2019年小升初经典奥数题(附答案)

合集下载

【小升初50道经典奥数题(附答案)】

【小升初50道经典奥数题(附答案)】

小升初50道经典奥数题(附答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2.3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

小升初经典奥数试题及答案(三)

小升初经典奥数试题及答案(三)

2019年小升初经典奥数试题及答案(三)【编者按】为了丰富同学们的学习生活,查字典数学网小学频道为同学们搜集整理了-2019年小升初经典奥数试题及答案(三),供大家参考,希望对大家有所帮助!每道题的答题时间不超过15分钟。

【二年级】课内知识:78+37+22+63+59课外趣题:小花今年8岁,叔叔告诉小花说:3年前我的年龄是你那时年龄的6倍,叔叔今年多少岁?【三年级】课内知识:一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?课外趣题:有黑白两种棋子共300枚,按每堆3枚分成100堆。

其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。

那么在全部棋子中,白子共有多少枚?【四年级】课内知识:913+139+1113+149+613课外趣题:一群奥特曼打败了一群小怪兽,已知所有的奥特曼均有一个头、两条腿,所有的小怪兽均有一个头、五条腿。

战场上一共有10个头,41条腿,那么有多少个奥特曼?有多少个小怪兽?【五年级】课内知识:有336个苹果、252个桔子、210个梨,用这些水果最多可以分成多少份同样的礼物?每份礼物中的三样水果各有多少个?课外趣题:正方形操场四周栽了一圈树,每两棵树相隔5米。

甲乙二人同时从一个角出发,向不同的方向走去(如右图),甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。

操场四周一共栽了多少棵树?【二年级】课内知识:78+37+22+63+59解答:原式=(78+22)+(37+63)+59=100+100+59=200+59=259课外趣题:小花今年8岁,叔叔告诉小花说:3年前我的年龄是你那时年龄的6倍,叔叔今年多少岁?解答:可以先求出3年前小花的年龄及叔叔那时的年龄,再求出叔叔今年的年龄。

3年前小花的年龄8-3=5(岁)3年前叔叔的年龄56=30(岁)叔叔现在的年龄30+3=33(岁)【三年级】课内知识:一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?解答:20-4=16(人),2020=400(人),1616=256(人),400-256=144(人)课外趣题:有黑白两种棋子共300枚,按每堆3枚分成100堆。

小升初50道经典奥数题及答案详细解析

小升初50道经典奥数题及答案详细解析

小升初50道经典奥数题及答案详细解析之五兆芳芳创作1.已知一张桌子的代价是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱.每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸.由于河上的桥正在维修,车辆禁止通行,两车需互换乘客,然后按原路前往各自出发的车站,到站时已是下午2点.甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米? (互换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外勾当.第一小组每小时走4.5千米,第二小组每小时行3.5千米.两组同时出发1小时后,第一小组停下来不雅赏一个果园,用了1小时,再去追第二小组.多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨.甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队配合修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米.甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时辨别从甲乙两地相对开出.快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规则每箱运费20元,如果损坏一箱,不单不付运费还要赔偿100元.运后结算时,共付运费4400元.托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游.第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米.第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才干追上一中队?13.某厂运来一堆煤,如果每天烧1500千克,比筹划提前一天烧完,如果每天烧1000千克,将比筹划多烧一天.这堆煤有多少千克?14.妈妈让小红去商店买5支铅笔和8个练习本,按代价给小红3.8元钱.结果小红却买了8支铅笔和5本练习本,找回0.45元.求一支铅笔多少元?15.学校组织外出不雅赏,介入的师生一共360人.一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等.都乘卡车需要几辆?都乘大客车需要几辆?16.某筑路队承担了修一条公路的任务.原筹划每天修72 0米,实际每天比原筹划多修80米,这样实际修的差1200米就能提前3天完成.这条公路全长多少米?17.某鞋厂生产1800双鞋,把这些鞋辨别装入12个纸箱和4个木箱.如果3个纸箱加2个木箱装的鞋同样多.每个纸箱和每个木箱各装鞋多少双?18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍.每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱.每个保温瓶是每个茶杯代价的4倍,每个保温瓶和每个茶杯各多少元?20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同.这两个数辨别是多少?21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克.桶里原有水多少千克?24.小红和小华共有故事书36本.如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量.原来每桶油重多少千克?26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍.原有男工多少人?女工多少人?28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地前往甲地时因逆风多用1小时,前往时平均每小时行多少千米?29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米.如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个.三种球各有多少个?31.在一根粗钢管上接细钢管.如果接2根细钢管共长18米,如果接5根细钢管共长33米.一根粗钢管和一根细钢管各长多少米?32.水泥厂原筹划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原筹划每天生产水泥多少吨?33.学校举办歌舞晚会,共有80人介入了扮演.其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?34.学校举办语文、数学双科竞赛,三年级一班有59人,介入语文竞赛的有36人,介入数学竞赛的有38人,一科也没介入的有5人.双科都介入的有多少人?35.学校买了4张桌子和6把椅子,共用640元.2张桌子和5把椅子的代价相等,桌子和椅子的单价各是多少元?36.父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?37.有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?38.光亮小学举办数学知识竞赛,一共20题.答对一题得5分,答错一题扣3分,不答得0分.小丽得了79分,她答对几道,答错几道,有几题没答?39.甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?40.一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分.问小明从家里到学校有多远?42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?43.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米.这个长方形纸板原来的面积是多少?44.妈妈买苹果和梨各3千克,支出20元找回7.4元.每千克苹果2.4元,每千克梨多少元?45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇.甲的速度是乙的2倍,甲乙两人每小时各行多少千米?46.盒子里有同样数目的黑球和白球.每次取出8个黑球和5个白球,取出几回以后,黑球没有了,白球还剩12个.一共取了几回?盒子里共有多少个球?47.上午6时从汽车站同时收回1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间.48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支.问这盒铅笔最少有多少支?50.一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米.求这块平行四边形地原来的面积?50道奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的28 8元,正好是一把椅子代价的(10-1)倍,由此可求得一把椅子的代价.再按照椅子的代价,就可求得一张桌子的代价.解:一把椅子的代价:288÷(10-1)=32(元)一张桌子的代价:32×10=320(元)答:一张桌子320元,一把椅子32元.2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.解:45+5×3=45+15=60(千克)答:3箱梨重60千克.3、想:按照在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.便可求甲比乙每小时快多少千米.解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米.4、想:按照两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,便可求每支铅笔的代价.解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元.5、想:按照已知两车上午8时从两站出发,下午2点前往原车站,可求出两车所行驶的时间.按照两车的速度和行驶的时间可求两车行驶的总路程.解:下午2点是14时.往返用的时间:14-8=6(时)两地间路程:(40+45)×6÷2=85×6÷2=255(千米)答:两地相距255千米.6、想:第一小组停下来不雅赏果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程.又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间.解:第一组追赶第二组的路程:3.5-(4.5- 3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组.7、想:按照甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨.若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数.解:乙仓存粮:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)答:甲仓存粮51吨,乙仓存粮14吨.8、想:按照甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就削减4个10米,这时的长度相当于乙(4+5)天修的.由此可求出乙队每天修的米数,进而再求两队每天共修的米数.解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2+10=80+10=90(米)答:两队每天修90米.9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应削减30×6元,这时的总价相当于(6+5)把椅子的代价,由此可求每把椅子的单价,再求每张桌子的单价.解:每把椅子的代价:(455-30×6)÷(6+5)=(455- 180)÷11=275÷11=25(元)每张桌子的代价:25+30=55(元)答:每张桌子55元,每把椅子25元.10、想:按照已知的两车的速度可求速度差,按照两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程.解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)答:甲乙两地相距 560千米.11、想:按照已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数.按照每损坏一箱,不单不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱.解:(20×250-4400)÷(10+20)=600÷120=5(箱)答:损坏了5箱.12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此便可求第二中队追上第一中队的时间.解:4×2÷(12-4)=4×2÷8=1(时)答:第二中队1小时能追上第一中队.13、想:由已知条件可知道,前后烧煤总数量相差(150 0+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原筹划烧的天数,进而再求出这堆煤的数量.解:原筹划烧煤天数:(1500+1000)÷(1500-1000)=2500÷500=5(天)这堆煤的重量:1500×(5-1)=1500×4=6000(千克)答:这堆煤有6000千克.14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计较,相差0.45元.由此可求练习本的单价比铅笔贵的钱数.从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数.进而可求出每支铅笔的代价.解:每本练习本比每支铅笔贵的钱数:0.45÷(8-5)=0.45÷3=0.15(元)8个练习本比8支铅笔贵的钱数:0.15×8=1.2(元)每支铅笔的代价:(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)也可以用方程解:设一枝铅笔X元,则一本练习本为元.答:每支铅笔0.2元.15、想:按照一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人.解:卡车的数量:360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)客车的数量:360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)答:可用卡车12辆,客车9辆.16、想:按照筹划每天修720米,这样实际提前的长度是(720×3-1200)米.按照每天多修80米可求已修的天数,进而求公路的全长.解:已修的天数:(720×3-1200)÷80=960÷80=12(天)公路全长:(720+80)×12+1200=800×12+1200=9600+1200=10800(米)答:这条公路全长10800米.17、想:按照已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双.解:12个纸箱相当木箱的个数:2×(12÷3)=2×4=8(个)一个木箱装鞋的双数:1800÷(8+4)=18000÷12=150(双)一个纸箱装鞋的双数:150×2÷3=100(双)答:每个纸箱可装鞋100双,每个木箱可装鞋150双18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才干同时用完.但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子.因此看120袋里有多少个少用的沙子袋数,便可求出用的天数.进而可求出沙子和水泥的总袋数.解:水泥用完的天数:120÷(30×2-40)=120÷20=6(天)水泥的总袋数:30×6=180(袋)沙子的总袋数:180×2=360(袋)答:运进水泥180袋,沙子360袋.19、想:按照每个保温瓶的代价是每个茶杯的4倍,可把5个保温瓶的代价转化为20个茶杯的代价.这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数.解:每个茶杯的代价:90÷(4×5+10)=3(元)每个保温瓶的代价:3×4=12(元)答:每个保温瓶12元,每个茶杯3元.20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍.解:第一个加数:572÷(10+1)=52第二个加数:52×10=520答:这两个加数辨别是52和520.21、想:由已知条件可知,16千克和9千克的差正好是半桶油的重量.9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量.解:9-(16-9)=9-7=2(千克)答:桶重2千克.22、想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量.解:(10-5.5)×2=9(千克)答:原来有油9千克.23、想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量.解:(22-10)÷(5-2)=12÷3=4(千克)答:桶里原有水4千克.24、想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍.解:小华有书的本数:(36-5×2)÷2=13(本)小红有书的本数:13+5×2=23(本)答:原来小红有23本,小华有13本.25、想:由已知条件知,5桶油共取出(15×5)千克.由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克.解:15×5÷(5-2)=25(千克)答:原来每桶油重25千克.26、想:把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步便可以求出锯成5段所需的时间.解:9÷(3-1)×(5-1)=18(分)答:锯成5段需要18分钟.27、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人.这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍.这样就可求出现在女工多少人,然后再辨别求出男、女工原来各多少人.解:35÷(2-1)=35(人)女工原有:35+17=52(人)男工原有:52+35=87(人)答:原有男工87人,女工52人.28、想:由每小时行12千米,5小时到达可求出两地的路程,即前往时所行的路程.由去时5小时到达和前往时多用1小时,可求出前往时所用时间.解:12×5÷(5+1)=10(千米)答:前往时平均每小时行10千米.29、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米.解:18÷(5+4)=2(小时)8×2=16(千米)答:狗跑了16千米.30、想:由条件知,(21+20+19)暗示三种球总个数的2倍,由此可求出三种球的总个数,再按照题目中的条件就可以求出三种球各多少个.解:总个数:(21+20+19)÷2=30(个)白球:30-21=9(个)红球:30-20=10(个)黄球:30-19=11(个)答:白球有9个,红球有10个,黄球有11个.31、想:按照题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度.解:(33-18)÷(5-2)=5(米)18-5×2=8(米)答:一根粗钢管长8米,一根细钢管长5米.32、想:由题意知,实际10天比原筹划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原筹划还需用(12-10)天才干完成,也就是说原筹划(12-10)天能生产水泥(4.8×10)吨.解:4.8×10÷(12-10)=24(吨)答:原筹划每天生产水泥24吨.33、想:由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去介入扮演的80人,就是既唱歌又跳舞的人数.解:70+30-80=100-80=20(人)答:既唱歌又跳舞的有20人.34、想:介入语文竞赛的36人中有介入数学竞赛的,同样介入数学竞赛的38人中也有介入语文竞赛的,如果把两者加起来,那么既介入语文竞赛又介入数学竞赛的人数就统计了两次,所以将介入语文竞赛的人数加上介入数学竞赛的人数再加上一科也没介入的人数减去全班人数就是双科都介入的人数.解:36+38+5-59=20(人)答:双科都介入的有20人.35、想:由“2张桌子和5把椅子的代价相等”这一条件,可以推出4张桌子就相当于10把椅子的代价,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元.解:5×(4÷2)+6=16(把)640÷16=40(元)40×5÷2=10O(元)答:桌子和椅子的单价辨别是100元、40元.36、想:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄.解:(45-5)÷4+5=10+5=15(岁)答:今年儿子15岁.37、想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍.解:18×2÷(4-1)=12(千克)12×4=48(千克)答:原来甲桶有油48千克,乙桶有油12千克.38、想:按照题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分.小丽共失去(100-79)分.再按照(100-79)÷8=2(题)……5(分),阐发答对、答错和没答的题数.解:(5×20-75)÷8=2(题)……5(分)20-2-1=17(题)答:答对17题,答错2题,有1题没答.39、想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米.按照路程、速度和时间的关系,就可求得所需时间.解:(240+264)÷(20+16)=504÷30=14(秒)答:从两车头相遇到两车尾相离,需要14秒.40、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和.解:(600+1150)÷700=1750÷700=2.5(分)答:火车通过隧道需2.5分.41、想:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间.解:60×2÷(60-50)=12(分)50×12=600(米)答:小明从家里到学校是600米.42、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,便可求第一次相遇时经过的时间.解:600÷(400-300)=600÷100=6(分)答:经过6分钟两人第一次相遇43、想:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积.解:(12÷2)×(8÷2)=24(平方厘米)答:这个长方形纸板原来的面积是24平方厘米.44、想:用去的钱数除以3就是1千克苹果和1千克梨的总钱数.从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数.=1.8(元)答:每千克梨1.8元.45、想:由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍.解:135÷3÷(2+1)=15(千米)15×2=30(千米)答:甲乙每小时辨别行30千米、15千米.46、想:两种球的数目相等,黑球取完时,白球还剩1 2个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几回.解:12÷(8-5)=4(次)8×4+5×4+12=64(个)或8×4×2=64(个)答:一共取了4次,盒子里共有64个球.47、想:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数.也就是它们的最小公倍数.解:12和18的最小公倍数是366时+36分=6时36分答:下次同时发车时间是上午6时36分.48、想:父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍.又知今年儿子15岁,两个岁数的差就是所求的问题.解:(45-15)÷(11-1)=3(岁)15-3=12(年)答:12年前父亲的年龄是儿子年龄的11倍.49、想:按照题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题.解:2、3、4、5的最小公倍数是6060-1=59(支)答:这盒铅笔最少有59支.50、想:按照只把底增加8米,面积就增加40平方米,可求出原来平行四边形的高.按照只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底.再用原来的底乘以原来的高就是要求的面积.解:(40÷5)×(40÷8)=40(平方米)答:平行四边形地原来的面积是40平方米.。

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析1. 一个数的百分之一比这个数的百分之10小9,这个数是多少?解析:假设这个数为x,则百分之一可以表示为0.01x,百分之10可以表示为0.1x。

根据题意可得0.01x = 0.1x - 9。

整理得到0.09x = 9,解得x = 100。

2. 假设一个数的百分之一是3,这个数是多少?解析:可以设这个数为x,则百分之一可以表示为0.01x。

根据题意可得0.01x = 3,解得x = 300。

3. 4的百分之一是多少?解析:可以直接计算得到4的百分之一为0.04。

4. 假设一个数的百分之一是0.02,这个数是多少?解析:设这个数为x,则百分之一可以表示为0.01x。

根据题意可得0.01x = 0.02,解得x = 2。

5. 判断下列四个小数哪一个是最小的?0.01,0.1,0.02,0.2。

解析:可以将四个小数都化为百分数进行比较。

0.01 = 1%,0.1 = 10%,0.02 = 2%,0.2 = 20%。

显然,1%是最小的。

6. 在数的添加、减少、乘法和除法中,哪种运算是无法实现负数的?解析:除法无法实现负数,因为任何数除以0都是无意义的。

7. 将0.35表示成分数形式。

解析:0.35可以表示为35/100,然后将分数进行约分得到7/20。

8. 填入下面的括号中:(2-3)÷(-2)=()。

解析:(2-3)÷(-2) = -1/(-2) = 1/2。

9. 计算:(-2)+3-5×(-4)÷(-2)。

解析:根据运算法则,先进行乘法和除法,再进行加法和减法。

(-2)+3-5×(-4)÷(-2) = (-2)+3-20÷(-2) = (-2)+3-(-10) = (-2)+3+10 = 11。

10. 计算:(-12)-0.5×(2-3)+4÷2。

解析:先进行括号内的运算,(-12)-0.5×(2-3)+4÷2 = (-12)-0.5×(-1)+4÷2 = (-12)-(-0.5)+4÷2 = (-12)+0.5+2 = -9.5。

【教育资料】小升初经典奥数试题及答案(四)学习精品

【教育资料】小升初经典奥数试题及答案(四)学习精品

2019年小升初经典奥数试题及答案(四)【编者按】为了丰富同学们的学习生活,查字典数学网小学频道为同学们搜集整理了-2019年小升初经典奥数试题及答案(四),供大家参考,希望对大家有所帮助!每道题的答题时间不超过15分钟。

【二年级】课内知识:275-89-75课外趣题:有三堆水果,每堆水果同样重。

第一堆:1个西瓜、1个菠萝、5个苹果。

第二堆:3个菠萝、11个苹果。

第三堆:1个西瓜、8个苹果。

每个苹果重150克,每个菠萝重克。

【三年级】课内知识:有若干盆鲜花摆成一个四层的中空方阵,最外层每边有12盆,一共摆了多少盆鲜花?课外趣题:三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。

已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。

如果得票比其它两人都多的候选人将成为班长,那么甲最少再得到多少票就能够保证当选?【四年级】课内知识:84372725课外趣题:在下边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数=。

【五年级】课内知识:有三根铁丝,分别长300厘米、444厘米、516厘米。

把它们截成同样长且尽可能长的整厘米小段(不许剩余),每小段折成一个小正方形。

然后将这些小正方形混放在一起拼成一个长方形(每拼一次都必须用上所有这些小正方形),这样可能拼成的长方形有多少种?课外趣题:用12根长为1厘米的小棍摆成一个面积为6平方厘米的多边形(至少用三种方法)。

【二年级】课内知识:275-89-75解答:原式=275-75-89=200-89=111课外趣题:有三堆水果,每堆水果同样重。

第一堆:1个西瓜、1个菠萝、5个苹果。

第二堆:3个菠萝、11个苹果。

第三堆:1个西瓜、8个苹果。

每个苹果重150克,每个菠萝重克。

解答:观察第一堆和第三堆可以看出1个菠萝=3个苹果,所以每个菠萝重1503=450克。

【三年级】课内知识:有若干盆鲜花摆成一个四层的中空方阵,最外层每边有12盆,一共摆了多少盆鲜花?解答:(12-1)4=44(盆)44+36+28+20=128(盆)课外趣题:三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。

小升初必考50道经典奥数题(含标准答案)

小升初必考50道经典奥数题(含标准答案)

小升初必考道经典奥数题(含答案).已知一张桌子地价钱是一把椅子地倍,又知一张桌子比一把椅子多元,一张桌子和一把椅子各多少元?、箱苹果重千克.一箱梨比一箱苹果多千克,箱梨重多少千克?.甲乙二人从两地同时相对而行,经过小时,在距离中点千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?.李军和张强付同样多地钱买了同一种铅笔,李军要了支,张强要了支,李军又给张强元钱.每支铅笔多少钱?.甲乙两辆客车上午时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河地两岸.由于河上地桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发地车站,到站时已是下午点.甲车每小时行千米,乙车每小时行千米,两地相距多少千米?(交换乘客地时间略去不计).学校组织两个课外兴趣小组去郊外活动.第一小组每小时走千米,第二小组每小时行千米.两组同时出发小时后,第一小组停下来参观一个果园,用了小时,再去追第二小组.多长时间能追上第二小组?.有甲乙两个仓库,每个仓库平均储存粮食吨.甲仓地存粮吨数比乙仓地倍少吨,甲、乙两仓各储存粮食多少吨?.甲、乙两队共同修一条长米地公路,甲队从东往西修天,乙队从西往东修天,正好修完,甲队比乙队每天多修米.甲、乙两队每天共修多少米?.学校买来张桌子和把椅子共付元,已知每张桌子比每把椅子贵元,桌子和椅子地单价各是多少元?.一列火车和一列慢车,同时分别从甲乙两地相对开出.快车每小时行千米,慢车每小时行千米,相遇时快车比慢车多行了千米,甲乙两地相距多少千米?.某玻璃厂托运玻璃箱,合同规定每箱运费元,如果损坏一箱,不但不付运费还要赔偿元.运后结算时,共付运费元.托运中损坏了多少箱玻璃?.五年级一中队和二中队要到距学校千米地地方去春游.第一中队步行每小时行千米,第二中队骑自行车,每小时行千米.第一中队先出发小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?.某厂运来一堆煤,如果每天烧千克,比计划提前一天烧完,如果每天烧千克,将比计划多烧一天.这堆煤有多少千克?.妈妈让小红去商店买支铅笔和个练习本,按价钱给小红元钱.结果小红却买了支铅笔和本练习本,找回元.求一支铅笔多少元?.学校组织外出参观,参加地师生一共人.一辆大客车比一辆卡车多载人,辆大客车和辆卡车载地人数相等.都乘卡车需要几辆?都乘大客车需要几辆?.某筑路队承担了修一条公路地任务.原计划每天修米,实际每天比原计划多修米,这样实际修地差米就能提前天完成.这条公路全长多少米?.某鞋厂生产双鞋,把这些鞋分别装入个纸箱和个木箱.如果个纸箱加个木箱装地鞋同样多.每个纸箱和每个木箱各装鞋多少双?.某工地运进一批沙子和水泥,运进沙子袋数是水泥地倍.每天用去袋水泥,袋沙子,几天以后,水泥全部用完,而沙子还剩袋,这批沙子和水泥各多少袋?.学校里买来了个保温瓶和个茶杯,共用了元钱.每个保温瓶是每个茶杯价钱地倍,每个保温瓶和每个茶杯各多少元?.两个数地和是,其中一个加数个位上是,去掉后,就与第二个加数相同.这两个数分别是多少?.一桶油连桶重千克,用去一半后,连桶重千克,桶重多少千米?.一桶油连桶重千克,倒出一半后,连桶还重千克,原来有油多少千克?.用一只水桶装水,把水加到原来地倍,连桶重千克,如果把水加到原来地倍,连桶重千克.桶里原有水多少千克?.小红和小华共有故事书本.如果小红给小华本,两人故事书地本数就相等,原来小红和小华各有多少本?.有桶油重量相等,如果从每只桶里取出千克,则只桶里所剩下油地重量正好等于原来桶油地重量.原来每桶油重多少千克?.把一根木料锯成段需要分钟,那么用同样地速度把这根木料锯成段,需要多少分?.一个车间,女工比男工少人,男、女工各调出人后,男工人数是女工人数地倍.原有男工多少人?女工多少人?.李强骑自行车从甲地到乙地,每小时行千米,小时到达,从乙地返回甲地时因逆风多用小时,返回时平均每小时行多少千米?.甲、乙二人同时从相距千米地两地相对而行,甲每小时行走千米,乙每小时走千米.如果甲带了一只狗与甲同时出发,狗以每小时千米地速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?.有红、黄、白三种颜色地球,红球和黄球一共有个,黄球和白球一共有个,红球和白球一共有个.三种球各有多少个?.在一根粗钢管上接细钢管.如果接根细钢管共长米,如果接根细钢管共长米.一根粗钢管和一根细钢管各长多少米?.水泥厂原计划天完成一项任务,由于每天多生产水泥吨,结果天就完成了任务,原计划每天生产水泥多少吨?.学校举办歌舞晚会,共有人参加了表演.其中唱歌地有人,跳舞地有人,既唱歌又跳舞地有多少人?.学校举办语文、数学双科竞赛,三年级一班有人,参加语文竞赛地有人,参加数学竞赛地有人,一科也没参加地有人.双科都参加地有多少人?.学校买了张桌子和把椅子,共用元.张桌子和把椅子地价钱相等,桌子和椅子地单价各是多少元?.父亲今年岁,年前父亲地年龄是儿子地倍,今年儿子多少岁?.有两桶油,甲桶油重是乙桶油重地倍,如果从甲桶倒入乙桶千克,两桶油就一样重,原来每桶各有多少千克油?.光明小学举办数学知识竞赛,一共题.答对一题得分,答错一题扣分,不答得分.小丽得了分,她答对几道,答错几道,有几题没答?.甲列火车长米,每秒行米;乙列火车长米,每秒行米,两车相向而行,从两车头相遇到两车尾相离需要几秒?.一列火车长米,通过一条长米地隧道,已知火车地速度是每分米,问火车通过隧道需要几分?.小明从家里到学校,如果每分走米,则正好到上课时间;如果每分走米,则离上课时间还有分.问小明从家里到学校有多远?.有一周长米地环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑米,乙每分钟跑米,经过几分钟二人第一次相遇?.有一个长方形纸板,如果只把长增加厘米,面积就增加平方米;如果只把宽增加厘米,面积就增加平方厘米.这个长方形纸板原来地面积是多少?.妈妈买苹果和梨各千克,付出元找回元.每千克苹果元,每千克梨多少元?.甲乙两人同时从相距千米地两地相对而行,经过小时相遇.甲地速度是乙地倍,甲乙两人每小时各行多少千米?.盒子里有同样数目地黑球和白球.每次取出个黑球和个白球,取出几次以后,黑球没有了,白球还剩个.一共取了几次?盒子里共有多少个球?.上午时从汽车站同时发出路和路公共汽车,路车每隔分钟发一次,路车每隔分钟发一次,求下次同时发车时间..父亲今年岁,儿子今年岁,多少年前父亲地年龄是儿子年龄地倍?.王老师有一盒铅笔,如平均分给名同学余支,平均分给名同学余支,平均分给名同学余支,平均分给名同学余支.问这盒铅笔最少有多少支?.一块平行四边形地,如果只把底增加米,或只把高增加米,它地面积都增加平方米.求这块平行四边形地原来地面积?、想:由已知条件可知,一张桌子比一把椅子多地元,正好是一把椅子价钱地()倍,由此可求得一把椅子地价钱.再根据椅子地价钱,就可求得一张桌子地价钱.解:一把椅子地价钱:÷()(元)一张桌子地价钱:×(元)答:一张桌子元,一把椅子元.、想:可先求出箱梨比箱苹果多地重量,再加上箱苹果地重量,就是箱梨地重量. 解:×(千克)答:箱梨重千克.、想:根据在距离中点千米处相遇和甲比乙速度快,可知甲比乙多走×千米,又知经过小时相遇.即可求甲比乙每小时快多少千米.解:×÷÷(千米)答:甲每小时比乙快千米.、想:根据两人付同样多地钱买同一种铅笔和李军要了支,张强要了支,可知每人应该得()÷支,而李军要了支比应得地多了支,因此又给张强元钱,即可求每支铅笔地价钱.解:÷[()÷]÷[÷]÷(元)答:每支铅笔元.、想:根据已知两车上午时从两站出发,下午点返回原车站,可求出两车所行驶地时间.根据两车地速度和行驶地时间可求两车行驶地总路程.解:下午点是时.往返用地时间:(时)两地间路程:()×÷×÷(千米)答:两地相距千米.、想:第一小组停下来参观果园时间,第二小组多行了[()]?千米,也就是第一组要追赶地路程.又知第一组每小时比第二组快()千米,由此便可求出追赶地时间.解:第一组追赶第二组地路程:()(千米)第一组追赶第二组所用时间:÷()÷(小时)答:第一组小时能追上第二小组.、想:根据甲仓地存粮吨数比乙仓地倍少吨,可知甲仓地存粮如果增加吨,它地存粮吨数就是乙仓地倍,那样总存粮数也要增加吨.若把乙仓存粮吨数看作倍,总存粮吨数就是()倍,由此便可求出甲、乙两仓存粮吨数.解:乙仓存粮:(×)÷()()÷÷(吨)甲仓存粮:×(吨)答:甲仓存粮吨,乙仓存粮吨.、想:根据甲队每天比乙队多修米,可以这样考虑:如果把甲队修地天看作和乙队天修地同样多,那么总长度就减少个米,这时地长度相当于乙()天修地.由此可求出乙队每天修地米数,进而再求两队每天共修地米数.解:乙每天修地米数:(×)÷()()÷÷(米)甲乙两队每天共修地米数:×(米)答:两队每天修米.、想:已知每张桌子比每把椅子贵元,如果桌子地单价与椅子同样多,那么总价就应减少×元,这时地总价相当于()把椅子地价钱,由此可求每把椅子地单价,再求每张桌子地单价.解:每把椅子地价钱:(×)÷()()÷÷(元)每张桌子地价钱:(元)答:每张桌子元,每把椅子元.、想:根据已知地两车地速度可求速度差,根据两车地速度差及快车比慢车多行地路程,可求出两车行驶地时间,进而求出甲乙两地地路程.解:()×[÷()]×[÷]×(千米)答:甲乙两地相距千米.、想:根据已知托运玻璃箱,每箱运费元,可求出应付运费总钱数.根据每损坏一箱,不但不付运费还要赔偿元地条件可知,应付地钱数和实际付地钱数地差里有几个()元,就是损坏几箱.解:(×)÷()÷(箱)答:损坏了箱.、想:因第一中队早出发小时比第二中队先行×千米,而每小时第二中队比第一中队多行()千米,由此即可求第二中队追上第一中队地时间.解:×÷()×÷(时)答:第二中队小时能追上第一中队.、想:由已知条件可知道,前后烧煤总数量相差()千克,是由每天相差()千克造成地,由此可求出原计划烧地天数,进而再求出这堆煤地数量.解:原计划烧煤天数:()÷()÷(天)这堆煤地重量:×()×(千克)答:这堆煤有千克.、想:小红打算买地铅笔和本子总数与实际买地铅笔和本子总数量是相等地,找回元,说明()支铅笔当作()本练习本计算,相差元.由此可求练习本地单价比铅笔贵地钱数.从总钱数里去掉个练习本比支铅笔贵地钱数,剩余地则是()支铅笔地钱数.进而可求出每支铅笔地价钱.解:每本练习本比每支铅笔贵地钱数:÷()÷(元)个练习本比支铅笔贵地钱数:×(元)每支铅笔地价钱:()÷()÷(元)也可以用方程解:设一枝铅笔元,则一本练习本为元.×???????????????????????????? ?????????????????????????答:每支铅笔元.、想:根据一辆客车比一辆卡车多载人,可求辆客车比辆卡车多载地人数,即多用地()辆卡车所载地人数,进而可求每辆卡车载多少人和每辆大客车载多少人.解:卡车地数量:÷[×÷()]÷[×÷]÷(辆)客车地数量:÷[×÷()]÷[]÷(辆)答:可用卡车辆,客车辆.、想:根据计划每天修米,这样实际提前地长度是(×)米.根据每天多修米可求已修地天数,进而求公路地全长.解:已修地天数:(×)÷÷(天)公路全长:()××(米)答:这条公路全长米.、想:根据已知条件,可求个纸箱转化成木箱地个数,先求出每个木箱装多少双,再求每个纸箱装多少双.解:个纸箱相当木箱地个数:×(÷)×=(个)一个木箱装鞋地双数:÷()÷(双)一个纸箱装鞋地双数:×÷(双)答:每个纸箱可装鞋双,每个木箱可装鞋双、想:由已知条件可知道,每天用去袋水泥,同时用去×袋沙子,才能同时用完.但现在每天只用去袋沙子,少用(×)袋,这样才累计出袋沙子.因此看袋里有多少个少用地沙子袋数,便可求出用地天数.进而可求出沙子和水泥地总袋数.解:水泥用完地天数:÷(×)÷(天)水泥地总袋数:×(袋)沙子地总袋数:×(袋)答:运进水泥袋,沙子袋.、想:根据每个保温瓶地价钱是每个茶杯地倍,可把个保温瓶地价钱转化为个茶杯地价钱.这样就可把个保温瓶和个茶杯共用地元钱,看作个茶杯共用地钱数.解:每个茶杯地价钱:÷(×)(元)每个保温瓶地价钱:×(元)答:每个保温瓶元,每个茶杯元.、想:已知一个加数个位上是,去掉,就与第二个加数相同,可知第一个加数是第二个加数地倍,那么两个加数地和,就是第二个加数地(+)倍.解:第一个加数:÷()第二个加数:×答:这两个加数分别是和.、想:由已知条件可知,千克和千克地差正好是半桶油地重量.千克是半桶油和桶地重量,去掉半桶油地重量就是桶地重量.解:()(千克)答:桶重千克.、想:由已知条件可知,千克与千克地差正好是半桶油地重量,再乘以就是原来油地重量.解:()×(千克)答:原来有油千克.、想:由已知条件可知,桶里原有水地()倍正好是()千克,由此可求出桶里原有水地重量.解:()÷()÷(千克)答:桶里原有水千克.、想:从“小红给小华本,两人故事书地本数就相等”这一条件,可知小红比小华多(×)本书,用共有地本去掉小红比小华多地本数,剩下地本数正好是小华本数地倍.解:小华有书地本数:(×)÷(本)小红有书地本数:×(本)答:原来小红有本,小华有本.、想:由已知条件知,桶油共取出(×)千克.由于剩下油地重量正好等于原来桶油地重量,可以推出()桶油地重量是(×)千克.解:×÷()(千克)答:原来每桶油重千克.、想:把一根木料锯成段,只锯出了()个锯口,这样就可以求出锯出每个锯口所需要地时间,进一步即可以求出锯成段所需地时间.解:÷()×()(分)答:锯成段需要分钟.、想:女工比男工少人,男、女工各调出人后,女工仍比男工少人.这时男工人数是女工人数地倍,也就是说少地人是女工人数地()倍.这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人.解:÷()(人)女工原有:(人)男工原有:(人)答:原有男工人,女工人.、想:由每小时行千米,小时到达可求出两地地路程,即返回时所行地路程.由去时小时到达和返回时多用小时,可求出返回时所用时间.解:×÷()(千米)答:返回时平均每小时行千米.、想:由题意知,狗跑地时间正好是二人地相遇时间,又知狗地速度,这样就可求出狗跑了多少千米.解:÷()(小时)×(千米)答:狗跑了千米.、想:由条件知,()表示三种球总个数地倍,由此可求出三种球地总个数,再根据题目中地条件就可以求出三种球各多少个.解:总个数:()÷(个)白球:(个)红球:(个)黄球:(个)答:白球有个,红球有个,黄球有个.、想:根据题意,米比米长地米数正好是根细钢管地长度,由此可求出一根细钢管地长度,然后求一根粗钢管地长度.解:()÷()(米)×(米)答:一根粗钢管长米,一根细钢管长米.、想:由题意知,实际天比原计划天多生产水泥(×)吨,而多生产地这些水泥按原计划还需用()天才能完成,也就是说原计划()天能生产水泥(×)吨.解:×÷()(吨)答:原计划每天生产水泥吨.、想:由题意知唱歌地人中也有跳舞地,同样跳舞地人中也有唱歌地,把两者相加,这样既唱歌又跑舞地就统计了两次,再减去参加表演地人,就是既唱歌又跳舞地人数.解:(人)答:既唱歌又跳舞地有人.、想:参加语文竞赛地人中有参加数学竞赛地,同样参加数学竞赛地人中也有参加语文竞赛地,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛地人数就统计了两次,所以将参加语文竞赛地人数加上参加数学竞赛地人数再加上一科也没参加地人数减去全班人数就是双科都参加地人数.解:(人)答:双科都参加地有人.、想:由“张桌子和把椅子地价钱相等”这一条件,可以推出张桌子就相当于把椅子地价钱,买张桌子和把椅子共用元,也就相当于买把椅子共用元.解:×(÷)(把)÷(元)×÷(元)答:桌子和椅子地单价分别是元、元.、想:年前父亲地年龄是()岁,儿子地年龄是()÷岁,再加上就是今年儿子地年龄.解:()÷(岁)答:今年儿子岁.、想:“如果从甲桶倒入乙桶千克,两桶油就一样重”可推出:甲桶油地重量比乙桶多(×)千克,又知“甲桶油重是乙桶油重地倍”,可知(×)千克正好是乙桶油重量地()倍.解:×÷()(千克)×(千克)答:原来甲桶有油千克,乙桶有油千克.、想:根据题意,题全部答对得分,答错一题将失去()分,而不答仅失去分.小丽共失去()分.再根据()÷(题)……(分),分析答对、答错和没答地题数.解:(×)÷(题)……(分)(题)答:答对题,答错题,有题没答.、想:“从两车头相遇到两车尾相离”,两车所行地路程是两车身长之和,即()米,速度之和为()米.根据路程、速度和时间地关系,就可求得所需时间.解:()÷()÷(秒)答:从两车头相遇到两车尾相离,需要秒.、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行地路程正好是车身与隧道长度之和.解:()÷÷(分)答:火车通过隧道需分.、想:在每分走米地到校时间内按两种速度走,相差地路程是(×)米,又知每秒相差()米,这就可求出小明按每分米地到校时间.解:×÷()(分)×(米)答:小明从家里到学校是米.、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即米,又知乙每分钟比甲多跑()米,即可求第一次相遇时经过地时间.解:÷()÷(分)答:经过分钟两人第一次相遇、想:由“只把宽增加厘米,面积就增加平方厘米”,可求出原来地长是:(÷)厘米,同理原来地宽就是(÷)厘米,求出长和宽,就能求出原来地面积.解:(÷)×(÷)(平方厘米)答:这个长方形纸板原来地面积是平方厘米.、想:用去地钱数除以就是千克苹果和千克梨地总钱数.从这个总钱数里去掉千克苹果地钱数,就是每千克梨地钱数.解:()÷÷(元)答:每千克梨元.、想:由题意知,甲乙速度和是(÷)千米,这个速度和是乙地速度地()倍. 解:÷÷()(千米)×(千米)答:甲乙每小时分别行千米、千米.、想:两种球地数目相等,黑球取完时,白球还剩个,说明黑球多取了个,而每次多取()个,可求出一共取了几次.解:÷()(次)××(个)或××(个)答:一共取了次,盒子里共有个球.、想:路和路下次同时发车时,所经过地时间必须既是分地倍数,又是分地倍数.也就是它们地最小公倍数.个人收集整理-ZQ解:和地最小公倍数是时分时分答:下次同时发车时间是上午时分.、想:父、子年龄地差是()岁,当父亲地年龄是儿子年龄地倍时,这个差正好是儿子年龄地()倍,由此可求出儿子多少岁时,父亲是儿子年龄地倍.又知今年儿子岁,两个岁数地差就是所求地问题.解:()÷()(岁)(年)答:年前父亲地年龄是儿子年龄地倍.、想:根据题意,可以将题中地条件转化为:平均分给名同学、名同学、名同学、名同学都少一支,因此,求出、、、地最小公倍数再减去就是要求地问题.解:、、、地最小公倍数是(支)答:这盒铅笔最少有支.、想:根据只把底增加米,面积就增加平方米,?可求出原来平行四边形地高.根据只把高增加米,面积就增加平方米,可求出原来平行四边形地底.再用原来地底乘以原来地高就是要求地面积.解:(÷)×(÷)(平方米)答:平行四边形地原来地面积是平方米.?地得到地得到地11 / 11。

小升初50道经典奥数题(附答案)

小升初50道经典奥数题(附答案)

小升初50道经典奥数题(附答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2.3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

小升初经典奥数试题及答案(十)

小升初经典奥数试题及答案(十)

2019年小升初经典奥数试题及答案(十)【编者按】为了丰富同学们的学习生活,查字典数学网小学频道为同学们搜集整理了-2019年小升初经典奥数试题及答案(十),供大家参考,希望对大家有所帮助!每道题的答题时间不超过15分钟。

【二年级】课内知识:用数学1、1、2、2、3、3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2个数字,两个3之间有3个数字。

课外趣题:小明、小红、小亮三个人去看电影,他们买了三张座位相邻的票,他们三人的座位顺序一共有多少种不同的安排方法?【三年级】课内知识:下面是两个具有一定的规律的数列,请你按规律填出空缺的项:(1)1,5,11,19,29,________,55。

(2)1,2,6,16,44,________,328。

课外趣题:一个正方形实心方阵,最外层总共72人,这个方阵共有多少人?【四年级】课内知识:学校门口放有红、黄、蓝三种颜色的花,其中黄花的盆数最多,既是红花盆数的4倍,也是蓝花盆数的3倍。

如果蓝花比红花多20盆,那么学校门口一共多少盆花?课外趣题:用数码0,1,2,3,4和5组成各位数码都不相同的六位数,并按从小到大的顺序排列,请问第502个数是多少?【五年级】课内知识:已知A与B的乘积为54,求2A+3B的最小值。

课外趣题:一个数各个数位上的数字各不相同且各个数位的数字之和为11,求这个数的最大值与最小值。

【二年级】课内知识:用数学1、1、2、2、3、3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2个数字,两个3之间有3个数字。

解答:312132或231213课外趣题:小明、小红、小亮三个人去看电影,他们买了三张座位相邻的票,他们三人的座位顺序一共有多少种不同的安排方法?解答:(小明,小红,小亮)、(小明,小亮,小红)、(小红,小明,小亮)、(小红,小亮,小明)、(小亮,小明,小红)、(小亮,小红,小明),共6种。

【三年级】课内知识:下面是两个具有一定的规律的数列,请你按规律填出空缺的项:(1)1,5,11,19,29,________,55。

小升初50道经典奥数题,有空练练手!(附答案以及详细解析)

小升初50道经典奥数题,有空练练手!(附答案以及详细解析)

小升初50道经典奥数题,有空练练手!(附答案以及详细解析)小升初奥数50题01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。

【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。

02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。

【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。

03、同学们进行广播操比赛,全班正好排成相等的6行。

小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。

从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。

04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。

第600颗是( )颜色。

【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66....6,余数为6,所以第600颗是黄颜色。

05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。

【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。

06、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。

【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。

07、锯一根10米长的木棒,每锯一段要2分钟。

如果把这根木棒锯成相等的5段,一共要( )分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
四年级有三个班,每班有两个班长,开班会时,每次每班只要一个班长参加。第一次到会的有A,B,C;第二次到会的有B,D,E;第三次到会的有A,E,F。请问哪两位班长是同班的?
整除问题:(高等难度)
一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。
平均数:(高等难度)
有4个不同的数字共可组成18个不同的4位数.将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也是完全平方数.那么这18个数的平均数是:_______.
追击问题:(高等难度)
牛吃草:(高等难度)
一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?
奇偶性应用:(高等难度)
在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色。
唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米。唐老鸭手中掌握一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n次指令,米老鼠就以原来速度的n×10%倒退一分钟,然后再按原来的速度继续前进。如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少是_____次。
巧克力豆:(高等难度)
甲、乙、丙三人各有巧克力豆若干粒,要求互相赠送.先由甲给乙、丙,甲给乙、丙的豆数依次等于乙、丙原来各人所有豆数.依同办法,再由乙给甲、丙,所给豆数依次等于甲、丙各人现有的豆数.最后由丙给甲、乙,所给的豆数依次等于甲、乙各人现有的豆数.互赠后每人恰好各有豆32粒,问原来三人各有豆多少粒?
7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
图形面积:(高等难度)
直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACDE与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分( 与梯形BTFG)的总面积等于多少?
应用题:(高等难度)
我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的 ,那么超过8立方米后,每立方米煤气应收多少元?
个位数字:(高等难度)
求 的个位数字。
修水渠问题:(高等难度)
某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人?
AB间距:(高等难度)
甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离
下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)
舞蹈节目:(高等难度)
一台晚会上有6个演唱节目和4个舞蹈节目。问:
(1)如果4个舞蹈节目要排在一起,有多少种不同的排列顺序?
(2)如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?
游泳路程:(高等难度)
正方形操场四周栽了一圈树,每两棵树相隔5米。甲乙二人同时从一个角出发,向不同的方向走去(如右图),甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。操场四周一共栽了多少棵树?
从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。
铅笔:(高等难度)
小雪、刘星、小雨,他们的关系特别好,一天妈妈分别给他们三个人一些铅笔,小雪觉得自己铅笔很多,于是给了刘星和小雨一部分,结果刘星和小雨的铅笔数量在现有的基础上增加了倍,这时小雨又觉得自己铅笔多了,于是小雨又把自己现有的铅笔给了小雪和刘星一部分,结果小雪和刘星的铅笔数量也在现有的基础上增加了倍,此时刘星的铅笔当然多了,于是刘星也将自己现有的铅笔给了小雪和小雨一部分,结果也是小雪和小雨的铅笔数量在现有的基础上增加了倍,此时他们三个人各自数了数自己的铅笔,发现他们三个人的铅笔数量竟然一样多!但最后小雪发现自己现有的铅笔数量比原来却少了支,同学们你们知道妈妈原来分别给他们三个人各多少支铅笔吗?
两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。如果不计转向的时间,那么在这段时间内两人共相遇多少次?
巧算公式:(高等难度)
时间路程:(高等难度)
甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟?
乒乓球训练(逻辑):(高等难度)
甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局.那么整个训练中的第3局当裁判的是_______.
唐老鸭和米老师赛跑:(高等难度)
年龄问题题目:(中等难度)
甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
【试题】刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的书每次搬20本,还要几次才能搬完?
【试题】小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?
如下图,甲从A出发,不断往返于AB之间行走。乙从C出发,沿C—E—F—D—C围绕矩形不断行走。甲的速度是5米/秒,乙的速度是4米/秒,甲从背后第一次追上乙的地点离D点____________米。
如图所示,ABCD是一边长为4cm的正方形,E是AD的中点,而F是BC的中点。以C为圆心、半径为4cm的四分之一圆的圆弧交EF于G,以F为圆心、半径为2cm的四分之一圆的圆弧交EF于H点,
(2007年第五届走美五年级初赛第15题)如图,8个单位正方体拼成大正方体,沿着面上的格线,从A到B的最短路线共有()条.
整除:(高等难度)
六位数2003□□能被99整除,它的最后两位数是()
计算:(高等难度)
1-100的自然数中,最多可以选出多少个数,使得选出的数中,每两个数的和都是3的倍数?最多可以选出多少个数,使得选出的数中,每两个数的和都不是3的倍数?
(1)L的最大值是多少?
(2)当L取最大值时,问所有的"夹角"的和是多少?
有4个自然数,用它们拼成四位数,其中最大数和最小数的和是11588,问拼成的四位数中第二小的数是______。
奇偶求和:(高等难度)
下表中有18个数,选出5个数,使它们的和为28,你能否做到?为什么?
ABC路程:(高等难度)
A、B、C三地一次分布在由西向东的一条道路上,甲、乙、丙分别从A、B、C三地同时出发,甲、乙向东,丙向西。乙、丙在距离B地18千米处相遇,甲、丙在B地相遇,而当甲在C地追上乙时,丙已经走过B地32千米。试问:A、C间的路程是多少千米?
速算问题:(高等难度)
如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?
三角面积:(高等难度)
在边长为1的正方形内随意放进9个点,证明其中必有3个点构成的三角形的面积不大于1/8
画圆:(高等难度)
平面上画____个圆,再画一条直线,最多可以把平面分成44部分。
拳击比赛,有甲1,甲2,乙1,乙2,丙1,丙2,丁1,丁2共8名选手,其中甲1不需要和甲2比,乙1不需要和乙2比....问总共需要多少场比赛?
(2005年第10届华杯赛决赛第14题)两条直线相交,四个交角中的一个锐角或一个直角称为这两条直线的"夹角"(见图4)。如果在平面上画L条直线,要求它们两两相交,并且"夹角"只能是15°、30°、45°、60°、75°、90°之一,问:
【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?
【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时
1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
2.12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
五位数 能被3整除,它的最末三个数字组成的三位数 能被2整除,求这个五位数.
在43的右边补上三个数字,组成一个五位数,使它能被3,4,5整除,求这样的最小五位数.
整除规律:(高等难度)
6539724能被4,8,9,24,36,72中的哪几个数整除?
五位数 能被12整除,求这个五位数
树间距:(高等难度)
货物的重量:(高等难度)
商店里有六箱重量不等的货物,分别装货15、16、18、19、20、31千克,有两位顾客买走了其中的5箱货物,而且一个顾客买的货物的重量是另一个顾客买的货物的2倍,问:商店剩下的一箱货物的重量是多少?
小明家与学校相距6千米.每天小明都以一定的速度骑自行车去学校,恰好在上课前5分钟赶到。这天,小明比平时晚出发了10分钟,于是他提速骑车,结果在上课前1分钟赶到了学校。已知小明提速后的速度是平时的1.5倍。小明平时骑车的速度是每小时多少千米?
相关文档
最新文档