算参数 (2)1.4.2材料选择 (2)1.5计算方法 (2)二、钢板桩围堰支护计算分析 (5)2.1#81墩钢板桩支护验算 (5)2.1.1悬臂端允许最大跨度 (5)2.1.2钢板桩最小入土深度t (5)2.1.3基底抗隆起验算 (7)2.1.4钢板桩及内支撑结构验算 (7)2.2#54墩钢板桩支护验算 (9)2.2.1悬臂端允许最大跨度 (9)2.2.2钢板桩最小入土深度t (9)2.2.3基底抗隆起验算 (11)2.2.4抗管涌验算 (12)2.2.5 C30水下砼灌注厚度验算 (13)2.2.6钢板桩及内支撑结构验算 (13)2.3A匝道1号桥#7墩钢板桩支护验算......... 错误!未定义书签。

2.3.1悬臂端允许最大跨度 ......................... 错误!未定义书签。

2.3.2钢板桩最小入土深度t ....................... 错误!未定义书签。

2.3.3基底抗隆起验算 ................................. 错误!未定义书签。

2.3.4抗管涌验算 ......................................... 错误!未定义书签。

2.3.5 C30水下砼灌注厚度验算................... 错误!未定义书签。

2.3.6钢板桩及内支撑结构验算.................. 错误!未定义书签。

2.4底模板支撑计算 ....................................... 错误!未定义书签。

2.4.1工字钢强度验算 ................................. 错误!未定义书签。

桥梁水中基础钢板桩计算书

桥梁水中基础钢板桩计算书

某大桥钢板桩围堰计算书一、基本资料1、工程概况某大桥9~12#墩位于水中,13~15#墩位于岸边。

9~12#墩承台底在枯水位以下6.7~7.6m,13~15#墩承台底位于枯水期稳定水位以下3.8~6.3m,承台拟采用钢板桩围堰施工。

1.1墩位地质情况9~15#墩位地质主要为卵石层、强风化泥岩与砂岩互层层,墩位处地质各层标高如下表:1.2水文枯水期水位高程为853m,设计水位为855m ,水流流速1~2m/s,最大流速3m/s。

2、土体参数强风化泥岩22 20 103、材料特性型号规格截面面积单重惯性距截面抗弯矩宽高厚单根单根每米宽每米宽每米宽mm mm mm Cm2Kg/m Kg/m Cm4Cm3Sp-Ⅳ(L) 400 170 15.5 96.99 76.1 190 38600 22704、计算公式4.1静水压力公式q=γh4.2流水压力作用在钢板桩围堰的流水压力,根据公路桥涵设计通用规JTG D600-2004(4.3.8)公式计算:P=kAγv2/2gγ—水的容重,取值10KN/m3v—设计流速,取值3m/sA—阻水面积m2G—重力加速度,取值9.81 m/s2K—桥墩形状系数,钢板桩围堰为矩形K取值1.3桥墩形状系数4.3土压力根据朗金土压力公式:主动土压力:Pa=Kaγh-2c(Ka)1/2被动土压力:P p= Pa=Kpγh+2c(Kp)1/2h—计算土压力的点至地面的距离γ—基坑外侧土的的重度外K为基坑外加权平均摩擦角a外为基坑加权平均摩擦角Kp内c—基坑固块黏聚力内4.4围堰坑底涌砂隆起验算根据《建筑基坑支护技术规程》(JGJ120-2012)4.2.4条,支撑式支挡结构,其嵌固深度应满足坑底隆起稳定性要求,抗隆起稳定性可按下列公式计算:γm2DN Q+cN c/(γm1(h+D)+q0)≥K heϕN Q=tg2(45+ϕ/2)eπtanN c=( N Q-1)/tanϕK he—抗隆起安全系数;安全等级按一级考虑,取值1.8γm1—基坑外挡墙构件底面以上土的重度γm2—基坑挡土构件底面以上土的重度D—基坑底面至挡土构件底面的土层厚度H—基坑深度q—地面以上均布荷载c—挡土构件地面以下土的黏聚力—挡土构件地面以下土的摩擦角二、计算依据与计算方法1、计算方法采用容许应力法,钢板桩设计为固定支承和自由支承两种,桩体按照竖向连续梁法计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌市绕城高速公路南外环A2标水中墩承台钢板桩围堰(K16+609~K21+380)计算书中国建筑股份有限公司南昌市绕城高速公路南外环A2标项目经理部2014年10月水中墩承台钢板桩围堰计算书一、围堰布置及计算说明1、水中墩承台施工采用筑岛开挖钢板桩围堰支护方案,水位标高为+18.0m,岛面标高为+18.5m 。

2、土层主要为淤泥和细砂,均为微透水层,采用水土合算。

3、地面荷载施工机具距离钢板桩边1.5-3.5m 时,按20KN/m 计算。

4、本钢板桩桩采用拉森Ⅳ型, 取1m 钢板桩宽度进行检算,截面模量为2200cm 3,容许弯曲应力采用210MPa 。

5、内支撑支锚刚度及材料抗力计算 内支撑采用工50b 型钢进行计算2129,19.4,210000x A cm i cm E MPa ===支撑松弛系数取0.8470/19.424.20.957λϕ===,材料抗力60.9570.012917010241974024197T N KN =⨯⨯⨯⨯==支锚刚度220.80.0129210000/4.71844/T K MN m =⨯⨯⨯⨯= 6、钢板桩围堰布置图如下:二、支护方案及基本信息2.1、连续墙支护2.2、基本信息内力计算方法增量法规范与规程《建筑基坑支护技术规程》 JGJ 120-99基坑等级二级基坑侧壁重要性系数 1.00基坑深度H(m) 5.200嵌固深度(m) 6.300墙顶标高(m) 0.000连续墙类型钢板桩236.00├每延米板桩截面面积A(cm2)├每延米板桩壁惯39600.00性矩I(cm4)400.00└每延米板桩抗弯模量W(cm3)有无冠梁无放坡级数0超载个数 1支护结构上的水平集中力2.3、超载信息超载类型超载值作用深度作用宽度距坑边距形式长度序号(kPa,kN/m) (m) (m) (m) (m)1 20.000 --- --- --- --- ---2.4、附加水平力信息水平力作用类型水平力值作用深度是否参与是否参与序号(kN) (m) 倾覆稳定整体稳定2.5、土层信息土层数 3 坑内加固土否内侧降水最终深度(m) 5.200 外侧水位深度(m) 0.500 内侧水位是否随开挖过程变化是内侧水位距开挖面距离(m) 0.000 弹性计算方法按土层指定ㄨ弹性法计算方法m法2.6、土层参数层号土类名称层厚重度浮重度粘聚力内摩擦角(m) (kN/m3) (kN/m3) (kPa) (度)1 淤泥质土 5.50 16.9 6.9 9.00 6.202 细砂 5.00 19.0 9.0 --- ---3 砾砂10.00 19.0 9.0 --- ---层号与锚固体摩粘聚力内摩擦角水土计算方法m,c,K值抗剪强度擦阻力(kPa)水下(kPa)水下(度) (kPa)1 20.0 9.00 6.20 合算m法 1.05 ---2 25.0 0.00 32.00 合算m法17.28 ---3 35.0 2.00 28.00 合算m法13.08 ---2.7、支锚信息支锚道数 1支锚支锚类型水平间距竖向间距入射角总长锚固段道号(m) (m) (°) (m) 长度(m)1 内撑 1.000 1.000 --- --- ---支锚预加力支锚刚度锚固体工况锚固力材料抗力材料抗力道号(kN) (MN/m) 直径(mm) 号调整系数(kN) 调整系数1 0.00 376.32 --- 2~--- 856.53 1.002.8、土压力模型及系数调整弹性法土压力模型: 经典法土压力模型:层号土类名称水土水压力主动土压力被动土压力被动土压力调整系数调整系数调整系数最大值(kPa)1 淤泥质土合算 1.000 1.000 1.000 10000.0002 细砂合算 1.000 1.000 1.000 10000.0003 砾砂合算 1.000 1.000 1.000 10000.000 2.9、工况信息工况 工况 深度 支锚 号 类型 (m) 道号 1 开挖 1.500 --- 2 加撑 --- 1.内撑 3 开挖 5.200 ---三、设计结果3.1、结构计算各工况:3.2、内力位移包络图:3.3、截面验算3.3.1、基坑抗弯检算(不考虑剪力) 用弹性计算方法计算最大弯矩为129.39KN.ma 210a 73.582200129200MP MP W M ≤===σ 可!3.3.2、内支撑计算内支撑处每米受力为80KN ,内支撑在长边方向布置4.9米间距一道,单根支点受力约392KN内撑采用直径530mm ,壁厚6mm 的钢管。

298.77,18.52x A cm i cm ==392041.5098.70.957N MPa σ==⨯可!内支撑处每米受力为80KN ,内支撑在短边方向布置4.4米间距一道,单根受力约352KN内撑采用2工50b 。

34129,3880,97120A cm W cm I cm ===352028.511290.957N MPaσ==⨯280 4.4849.893880M MPa σ⨯==a4.7889.4951.28MP N M =+=+σσ 可!3.3.3、水平梁计算水平梁采用2工50b , 343880,97120W cm I cm ==20.180 4.9192.08.M KN m =⨯⨯= 可!192080503880MPa σ== 可!3.4、地表沉降图:3.5、整体稳定验算计算方法:瑞典条分法应力状态:总应力法条分法中的土条宽度: 0.40m滑裂面数据整体稳定安全系数 Ks= 2.489 圆弧半径(m) R = 11.792圆心坐标X(m) X = -1.391圆心坐标Y(m) Y = 5.356 3.5.1、抗倾覆稳定性验算抗倾覆安全系数:K s M p M aMp——被动土压力及支点力对桩底的抗倾覆弯矩, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。

Ma——主动土压力对桩底的倾覆弯矩。

注意:锚固力计算依据锚杆实际锚固长度计算。

工况1:注意:锚固力计算依据锚杆实际锚固长度计算。

序号支锚类型材料抗力(kN/m) 锚固力(kN/m)1 内撑 0.000 ---= K s+ 8022.218 0.000 1062.297Ks= 7.551 >= 1.200, 满足规范要求。

工况2:注意:锚固力计算依据锚杆实际锚固长度计算。

序号支锚类型材料抗力(kN/m) 锚固力(kN/m)1 内撑 856.530 ---= K s+8022.218 8993.5651062.297Ks= 16.017 >= 1.200, 满足规范要求。

工况3:注意:锚固力计算依据锚杆实际锚固长度计算。

序号支锚类型材料抗力(kN/m) 锚固力(kN/m)1 内撑 856.530 ---= K s+2543.467 8993.5652204.260Ks= 5.233 >= 1.200, 满足规范要求。

安全系数最小的工况号:工况3。

最小安全Ks= 5.233 >= 1.200, 满足规范要求。

3.5.2、抗隆起验算Prandtl(普朗德尔)公式(K s >= 1.1~1.2),注:安全系数取自《建筑基坑工程技术规范》YB 9258-97(冶金部):=K s +D N q cN c+()+H D q=N q ()tan()+45o22etan=N c ()-N q 11tan==N q ()tan()+4528.00022e3.142tan 28.00014.720=N c ()-14.7201=1tan 28.00025.803=K s +⨯⨯18.900 6.30014.720⨯2.00025.803+⨯17.996()+5.200 6.30020.000K s = 7.950 >= 1.1, 满足规范要求。

Terzaghi(太沙基)公式(K s >= 1.15~1.25),注:安全系数取自《建筑基坑工程技术规范》YB 9258-97(冶金部):=K s +D N q cN c+()+H D q=N q 12[]e()-342tancos()+45o22=N c ()-N q 11tan==N q 12[]e()-⨯343.14228.0002tan 28.000cos()+4528.0002217.808==N c ()-17.80811tan 28.00031.612=K S +⨯⨯18.900 6.30017.808⨯2.00031.612+⨯17.996()+5.200 6.30020.000K s = 9.621 >= 1.15, 满足规范要求。

3.5.3、隆起量的计算注意:按以下公式计算的隆起量,如果为负值,按0处理!++-=-875316()+∑n=i 1i h i q125()D H-0.56.37c-0.04()tan -0.54式中δ———基坑底面向上位移(mm);n ———从基坑顶面到基坑底面处的土层层数;ri ———第i 层土的重度(kN/m 3);地下水位以上取土的天然重度(kN/m 3);地下水位以下取土的饱和重度(kN/m 3); hi ———第i 层土的厚度(m);q ———基坑顶面的地面超载(kPa); D ———桩(墙)的嵌入长度(m); H ———基坑的开挖深度(m);c ———桩(墙)底面处土层的粘聚力(kPa); φ———桩(墙)底面处土层的内摩擦角(度);r ———桩(墙)顶面到底处各土层的加权平均重度(kN/m 3);++-=-8753⨯16()+87.920.0⨯125()6.35.2-0.5⨯⨯⨯6.3718.0 2.0-0.04()tan 28.00-0.54δ = 0(mm)3.5.4、 抗管涌验算抗管涌稳定安全系数(K >= 1.5):≤1.50h'w ()+h '2D'式中γ0———侧壁重要性系数;γ'———土的有效重度(kN/m 3); γw ———地下水重度(kN/m 3);h'———地下水位至基坑底的距离(m); D ———桩(墙)入土深度(m);K = 3.276 >= 1.5, 满足规范要求。

3.5.5、嵌固深度计算嵌固深度计算参数: 嵌固深度系数 1.200 抗渗嵌固系数 1.200嵌固深度计算过程:按《建筑基坑支护技术规程》 JGJ 120-99单支点结构计算支点力和嵌固深度设计值h d :1) 按e a1k = e p1k 确定出支护结构弯矩零点h c1 = 0.569 2) 支点力T c1可按下式计算:=T c1-h a1∑E ac h p1∑E pc+hT1hc1h T1 = 4.200mT c1 = 89.998 kN3) h d 按公式:h p ∑E pj + T c1(h T1+h d ) - βγ0h a ∑E ai >=0确定 β = 1.200 , γ0 = 1.000h p = 1.632m ,∑E pj = 727.863 kPa h a = 4.655m ,∑E ai = 356.366 kPa 得到h d = 4.869m ,h d 采用值为:6.300m渗透稳定条件验算:当前嵌固深度为:4.869m 。

相关文档
最新文档