第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

合集下载

微分方程的数值解法

微分方程的数值解法

微分方程的数值解法微分方程是自然科学和现代技术领域中一种最基本的数学描述工具,它可以描述物理世界中的各种现象。

微分方程的解析解往往很难求出,因此数值解法成为解决微分方程问题的主要手段之一。

本文将介绍几种常见的微分方程的数值解法。

一、欧拉法欧拉法是微分方程初值问题的最简单的数值方法之一,它是由欧拉提出的。

考虑一阶常微分方程:$y'=f(t,y),y(t_0)=y_0$其中,$f(t,y)$表示$y$对$t$的导数,则$y(t_{i+1})=y(t_i)+hf(t_i,y_i)$其中,$h$为步长,$t_i=t_0+ih$,$y_i$是$y(t_i)$的近似值。

欧拉法的精度较低,误差随着步长的增加而增大,因此不适用于求解精度要求较高的问题。

二、改进欧拉法改进欧拉法又称为Heun方法,它是由Heun提出的。

改进欧拉法是在欧拉法的基础上进行的改进,它在每个步长内提高求解精度。

改进欧拉法的步骤如下:1. 根据当前$t_i$和$y_i$估算$y_{i+1}$:$y^*=y_i+hf(t_i,y_i),t^*=t_i+h$2. 利用$y^*$和$t^*$估算$f(t^*,y^*)$:$f^*=f(t^*,y^*)$3. 利用$y_i$、$f(t_i,y_i)$和$f^*$估算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{2}(f(t_i,y_i)+f^*)$改进欧拉法具有比欧拉法更高的精度,但是相较于其他更高精度的数值方法,它的精度仍然较低。

三、龙格-库塔法龙格-库塔法是一种广泛使用的高精度数值方法,它不仅能够求解一阶和二阶常微分方程,还能够求解高阶常微分方程和偏微分方程。

其中,经典的四阶龙格-库塔法是最常用的数值方法之一。

四阶龙格-库塔法的步骤如下:1. 根据当前$t_i$和$y_i$估算$k_1$:$k_1=f(t_i,y_i)$2. 根据$k_1$和$y_i$估算$k_2$:$k_2=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_1)$3. 根据$k_2$和$y_i$估算$k_3$:$k_3=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_2)$4. 根据$k_3$和$y_i$估算$k_4$:$k_4=f(t_i+h,y_i+hk_3)$5. 根据$k_1$、$k_2$、$k_3$和$k_4$计算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{6}(k_1+2k_2+2k_3+k_4)$龙格-库塔法的精度较高,在求解一些对精度要求较高的问题时,龙格-库塔法是一个比较好的选择。

第八章常微分方程的数值解法

第八章常微分方程的数值解法

y( xn1 )
15
Euler法的收敛性
称初值问题(8.1.1)的数值解法是收敛的,如:
h0 ( n )
lim yn y ( x)
其中: x xn x0 nh , x [ x0 , b]
16
例考察以下初值问题Euler法的收敛性
dy y dx y (0)=y0 ( 0)

可得: h (k ) ( k 1) y y | f ( xn 1 , yn ) f ( x , y 1 n 1 n 1 ) | 2 hL ( k ) hL k 1 (1) ( k 1) (0) | yn 1 yn 1 | ( ) | yn 1 yn 1 | 2 2 hL k 1 ( k 1) 从而 : lim( ) 0 , 故有 lim yn 1 y n 1 。 k 2 k

由y0=y( x0 ), 假定yn=y( xn ), 往证:
y0 yn 1 y ( xn 1 ) xn 1; x0
14
证明
yn yn1 yn hf ( xn , yn ) yn h xn 1 1 yn (1 h ) y( xn )(1 h ) xn xn y0 y0 1 xn (1 h ) ( xn h) x0 xn x0 y0 xn 1 x0
8
局部截断误差
假设第n步在点xn的值计算没有误差,即yn y( xn ), 由单步法计算出yn1 , 则
Tn1 y( xn1 ) yn1 称为点xn1上的局部截断误差.
从初值y( x0 ) y0出发,由单步法显式或隐式 逐步计算,得xn 1的值yn 1 , 则
n1 y( xn1 ) yn1

常微分方程的数值解法

常微分方程的数值解法

常微分方程的数值解法1. 引言常微分方程是自变量只有一个的微分方程,广泛应用于自然科学、工程技术和社会科学等领域。

由于常微分方程的解析解不易得到或难以求得,数值解法成为解决常微分方程问题的重要手段之一。

本文将介绍几种常用的常微分方程的数值解法。

2. 欧拉方法欧拉方法是最简单的一种数值解法,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上假设解函数为线性函数,即通过给定的初始条件在每个子区间上构造切线;- 使用切线的斜率(即导数)逼近每个子区间上的解函数,并将其作为下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。

3. 改进的欧拉方法改进的欧拉方法是对欧拉方法的一种改进,主要思想是利用两个切线的斜率的平均值来逼近每个子区间上的解函数。

具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上构造两个切线,分别通过给定的初始条件和通过欧拉方法得到的下一个初始条件;- 取两个切线的斜率的平均值,将其作为该子区间上解函数的斜率,并计算下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。

4. 二阶龙格-库塔方法二阶龙格-库塔方法是一种更为精确的数值解法,其基本思想是通过近似计算解函数在每个子区间上的平均斜率。

具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上计算解函数的斜率,并以该斜率的平均值近似表示该子区间上解函数的斜率;- 利用该斜率近似值计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。

5. 龙格-库塔法(四阶)龙格-库塔法是目前常用的数值解法之一,其精度较高。

四阶龙格-库塔法是其中较为常用的一种,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上进行多次迭代计算,得到该子区间上解函数的近似值;- 利用近似值计算每个子区间上的斜率,并以其加权平均值逼近解函数的斜率;- 计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。

第八章常微分方程的数值解23页PPT文档

第八章常微分方程的数值解23页PPT文档
y(x0)y(xx 11 ) x y0 (x0)y(x1) hy(x0)
由 y ( x 0 ) f( x 0 ,y 0 ), y ( x 0 ) y 0
得 y (x 1 ) y 0 h(x f0 ,y 0 ) y 1
同理,在x= xn 处,用差商代替导数: y(xn)y(x x n n 1 1 ) x y n (xn)y(xn 1)h y(xn)
第八章 常微分方程的数值解
引言 简单的数值方法
欧拉方法 梯形方法
8.1 引言
在高等数学中我们见过以下常微分方程:
yf(x,y) axb (1)y(a)y0
yf(x,y,y) axb
(2) y(a)y0,y(a)
yf(x,y,y) axb (3) y(a)y0,y(b)yn
(1),(2)式称为初值问题,(3)式称为边值问题。
2.6
0.3351 0.3459 0.0108
2.8
0.3167 0.3246 0.0079
3.0
0.3000 0.3057 0.0057
由表中数据可以看到,微分方程初值问题的数值解和解
析解的误差一般在小数点后第二位或第三位小数上,这
说明Euler方法的精度是比较差的。
数值解和解析解的图示比较如下:
考虑一阶常微分方程初值问题
y f (x, y) (1)y(x0) y0
其中,y = y(x) 是未知函数,y(x0) = y0 是初值条 件,而f(x, y) 是给定的二元函数.
由常微分方程理论知,若f(x)在x[a,b]连续且 f 满足对 y 的Lipschitz条件:
f(x ,y 1 )f(x ,y2)L y 1y2
因 y n (k 1 1 ) y n 1 h f(x n 1 ,y n (k 1 )) f(x n 1 ,y n 1 )

常微分方程数值解

常微分方程数值解

常微分方程数值解常微分方程数值解是数学中的一门重要学科,主要研究如何求解常微分方程,在科学计算中有着重要的应用。

常微分方程模型是自然界中广泛存在的现象描述方法,有着广泛的应用领域。

比如,在物理学中,运动中的物体的位置、速度和加速度随时间的关系就可以通过微分方程描述;在经济学中,经济变化随时间的变化也可以用微分方程来描述。

而常微分方程数值解的求解方法则提供了一种快速、高效的计算手段。

一、常微分方程数值解的基本概念常微分方程就是一个描述自变量(通常是时间)与其导数之间关系的方程。

其一般形式如下:$\frac{dy}{dt} = f(y,t)$其中 $f(y,t)$ 是一个已知的函数。

常微分方程数值解就是对于一个常微分方程,对其进行数字计算求解的方法。

常微分方程数值解常使用数值积分的方法来求解。

由于常微分方程很少有解析解,因此数值解的求解方法显得尤为重要。

二、常微分方程数值解的求解方法常微分方程数值解的求解方法很多,以下介绍其中两种方法。

1.欧拉法欧拉法是最简单的一种数值算法,其思想是通过将一个微分方程转化为一个数值积分方程来求解。

其数值积分方程为:$y_{i+1}=y_i+hf(y_i,t_i)$其中 $h$ 为步长,可以理解为每次计算的间隔。

欧拉法的主要缺点是其精度比较低,收敛速度比较慢。

因此,当需要高精度的数值解时就需要使用其他的算法。

2.级数展开方法级数展开法是通过将一个待求解的微分方程进行Taylor级数展开来求解。

通过对Taylor级数展开的前若干项进行求和,可以得到微分方程与其解的近似解。

由于级数展开法的收敛速度很快,因此可以得到相对较高精度的数值解。

但是,当级数过多时,会出现截断误差。

因此,在实际应用中需要根据所需精度和计算资源的限制来选择适当的级数。

三、常微分方程数值解的应用常微分方程数值解在现代科学技术中有着广泛的应用。

以下介绍其中两个应用领域。

1.物理建模常微分方程的物理建模是常见的应用领域。

常微分方程的数值解法与实际应用研究

常微分方程的数值解法与实际应用研究

常微分方程的数值解法与实际应用研究引言:常微分方程是数学中一种重要的数学工具,广泛应用于物理、经济、生物等领域的实际问题的数学建模。

在解析求解常微分方程存在困难或不可行的情况下,数值解法提供了一种有效的求解方法,并被广泛应用于实际问题的研究中。

本文将介绍常微分方程的数值解法以及一些实际应用的研究案例。

一、常微分方程的数值解法:1. 欧拉法:欧拉法是一种基础的数值解法,通过将微分方程离散化,近似得到方程的数值解。

欧拉法的基本思想是根据微分方程的导数信息进行近似计算,通过逐步迭代来逼近真实解。

但是欧拉法存在截断误差较大、收敛性较慢等问题。

2. 改进的欧拉法(改进欧拉法推导过程略):为了解决欧拉法的问题,改进的欧拉法引入了更多的导数信息,改善了截断误差,并提高了算法的收敛速度。

改进欧拉法是一种相对简单而可靠的数值解法。

3. 四阶龙格-库塔法:四阶龙格-库塔法是常微分方程数值解法中最常用和最经典的一种方法。

通过多次迭代,四阶龙格-库塔法可以获得非常精确的数值解,具有较高的精度和稳定性。

二、常微分方程数值解法的实际应用研究:1. 建筑物的结构动力学分析:建筑物的结构动力学分析需要求解一些动力学常微分方程,例如考虑结构的振动和应力响应。

利用数值解法可以更好地模拟建筑物的振动情况,并对其结构进行安全性评估。

2. 生态系统模型分析:生态系统模型通常包含一系列描述物种数量和相互作用的微分方程。

数值解法可以提供对生态系统不同时间点上物种数量和相互作用的变化情况的模拟和预测。

这对于环境保护、物种保护以及生态系统可持续发展方面具有重要意义。

3. 电路模拟与分析:电路模拟与分析通常涉及电路中的电容、电感和电阻等元件,这些元件可以通过常微分方程进行建模。

数值解法可以提供电路中电压、电流等关键参数的模拟和分析,对电路设计和故障诊断具有重要帮助。

4. 化学反应动力学研究:化学反应动力学研究需要求解涉及反应速率、物质浓度等的微分方程。

常微分方程组数值解法

常微分方程组数值解法

常微分方程组数值解法一、引言常微分方程组是数学中的一个重要分支,它在物理、工程、生物等领域都有广泛应用。

对于一些复杂的常微分方程组,往往难以通过解析方法求解,这时候数值解法就显得尤为重要。

本文将介绍常微分方程组数值解法的相关内容。

二、数值解法的基本思想1.欧拉法欧拉法是最基础的数值解法之一,它的思想是将时间连续化,将微分方程转化为差分方程。

对于一个一阶常微分方程y'=f(x,y),其欧拉公式为:y_{n+1}=y_n+hf(x_n,y_n)其中h为步长,x_n和y_n为第n个时间点上x和y的取值。

2.改进欧拉法改进欧拉法是对欧拉法的改良,其公式如下:y_{n+1}=y_n+\frac{h}{2}[f(x_n,y_n)+f(x_{n+1},y_n+hf(x_n,y_n))] 3.四阶龙格-库塔方法四阶龙格-库塔方法是目前最常用的数值解法之一。

其公式如下:k_1=f(x_n,y_n)k_2=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_1)k_3=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_2)k_4=f(x_n+h,y_n+hk_3)y_{n+1}=y_n+\frac{h}{6}(k_1+2k_2+2k_3+k_4)其中,k_i为中间变量。

三、常微分方程组的数值解法1.欧拉法对于一个二阶常微分方程组:\begin{cases} y'_1=f_1(x,y_1,y_2) \\ y'_2=f_2(x,y_1,y_2)\end{cases}其欧拉公式为:\begin{cases} y_{n+1,1}=y_{n,1}+hf_1(x_n,y_{n,1},y_{n,2}) \\y_{n+1,2}=y_{n,2}+hf_2(x_n,y_{n,1},y_{n,2}) \end{cases}其中,x_n和y_{n,i}(i=1, 2)为第n个时间点上x和y_i的取值。

微分方程数值解法

微分方程数值解法

微分方程数值解法微分方程是数学中的重要概念,它描述了物理系统中变量之间的关系。

解微分方程是许多科学领域中常见的问题,其中又可以分为解析解和数值解两种方法。

本文将重点介绍微分方程的数值解法,并详细讨论其中的常用方法和应用。

一、微分方程的数值解法概述微分方程的解析解往往较为复杂,难以直接求解。

在实际问题中,我们通常利用计算机进行数值计算,以获得方程的数值解。

数值解法的基本思想是将微分方程转化为一组离散的数值问题,通过逼近连续函数来获得数值解。

二、常见的数值解法1. 欧拉法欧拉法是最基础的数值解法之一,其核心思想是将微分方程转化为差分方程,通过逼近连续函数来获得数值解。

欧拉法的基本形式为:yn+1 = yn + h·f(xn, yn)其中,yn表示第n个时间步的数值解,h为时间步长,f为微分方程右端的函数。

欧拉法的精度较低,但计算简单,适用于初步估计或简单系统的求解。

2. 改进的欧拉法(Heun法)改进的欧拉法(Heun法)是对欧拉法的改进,其关键在于求解下一个时间步的近似值时,利用了两个斜率的平均值。

Heun法的基本形式为:yn+1 = yn + (h/2)·(k1 + k2)k1 = f(xn, yn),k2 = f(xn+h, yn+h·k1)Heun法较欧拉法的精度更高,但计算量较大。

3. 龙格-库塔法(RK方法)龙格-库塔法是一类常用的数值解法,包含了多个不同阶数的方法。

其中,最常用的是经典四阶龙格-库塔法(RK4法),其基本形式为:k1 = f(xn, yn)k2 = f(xn + h/2, yn + (h/2)·k1)k3 = f(xn + h/2, yn + (h/2)·k2)k4 = f(xn + h, yn + h·k3)yn+1 = yn + (h/6)·(k1 + 2k2 + 2k3 + k4)RK4法实现较为复杂,但精度较高,适用于解决大多数常微分方程问题。

常微分方程的数值解法全文

常微分方程的数值解法全文

第8章常微分方程的数值解法8.4单步法的收敛性与稳定性8.4.1相容性与收敛性上面所介绍的方法都是用离散化的方法,将微分方程初值问题化为差分方程初值问题求解的.这些转化是否合理?即当h →∞时,差分方程是否能无限逼近微分方程,差分方程的解n y 是否能无限逼近微分方程初值问题的准确解()n y x ,这就是相容性与收敛性问题.用单步法(8.3.14)求解初值问题(8.1.1),即用差分方程初值问题100(,,)()n n n n y y h x y h y x y ϕ+=+⎧⎨=⎩(8.4.1)的解作为问题(8.1.1)的近似解,如果近似是合理的,则应有()()(,(),)0 (0)y x h y x x y x h h hϕ+--→→(8.4.2)其中()y x 为问题(8.1.1)的精确解.因为0()()lim ()(,)h y x h y x y x f x y h→+-'==故由(8.4.2)得lim (,,)(,)h x y h f x y ϕ→=如果增量函数(,(),)x y x h ϕ关于h 连续,则有(,,0)(,)x y f x y ϕ=(8.4.3)定义8.3如果单步法的增量函数(,,)x y h ϕ满足条件(8.4.3),则称单步法(8.3.14)与初值问题(8.1.1)相容.通常称(8.4.3)为单步法的相容条件.满足相容条件(8.4.3)是可以用单步法求解初值问题(8.1.1)的必要条件.容易验证欧拉法和改进欧拉法均满足相容性条件.一般地,如果单步法有p 阶精度(1p ≥),则其局部截断误差为[]1()()(,(),)()p y x h y x h x y x h O h ϕ++-+=上式两端同除以h ,得()()(,,)()p y x h y x x y h O h hϕ+--=令0h →,如果(,(),)x y x h ϕ连续,则有()(,,0)0y x x y ϕ'-=所以1p ≥的单步法均与问题(8.1.1)相容.由此即得各阶龙格-库塔法与初值问题(8.1.1)相容.定义8.4一种数值方法称为是收敛的,如果对于任意初值0y 及任意固定的(,]x a b ∈,都有lim () ()n h y y x x a nh →==+其中()y x 为初值问题(8.1.1)的精确解.如果我们取消局部化假定,使用某单步法公式,从0x 出发,一步一步地推算到1n x +处的近似值1n y +.若不计各步的舍入误差,而每一步都有局部截断误差,这些局部截断误差的积累就是整体截断误差.定义8.5称111()n n n e y x y +++=-为某数值方法的整体截断误差.其中()y x 为初值问题(8.1.1)的精确解,1n y +为不计舍入误差时用某数值方法从0x 开始,逐步得到的在1n x +处的近似值(不考虑舍入误差的情况下,局部截断误差的积累).定理8.1设单步法(8.3.14)具有p 阶精度,其增量函数(,,)x y h ϕ关于y 满足利普希茨条件,问题(8.1.1)的初值是精确的,即00()y x y =,则单步法的整体截断误差为111()()p n n n e y x y O h +++=-=证明由已知,(,,)x y h ϕ关于y 满足利普希茨条件,故存在0L >,使得对任意的12,y y 及[,]x a b ∈,00h h <≤,都有1212(,,)(,,)x y h x y h L y y ϕϕ-≤-记1()(,(),)n n n n y y x h x y x h ϕ+=+,因为单步法具有p 阶精度,故存在0M >,使得1111()p n n n R y x y Mh ++++=-≤从而有111111111()()()(,(),)(,,)()(,(),)(,,)n n n n n n n p n n n n n n p n n n n n n e y x y y x y y y Mh y x h x y x h y h x y h Mh y x y h x y x h x y h ϕϕϕϕ+++++++++=-≤-+-≤++--≤+-+-1(1)p nMh hL e +≤++反复递推得11111101110(1)(1)1(1)(1)(1)(1)1(1)p p n n n p n n p n e Mh hL Mh hL e hL hL Mh hL e hL Mh hL e hL+++-+++++⎡⎤≤++++⎣⎦⎡⎤≤+++++++⎣⎦+-≤++因为00()y x y =,即00e =,又(1)n h b a +≤-,于是ln(1)1()(1)(1)b a b a hL n L b a h h hL hL e e --++-+≤+=≤所以()11()p L b a p n M e h e O h L -+⎡⎤≤-=⎣⎦推论设单步法具有p (1p ≥)阶精度,增量函数(,,)x y h ϕ在区域G :, , 0a x b y h h ≤≤-∞<<+∞≤≤上连续,且关于y 满足利普希茨条件,则单步法是收敛的.当(,)f x y 在区域:,D a x b y ≤≤-∞<<+∞上连续,且关于y 满足利普希茨条件时,改进欧拉法,各阶龙格-库塔法的增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,因而它们都是收敛的.关于单步法收敛的一般结果是:定理8.2设增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,则单步法收敛的充分必要条件是相容性条件(8.4.3).8.4.2稳定性稳定性与收敛性是两个不同的概念,收敛性是在假定每一步计算都准确的前提下,讨论当步长0h →时,方法的整体截断误差是否趋于零的问题.而稳定性则是讨论舍入误差的积累能否对计算结果有严重影响的问题.定义8.6若一种数值方法在节点值n y 上有一个大小为δ的扰动,于以后各节点()m y m n >上产生的偏差均不超过δ,则称该方法是稳定的.我们以欧拉法为例进行讨论.假设由于舍入误差,实际得到的不是n y 而是n n n y y δ=+,其中n δ是误差.由此再计算一步,得到1(,)n n n n y y hf x y +=+把它与不考虑舍入误差的欧拉公式相减,并记111n n n y y δ+++=-,就有[]1(,)(,)1(,)n n n n n n y n nh f x y f x y hf x δδηδ+⎡⎤=+-=+⎣⎦其中y f f y∂=∂.如果满足条件1(,)1y n hf x η+≤,(8.4.4)则从n y 到1n y +的计算,误差是不增的,可以认为计算是稳定的.如果条件(8.4.4)不满足,则每步误差将增大.当0y f >时,显然条件(8.4.4)不可能满足,我们认为问题本身具有先天的不稳定性.当0y f <时,为了满足稳定性要求(8.4.4),有时h 要很小.一般的,稳定性与方法有关,也与步长h 的大小有关,当然也与方程中的(,)f x y 有关.为简单起见,通常只考虑数值方法用于求解模型方程的稳定性,模型方程为y y λ'=(8.4.5)其中λ为复数.一般的方程可以通过局部线性化转化为模型方程,例如在(,)x y 的邻域(,)(,)(,)()(,)()x y y f x y f x y f x y x x f x y y y '==+-+-+略去高阶项,再作变量替换就得到u u λ'=的形式.对于模型方程(8.4.5),若Re 0λ>,类似以上分析,可以认为方程是不稳定的.所以我们只考虑Re 0λ<的情形,这时不同的数值方法可能是数值稳定的或者是数值不稳定的.当一个单步法用于试验方程y y λ'=,从n y 计算一步得到1()n n y E h y λ+=(8.4.6)其中()E h λ依赖于所选的方法.因为通过点(,)n n x y 试验方程的解曲线(它满足,()n n y y y x y λ'==)为[]exp ()n n y y x x λ=-,而一个p 阶单步法的局部截断误差在()n n y x y =时有1111()()p n n n T y x y O h ++++=-=,所以有1exp()()()p n n y h E h y O h λλ+-=(8.4.7)这样可以看出()E h λ是h e λ的一个近似值.由(8.4.6)可以看到,若n y 计算中有误差ε,则计算1n y +时将产生误差()E h λε,所以有下面定义.定义8.7如果(8.4.6)式中,()1E h λ<,则称单步法(8.3.14)是绝对稳定的.在复平面上复变量h λ满足()1E h λ<的区域,称为方法(8.3.14)的绝对稳定区域,它与实轴的交称为绝对稳定区间.在上述定义中,规定严格不等式成立,是为了和线性多步法的绝对稳定性定义一致.事实上,()1E h λ=时也可以认为误差不增长.(1)欧拉法的稳定性欧拉法用于模型方程(8.4.5),得1(1)n n y h y λ+=+,所以有()1E h h λλ=+.所以绝对稳定条件是11h λ+<,它的绝对稳定区域是h λ复平面上以(1,0)-为中心的单位圆,见图8.3.而λ为实数时,绝对稳定区间是(2,0)-.Im()h λRe()h λ2-1-O 图8.3欧拉法的绝对稳定区域(2)梯形公式的稳定性对模型方程,梯形公式的具体表达式为11()2n n n n h y y y y λλ++=++,即11212n nh y y h λλ++=-,所以梯形公式的绝对稳定区域为12112h h λλ+<-.化简得Re()0h λ<,因此梯形公式的绝对稳定区域为h λ平面的左半平面,见图8.4.特别地,当λ为负实数时,对任意的0h >,梯形公式都是稳定的.Im()h λRe()h λO 图8.4梯形公式的绝对稳定区域(3)龙格-库塔法的稳定性与前面的讨论相仿,将龙格-库塔法用于模型方程(8.4.5),可得二、三、四阶龙格-库塔法的绝对稳定区域分别为211()12h h λλ++<23111()()126h h h λλλ+++<2341111()()()12624h h h h λλλλ++++<当λ为实数时,二、三、四阶显式龙格-库塔法的绝对稳定区域分别为20h λ-<<、2.510h λ-<<、 2.780h λ-<<.例8.5设有初值问题21010101(0)0xy y x x y ⎧'=-≤≤⎪+⎨⎪=⎩用四阶经典龙格-库塔公式求解时,从绝对稳定性考虑,对步长h 有何限制?解对于所给的微分方程有2100,(010)1f x x y xλ∂==-<≤≤∂+在区间[0,10]上,有201010max ||max51t x x λ<<==+由于四阶经典龙格-库塔公式的绝对稳定区间为 2.7850h λ-<<,则步长h 应满足00.557h <<.。

数值解常微分方程的方法和技巧

数值解常微分方程的方法和技巧

数值解常微分方程的方法和技巧在科学和工程领域,我们经常遇到一些复杂的常微分方程(Ordinary Differential Equations, ODEs),这些方程往往很难用解析方法得到精确解。

而数值解常微分方程的方法和技巧提供了一种有效的途径来近似求解这些方程。

本文将介绍一些常用的数值解ODEs的方法和技巧。

一、欧拉方法(Euler Method)欧拉方法是最简单的数值解ODEs的方法,它利用初始条件和微分方程的导数来计算下一个点的近似值。

具体来说,假设我们要求解的ODE为dy/dx = f(x, y),其中f(x, y)是已知函数,初始条件为x0 = x(0),y0 = y(0)。

欧拉方法的迭代公式为:y[i+1] = y[i] + h * f(x[i], y[i])其中,h是步长,x[i]表示第i个点的x坐标,y[i]表示对应的y坐标。

二、龙格-库塔方法(Runge-Kutta Method)龙格-库塔方法是一族常用的数值解ODEs方法,其基本思想是通过计算不同阶数的导数来提高求解的精度。

最常用的龙格-库塔方法是四阶龙格-库塔方法,也称为RK4方法。

它的迭代公式如下:k1 = h * f(x[i], y[i])k2 = h * f(x[i] + h/2, y[i] + k1/2)k3 = h * f(x[i] + h/2, y[i] + k2/2)k4 = h * f(x[i] + h, y[i] + k3)y[i+1] = y[i] + 1/6 * (k1 + 2*k2 + 2*k3 + k4)其中,k1、k2、k3、k4是中间变量,h是步长。

三、改进的欧拉方法(Improved Euler Method)改进的欧拉方法是对欧拉方法的改进,它通过使用导数的平均值来提高求解的精度。

其迭代公式为:k1 = h * f(x[i], y[i])k2 = h * f(x[i] + h, y[i] + k1)y[i+1] = y[i] + 1/2 * (k1 + k2)其中,k1、k2是中间变量,h是步长。

计算方法课件第八章常微分方程初值问题的数值解法

计算方法课件第八章常微分方程初值问题的数值解法

整体截断误差与局部截断误差的关系
定理:如果f(x,y)满足李普希兹(Lipschitz)条件
f(x ,y 1 )f(x ,y 2) L y 1y 2
且局部截断误差有界:
|R n|1 2h2M 2
(n1,2, )
则Euler法的整体截断误差n满足估计式:
ne(ba)L 0h 2L M 2(e(ba)L1)
分光滑。初值问题的解析解(理论解)用 y(x表n ) 示, 数值解法的精确解用 y表n 示。
常微分方程数值解法一般分为:
(1)一步法:在计算y n 1 时,只用到x n 1 ,x n和 y,n 即前一步的值。
(2)多步法:计算 y n 1 时,除用到 x n 1 ,x n 和 y n 以外,还要用 x n p 和 y n p (p1 ,2 k;k0) ,即前
其中L为李普希兹常数,b-a为求解区间长度,
M2 mayx(x) 。 axb
证明参见教材。
Remark:该定理表明,整体截断误差比局部截 断误差低一阶。对其它方法,也有类似的结论。
收敛性与稳定性
收敛性定义:如果某一数值方法对于任意固定的
xn=x0+nh,当h0(同时n )时有yn y(xn),
则称该方法收敛。 稳定性定义 定义 用一个数值方法,求解微分方程初值问 题时,对给定的步长h>0,若在计算 y n 时引入 误差 (n 也称扰动),但由此引起计算后面的 ynk(k1,2, )时的误差按绝对值均不增加,则 称这个数值方法是稳定的。
一般的显式rk方法可以写成型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多其中为常数选取这些常数的原则是要求第一式的右端在处泰勒展开后按h型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多上述公式叫做n级的rungekutta方法其局部截断误差为显然euler法是一级一阶rk方法

常微分方程数值解法

常微分方程数值解法

第八章 常微分方程的数值解法一.内容要点考虑一阶常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。

在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。

用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。

(一)常微分方程处置问题解得存在唯一性定理对于常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy如果:(1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。

(2) ),(y x f 对于y 满足利普希茨条件,即2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。

定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。

收敛性定理:若一步方法满足: (1)是p 解的.(2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件.(3) 初始值y 0是精确的。

则),()()(p h O x y kh y =-kh =x -x 0,也就是有0x y y lim k x x kh 0h 0=--=→)((一)、主要算法 1.局部截断误差局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~+k y 的误差y (x k+1)- 1~+k y 称为局部截断误差。

第八章 常微分方程初值问题的解法

第八章 常微分方程初值问题的解法

第八章常微分方程初值问题的解法在科学与工程问题中,常微分方程描述物理量的变化规律,应用非常广泛. 本章介绍最基本的常微分方程初值问题的解法,主要针对单个常微分方程,也讨论常微分方程组的有关技术.8.1引言本节介绍常微分方程、以及初值问题的基本概念,并对常微分方程初值问题的敏感性进行分析.8.1.1 问题分类与可解性很多科学与工程问题在数学上都用微分方程来描述,比如,天体运动的轨迹、机器人控制、化学反应过程的描述和控制、以及电路瞬态过程分析,等等. 这些问题中要求解随时间变化的物理量,即未知函数y(t),t表示时间,而微分方程描述了未知函数与它的一阶或高阶导数之间的关系. 由于未知函数是单变量函数,这种微分方程被称为常微分方程(ordinary differential equation, ODE),它具有如下的一般形式①:g(t,y,y′,⋯,y(k))=0 ,(8.1) 其中函数g: ℝk+2→ℝ. 类似地,如果待求的物理量为多元函数,则由它及其偏导函数构成的微分方程称为偏微分方程(partial differential equation, PDE). 偏微分方程的数值解法超出了本书的范围,但其基础是常微分方程的解法.在实际问题中,往往有多个物理量相互关联,它们构成的一组常微分方程决定了整个系统的变化规律. 我们先针对单个常微分方程的问题介绍一些基本概念和求解方法,然后在第8.5节讨论常微分方程组的有关问题.如公式(8.1),若常微分方程包含未知函数的最高阶导数为y(k),则称之为k阶常微分方程. 大多数情况下,可将常微分方程(8.1)写成如下的等价形式:y(k)=f(t,y,y′,⋯,y(k−1)) ,(8.2) 其中函数f: ℝk+1→ℝ. 这种等号左边为未知函数的最高阶导数y(k)的方程称为显式常微分方程,对应的形如(8.1)式的方程称为隐式常微分方程.通过简单的变量代换可将一般的k阶常微分方程转化为一阶常微分方程组. 例如对于方程(8.2),设u1(t)=y(t),u2(t)=y′(t),⋯,u k(t)=y(k−1), 则得到等价的一阶显式常微分方程组为:{u1′=u2u2′=u3⋯u k′=f(t,u1,u2,⋯,u k).(8.3)本书仅讨论显式常微分方程,并且不失一般性,只需考虑一阶常微分方程或方程组.例8.1 (一阶显式常微分方程):试用微积分知识求解如下一阶常微分方程:y′=y .[解] 采用分离变量法进行推导:①为了表达式简洁,在常微分方程中一般省略函数的自变量,即将y(t)简记为y,y′(t)简记为y′,等等.dy dt =y ⟹ dy y=dt , 对两边积分,得到原方程的解为:y (t )=c ∙e t ,其中c 为任意常数.从例8.1看出,仅根据常微分方程一般无法得到唯一的解. 要确定唯一解,还需在一些自变量点上给出未知函数的值,称为边界条件. 一种边界条件设置方法是给出t =t 0时未知函数的值:y (t 0)=y 0 .在合理的假定下,从t 0时刻对应的初始状态y 0开始,常微分方程决定了未知函数在t >t 0时的变化情况,也就是说这个边界条件可以确定常微分方程的唯一解(见定理8.1). 相应地,称y (t 0)=y 0为初始条件,而带初始条件的常微分方程问题:{y ′=f (t,y ),t ≥t 0y (t 0)=y 0 . (8.4)为初值问题(initial value problem, IVP ).定理8.1:若函数f (t,y )关于y 满足李普希兹(Lipschitz )条件,即存在常数L >0,使得对任意t ≥t 0,任意的y 与y ̂,有:|f (t,y )−f(t,y ̂)|≤L |y −y ̂| ,(8.5) 则常微分方程初值问题(8.4)存在唯一的解.一般情况下,定理8.1的条件总是满足的,因此常微分方程初值问题的解总是唯一存在的. 为了更清楚地理解这一点,考虑f (t,y )的偏导数ðf ðy 存在,则它在求解区域内可推出李普希兹条件(8.5),因为f (t,y )−f (t,y ̂)=ðf ðy (t,ξ)∙(y −y ̂) , 其中ξ为介于y 和y ̂之间的某个值. 设L 为|ðf ðy (t,ξ)|的上界,(8.5)式即得以满足.对公式(8.4)中的一阶常微分方程还可进一步分类. 若f (t,y )是关于y 的线性函数,f (t,y )=a (t )y +b (t ) ,(8.6) 其中a (t ),b (t )表示自变量为t 的两个一元函数,则对应的常微分方程为线性常微分方程,若b (t )≡0, 则为线性齐次常微分方程. 例8.1中的方程属于线性、齐次、常系数微分方程,这里的“常系数”是强调a (t )为常数函数.8.1.2 问题的敏感性对常微分方程初值问题,可分析它的敏感性,即考虑初值发生扰动对结果的影响. 注意这里的结果(解)是一个函数,而不是一个或多个值. 由于实际应用的需要,分析常微分方程初值问题的敏感性时主要关心t →∞时y (t )受影响的情况,并给出有关的定义. 此外,考虑到常微分方程的求解总与数值算法交织在一起、以及历史的原因,一般用“稳定”、“不稳定”等词汇说明问题的敏感性.定义8.1:对于常微分方程初值问题(8.4),考虑初值y 0的扰动使问题的解y (t )发生偏差的情形. 若t →∞时y (t )的偏差被控制在有界范围内,则称该初值问题是稳定的(stable ),否则该初值问题是不稳定的(unstable ). 特别地,若t →∞时y (t )的偏差收敛到零,则称该初值问题是渐进稳定的(asymptotically stable ).关于定义8.1,说明两点:● 渐进稳定是比稳定更强的结论,若一个问题是渐进稳定的,它必然是稳定的. ● 对于不稳定的常微分方程初值问题,初始数据的扰动将使t →∞时的结果误差无穷大. 因此为了保证数值求解的有效性,常微分方程初值问题具有稳定性是非常重要的.例8.2 (初值问题的稳定性): 考察如下“模型问题”的稳定性:{y ′=λy,t ≥t 0y (t 0)=y 0 . (8.7)[解] 易知此常微分方程的准确解为:y (t )=y 0e λ(t−t 0). 假设初值经过扰动后变为y 0+Δy 0,对应的扰动后解为y ̂(t )=(y 0+Δy 0)e λ(t−t 0),所以扰动带来的误差为Δy (t )=Δy 0e λ(t−t 0) .根据定义8.1,需考虑t →∞时Δy (t )的值,它取决于λ. 易知,若λ≤0,则原问题是稳定的,若λ>0,原问题不稳定. 而且当λ<0时,原问题渐进稳定.图8-1分三种情况显示了初值扰动对问题(8.7)的解的影响,从中可以看出不稳定、稳定、渐进稳定的不同含义.对例8.2中的模型问题,若考虑参数λ为一般的复数,则问题的稳定性取决于λ的实部,若Re(λ)≤0, 则问题是稳定的,否则不稳定. 例8.2的结论还可推广到线性、常系数常微分方程,即根据f (t,y )中y 的系数可确定初值问题的稳定性. 对于一般的线性常微分方程(8.6),由于方程中y 的系数为关于t 的函数,仅能分析t 取某个值时的局部稳定性.例8.3 (局部稳定性): 考察如下常微分方程初值问题的稳定性:{y ′=−10ty,t ≥0y (0)=1 . (8.8)[解] 此常微分方程为线性常微分方程,其中y 的系数为a (t )=−10t . 当t ≥0时,a (t )≤0,在定义域内每个时间点上该问题都是局部稳定的.事实上,方程(8.8)的解析为y (t )=e −5t 2,初值扰动Δy 0造成的结果误差为Δy (t )=Δy 0e −5t 2. 这说明初值问题(8.8)是稳定的.对于更一般的一阶常微分方程(8.4),由于其中f (t,y )可能是非线性函数,分析它的稳定性非常复杂. 一种方法是通过泰勒展开用一个线性常微分方程来近似它,再利用线性常微分方程稳定性分析的结论了解它的局部稳定性. 具体的说,在某个解函数y ∗(t)附近用一阶泰勒展开近似f (t,y ),f (t,y )≈f (t,y ∗)+ðf ðy(t,y ∗)∙(y −y ∗) 则原微分方程被局部近似为(用符号z 代替y ): 图8-1 (a) λ>0对应的不稳定问题, (b) λ=0对应的稳定问题, (c) λ<0对应的渐进稳定问题. (a) (b) (c)z′=ðfðy(t,y∗)∙(z−y∗)+f(t,y∗)这是关于未知函数z(t)的一阶线性常微分方程,可分析t取某个值时的局部稳定性. 因此,对于具体的y∗(t)和t的取值,常微分方程初值问题(8.4)的局部稳定性取决于ðfðy(t,y∗)的实部的正负号. 应注意的是,这样得到的关于稳定性的结论只是局部有效的.实际遇到的大多数常微分方程初值问题都是稳定的,因此在后面讨论数值解法时这常常是默认的条件.8.2简单的数值解法与有关概念大多数常微分方程都无法解析求解(尤其是常微分方程组),只能得到解的数值近似. 数值解与解析解有很大差别,它是解函数在离散点集上近似值的列表,因此求解常微分方程的数值方法也叫离散变量法. 本节先介绍最简单的常微分方程初值问题解法——欧拉法(Euler method),然后给出数值解法的稳定性和准确度的概念,最后介绍两种隐格式解法.8.2.1 欧拉法数值求解常微分方程初值问题,一般都是“步进式”的计算过程,即从t0开始依次算出离散自变量点上的函数近似值. 这些离散自变量点和对应的函数近似值记为:t0<t1<⋯<t n<t n+1<⋯y 0,y1,⋯y n,y n+1,⋯其中y0是根据初值条件已知的. 相邻自变量点的间距为 n=t n+1−t n, 称为步长.数值解法通常使用形如y n+1=G(y n+1,y n,y n−1,…,y n−k)(8.9) 的计算公式,其中G表示某个多元函数. 公式(8.9)是若干个相邻时间点上函数近似值满足的关系式,利用它以及较早时间点上函数近似值可算出y n+1. 若公式(8.9)中k=0,则对应的解法称为单步法(single-step method),其计算公式为:y n+1=G(y n+1,y n) .(8.10) 否则,称为多步法(multiple-step method). 另一方面,若函数G与y n+1无关,即:y n+1=G(y n,y n−1,…,y n−k),则称为显格式方法(explicit method),否则称为隐格式方法(implicit method). 显然,显格式方法的计算较简单,只需将已得到的函数近似值代入等号右边,则可算出y n+1.欧拉法是一种显格式单步法,对初值问题(8.4)其计算公式为:y n+1=y n+ n f(t n,y n) , n=0,1,2,⋯.(8.11) 它可根据数值微分的向前差分公式(第7.7节)导出. 由于y′=f(t,y),则y′(t n)=f(t n,y(t n))≈y(t n+1)−y(t n)n,得到近似公式y(t n+1)≈y(t n)+ n f(t n,y(t n)),将其中的函数值换为数值近似值,则得到欧拉法的递推计算公式(8.11). 还可以从数值积分的角度进行推导,由于y(t n+1)=y(t n)+∫y′(s)dst n+1t n =y(t n)+∫f(s,y(s))dst n+1t n,用左矩形公式近似计算其中的积分(矩形的高为s=t n时被积函数值),则有y(t n+1)≈y(t n)+ n f(t n,y(t n)) ,将其中的函数值换为数值近似值,便得到欧拉法的计算公式.例8.4 (欧拉法):用欧拉法求解初值问题{y ′=t −y +1y (0)=1. 求t =0.5时y (t )的值,计算中将步长分别固定为0.1和0.05.[解] 在本题中,f (t,y )=t −y +1, t 0=0, y 0=1, 则欧拉法计算公式为:y n+1=y n + (t n −y n +1) , n =0,1,2,⋯当步长h=0.1时,计算公式为y n+1=0.9y n +0.1t n +0.1; 当步长h=0.05时,计算公式为y n+1=0.95y n +0.05t n +0.05. 两种情况的计算结果列于表8-1中,同时也给出了准确解y (t )=t +e −t 的结果.表8-1 欧拉法计算例8.4的结果 h=0.1h=0.05 t ny n y (t n ) t n y n t n y n 0.11.000000 1.004837 0.05 1.000000 0.3 1.035092 0.21.010000 1.018731 0.1 1.002500 0.35 1.048337 0.31.029000 1.040818 0.15 1.007375 0.4 1.063420 0.41.056100 1.070320 0.2 1.014506 0.45 1.080249 0.5 1.090490 1.106531 0.25 1.023781 0.5 1.098737 从计算结果可以看出,步长取0.05时,计算的误差较小.在常微分方程初值问题的数值求解过程中,步长 n ,(n =0,1,2,⋯)的设置对计算的准确性和计算量都有影响. 一般地,步长越小计算结果越准确,但计算步数也越多(对于固定的计算区间右端点),因此总计算量就越大. 在实际的数值求解过程中,如何设置合适的步长达到准确度与效率的最佳平衡是很重要的一个问题.8.2.2数值解法的稳定性与准确度在使用数值方法求解初值问题时,还应考虑数值方法的稳定性. 实际的计算过程中都存在误差,若某一步的解函数近似值y n 存在误差,在后续递推计算过程中,它会如何传播呢?会不会恶性增长,以至于“淹没”准确解?通过数值方法的稳定性分析可以回答这些问题. 首先给出稳定性的定义.定义8.2:采用某个数值方法求解常微分方程初值问题(8.4),若在节点t n 上的函数近似值存在扰动δn ,由它引起的后续各节点上的误差δm (m >n )均不超过δn ,即|δm |≤|δn |,(m >n),则称该方法是稳定的.在大多数实际问题中,截断误差是常微分方程数值求解中的主要计算误差,因此我们忽略舍入误差. 此外,仅考虑稳定的常微分方程初值问题.考虑单步法的稳定性,需要分析扰动δn 对y n+1的影响,推导δn+1与δn 的关系式. 以欧拉法为例,先考虑模型问题(8.7),并且设Re(λ)≤0. 此时欧拉法的计算公式为②:y n+1=y n + λy n =(1+ λ)y n ,由y n 上的扰动δn 引起y n+1的误差为:δn+1=(1+ λ)δn ,要使δn+1的大小不超过δn ,则要求|1+ λ|≤1 . (8.12)② 对于稳定性分析以及后面的一些场合,由于只考虑一步的计算,将步长 n 记为 .。

计算方法第八章(常微分方程数值解).

计算方法第八章(常微分方程数值解).

欧拉 方法
hn xn1 xn 称为 xn 到 xn1 的步长(通常取为常数h) y ( xn 1 ) y ( xn ) y( x ) |x xn ,记yn为 y(xn)的近似计算值,有 h
yn1 yn hf ( xn , yn ) , y( x0 ) y0
第一节 一般概念 1.1 欧拉法及其简单改进
y( x) f ( x, y ( x)) a x b y (a) y0
方法:选择适当的节点,用差分近似微分,将方程离散化, 从而求在这些节点上的解的近似值。
a x0 x1 x2
xN 1 xN b
(0) yn 1 yn hf ( xn , yn )
( k 1) (k ) yn y f ( x , y ) h / 2 f ( x , y 1 n n n n 1 n 1 ) h / 2
收敛的条件:
Lh / 2 1
(2)牛顿迭代
( k 1) yn 1 (k ) (k ) y y f ( x , y ) h / 2 f ( x , y (k ) n 1 n n n n 1 n 1 ) h / 2 yn1 (k ) 1 f y ( xn1 , yn1 ) h / 2
我们可得精度更高的欧拉公式: 欧拉中点公式
yn1 yn1 2hf ( xn , yn ) , y( x0 ) y0
y ( xn h ) y ( x n h ) y ( ) 2 y ( xn ) h O (h 2 ) 2h 12
利用中点公式求解微分方程时,有一个问题, 就是计算时需要两个迭代初值!这样的算法 称为二步法。前面的欧拉法称为单步法。 对于这个问题,我们可以先用欧拉公式,通过 给定的初值计算出 的值,然后再利用这两个 值( y0 和 y1 )进行计算,直到计算出全部节 点上的值。 一般的单步法: yn1 ( xn , xn1, yn , yn1 ) 一般的 k 步法:

常微分方程数值解算法

常微分方程数值解算法

常微分方程数值解算法常微分方程是在物理、经济、生物、环境科学等领域中最基本的数学工具之一。

为了解决实际问题,需要求解这些方程的解。

但是,大部分常微分方程是无法求得解析解的,因此需要通过数值方法来求解。

在数值方法中,其基本思想是将微分方程化为一个逐步求解的问题。

通过离散化得到一个差分方程,然后通过数值方法求解这个差分方程。

本文将就常微分方程的数值解算法进行介绍和探讨。

1.欧拉方法欧拉方法是最基本的一种常微分方程数值解方法。

它的基本思想是将微分方程化为差分方程。

欧拉方法是一种一阶的显式方法。

通过计算当前点处的斜率即可进行逼近。

如下所示:y(t + h) = y(t) + hf(t, y(t))其中,h是步长。

f(t, y)是微分方程右边的函数。

欧拉方法的由来是其是以欧拉为名的。

这种方法的优点是简单明了,易于理解。

但是,其与真实解的误差随着步长增大而增大,误差不精,计算速度较慢等缺点也使其并非一个完美的数值解方法。

2.改进的欧拉方法改进的欧拉方法被认为是欧拉方法的一个进化版。

它是二阶数值方法,明显优于欧拉方法。

其基本思想是通过步长的平均值h/2来进行逼近。

y(t + h) = y(t) + h[ f(t, y(t)) + f(t + h, y(t) + hf(t, y(t))/2) ]其优点是能够更准确地逼近微分方程的解,只比欧拉方法多计算一些,但是其步长的误差随着步长增大而减小,并且计算速度比欧拉方法稍快。

因此,改进的欧拉方法是比欧拉方法更好的方法,效果相对较好。

3.龙格库塔方法龙格库塔方法是一种经典的数值解方法。

对于非刚性的方程可以得到较为精确的数值解。

其算法思路是利用多阶段迭代的方式,求解一些重要的插值点,并利用插值点的结果来逼近方程的解。

其公式如下:y(t + h) = y(t) + (h/6)*(k1 + 2k2 + 2k3 + k4)其中,k1 = f(t, y(t))k2 = f(t + h/2, y(t) + h/2k1)k3 = f(t + h/2, y(t) + h/2k2)k4 = f(t + h, y(t) + hk3)其优点是更精确,计算速度更快。

常微分方程数值解法

常微分方程数值解法

常微分方程数值解法常微分方程是研究函数的导数与自变量之间的关系的数学分支,广泛应用于物理、工程、生物等领域的建模与分析。

在实际问题中,我们常常遇到无法通过解析方法求得精确解的常微分方程,因此需要利用数值解法进行求解。

本文将介绍几种常用的常微分方程数值解法。

一、欧拉方法(Euler's Method)欧拉方法是最基本的数值解法之一。

它的思想是将微分方程转化为差分方程,通过逐步逼近解的方式求得数值解。

具体步骤如下:1. 将微分方程转化为差分方程:根据微分方程的定义,可以得到差分方程形式。

2. 选择步长:将自变量范围进行离散化,确定步长h。

3. 迭代计算:根据差分方程递推公式,利用前一步的数值解计算后一步的数值解。

二、改进的欧拉方法(Improved Euler's Method)改进的欧拉方法通过使用欧拉方法中的斜率来进行更准确的数值计算。

具体步骤如下:1. 计算欧拉方法的斜率:根据当前节点的数值解计算斜率。

2. 根据斜率计算改进的数值解:将得到的斜率代入欧拉方法的递推公式中,计算改进的数值解。

三、龙格-库塔方法(Runge-Kutta Method)龙格-库塔方法是一类常微分方程数值解法,其中最著名的是四阶龙格-库塔方法。

它通过计算各阶导数的加权平均值来逼近解,在精度和稳定性方面相对较高。

具体步骤如下:1. 计算每一步的斜率:根据当前节点的数值解计算每一步的斜率。

2. 计算权重:根据斜率计算各个权重。

3. 计算下一步的数值解:根据计算得到的权重,将其代入龙格-库塔方法的递推公式中,计算下一步的数值解。

四、多步法(多步差分法)多步法是需要利用多个前面节点的数值解来计算当前节点的数值解的数值方法。

常见的多步法有Adams-Bashforth法和Adams-Moulton法。

具体步骤如下:1. 选择初始值:根据差分方程的初始条件,确定初始值。

2. 迭代计算:根据递推公式,利用前面节点的数值解计算当前节点的数值解。

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

第8章 常微分方程数值解法本章主要内容:1.欧拉法、改进欧拉法. 2.龙格-库塔法。

3.单步法的收敛性与稳定性。

重点、难点一、微分方程的数值解法在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。

对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。

本章我们主要讨论常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(yx y y x f dx dy的数值解法。

数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。

二、欧拉法与改进欧拉法欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。

将常微分方程),(y x f y ='变为()*+=⎰++11))(,()()(n xn x n n dtt y t f x y x y1.欧拉法(欧拉折线法)欧拉法是求解常微分方程初值问题的一种最简单的数值解法。

欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:Nab h N n y x hf y y n n n n -=-=+=+)1,...,1,0(),(1 欧拉法局部截断误差11121)(2++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。

我们在计算时应注意欧拉法是一阶方法,计算误差较大。

欧拉法的几何意义:过点A 0(x 0,y 0),A 1(x 1,y 1),…,A n (x n ,y n ),斜率分别为f (x 0,y 0),f (x 1,y 1),…,f (x n ,y n )所连接的一条折线,所以欧拉法亦称为欧拉折线法。

常微分方程初值问题的数值解法

常微分方程初值问题的数值解法

常微分方程初值问题的数值解法在实际应用中,对于某些微分方程,我们并不能直接给出其解析解,需要通过数值方法来求得其近似解,以便更好地理解和掌握现象的本质。

常微分方程初值问题(IVP)即为一种最常见的微分方程求解问题,其求解方法有多种,本文将对常微分方程初值问题的数值解法进行较为详细的介绍。

一、欧拉法欧拉法是最基本的一种数值解法,它采用泰勒级数展开并截断低阶项,从而获得一个差分方程近似求解。

具体来讲,设 t 为独立变量,y(t) 为函数 y 关于 t 的函数,方程为:$$y'(t) = f(t, y(t)), \qquad y(t_0) = y_0$$其中 f(t,y(t)) 为已知的函数,y(t_0) 为已知的初值。

将函数 y(t) 进行泰勒级数展开:$$y(t+h) = y(t) + hf(t, y(t)) + O(h^2)$$其中 h 表示步长,O(h^2) 表示其他高阶项。

为了使误差较小,一般取步长 h 尽可能小,于是我们可以用欧拉公式表示数值解:$$y_{n+1} = y_n + hf(t_n, y_n), \qquad y_0 = y(t_0)$$欧拉法的优点是容易理解和实现,但是由于截取低阶项且使用的单步法,所以误差较大,精度较低,在具体应用时需要慎重考虑。

二、龙格-库塔法龙格-库塔法(Runge-Kutta method)是一种多步法,比欧拉法更加精确。

龙格-库塔法的主要思想是使用不同的插值多项式来计算近似解,并且将时间步长分解,每次计算需要多次求解。

以下简要介绍二阶和四阶龙格-库塔法。

二阶龙格-库塔法将时间步长 h 分解成两步 h/2,得到近似解表达式:$$\begin{aligned} k_1 &= hf(t_n, y_n)\\ k_2 &= hf(t_n+h/2,y_n+k_1/2)\\ y_{n+1} &= y_n+k_2+O(h^3)\\ \end{aligned}$$四阶龙格-库塔法四阶龙格-库塔法是龙格-库塔法中应用最为广泛的一种方法,其需要计算的中间值较多,但是具有更高的精度。

实验八 常微分方程初值问题数值解法报告

实验八 常微分方程初值问题数值解法报告

实验八 常微分方程初值问题数值解法一、基本题科学计算中经常遇到微分方程(组)初值问题,需要利用Euler 法,改进Euler 法,Rung-Kutta 方法求其数值解,诸如以下问题:(1) ()⎪⎩⎪⎨⎧=-='004y xy y x y 20≤<x分别取h=0.1,0.2,0.4时数值解。

初值问题的精确解245x y e -=+。

(2) ()⎩⎨⎧=--='0122y y x y 01≤≤-x用r=3的Adams 显式和预 - 校式求解取步长h=0.1,用四阶标准R-K 方法求值。

(3)()()()100010321331221==-='⎪⎩⎪⎨⎧-='-='='y y y y y y y y y 10≤≤x用改进Euler 法或四阶标准R-K 方法求解取步长0.01,计算(0.05),(0.1y y y 数值解,参考结果 123(0.15)0.9880787,(0.15)0.1493359,(0.15)0.8613125y y y ≈-≈≈。

(4)利用四阶标准R- K 方法求二阶方程初值问题的数值解(I )()()⎩⎨⎧='==+'-''10,00023y y y y y 02.0,10=≤≤h x(II)()()()⎩⎨⎧='==+'--''00,10011.02y y y y y y 1.0,10=≤≤h x(III)()()⎪⎩⎪⎨⎧='=+='00,101y y e y y x 1.0,20=≤≤h x(IV)()()⎩⎨⎧='==+''00,100sin y y y y 2.0,40=≤≤h x二、应用题1. 小型火箭初始质量为900千克,其中包括600千克燃料。

火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生30000牛顿的恒定推力.当燃料用尽时引擎关闭。

常微分方程欧拉方法

常微分方程欧拉方法

没有误差,即 yn yxn ,考虑从xn 到 xn 1 这一步的误差,这就是如下的局部
定义8.1
设 yx 是初值问题(8.1.1)的准确解,则称
第八章常微分方程数值解法
Tn1 yxn1 yxn h xn,xn1,yxn ,yxn1 ,h
yn1 0.1xn 0.9 yn 0.1 。
同理,用隐式Euler方法有
1 y八章常微分方程数值解法 用梯形公式有
yn 1
1 (0.1xn 0.95 yn 0.105 )。 1.05
三种方法及准确解 到,在
yn1 yn h(5xn1 3 yn1 )。显然,它是 yn 1 的非线性方程,可以选择 Euler公式为
非线性方程求根的迭代求解 yn 1 。以梯形公式为例,可用显式Euler公式提 供 y ( 0)
n 1
迭代初值
,用公式
第八章常微分方程数值解法
表8-1
xn
0
0.1 0.2 0.3 0.4 0.5
则称其第一个非零项 g xn yxn h
为该方法的局部截断误差的主项。
对于Euler方法,有Taylor展开有
Tn1 yxn1 yxn hf xn,yxn
yxn1 yxn hy( xn )
h2 h3 yxn y( xn ) o h 4 o h 2 2 6
解 按(8.1.5),改进的Euler方法解
yn 1 yn h( yn
2 xn ), yn
2x 2x h yn 1 yn ( yn n ) ( yn 1 n 1 ),n 0, 1, 。 2 yn yn 1
第八章常微分方程数值解法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 常微分方程数值解法本章主要内容:1.欧拉法、改进欧拉法. 2.龙格-库塔法。

3.单步法的收敛性与稳定性。

重点、难点一、微分方程的数值解法在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。

对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。

本章我们主要讨论常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(yx y y x f dx dy的数值解法。

数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。

二、欧拉法与改进欧拉法欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。

将常微分方程),(y x f y ='变为()*+=⎰++11))(,()()(n xn x n n dtt y t f x y x y1.欧拉法(欧拉折线法)欧拉法是求解常微分方程初值问题的一种最简单的数值解法。

欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:Nab h N n y x hf y y n n n n -=-=+=+)1,...,1,0(),(1 欧拉法局部截断误差11121)(2++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。

我们在计算时应注意欧拉法是一阶方法,计算误差较大。

欧拉法的几何意义:过点A 0(x 0,y 0),A 1(x 1,y 1),…,A n (x n ,y n ),斜率分别为f (x 0,y 0),f (x 1,y 1),…,f (x n ,y n )所连接的一条折线,所以欧拉法亦称为欧拉折线法。

例1用欧拉法解初值问题⎪⎩⎪⎨⎧=≤≤-=1)0()10(2y x xy dx dy在x =0 (0.2) 1处的近似解。

(计算过程保留4位小数)。

【思路】 用欧拉法求解常微分方程的初值问题时,首先熟练掌握欧拉公式的一般形式, 根据具体题目写出找出欧拉公式的迭代式,并根据初始条件和所给步长进行迭代求解。

解 ∵ f (x ,y )=-2xy ,h =0.2,欧拉公式为:)5,4,3,2,1,0()4.01()2(2.0),(1=-=-+=+=+n y x y x y y x hf y y n n n n n n n n n列表计算如下:2.改进欧拉法改进欧拉法比欧拉法的计算准确,是对欧拉法的改进。

改进欧拉法的基本思想:用梯形公式计算(*)式右端积分,则得改进欧拉法的计算公式为:[]Na b h N n y x f y x f hy y n n n n n n -=-=++=+++)1,...,1,0(),(),(2111利用改进欧拉法计算常微分方程初值问题时,我们应注意此公式为隐式表达式,需要对它进行迭代求解。

计算时可以采用一次迭代和多次迭代,因此,就有改进欧拉法预估-校正法公式和反复迭代的改进欧拉法预估-校正法公式。

改进欧拉法预估-校正法公式:()()[]⎪⎩⎪⎨⎧-=++=+=++++)1,...,1,0(),(),(2),(011101N n y x f y x f h y y y x hf y y nn n n n n n n n n反复迭代的改进欧拉法预估-校正法公式:()()()[]⎪⎩⎪⎨⎧=-=++=+=+++++),...,1,0,1,,0(),(),(2),(111101m N n y x f y x f h y y y x hf y y m n n n n n m n n n n n改进欧拉法的局部截断误差11131)(12++++≤≤'''=n n n n n x x y h R ξξ或简记为O (h 3)。

从局部截断误差的形式看,改进欧拉法是二阶方法,因此,它比欧拉法更精确。

例2用预估-校正法求初值问题⎪⎩⎪⎨⎧=≤≤--='1)0()10(2y x xy y y在x=0(0.2)1的解。

【思路】掌握预估-校正法的计算公式,根据已知条件迭代求解。

解 步长h=0.2,将2),(xyy y x f --=代入预估-校正公式,整理得⎪⎩⎪⎨⎧+--=-=+++++2)0(11)0(1212)0(1)((1.01.09.02.08.0n n n n n n n n n n n y x y y x y y y x y y 列表计算如下:例3用改进欧拉法求解例1的初值问题,要求3)1()(10--<-m nm n y y 。

【思路】掌握改进欧拉法的计算公式,根据已知条件迭代求解,并检验迭代解是否满足精度要求,若满足则确定此解为常微分方程在某点的近似解。

解 将xy y x f 2),(-=代入改进欧拉法的计算公式得:()()[]()[]⎪⎩⎪⎨⎧+-=++=-=-+=+=-++-++++)2.0),(),(2)4.01()2(2.0),(1111111)0(1m n n n n n m n n n n n m n n n n n n n n n ny x y x y y x f y x f h y y y x y x y y x hf y y列表计算如下:三、龙格-库塔法 1.龙格-库塔法龙格-库塔法具有精度高、收敛、稳定,不需要计算高阶导数等优点,是求解微分方程初值问题的一组著名的显示单步方法,广泛应用于求解常微分方程的初值问题。

本章我们介绍了二、三、四阶龙格-库塔法。

龙格-库塔法的基本思想: 在计算初值问题⎩⎨⎧=='00)(),(y x y y x f y 的数值解时,考虑均差h x y x y n n )()(1-+,则由微分中值定理可得)10()()()(1<<+'=-+θθh x y h x y x y n n n , 由初值问题可得公式为:))(,()()(1h x y h x hf x y x y k k k k θθ+++=+上式中))(,(h x y h x f k k θθ++称为区间上的平均斜率。

如果给平均斜率一种计算方法,就可得到计算y (x n+1)的近似值y n+1的公式。

如果仅取n x 处的斜率值),(n n y x f 作为平均斜率的近似值,则得到的1+n y 的公式为欧拉公式;如果取1,+n n x x 处的斜率值),(n n y x f ,),(11++n n y x f 的平均值作为平均斜率的近似值,则得到的1+n y 的公式改进欧拉公式。

㈠ 二阶龙格-库塔法的公式和局部截断误差:⎪⎪⎩⎪⎪⎨⎧+==++=++),(),()(112122111hk y x f k y x f k k k h y y n n n n n n λλ在上式中选择不同的参数,会得到不同的二阶龙格-库塔法公式,所以二阶龙格-库塔法公式不唯一。

二阶龙格-库塔法公式的局部截断误差为Ο(h 3)。

常见的二阶龙格-库塔法公式有以下两种 改进欧拉法迭代公式⎪⎪⎩⎪⎪⎨⎧+==++=++),(),()(21121211hk y x f k y x f k k k h y y n n n n n n ⎪⎪⎩⎪⎪⎨⎧++==+=+)2,2(),(12121k h y h x f k y x f k hk y y n n n n n n㈡ 三阶龙格-库塔法的公式和局部截断误差: 常见的三阶龙格-库塔法公式为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+-+=++==+++=+)2,()2,2(),()4(62131213211hk hk y h x f k k h y h x f k y x f k k k k h y y n n n n n n n n三阶龙格-库塔法公式的局部截断误差为Ο(h 4)。

㈢ 四阶龙格-库塔法公式通常所说的龙格-库塔法是指四阶龙格-库塔法,也称为标准龙格-库塔法。

由于它是一步法,(即已知n y ,就可以求出1+n y ,无需知道1-n y ,2-n y ,…的值)且它的计算精度高,所以应用较多,但在计算时,因为每一步都需要计算四次f (x ,y )的值,计算量较大,所以,一般用来计算前几项的近似值,即“表头”。

四阶龙格-库塔法公式为的公式和局部截断误差:⎧+2⎪⎪⎩⎪⎪⎨+==+=+),2(),(12121k h y h x f k y x f k hk y y n n n n n n⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++=++=++==++++=+),()2,2()2,2(),()22(6342312143211hk y h x f k k h y h x f k k h y h x f k y x f k k k k k h y y n n n n nn n n n n四阶龙格-库塔法的局部截断误差为Ο(h 5)。

四、单步法的收敛性和稳定性 1.收敛性如果在无舍入误差且步长h 充分小的情况下,求得的近似值n y 足够精确地逼近真解)(n x y ,即:当0→h 时,一致地有)(n n x y y →①欧拉法整体截断误差:n n ny x y -=)(ε其中)(n x y 为真解,n y 为在无舍入误差情况下,从y 0用欧拉法计算公式求得的近似解。

② 欧拉法的收敛条件:如果f(x,y)关于y 满足Lipschitz 条件,且局部截断误差R n 有 界,即),,...,2,1(222N n M h R n =≤则欧拉法收敛。

且欧拉法的整体截断误差估计式为:)1(2)(2-≤-a b L n e LhM ε 其中L 为Lipschitz 常数,b-a 为求解区间的长度,)(max 2x y M bx a ''=≤≤。

3.稳定性和绝对稳定性①稳定性:指初始(或某步)产生的误差在后面的迭代计算中不会再扩大。

即存在常数C 及h 0,0<h ≤h 0时,对任意两个初始值00~,y y 满足不等式 00~~y y C y y n n -≤-。

② 欧拉法稳定性的条件:如果f(x,y)关于y 满足Lipschitz 条件,则欧拉法稳定。

③ 绝对稳定性:若对固定步长0h 及任意两个初始值00~,y y 满足不等式00~~y y y y n n -≤-。

④ 我们在讨论稳定性时应注意,一般在实际计算中只能取固定步长,它不可能任意缩小。

所以绝对稳定性则表示的是对固定步长h 0,在初始(或某步)所产生的误差,在以后计算中不会逐步增长。

相关文档
最新文档