人教版数学必修一笔记
人教版高一数学必修一知识点总结大全
人教版高一数学必修一知识点总结大全
一、直线与圆
1、直线:
(1)直线定义:两点在同一条直线上,两点之间连续,没有断点,没有重点,它是一种最简单的几何图形。
(2)直线性质:
①直线上任意两点间距离相等;
②平行直线:两条直线,它们的垂直距离等于0;
③垂直直线:两条直线,它们的平行距离等于0;
2、圆:
(1)圆的定义:由一点O以及与它恒定距离连续而不断的点组成的闭合曲线,它是一种特殊的椭圆形。
(2)圆的性质:
①圆的内角和=360°;
②弦分线段:当一条线段与圆相交时,线段两个端点所在的直线必定是对圆的切线。
③弧分线段:当一条线段与圆相交时,线段两个端点所在的直线必定是能够分开圆的弧的切线。
二、空间几何
1、空间几何定义:涉及到空间几何的几何图形指的是以空间上的点、线、面和体为元素进行几何图形绘制的几何图形。
2、空间几何性质:
(1)点:空间中的最小几何单位,它是一个无方向、无大小、只有
位置的几何实体;
(2)线:指空间中的直线,它是由无数点构成的直线段,也可以由
一点内接内垂线构成;
(3)面:由三维空间中的点、线、平面组成的形状,也可以由一线
及该线上的。
必修一数学笔记
必修一数学笔记一、集合。
1. 集合的概念。
- 集合是由一些确定的、互不相同的对象所组成的整体。
这些对象称为集合的元素。
- 常用的数集:- 自然数集:N={0,1,2,3,·s}(注意:在有些教材中,自然数集不包含0)。
- 正整数集:N^ *={1,2,3,·s}或N_+。
- 整数集:Z ={·s,- 2,-1,0,1,2,·s}。
- 有理数集:Q=所有整数与分数组成的集合。
- 实数集:R,包含有理数和无理数。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如{1,2,3}。
- 描述法:用集合所含元素的共同特征表示集合的方法。
例如{xx > 0,x∈R},表示大于0的所有实数组成的集合。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
- 真子集:如果A⊆ B,且存在元素x∈ B,但x∉ A,那么集合A称为集合B 的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,则A = B。
- 空集varnothing是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U是一个全集,A⊆ U,则∁_U A={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)x∈ A}叫做函数的值域。
2. 函数的表示法。
- 解析法:用数学表达式表示两个变量之间的对应关系,如y = 2x+1。
人教版高中数学必修一一次函数与二次函数重点归纳笔记
(每日一练)人教版高中数学必修一一次函数与二次函数重点归纳笔记单选题1、二次函数f(x)=−x2+2tx在[1,+∞)上最大值为3,则实数t=()A.±√3B.√3C.2D.2或√3答案:B解析:f(x)=−x2+2tx对称轴x=t,开口向下,比较对称轴与区间端点的关系,进而求解.f(x)=−x2+2tx对称轴x=t,开口向下,①t≤1,则f(1)=−12+2t=3⇒t=2,无解,②t>1,则f(t)=−t2+2t⋅t=3⇒t=√3.故选B小提示:本题考查了二次函数在区间上的最值求参数问题,分类讨论是解题的关键.2、已知函数f(x)=ax2+bx+c,若关于x的不等式f(x)>0的解集为(−1 , 3),则A.f(4)>f(0)>f(1)B.f(1)>f(0)>f(4)C.f(0)>f(1)>f(4)D.f(1)>f(4)>f(0)答案:B解析:由题意可得a <0,且−1,3为方程ax 2+bx +c =0的两根,运用韦达定理可得a ,b ,c 的关系,可得f(x)的解析式,计算f(0),f (1),f (4),比较可得所求大小关系.关于x 的不等式f(x)>0的解集为(−1,3),可得a <0,且−1,3为方程ax 2+bx +c =0的两根,可得−1+3=−b a ,−1×3=c a ,即b =−2a ,c =−3a , f(x)=ax 2−2ax −3a ,a <0,可得f(0)=−3a ,f (1)=−4a ,f (4)=5a ,可得f (4)<f(0)<f (1),故选B .小提示:本题主要考查二次函数的图象和性质、函数与方程的思想,以及韦达定理的运用.3、已知直线(2m +1)x +(1−m )y −3(1+m )=0,m ∈(−12,1)与两坐标轴分别交于A 、B 两点.当△OAB 的面积取最小值时(O 为坐标原点),则m 的值为( )A .13B .−13C .−15D .15答案:C解析:由直线(2m +1)x +(1−m )y −3(1+m )=0,m ∈(−12,1),可得A (3(1+m )2m+1,0),B (0,3(1+m )1−m ),代入三角形面积计算公式,再令1+m =t ∈(12,32),换元后由二次函数的单调性和反比例函数的单调性即可得出.由直线(2m +1)x +(1−m )y −3(1+m )=0,m ∈(−12,1), 可得A (3(1+m )2m+1,0),B (0,3(1+m )1−m ),所以当△OAB 的面积S =12×3(1+m)2m+1×3(1+m)1−m =92×(m+1)2−2m 2+m+1,令1+m=t∈(12,32),所以S=92×t2−2t2+5t−2=92×1−2(1t−54)2+98,所以当t=45,即m=−15时,S取得最小值.故选:C小提示:求最值问题一般步骤为:(1)先求出目标函数;(2)再求函数的最值,求最值经常用到:二次函数的最值,基本不等式或用求导的方法.填空题4、甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是_______.(填序号)①甲比乙先出发;②乙比甲跑的路程多;③甲、乙两人的速度相同;④甲比乙先到达终点.答案:④.解析:此题为路程S与时间t的图像,速度v=St,其几何意义是直线的斜率,有图可得答案.对①,由图知,甲、乙两人同时出发,故①错误;对②,甲、乙的路程S取值范围相同,故②错误;对③,速度v=St,其几何意义是直线的斜率,显然甲的速度快,故②错误;对④,由图知,甲到达终点时用时较少,故④正确;所以答案是:④.【点晴】此类题型要注意横纵坐标代表的几何意义.5、设函数f(x)={1,x>00,x=0−1,x<0,g(x)=x2f(x−1),则函数g(x)的递减区间是__________.答案:[0,1)解析:先得出函数g(x)的解析式,再运用二次函数的单调性可得答案.因为f(x)={1,x>0 0,x=0−1,x<0,g(x)=x2f(x−1),所以g(x)={x2,x>10,x=1−x2,x<1,所以函数g(x)的递减区间是[0,1).所以答案是:[0,1).小提示:本题考查分段函数的单调性,二次函数的单调性,属于中档题.。
新高一数学必修一知识点手写笔记
新高一数学必修一知识点手写笔记一、函数及其应用1. 函数的概念- 定义:函数是一种特殊的关系,对于给定的输入值,都有唯一的输出值与之对应。
- 表示方法:常用的表示方法有解析式、图像和数据表等。
- 符号表示:函数通常用字母f、g或h等表示,函数的自变量通常用x表示。
2. 函数的性质- 定义域和值域:函数的定义域是所有可输入的值的集合,值域是所有可能输出的值的集合。
- 奇偶性:若对于定义域上的任意x,都有f(-x) = f(x),则函数为偶函数;若对于定义域上的任意x,都有f(-x) = -f(x),则函数为奇函数。
3. 常见函数的图像和性质- 一次函数:y = kx + b,表示为一次函数方程,k为斜率,b 为截距。
对应的图像是一条直线。
- 二次函数:y = ax^2 + bx + c,其中a≠0。
对应的图像是抛物线,开口方向由a的正负决定。
- 指数函数:y = a^x (a>0, a≠1),对应的图像是一条逐渐逼近x轴但不与x轴相交的曲线。
二、数列与数学归纳法1. 数列的概念- 定义:数列是按照一定的顺序排列的一串数。
- 通项公式:数列中第n个数的表达式称为数列的通项公式。
2. 等差数列与等比数列- 等差数列:数列中任意两个相邻的数之差为常数d,称为等差数列的公差。
- 等比数列:数列中任意两个相邻的数之比为常数q,称为等比数列的公比。
3. 数学归纳法- 定义:数学归纳法是一种证明数学命题的方法,包括基本步骤和归纳假设两个部分。
- 基本步骤:证明当n为某个特定的自然数时命题成立。
- 归纳假设:假设当n=k时命题成立,然后证明当n=k+1时命题也成立。
三、平面向量1. 向量的概念- 定义:向量是有大小和方向的量,可以用有向线段表示。
- 向量的表示:向量通常用字母加箭头或小写字母加箭头表示,表示方式为AB或者a→。
2. 向量的运算- 加法:两个向量相加的结果是一个新的向量,它的起点是第一个向量的起点,终点是第二个向量的终点。
高中数学必修一知识点总结(学习笔记)
数学笔记必修一第一章:集合第一节:集合的含义及表示一、定义:(描述性)一定范围内,某些确定.的..、不.同.的.对象的全.体.构成一个集合二、表示:1.列举法:A={a 、b}2.描述法:{ x|p (x)}代表元分割线代表元满足的性质3.图示法:(数轴、Venn 图)三、特点:确定性、互异性、无序性四、常用数集N 自然数集N 、N 正整数集Z 整数集Q 有理数集R 实数集五、元素与集合的关系a M 、 a M (两者必居其一)六、集合相等两个集合所含元素完全相同 A B七、集合的分类1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含有任何元素的集合第二节:子集、全集、补集一)子集、定义(文字)A中的任一元素都属于 B(符号) A B (或 B A)二)真子集、定义(文字) A B,且 B 中至少有一元素不属于 A(符号)A B(或 B A)图形)注意空集是任何非.空.集.合.的真子集A(A为非空子集)(三)补集一、定义(文字)设 A U ,由U中不属于 A 的所有元素组成的集合称为U 的子集 A 的补集(符号)e U A={ x|x U ,且x A}第二节:子集、全集、补集(一)交集一、定义(文字)由所有属于集合 A 且.属于集合 B 的元素构成的集合称为A 与B 的交集图形)二)并集、定义(文字)由所有属于集合 A 或.者.属于集合 B 的元素构成的集合称为 A 与 B 的交集(符号) {x| x A,或.x B}图形)1(三)区间设 a , b 是两个实数,且 a b ,规定闭区间 a x b [a,b] ;开区间 a x b ( a,b);半开半闭区间(左闭右开) a x b [ a,b)(左开右闭) a x b (a,b] x a, x a, x b, x b[a, ),(a, ),( ,b],( ,b).对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须 a b ,(前者可以不成立,为空集;而后者必须成立)第二章:函数第一节:函数的概念一、定义:二、三要素:定义域、值域和对应法则三、相同函数:定义域相同,且对应法则也相同的两个函数四、函数定义域:1. f (x)是分式函数时,定义域是使分母不为零的一切实数.2.f (x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.3.对数函数的真数大于零4.对数或指数函数的底数中含变量时,底数须大于零5. y tanx中,x k (k Z) .26.零(负)指数幂的底数不能为零.7.若 f ( x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.8.对于求复合函数定义域问题,一般步骤是:若已知f (x)的定义域为[ a, b ] ,其复合函数f[g(x)] 的定义域应由不等式 a g(x) b 解出.9.对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.10.由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.五、求函数值域(最值) :1.观察法:初等坐标函数2.配方法:二次函数类3. 判别式法:二次函数类b2( y) 4a(y) c(y) 04.不等式法:基本不等式5.换元法:变量代换、三角代换6.数形结合法:函数图象、几何方法7.函数的单调性法.8.分离常数法: 反比例类六、函数的表示方法:解析法列表法图象法(不是所有函数都有图像)七、分段函数八、复合函数九、求函数解析式1.配凑(换元)法2.待定系数法: 已知函数模型3.方程组法: 互为相反数、互为倒数第二节:函数的简单性质(一)、单调性一、定义如果对于属于定义域I 内某个区间上的任意两个自变量的值x1、x2,当x.1.<.x.2.时,都有f.(x..1.).<.f.(x..2.).,那么就说f(x)在这个区间上是增.函.数..y=f(X)f(x1 )x2x1当x.1.<.x.2.时,都有f.(x..1.).>.f.(x..2.).,那么就说f(x)在这个区间上是减.函.数..x 1 注意1. 不在区.间.内谈单调增或单调减都无意义2. 端点不计入区间3. 一般情况下单调区间不能并4. 单调区间≠区间单调二、证明1. 任取2. 作差3. 变形4. 定号5. 下结论三、证明1. 定义2. 初等坐标函数、已知函数3. 函数图象(某个区间图象)4. 复合函数:同増异减 (二)、最值 、定义1)一般地,设函数 y f (x)的定义域为 I ,如果存在实数 M x 2y=f(X满足:① 对于任意的x I ,都有 f ( x) M② 存在x0 I ,使得f(x0) M .那么,我们称M 是函数 f (x) 的最大值,记作f max (x) M .(2) 一般地,设函数y f (x)的定义域为I ,如果存在实数满足:①对于任意的x I ,都有 f( x) m②存在x0 I ,使得 f (x0)m .那么,我们称m是函数 f (x) 的最小值,记作f max(x) m .注意: 开区间无最值二、题型定函数动区间动函数定区间注意: 抓住对称轴和区间的相对关系(二)、奇偶性、定义1)如果对于函数f(x) 定义域内任意一个x,都有f.(.-.x.).=.-.f.(x.) 那么函数f(x) 叫做奇.函.数..2)如果对于函数f(x) 定义域内任意一个x,都有f.(.-.x.).=.f.(.x).那么函数f(x) 叫做偶.函.数..二、证明1.定义域f(x) 的定.义.域.为——任意的x——2.f( -x)与f(x)3.下结论正确——严格证明错误——举出反例奇函数偶函数既奇又偶函数非奇非偶函数两个反例1.分段函数要分段讨论2.0 可单独讨论3. 若函数 f ( x)为奇函数,且在x 0处有定义,则f(0) 0三、应用1. 定义(一般到一般)2. 代“ 0”(特殊到一般)需检验四、奇偶性若奇函数在(a,b)上单调增,则在(-a ,-b )上单调增若偶函数在(a,b)上单调增,则在(-a ,-b )上单调减第三节:映射的概念一、定义设A、B是两个非.空.集合,如果按照某种对应法则f ,对于集合A中任.何.一.个.元素,在集合 B 中都有唯.一.的元素和它对应,那么这样的对应叫做集合A到B的映射,记作 f :A B B可用树状图考虑第三章:指数函数、对数函数和幂函数第一节:指数函数一)、根式 、定义当 n 是奇数时, a 的 n 次方根用符号 na 表示;当n 是偶数时, 正数a 的正的 n 次方根用符号 na 表示,负的 n 次方根用符号 na 表示;0的 n 次方根是 0;负数 a 没有 n 次方根.根指数被开方数当 n 为奇数时, a 为任意实数;当 n 为偶数时, a 0 . 、性质:n an |a|a (a 0)(na)na ;当n 为奇数时, na na ;当n 为 a (a 0)偶数时,三、分数指数幂根式na1.a r a s a r s(a 0,r, s R)2.(a r)s a rs (a 0,r,s R)3.(ab)r a r b r (a 0,b 0,r R) (二)指数函数一、定义二、图像与性质三、图像移动及解析式变化平移变换y f (x)h h 00,右,移 |hh|个单位 y f (x h) y f(x) k k00,下,移| kk|个单位 y f (x) k伸缩变换y f ( x) 1,缩y f ( x ) y f(x) 0A A 11,伸,缩 y Af (x)对称变换去掉y 轴左边图象y f(x)保留y 轴右边图象,并作其关于 y 轴对称图象y f (| x|)保留x 轴上方图象y f (x)将x 轴下方图象翻折上去y | f (x) |四、指数型复合函数换元 取值范围、单调性同增异减初级坐标函数 值域、单调性五、指数函数的应用1. 审题 归纳2. 建模 注意定义域 “指数型函数”模型3. 求解(解模)4. 还原(结论——答)y f ( x)x 轴y f (x) y f ( x)y 轴y f ( x)原点y f (x)原点yf直线 y x 直线 y x 1y f ( x)y f (x)1. 每一个步骤读一遍题2. 注意定义域、精确度第二节:对数函数一)对数 、定义如果 a (.a .>.0.,.a .≠.1.).的 b 次幂等于 N 即 a b=N 那么就称 b 是以 a 为底 N 的对数 记作 log a N=b底数 真数.、互化对数 底数 真数 底数 指数 幂 根指数 被开方数 方根三、常用对数与自然对数常用对数: lg N ,即 log 10 N ;自然对数: lnN ,即 log e N (其中 e 2.71828⋯).四、运算1. 加法: log a M log a N log a (MN )2. 减法: log aM log aN log aMN3. 数乘: n log a M log a M n(n R)4.alog aN N5. log a bM n nlog aM (b 0,n R) a bb a6. 换底公式: log aN logb N(b 0,且b 1) log b a(二)对数函数一、定义x x logx a N a N a aN x a x Nax x aN aN (x a a N a N a aaN xN N na a a x Na N、图像与性质三、题型1. 比较大小①利用单调性②利用图像(真数相同)③利用中间值2. 解不等式3.求值4.判断奇偶性第三节:幂函数、定义、图像与性质定义域:(0, ) 一定有定义过定点:(1,1) .单调性:[0, ) 上0 ,过原点、(0, ) 上为增函数.a=0,常函数0,(0, )上为减函数,在第一象限内,图象无限接近x 轴与y 轴.奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当q(其中p,q互质,p和q Z ),若p为奇数q为奇数时,pq则y x p是奇函数,q若p 为奇数q 为偶数时,则y x p是偶函数,q若p 为偶数q 为奇数时,则y x p是非奇非偶函数.图象特征:幂函数y x , x (0, ) ,当1时,若0 x 1,其图象在直线y x 下方,若x 1,其图象在直线y x 上方,当1时,若0 x 1,其图象在直线y x 上方,若x 1,其图象在直线y x 下方.第四节:函数的应用(一)、零点一、定义对于函数y f (x)(x D),把使f(x) 0 成立的实数x叫做函数y f(x)(x D) 的零点二、意义函数y f(x)的零点方程 f (x) 0实数根函数y f (x) 的图象与x轴交点的横坐标1. 零点不是点2. 穿过零点,y 值变号y 值变号,穿过零点(图像.连.续.不.断.)三、求法1.(代数法)① 证单调区间② 零点定理1.(几何法) 交点(二)、零点定理一、定义设函数f(x) 在闭区间[a,b] 上连.续.,且f(a) ×f(b)<0 ,那么在开区间( a,b )内至少有函数f(x) 的一个零点二、应用(二次函数的实根分布)已知二次函数 f (x) ax2 bx c (a> 0)设一元二次方程ax2 bx c 0((a a0>)0)的两实根为x1,x2 ,① k< x1≤ x2>02af(k) > 0②x1≤x2<kf(k) >③x1<k<x2f(k) <0④k 1<x 1≤x 2<k 2>0f (k 1) > 0 f (k 2) > 0 k 1<x b<k 22a⑤k 1< x 1<k 2f (k1) > 0 f (k 2)<0y a 0 f (k 1) 0f (k 2 ) 0。
(完整版)新人教版高中数学课堂笔记必修一
第一章集合与函数概念第一节集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}4)V enn图:4、集合的分类:有限集含有有限个元素的集合(1)无限集含有无限个元素的集合(2)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSxx∉∈且第二节函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
完整版新人教版高中数学课堂笔记必修一
完整版新人教版高中数学课堂笔记必修一一、函数与三角函数1.1 函数的基本概念定义1.1.1:函数从一个集合A中的每一个元素a,都唯一地对应到另一个集合B中的一个元素f(a),则称这样的对应f为一个函数。
定义1.1.2:自变量和因变量在函数f中,元素a称为自变量,元素f(a)称为因变量。
定义1.1.3:定义域和值域f的定义域是由自变量构成的集合A,f的值域是由因变量构成的集合B。
1.2 函数的表示方法1.2.1 显式表示法在一个函数的定义域内,用公式或者算式来表示函数的因变量和自变量之间的关系。
例如,函数f(x)=x^2-2x+1就是一个用显式表示法表示的函数。
1.2.2 隐式表示法在一个函数的定义域内,无法用公式或者算式来表示函数的因变量和自变量之间的关系,只能通过复杂的方程或者不等式来描述函数。
例如,方程x^2+y^2=1就是一个用隐式表示法表示的函数。
1.2.3 参数表示法在一个函数的定义域内,用一个参数表示函数的因变量和自变量之间的关系。
例如,函数f(x)=sin(x)就是一个用参数表示法表示的函数,其中sin是一个参数。
1.2.4 函数图像函数图像是函数在坐标系中的图形。
如果函数的定义域和值域都是实数集合,那么可以用二维笛卡尔坐标系来表示函数的图像。
例如,函数f(x)=x^2-2x+1的图像是一条开口向上的抛物线。
1.3 三角函数1.3.1 弧度制弧度(radian)是表示角度大小的一种单位。
一弧度表示角度中圆心角对应的弧长等于半径的长度。
例如,一个半径为1的圆的周长是2π,那么一弧度对应的角度大小就是360°/2π≈57.3°。
1.3.2 三角函数的定义令在单位圆上顺时针旋转的角度为θ,则定义三角函数为:sinθ=纵坐标(y)cosθ=横坐标(x)tanθ=纵坐标(y)/横坐标(x)cotθ=横坐标(x)/纵坐标(y)secθ=1/cosθcscθ=1/sinθ1.3.3 三角函数的基本关系式sin^2θ+cos^2θ=1tanθ=sinθ/cosθcotθ=1/tanθ1.3.4 三角函数的性质周期性:sin(x+2π)=sinx,cos(x+2π)=cosx,tan(x+π)=tanx,cot(x+π)=cotx。
人教版高中数学必修一集合知识汇总笔记
(每日一练)人教版高中数学必修一集合知识汇总笔记单选题1、已知集合A={x|x2−1=0},则下列式子表示正确的有()①1∈A②{−1}∈A③∅∈A④{−1,1}⊆AA.1个B.2个C.3个D.4个答案:B解析:先求出集合A中的元素,然后逐项分析即可.因为A={x|x2−1=0}={−1,1},则1∈A,所以①正确;{−1}⊆A,所以②不正确;∅⊆A,所以③不正确;{−1,1}⊆A,所以④正确,因此,正确的式子有2个.故选:B.2、已知i为虚数单位,集合P={1,−1},Q={i,i2}.若P∩Q={zi},则复数z等于A.1B.−1C.i D.−i答案:C解析:由复数的概念得到集合Q,计算集合P与集合Q的补集,即可确定出复数z.Q={i,i2}={i,−1},P={1,−1},则P∩Q={zi}={−1},即zi=-1,z=−1i =−ii2=i,小提示:本题考查集合的交集运算和复数的运算,属于简单题.3、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C解析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.填空题4、设P为非空实数集满足:对任意给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P,则称P为幸运集.①集合P={−2,−1,0,1,2}为幸运集;②集合P={x|x=2n,n∈Z}为幸运集;③若集合P1、P2为幸运集,则P1∪P2为幸运集;④若集合P为幸运集,则一定有0∈P;其中正确结论的序号是________答案:②④①取x=y=2判断;②设x=2k1∈P,y=2k2∈P判断;③举例P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}判断;④由x、y可以相同判断;①当x=y=2,x+y=4∉P,所以集合P不是幸运集,故错误;②设x=2k1∈P,y=2k2∈P,则x+y=2(k1+k2)∈A,x−y=2(k1−k2)∈A,xy=2k1⋅k2∈A,所以集合P是幸运集,故正确;③如集合P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}为幸运集,但P1∪P2不为幸运集,如x=2,y=3时,x+y=5∉P1∪P2,故错误;④因为集合P为幸运集,则x−y∈P,当x=y时,x−y=0,一定有0∈P,故正确;所以答案是:②④小提示:关键点点睛:读懂新定义的含义,结合“给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P”,灵活运用举例法.5、集合A={−1,0,1}子集的个数是__.答案:8解析:本题通过列出集合A={−1,0,1}的所有子集即可得出结果.集合A={−1,0,1}的子集有:∅、{−1}、{0}、{1}、{−1,0}、{−1,1}、{0,1}、{−1,0,1}共8个,所以答案是:8.。
数学高一必修一知识点笔记
数学高一必修一知识点笔记一、函数与方程1.1 函数的概念与表示方法函数是自变量和因变量之间的一种特定关系。
常用的表示方法有解析式、图像和数据表。
1.2 函数的性质①定义域:自变量的取值范围。
②值域:函数对应的因变量的取值范围。
③单调性:函数增减的趋势。
④奇偶性:函数关于原点对称的性质。
⑤周期性:函数在一定范围内重复出现的性质。
1.3 一次函数和二次函数一次函数的解析式为 y=ax+b,图像是一条直线;二次函数的解析式为 y=ax²+bx+c,图像是开口朝上或朝下的抛物线。
1.4 不等式不等式是用不等号表示大小关系的式子。
解不等式可以用数轴上的区间表示。
二、数列与数列求和2.1 等差数列等差数列中,两个相邻的数之差是常数,称为公差。
通项公式为 an=a₁+(n-1)d,其中a₁为首项,d为公差。
2.2 等比数列等比数列中,两个相邻的数之比是常数,称为公比。
通项公式为 an=a₁*q^(n-1),其中a₁为首项,q为公比。
2.3 数列的求和等差数列的前n项和为 Sn=n/2(a₁+an),等比数列的前n项和为 Sn=a₁(q^n-1)/(q-1)。
三、平面向量3.1 平面向量的定义平面向量是具有大小和方向的量,用箭头表示。
平面向量有相等、相反、共线和共面的性质。
3.2 平面向量的运算①加法:向量的加法满足三角形法则,即将两个向量首尾相接。
②数乘:向量乘以一个实数,可以改变向量的大小和方向。
③减法:向量的减法可以转化为加法的逆运算。
四、三角函数4.1 任意角与弧度制任意角的三角函数可以通过单位圆和直角三角形来定义。
弧度制是一种用弧长比表示角度大小的单位。
4.2 正弦函数、余弦函数和正切函数正弦函数、余弦函数和正切函数是三个基本的三角函数,它们都可以表示为某个直角三角形中两条边的比值。
4.3 三角恒等变换三角恒等变换是指三角函数之间的等式关系,包括倒数公式、和差化积等多种形式。
五、立体几何5.1 空间几何体的概念常见的空间几何体包括点、线、面和体。
人教版必修一 第三章:相互作用——简明实用笔记(知识要点)
第三章:相互作用一、力1.概念:力是物体间的相互作用力是物体对物体的作用,不能离开施力物体和受力物体而独立存在。
有力就一定有“施力”和“受力”两个物体,互为,二者缺一不可。
2.性质:①物质性:力不能脱离物体而独立存在,施力物体与受力物体同时存在②相互性:力的作用是相互的,力总是成对出现③同时性④瞬时性⑤矢量性:(合成和分解)遵循平行四边行定(不在于方向例I,Φ)⑥独立性:每个力各自独立地产生效果,好像其它力不存在一样。
用牛顿第二定律表示时,则有合力产生的加速度等于几个分力产生的加速度的矢量和。
(积累引起一些变化)⑦积累性:时间积累I=ΔP 空间积累W=ΔEK3.力的作用效果:①形变②改变运动状态(产生加速度)4.力的三要素:大小、方向、作用点(描述单位图示示意图)测量:测力计单位:N注:同一题中选同一标度5. 力的分类:(注:效果不同的力,性质可能相同;性质不同的力,效果可能相同)①按性质分:重力(万有引力)、弹力、摩擦力、电场力、磁场力、分子力、核力……②按效果分:拉力、压力、支持力、动力、阻力、向心力、回复力、推力、浮力……③按作用方式分:场力(非接触力)、接触力。
④研究对象分:内力外力(方法:整体、隔离)注:按现代物理学理论,物体间的相互作用分四类:长程相互作用有引力相互作用、电磁相互作用;短程相互作用有强相互作用(距离增大强相互作用急剧减小作用范围只有约10-15m,超出就不存在了,存在于相邻的核子之间)和弱相互作用(强度只有强相互作用的10-12倍)。
宏观物体间只存在前两种相互作用。
宏观物体间只存在前两种相互作用。
二重力1、产生:由于地球的吸引而产生的(严格的说不等于地球的吸引力)说明:①地球表面附近的物体都受到重力的作用.②重力的施力物体就是地球.注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。
由于重力远大于向心力,一般情况下近似认为重力等于万有引力。
人教版高一数学必修一精选知识点归纳5篇
人教版高一数学必修一精选知识点归纳5篇人教版高一数学必修一知识点1幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a 为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域幂函数性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制****于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
高一数学知识点笔记整理必修一
高一数学知识点笔记整理必修一一、直角三角形的性质1. 直角三角形定义:有一个角为90度的三角形。
2. 斜边、直角边和斜角:直角三角形的边分为斜边和直角边,直角三角形的角分为直角和斜角。
3. 勾股定理:直角三角形的斜边的平方等于直角边的平方和另一直角边的平方。
4. 特殊直角三角形:45-45-90三角形和30-60-90三角形。
二、三角函数的基本概念1. 弧度制:角度的度量单位,一个圆的弧长等于半径时,该角的度数为1弧度。
2. 弧度与角度的转化:1弧度 = 180度/ π ≈ 57.3度。
3. 三角函数:正弦函数sin、余弦函数cos、正切函数tan等。
4. 三角函数的定义:以单位圆上的点为基础,正弦函数的值等于对应角的纵坐标,余弦函数的值等于对应角的横坐标,正切函数的值等于对应角的纵坐标与横坐标的比值。
5. 三角函数的周期性:sin和cos函数的周期是2π,tan函数的周期是π。
三、三角函数的性质和基本关系1. 函数图像:根据周期和图像的对称性,可以绘制三角函数的图像。
2. 奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
3. 周期性:正弦函数和余弦函数的周期是2π,正切函数的周期是π。
4. 正交性:sin和cos函数的图像是互相垂直的。
5. 三角恒等式:包括同角三角函数的平方和恒等式、三角函数的和差化积公式等。
四、三角函数的图像变换1. 平移变换:函数图像水平或垂直方向上的平移。
2. 垂直方向平移:y = f(x) + a将函数图像上移a个单位,y =f(x) - a将函数图像下移a个单位。
3. 水平方向平移:y = f(x ±a)将函数图像左(右)移a个单位。
4. 纵坐标伸缩变换:y = a·f(x)将函数图像纵坐标伸缩为原来的a倍,其中a > 1时向上伸缩,0 < a < 1时向下伸缩。
5. 横坐标伸缩变换:y = f(ax)将函数图像横坐标伸缩为原来的1/a倍,其中a > 1时左压,0 < a < 1时右压。
新人教版高一数学知识点
新人教版高一数学知识点高一上册数学必修一知识点梳理函数的性质函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:(1)任取x1,x2∈D,且x1(2)作差f(x1)-f(x2);或者做商(3)变形(通常是因式分解和配方);(4)定号(即判断差f(x1)-f(x2)的正负);(5)下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.函数的奇偶性(整体性质)(1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.9.利用定义判断函数奇偶性的步骤:1首先确定函数的定义域,并判断其是否关于原点对称;2确定f(-x)与f(x)的关系;3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.高一数学必修五知识点总结⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S 最小.高一数学学习方法参考基础是关键,课本是首选首先,新高一同学要明确的是:高一数学是高中数学的重点基础。
(完整版)新人教版高中数学课堂笔记必修一
(完整版)新人教版高中数学课堂笔记必修一高中数学课程是一门学科,它涵盖了广泛的数学知识和应用技巧。
这门课程分为必修一和必修二两个部分,本篇文章将重点关注必修一的内容。
在这门课程中,我们将学习数学的基本概念、运算规律以及各种数学问题的解决方法。
必修一的内容主要包括函数、数列与数学归纳法、集合与常用逻辑符号、不等式与等式、平面向量、坐标系与参数方程、三角函数、数学语言与证明、三角恒等变换与三角方程、指数与对数函数等。
首先,让我们来了解一下函数的概念。
函数是一种特殊的关系,它将一个或多个自变量与一个因变量联系在一起。
函数可以用图像、表格或公式的形式表示。
我们可以通过函数的定义域、值域、增减性、奇偶性等性质来研究函数的特点和变化规律。
数列与数学归纳法是必修一的第二个模块。
数列是按照一定规律排列的一组数字。
我们可以通过寻找数列的通项公式、递推关系和前n 项和来研究数列的性质和规律。
数学归纳法是一种证明数学命题的方法,它通过验证基本情况成立和假设递推关系成立来证明命题对于所有情况都成立。
集合与常用逻辑符号是必修一的第三个模块。
集合是具有共同特征的元素的总体。
我们可以通过列举元素、描述特征、制定条件等方式来表示集合。
逻辑是一种符号化的推理方法,它通过使用常用逻辑符号如“与”、“或”、“非”等来表示命题间的关系和运算。
不等式与等式是必修一的第四个模块。
不等式是含有不等关系的算式,它可以通过加减乘除、取绝对值、平方等运算来求解。
等式是含有等号的算式,我们可以通过运用方程的性质和解方程的方法来求解等式。
平面向量是必修一的第五个模块。
平面向量是具有方向和大小的量,它可以表示为有序数对。
我们可以通过向量的定义、加减运算、数量积和向量积等运算来研究向量的性质和运算规律。
坐标系与参数方程是必修一的第六个模块。
坐标系是为了方便描述平面上点的位置而建立的一种表示方法。
参数方程是描述平面曲线上的点位置的一种方式,它使用一个参数来表示曲线上的点的位置。
人教版数学必修1-复习知识点归纳
必修1 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集A A = ∅=∅B A ⊆A A = A ∅=B A ⊇()U A =∅ð ()U A U =ð()()()U U U A B A B =痧? )()()U U B A B =?【补充知识】含绝对值的不等式与一元二次不等式的解法解集〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、上为减函数.(3①一般地,()y f x =的定义域为(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x ∈M .那么,我们称()x 的最大值,记作max ()f x M =.I ,如果存在实数(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x ∈)x 的最小值,记作max ()f x m =.(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.o④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式;③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换 ②伸缩变换 ③对称变换第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:na =;当n a =;当n 为偶数时, (0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN +=②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈④log a NaN =⑤log log (0,)b na a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.(3)幂函数的图象〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔ ⎩⎨⎧△=b 2-4ac ≥0af (k )>0-b 2a>k②x 1≤x 2<k ⇔ ⎩⎨⎧△=b 2-4ac ≥0af (k )>0-b 2a<k③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2⇔ ⎩⎪⎨⎪⎧△=b 2-4ac ≥0a >0f (k 1)>0f (k 2)>0k 1<-b2a <k2或⎩⎪⎨⎪⎧△=b 2-4ac ≥0a <0f (k 1)<0f (k 2)<0k 1<-b2a <k2⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合第 - 11 - 页 共 11 页⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ ⎩⎪⎨⎪⎧a >0f (k 1)>0f (k 2)<0f (p 1)<0f (p 2)>0或⎩⎪⎨⎪⎧a <0f (k 1)<0f (k 2)>0f (p 1)>0f (p 2)<0此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)最小值① 若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=-①()q ② ②(Ⅱ),则)M ≤-()2b f a- ()f q )xxx x 0x x(q)0x xf xf xfx xx。
高一数学必修一总结笔记
高一数学必修一总结笔记一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的'基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
人教版数学必修一笔记
第一章集合与函数的概念1.1 集合1.1.1 集合的含义与表示1.集合的性质:确定性、互异性(无重复)、无序性(杂乱无章的)2.集合分类:⑴按集合中元素的多少分:有限集、无限集、空集∅⑵按集合中元素的性质分:数集、点集、多项式集、几何图形集3.集合的表示方法:⑴列举法如:A={a,b,c}⑵描述法:①文字描述法如:B={三角形}②式子描述法如:C={x|x2+2x-3>0}4.常用数集表示方法:非负整数集 N 正整数集 N*或N+整数集 Z 有理数集 Q 实数集R1.1.2 集合间的基本关系一、子集的概念见课本P6二、子集的性质1.规定:空集是任何集合的子集;2.任何一个集合是它本身的子集,即A⊆A3.对于集合A、B、C,如果A⊆B,且B⊆C,那么A⊆C(传递性)1.1.3 集合的基本运算一、并集定义:由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}性质:⑴∅∪A=A;A∪A=A⑵A∪B=B∪A⑶(A∪B)∪C=A∪(B∪C)⑷A∪B⊇A且A∪B⊇B并集的概念还可以推广到n个集合并的情形.A1∪A2∪…∪A n={x|x∈A1或x∈A2或……或x∈A n}二、交集定义:由属于集合A且属于集合B的所有元素组成的集合,称为A与B交集,记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}⑴∅∩A=∅;A∩A=A⑵A∩B=B∩A⑶(A∩B)∩C=A∩(B∩C)⑷A∩B⊆A且A∩B⊆B交集的概念也可以推广到n个集合交的情形.A1∩A2∩…∩A n={x|x∈A1且x∈A2且……且x∈A n}注意:1.要区别“或”与“且”的不同,集合的并与交从定义上看就是一字之差;2.集合取并,越并越“大”,集合取交,越交越“小”。
三、补集定义:1.全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U。
高一数学必修一笔记知识点
高一数学必修一笔记知识点一、集合与命题1. 集合的概念及表示方法集合是由确定的元素构成的整体,常用大写字母表示集合,元素用小写字母表示。
例如,集合A={1,2,3,4}表示由元素1、2、3、4组成的集合A。
2. 命题的概念命题是陈述性语句,只能有真或假两种结果。
常用字母p、q、r等表示命题。
3. 命题联结词及逻辑运算命题联结词包括否定、合取、析取、条件和双条件等,分别用符号¬、∧、∨、→和↔表示。
二、集合的运算1. 集合的基本运算包括交集、并集、差集和补集等运算。
2. 集合运算的性质- 交换律:A∪B = B∪A,A∩B = B∩A- 结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)- 分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) =(A∩B)∪(A∩C)- 对偶律:(A∪B)的补集 = A的补集∩B的补集,(A∩B)的补集 = A的补集∪B的补集- 吸收律:A∪(A∩B) = A,A∩(A∪B) = A三、集合的关系与函数1. 集合的关系包括相等关系、包含关系、真包含关系等。
2. 函数的定义与性质函数用于描述两个集合之间的对应关系。
若集合X的每个元素都和集合Y的唯一元素对应,则称该对应关系为函数。
一个函数通常表示为f:X→Y,其中X为定义域,Y为值域。
3. 函数的图像与性质函数的图像是由函数的所有有序对组成的集合。
函数具有唯一性、单调性和奇偶性等性质。
四、直线与函数1. 直线的方程直线的方程包括一元一次方程、一元二次方程和一般形式方程等。
常见的直线方程有y = kx + b、y = ax² + bx + c和Ax + By + C = 0等形式。
2. 直线的性质直线的斜率、截距和倾斜角等是直线的重要性质,通过这些性质可以确定直线的方程。
3. 函数与坐标轴的交点函数与坐标轴的交点包括与x轴的交点和与y轴的交点,这些交点可以帮助我们确定函数的特点和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、交集
定义:由属于集合A且属于集合B的所有元素组成
的集合,称为A与B交集,记作A∩B(读作“A交
B”),即A∩B={x|x?A,且x?B}
⑴?∩A=?;A∩A=A
⑵A∩B=B∩A
⑶(A∩B)∩C=A∩(B∩C)
⑷A∩B?A且A∩B?B
交集的概念也可以推广到n个集合交的情形.
A1∩A2∩?∩An={x|x?A1且x?A2且??且x?An}
注意:1.要区别“或”与“且”的不同,集合的并与交从定义上看就是一字之差;
2.集合取并,越并越“大”,集合取交,越交越“小”。
三、补集
定义:
1.全集:如果一个集合含有我们所研究问题中所涉及
⑴按集合中元素的多少分:有限集、无限集、空集? ⑵按集合中元素的性质分:数集、点集、多项式集、几何图形集
3.集合的表示方法:⑴列举法 如:A={a,b,c} ⑵描述法:①文字描述法 如:B={三角
2形} ②式子描述法 如:C={x|x+2x-3>0}
*4.常用数集表示方法:非负整数集 N 正整数集 N或N+ 整数集 Z 有理数集 实数集R
1.1.2 集合间的基本关系
一、子集的概念
合的子集;
2.任何一个集合是它本身的子集,即A?A
3.对于集合A、B、C,如果A?B,且B?C,那么A?C(传递性)
1.1.3 集合的基本运算
一、并集
定义:由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记
作A∪B(读作“A并B”),即A∪B={x|x?A,或x?B}
性质:
⑴?∪A=A;A∪A=A
⑵A∪B=B∪A
⑶(A∪B)∪C=A∪(B∪C)
⑷A∪B?A且A∪B?B
并集的概念还可以推广到n个集合并的情形.
A1∪A2∪?∪An={x|x?A1或x?A2或??或x?An}