石墨烯是什么
材料工程技术专业《科普 什么是石墨烯复合材料?6》

科普| 什么是石墨烯复合材料?一、石墨烯石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的。
2021年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中别离出石墨烯,证实它可以单独存在,两人也因此共同获得2021年诺贝尔物理学奖。
石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高2021。
同时它又有很好的弹性,拉伸幅度能到达自身尺寸的2021它是目前自然界最薄、强度最高的材料。
石墨烯目前最有潜力的应用是成为的替代品,制造超微型晶体管,用来生产未来的超级计算机。
用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。
另外,石墨烯几乎是完全透明的,只吸收2.3%的光。
另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。
这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。
二、石墨烯复合材料石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。
1、石墨烯复合材料的结构图1 石墨烯基复合材料的结构示意图〔a〕石墨烯负载的复合材料石墨烯负载的复合材料是在石墨烯外表引入第二组分并在其外表进行外延伸展得到的。
〔b〕石墨烯包裹的复合材料石墨烯包裹的复合材料是用石墨烯片将第二组分包裹得到的,可以更有效地防止第二组分的聚合。
〔c〕石墨烯内嵌的复合材料石墨烯内嵌的复合材料是将石墨烯纳米片作为填充物充分分散在第二组分的基体相中得到的。
其中基体相可以是纳米材料,也可以是块体材料组成。
〔d〕基于石墨烯层状复合材料石墨烯层状复合材料是将第二组分和石墨烯片交替堆积而成,该结构可以使石墨烯与第二组分的接触面积最大化,并有利于电子的产生、传输和别离。
2. 石墨烯基复合材料的分类石墨烯具有诸多优异的性能,如导电导热性好、韧性好、比外表积大等等,这些性能使得石墨烯基复合材料呈现出许多优异的特性。
石墨烯基础知识简介

For personal use only in study and research; not for commercial use1.石墨烯(Graphene)的结构石墨烯是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。
如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。
C原子外层3个电子通过sp²杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。
石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp²杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。
如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。
形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。
每个碳原子通过sp²杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。
图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。
图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。
前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。
双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。
单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。
石墨烯是什么用途

石墨烯是什么用途石墨烯是一种由碳原子构成的二维蜂窝状晶格结构材料,它是由一层厚度仅为一个原子的石墨片剥离而来的。
石墨烯的独特结构和性质使其具有广泛的应用前景,特别是在电子学、能源领域、生物医学、材料科学等领域。
首先,石墨烯在电子学领域有着巨大的应用潜力。
由于石墨烯具有高电子迁移率、高载流子流动速度和高热导率等优异的电学性能,被认为是下一代微电子器件的理想材料。
它可以用于制造高速晶体管、快速电子器件、高频电路和柔性电子器件等。
此外,由于石墨烯是有机材料,可以与有机分子相结合,具有制备新型有机太阳能电池等光电器件的潜力。
其次,石墨烯在能源领域也有重要的应用价值。
石墨烯具有优异的导电性和热导率,可以用作电池、超级电容器和储氢材料等能量存储和转换器件。
此外,石墨烯还可以用于制备太阳能电池、光催化材料和储能材料等,可以提高能量的转化效率和储存密度,并推进清洁能源的开发和利用。
此外,石墨烯还在材料科学领域发挥着重要作用。
石墨烯具有出色的力学性能,是最轻、最坚硬的材料之一,同时又具有良好的柔性和延展性。
因此,石墨烯可以用于制备高强度和轻质复合材料、纳米复合材料和柔性薄膜等。
此外,石墨烯还可以用于制备高性能的传感器、滤膜、分离膜和纳米材料等,可以解决环境污染和能源危机等重大问题。
在生物医学领域,石墨烯也被广泛应用。
石墨烯具有优异的生物相容性和生物安全性,可以作为药物传递系统、生物传感器和光学成像剂等。
石墨烯还可以用于制备生物传感器、基因传递系统和组织工程等,可以促进疾病的早期诊断、药物的靶向输送和组织的再生修复。
总之,石墨烯作为一种新型的纳米材料,具有许多独特的物理、化学和生物学性质,因此在电子学、能源领域、生物医学、材料科学等多个领域具有广泛的应用前景。
未来,石墨烯的研究和开发将继续推动科学技术的发展和社会的进步。
石墨烯简介

石墨烯的性质
电学特性:
石墨烯中的每个碳原子都有一个未成键的 π 电子,这些电子可形成与平面垂 直的π轨道,π电子可在这种长程π轨道中自由移动,从而赋予了石墨烯出色的导 电性能,石墨烯是具有零带隙的能带结构,其载流子可以使电子也可以是空穴
左图为石墨烯热导率测试方法,以 488nm 激 光加热,用石墨烯的拉曼光谱中 G 峰位移变化标 示石墨烯的温度变化,从而测得石墨烯热导率
Singh V, Joung D, Prog. Mater. Sci., 2011, 56, 1178–1271.
石墨烯的性质
其他性质:
单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g 边缘及缺陷处有孤对电子,使石墨烯具有铁磁性
场效应晶体管
石墨烯基晶体管:石墨烯加偏压成为半导体,作为晶体管源电极和漏电极之间
的通道;石墨烯无禁带,不能直接用于晶体管等逻辑元件,但可以采用将石墨烯制 成石墨烯纳米带、石墨烯量子点及双层石墨烯加偏压等方法使石墨烯禁带宽度不再 为 0 ,所用石墨烯有直接剥离的,也有 CVD 等工艺合成的,所用介电材料有 SiO2 、
以松香转移的石墨烯薄膜作为透明电极制备的大面积柔性OLED器件
大面积柔性OLED器件
上述研究结果于2017年2月24日在《自然-通讯》上在线发表(Nature Communications,
10.1038/NCOMMS14560, 2017)
DOI:
石墨烯的应用
传感器
由于氧化还原法制备的石墨烯(RGO)的边缘具有不同的功能,使其在电 化学传感器和生物传感器方面具有广泛应用前景,用RGO制备的场效应晶体管通 过其电导率、电容或掺杂物性能的变化对周围化学和生物环境变化做出响应
石墨烯是什么材料

石墨烯是什么材料
石墨烯是一种以sp2杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料。
石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。
扩展资料
石墨烯的优点:
石墨烯具有良好的强度、柔韧度、导电导热等特性。
它是目前为止导热系数最高的材料,具有非常好的热传导性能,所以它被大量运用在全新的采暖行业。
石墨烯的用途:
1、制造下一代超级计算机。
石墨烯是目前已知导电性能最好的材料,这种特性尤其适合于高频电路,石墨烯将是硅的替代品,可用来生产未来的.超级计算机,使电脑运行速度更快、能耗降低。
2、制造“太空电梯”的缆线。
科学家幻想将来太空卫星要用缆线与地面联接起来,那时卫星就成了有线的风筝,科学家现在终于找到了可以制造这种太空缆线的特殊材料,这就是石墨烯。
3、可作为液晶显示材料。
石墨烯是一种“透明”的导体,可以用来替代现在的液晶显示材料,用于生产下一代电脑、电视、手机的显示屏。
石墨烯的性质和应用

石墨烯的性质和应用随着科学技术的不断进步,许多新材料的诞生改变了我们的生活和工作方式。
其中,石墨烯是一种备受关注的新型材料。
它的特殊性质和广泛的应用前景吸引了无数科学家和工程师的关注。
本文就石墨烯的性质和应用进行探讨。
一、石墨烯的性质石墨烯是一种由碳原子组成的2D平面结构材料,具有许多独特的物理性质。
1. 单层结构石墨烯由单层的碳原子组成,具有纳米级厚度。
它的厚度只有一层原子,因此也被称为二维材料。
石墨烯的单层结构赋予了它其他材料所不具备的独特性质。
2. 强度高石墨烯的强度非常高,是钢铁的200倍以上。
它的强度来自于碳原子之间的强共价键。
在应用中,石墨烯的高强度可以使其成为构造材料、抗弯曲材料等。
3. 导电性好石墨烯的电阻率非常小,是铜的5倍,是硅的10倍。
这是因为石墨烯的碳原子之间结合紧密,电子可以自由地在其表面运动。
石墨烯的导电性和电子移动速度远高于其他材料,可用于制作导线、集成电路等。
4. 热传导性好石墨烯的热导率很高,是铜的两倍以上,这是由于碳原子之间的距离很短,区域摆动自由度少。
石墨烯可以作为散热材料、微型发电机等。
二、石墨烯的应用石墨烯的独特性质使其在许多领域都有着广泛的应用前景。
下面就石墨烯的一些应用进行简要介绍。
1. 电子学领域石墨烯是目前最好的导电材料之一,其热传导能力也非常强。
在电子领域,石墨烯可用于制作高速电子器件、新型集成电路等。
石墨烯的出现也有望解决传统硅电路面临的热问题。
2. 机械领域石墨烯的强度高、韧性好,也极具抗氧化性能。
这使其可以作为材料加固增强和防腐,也能用于制作高强度结构材料和防爆材料等。
3. 光电领域石墨烯具有极好的吸收、透过性能和宽光谱响应。
因此它可作为透光材料、红外光材料、发光材料和太阳能电池等。
4. 生物领域石墨烯在生物领域也有着广泛的应用,它可以用于制备药物载体、分子传感器和免疫芯片等。
总之,石墨烯是一种具有广泛应用潜力的新型材料。
虽然它的商业应用还处于发展阶段,但其一个个神奇的性质和应用前景已经吸引了许多科学家和工程师的关注。
石墨烯

石墨烯石墨烯声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
详情>> 石墨烯(二维碳材料)编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。
英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。
石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法(CVD)。
[1] 由于其十分良好的强度、柔韧、导电、导热、光学特性,在物理学、材料学、电子信息、计算机、航空航天等领域都得到了长足的发展。
作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。
极有可能掀起一场席卷全球的颠覆性新技术新产业革命。
中文名石墨烯外文名Graphene 发现时间2004年主要制备方法机械剥离法、气相沉积法、氧化还原法、SiC外延法主要分类单层、双层、少层、多层(厚层)基本特性强度柔韧性、导热导电、光学性质应用领域物理、材料、电子信息、计算机等目录1 研究历史2 理化性质? 物理性质? 化学性质3 制备方法? 粉体生产方法? 薄膜生产方法4 主要分类? 单层石墨烯? 双层石墨烯? 少层石墨烯? 多层石墨烯5 主要应用? 基础研究? 晶体管? 柔性显示屏? 新能源电池? 航空航天? 感光元件? 复合材料6 发展前景? 中国? 美国? 欧洲? 韩国? 西班牙? 日本研究历史编辑实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。
石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。
石墨烯性能简介

第一章石墨烯性能及相关概念1 石墨烯概念石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。
石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。
但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。
单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。
完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。
石墨烯具有优异的导热性能(3×103W/(m•K))和力学性能(1.06×103 GPa)。
此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。
石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。
石墨烯结构图2 石墨烯结构石墨烯指仅有一个原子尺度厚单层石墨层片,由sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。
石墨烯中碳-碳键长约为0.142nm。
每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。
垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。
石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。
形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。
在单层石墨烯中,每个碳原子通过sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。
单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。
石墨烯的结构非常稳定,碳原子之间连接及其柔韧。
受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。
石墨烯结构图

石墨烯时代
任正非在接受媒体采访时声称,未来10 至20年内会爆发一场技术革命,“我认为 这个时代将来最大的颠覆,是石墨烯时代 颠覆硅时代”,“现在芯片有极限宽度, 硅的极限是七纳米,已经临近边界了,石 墨是技术革命前沿”。这里提到的石墨烯。
元年到来
中国石墨烯产业技术创新战略联盟率领贝特 瑞、正泰集团、常州第六元素、亿阳集团等四家 上市公司的代表参加了西班牙的石墨烯会议,并 分别与意大利、瑞典代表团签订了深度战略合作 协议,为“石墨烯全球并购,中国整合”战略打 响了第一枪。此外,2015年3月初全球首批3万部 量产石墨烯手机在重庆发布,开启了石墨烯产业 化应用的新时代。石墨烯入选“十三五”新材料 规划已经基本落定,预计2015年将成为中国石墨 烯产业爆发元年
问题
• 15.阅读选文第③——⑦段,说说文章主要介绍了石墨烯 的哪三方面内容?(3分) • 16.为什么说石墨烯是未来材料的宠儿?(5分) • 17.阅读下面材料,借助上文中的相关知识,简要分析如 何解决锂电池的容量提升遇到的技术瓶颈问题。(5分) • 【链接材料】 • 当前,锂电池被广泛应用在手机、平板电脑、笔记本电脑、 可穿戴电子设备、电动汽车等众多产品中。正常使用下, 一个2500毫安时的锂电池往往撑不过一天,因此业界 一直在努力实现电池容量的突破,但锂电池的容量提升在 目前已经遇到技术瓶颈。
石墨烯结构图
石墨烯手机
什么是石墨烯?
• 石墨烯(Graphene)是一种二维碳材料,是单层石墨烯、 双层石墨烯和少层石墨烯的统称。石墨烯一直被认为是假 设性的结构,无法单独稳定存在,直至2004年,英国曼彻 斯特大学物理学家安德烈· 海姆(Andre Geim)和康斯坦 丁· 诺沃肖洛夫(Konstantin Novoselov),成功地在实验中 从石墨中分离出石墨烯,而证实它可以单独存在,两人也 因“在二维石墨烯材料的开创性实验”,共同获得2010年 诺贝尔物理学奖。并且,石墨烯在自然界也有产出,它体 现为高能物理状态下的圈量子的粒子态相。
石墨烯简介

石墨烯简介石墨烯简介(网络摘抄)概述2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯(Graphene),证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。
石墨烯是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。
石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。
同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。
它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。
石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。
用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。
另外,石墨烯几乎是完全透明的,只吸收2.3%的光。
另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。
这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。
作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为"黑金",是"新材料之王",科学家甚至预言石墨烯将"彻底改变21世纪"。
极有可能掀起一场席卷全球的颠覆性新技术新产业革命。
石墨烯基本特性电子运输在发现石墨烯以前,大多数(如果不是所有的话)物理学家认为石墨烯,热力学涨落不允许任何二维晶体在有限温度下存在。
所以,它的发现立即震撼了凝聚态物理界。
虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。
这些可能归结于石墨烯在纳米级别上的微观扭曲。
石墨烯还表现出了异常的整数量子霍尔行为。
其霍尔电导=2e2/h,6e2/h,10e2/h.... 为量子电导的奇数倍,且可以在室温下观测到。
这个行为已被科学家解释为“电子在石墨烯里遵守相对论量子力学,没有静质量”。
石墨烯综述

石墨烯综述1.1石墨烯概述石墨烯(Graphene)作为一种平面无机纳米材料,在物理、化学、科技、数码方面的发展都是极具前景的。
它的出现为科学界带来极大的贡献,机械强度高,导热和导电功能极具优势,原材料来源即石墨也相当丰富,是制造聚合复合物的最佳无机纳米技术。
由于石墨烯的运用很广泛,导致在工业界的发展存在很严重的一个问题就是其制作过程规模浩大,所以应该将其合理地分散到相应的聚合物内部,达到均匀分布的效果,同时平衡聚合物之间的作用力。
石墨烯的内部结构是以碳原子以sp 2杂化而成的,是一种单原子结构的平面晶体,其以碳原子为核心的蜂窝状结构。
一个碳原子相应的只与非σ键以外的三个碳原子按照相应的顺序连接,而其他的π则相应的与其他的的碳原子的π电子有机地组成构成离域大π键,在这个离域范围内,电子的移动不受限制,因为此特性使得石墨烯导电性能优异。
另一方面,这样的蜂窝状结构也是其他碳材料的基础构成元素。
如图1-1 所示,单原子层的最外层石墨烯覆盖组成零维的富勒烯,任何形状的石墨烯均可以变化形成壁垒状的管状[1]。
因为在力学规律上,受限于二维晶体的波动性,所以任何状态的石墨烯都不是平整存在的,而是稍有褶皱,不论是沉积在最底层的还是不收区域限制的。
,如图1-2 所示,蒙特卡洛模拟(KMC)做出了相应的验证[3]。
上面所提的褶皱范围在横向和纵向上都存在差异,这种微观褶皱的存在会在一定程度上引起静电,所以单层的会很容易聚集起来。
同时,褶皱的程度也会相应的影响其光电性能[3-6]图1-1. 石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维碳纳米管,也可堆叠形成三维的石墨[7]。
Figure 1-1. Graphene: the building material for other graphitic carbon materials. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite[7].图 1-2. 单层石墨烯的典型构象[1]。
石墨烯简单介绍

,是室温
构造与性能
热学性能
① 单层石墨烯旳
,
比碳纳米管旳而传
导率3000-3500Wm·k还要高,相比之下,工业界中被广泛使用旳散
热 材料金属铜旳热传导率只有400Wm·k
② 伴随石墨烯层数旳增长,其热传导率逐渐下降;当石墨烯从2层增 至4层时,其热导率从2800Wmk降低至1300Wmk;当层数到达5-8 层,减小到石墨旳热导率
2004英国曼彻斯特大学Andre Geim和他旳徒弟 Konstantin Novoselov在试验室用一种非常简朴旳措 施得到越来越薄旳石墨薄片。他们从石墨中剥离 出石墨片,然后将薄片旳两面粘在一种特殊旳胶 带上,撕开胶带,就能把石墨片一分为二。不断 地这么操作,于是薄片越来越薄,最终,他们得 到了仅由一层碳原子构成旳薄片,这就是石墨烯 。所以两人共同取得2023年诺贝尔物理学奖。
石墨烯应用
替代硅生产超级计算机
石墨烯是目前已知
旳材料。石墨烯旳
这种特征尤其适合于高频电路。高频电路是当代电子工业旳领头羊,
某些电子设备,例如手机,因为工程师们正在设法将越来越多旳信息
填充在信号中,它们被要求使用越来越高旳频率,然而手机旳工作频
率越高,热量也越高,于是,高频旳提升便受到很大旳限制。因为石 墨烯旳出现,高频提升旳发展前景似乎变得无限广阔了。 这使它在
研究人员发觉,在石墨烯样品微粒开始碎裂前,它们每100纳米距 离上可承受旳最大压力居然到达了大约2.9微牛。据科学家们测算,这 一成果相当于要施加55牛顿旳压力才干使1微米长旳石墨烯断裂。假如 物理学家们能制取出厚度相当于一般食品塑料包装袋旳(厚度约100纳
米)石墨烯,那么需要施加差不多两万牛旳压力才干将其扯断。换句 话说,假如用石墨烯制成包装袋,那么它将能承受大约两吨重旳物品。
石墨烯介绍

石墨烯介绍石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。
2004年英国曼彻斯特大学的物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫用微机械剥离法(简单点说就是用胶带粘石墨表层)成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。
1石墨烯的结构和性质物理结构:石墨烯,是由碳原子组成的单原子层平面薄膜,厚度仅为0.34纳米,单层厚度相当于头发丝直径的十五万分之一。
是目前世界上已知的最轻薄、最坚硬的纳米材料,透光性好,能折叠。
因为只有一层原子,电子的运动被限制在一个平面上,石墨烯也有着全新的电学属性。
石墨烯比表面积约为2630m2/g,热导率为5000W/m·k。
电学特性:石墨烯具有独特的载流子特性和无质量的狄拉克费米子属性。
其电子迁移率可达到2×105cm2/V·s,约为硅中电子迁移率的140倍,砷化镓的20倍,温度稳定性高,电导率可达108Ω/ m,面电阻约为31Ω/sq(310Ω/m2),比铜或银更低,是室温下导电最好的材料。
另外,石墨烯中电子载体和空穴载流子的半整数量子霍尔效应可以通过电场作用改变化学势而被观察到,而Novoselov等在室温条件下就观察到了石墨烯的这种量子霍尔效应。
2石墨烯在锂电池中的角色正是由于石墨烯有以上的纳米尺寸效应、具有极大的比表面积、良好的导电性以及优秀的机械性能等特性,石墨烯被世界各地科学家广泛研究,并制造出了“石墨烯锂电池”这样的概念,石墨烯是以什么角色参与到锂电池中的呢?1.石墨烯负极材料石墨烯由于其独特的二维结构、优异的电子传输能力以及超大的比表面积等优势极有潜力替代石墨成为新一代锂离子电池负极材料。
石墨烯的储锂机制与其他碳质相似,充电时锂离子从正极脱出经过电解质嵌入碳材料层间形成形成Li2C6,放电时锂离子脱出返回正极。
石墨烯材料介绍

石墨烯材料介绍1、简述石墨烯(Graphene)是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。
石墨烯的理论比表面积高达2 600m2Pg,具有突出的导热性能(3000W·m- 1·K- 1)和力学性能(1 060GPa),以及室温下较高的电子迁移率(15000cm2·V-1·s-1)。
此外,它的特殊结构,使其具有半整数的量子霍尔效应、永不消失的电导率等一系列性质,因而备受关注。
Graphene(石墨烯)是2004年由曼彻斯特大学科斯提亚·诺沃谢夫(Kostya Novoselov)和安德烈·盖姆(Andre Geim)发现的,他们使用的是一种被称为机械微应力技术(micromechanical cleavage)的简单方法。
正是这种简单的方法制备出来的简单物质一石墨烯推翻了科学界的一个长久以来的错误认识—任何二维晶体不能在有限的温度下稳定存在。
现在石墨火烯这种二维晶体不仅可以在室温存在,而且十分稳定的存在于通常的环境下。
石墨烯被称为“推动人类第四次工业革命”,“改变世界格局的材料之王”。
2、石墨烯特点1、力学性质——比钻石还要硬数据转换分析∶在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约2.9微牛。
据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂。
如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。
换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。
打个比方说单层石墨烯的强度,就像把大象的重量铅笔才能够用这支铅笔刺穿仅像保鲜膜一样厚度的石墨烯。
解读石墨烯四大应用领域

OFweek锂电网—中国锂电行业门户石墨烯四大应用领域全解读石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,是目前发现的硬度最高、韧性最强的纳米材料。
因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。
石墨烯相关专利开始呈现爆发式增长(2010年353件,2012年达1829件)。
总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。
全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成。
石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈;杰姆和克斯特亚;诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。
他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。
不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。
这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。
因此,两人在2010年获得诺贝尔物理学奖。
石墨烯应用领域中科院近期发布的一份报告指出,石墨烯的研究和产业化发展持续升温,从石墨烯专利领域分布来看,其应用技术研究布局热点包括:石墨烯用作锂离子电池电极材料、太阳能电池电极材料、薄膜晶体管制备、传感器、半导体器件、复合材料制备、透明显示触摸屏、透明电极等。
主要集中在如下四个领域:(一)传感器领域。
石墨烯因其独特的二维结构在传感器中有广泛的应用,具有体积小、表面积大、灵敏度高、响应时间快、电子传递快、易于固定蛋白质并保持其活性等特点,能提升传感器的各项性能。
主要用于气体、生物小分子、酶和DNA电化学传感器的制作。
新加坡南洋理工大学开发出了敏感度是普通传感器1000倍的石墨烯光传感器;美国伦斯勒理工学院研制出性能远超现有商用气体传感器的廉价石墨烯海绵传感器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯是什么?
石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。
石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。
虽然名字里带有石墨二字,但它既不依赖石墨储量也完全不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来神奇材料的风范。
如果再把它的潜在用途开个清单——保护涂层,透明可弯折电子元件,超大容量电容器,等等——那简直是改变世界的发明。
石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。
因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。
由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。
更多的描述
石墨烯的碳原子排列与石墨的单原子层相同,是碳原子以sp2杂化轨道呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。
石墨烯可想像为由碳原子和其共价键所形成的原子网格。
石墨烯的命名来自英文的graphite(石墨)+-ene(烯类结尾)。
石墨烯被认为是平面多环芳香烃原子晶体。
石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。
石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。
这种稳定的晶格结构使石墨烯具有优秀的导热性。
另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。
由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。
石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。
完美的石墨烯是二维的,它只包括六边形(等角六边形);如果有五边形和七边形存在,则会构成石墨烯的缺陷。
12个五角形石墨烯会共同形成富勒烯。
石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。
在2006年3月,佐治亚理工学院研究员宣布,他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路。
石墨烯的问世引起了全世界的研究热潮。
它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。
它诞生至今都十年了,但透明手机在哪呢?
其实就在2012年,因石墨烯而获得诺贝尔奖的康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)和他的同事曾经在《自然》上发表文章讨论石墨烯的未来,两年来的发展也基本证明了他们的预测。
他认为作为一种材料,石墨烯“前途是光明的、道路是曲折的”,虽然将来它也许能发挥重大作用,但是在克服几个重大困难之前,这一场景还不会到来。
更重要的是,考虑到产业更新的巨大成本,石墨烯的好处可能不足以让它简单地取代现有的设备——它的真正前景,或许在于为它的独到特性量身定做的全新应用场合。