红外吸收光谱分析原理介绍
红外吸收光谱原理
![红外吸收光谱原理](https://img.taocdn.com/s3/m/9a3f5062905f804d2b160b4e767f5acfa0c78316.png)
红外吸收光谱原理
红外吸收光谱原理是一种分析技术,用于研究物质的结构、组成和化学性质。
它基于物质分子对红外光的吸收特性进行分析。
红外光谱是由红外辐射区域的电磁波组成的。
红外光的频率范围通常从1×10^12 Hz到3×10^14 Hz,对应的波长范围从0.8
微米到1000微米。
物质分子在这个频率范围内对特定波长的
红外光有吸收的能力,这与分子结构和化学键的特性有关。
原理上,红外吸收光谱是通过测量红外光通过待测物质后的强度变化来进行的。
当红外光通过物质时,分子会吸收与其振动和转动相对应的能量。
物质中的不同化学键和功能团会产生不同的吸收峰,这样就能通过红外光谱图谱来确定物质的结构和组成。
红外光谱仪通常由光源、样品室、光谱仪和检测器组成。
光源产生红外光束,经过样品室后,光束中的红外光被样品吸收或透射,然后进入光谱仪。
光谱仪将红外光根据其波长分解成不同的频率,并将其转换为电信号。
最后,检测器测量电信号的强度,形成红外光谱图。
红外吸收光谱原理的优势在于其非破坏性和高分辨率的特点。
它可以应用于各种领域,如化学、材料科学、生物科学等。
通过对物质的红外吸收光谱进行分析,可以快速得到物质的结构信息和组成成分,为研究和实际应用提供有价值的信息。
红外吸收光谱的原理及应用
![红外吸收光谱的原理及应用](https://img.taocdn.com/s3/m/16b49cd4dc88d0d233d4b14e852458fb770b38f1.png)
红外吸收光谱的原理及应用一、红外吸收光谱的原理红外吸收光谱(Infrared Absorption Spectroscopy)是一种常见的光谱分析技术,它利用物质分子对红外辐射的吸收特性进行分析和研究。
红外光谱的原理基于分子的振动和转动引起的能量变化。
在红外辐射的作用下,分子会吸收特定波长或频率的光,从而发生能级跃迁并产生吸收峰。
根据不同的吸收峰位置和强度,可以推断物质的结构、组成和化学环境等信息。
红外吸收光谱的原理主要包括以下几个方面: 1. 分子的振动和转动:分子在吸收红外辐射时,会发生振动和转动。
振动包括拉伸、弯曲和扭转等不同形式,每个分子都有特定的振动模式和频率,使其能够吸收不同波长的红外辐射。
2. 分子吸收特定波长的光:分子在特定波长范围内吸收红外辐射,产生吸收峰。
根据吸收峰的位置和强度,可以确定分子的化学键、官能团和分子结构等信息。
3. 光谱图的解读:通过测量物质对红外辐射的吸收情况,可以得到红外光谱图。
光谱图通常以波数为横轴,吸收峰强度为纵轴,常用峰位和峰形进行分析和判断。
二、红外吸收光谱的应用红外吸收光谱具有广泛的应用领域,主要包括以下几个方面:1. 化学分析红外光谱在化学分析中起着重要作用,可以用于鉴定和分析各种有机和无机化合物。
通过测量样品的红外光谱,可以获得化学键和官能团的信息,从而判断物质的结构和组成。
红外光谱被广泛应用于有机化学、药物分析、环境监测等领域。
2. 药物研发红外光谱在药物研发中具有重要的应用价值。
通过红外光谱分析药物的结构和成分,可以判断药物的稳定性、纯度和相态等性质。
红外光谱还可以用于药物的质量控制和检验,确保药物的安全有效。
3. 材料科学在材料科学领域,红外光谱可以用于材料的表征和分析。
不同材料的红外光谱具有独特的特征,可以用于识别和鉴别材料,评估材料的结构、质量和性能。
红外光谱被广泛应用于聚合物材料、无机材料、涂层材料等领域。
4. 生物医学研究红外光谱在生物医学研究中有着重要的应用。
红外光谱分析原理
![红外光谱分析原理](https://img.taocdn.com/s3/m/18657249df80d4d8d15abe23482fb4daa58d1dd0.png)
红外光谱分析原理红外光谱分析是一种常见的分析技术,它利用物质在红外光线作用下的吸收特性来确定物质的结构和组成。
红外光谱分析原理是基于物质分子的振动和转动引起的吸收现象,通过对物质在红外光线作用下的吸收特性进行测量和分析,可以得到物质的红外吸收光谱图谱,从而确定物质的结构和组成。
首先,让我们来了解一下红外光谱的基本原理。
红外光谱是指在红外光波段(波长范围为0.78-1000μm)内,物质对红外辐射的吸收、散射、透射等现象。
在红外光谱中,物质分子在红外光线的作用下,会发生振动和转动,从而产生特定的吸收峰。
这些吸收峰的位置和强度可以提供有关物质结构和组成的信息。
其次,红外光谱分析原理是基于物质分子的振动和转动引起的吸收现象。
在红外光线的作用下,分子内的原子和化学键会发生振动,不同的分子会有不同的振动频率和振动模式,因此会在不同的波数范围内吸收不同波长的红外光线。
通过测量物质在红外光线作用下的吸收特性,可以得到物质的红外吸收光谱图谱,从而确定物质的结构和组成。
红外光谱分析原理包括红外光谱仪的工作原理和光谱图的解读。
红外光谱仪是利用光源产生的红外光线照射样品,然后通过检测器测量样品对红外光线的吸收情况。
通过对样品在不同波数范围内的吸收特性进行测量,可以得到样品的红外吸收光谱图谱。
而光谱图的解读则是通过对光谱图谱中吸收峰的位置、形状和强度进行分析,来确定样品的结构和组成。
红外光谱分析原理在化学、生物、材料等领域有着广泛的应用。
在化学领域,红外光谱分析可以用于确定化合物的结构和功能团,从而帮助化学家进行有机合成和结构表征。
在生物领域,红外光谱分析可以用于研究生物分子的结构和功能,例如蛋白质、核酸和多糖的结构分析。
在材料领域,红外光谱分析可以用于研究材料的结构和性能,例如聚合物、纳米材料和表面膜的分析。
总之,红外光谱分析原理是基于物质分子在红外光线作用下的吸收特性来确定物质的结构和组成。
通过对物质在红外光线作用下的吸收特性进行测量和分析,可以得到物质的红外吸收光谱图谱,从而确定物质的结构和组成。
红外光谱分析的原理
![红外光谱分析的原理](https://img.taocdn.com/s3/m/af2ebf64e3bd960590c69ec3d5bbfd0a7856d55d.png)
红外光谱分析的原理
红外光谱分析是一种常用的分析技术,它基于物质对红外辐射的吸收特性。
红外辐射波长范围一般在1-1000微米,对应的
频率范围为300 GHz至300 THz。
分析样品时,将红外光束引
入样品,并测量透射或散射光谱。
根据样品中不同成分对红外辐射的吸收特性,可以获取到特定的红外吸收谱图。
红外光谱分析的原理主要是基于分子振动的特性。
红外光用于激发样品中的化学键或分子组成,导致分子进行不同振动模式,如对称伸缩、非对称伸缩、弯曲、扭转等。
不同的分子振动模式对应不同的红外光谱带。
通过分析样品中不同谱带的强度和位置,可以确定样品中的化学功能团和它们的相对含量。
红外光谱分析技术包括四种主要类型:吸收光谱、透射光谱、反射光谱和散射光谱。
吸收光谱通过测量样品对红外光吸收的强度来分析样品的成分和它们之间的相对含量。
透射光谱利用测量穿过样品的透射光强度来分析样品的组成和结构。
反射光谱通过照射样品表面并测量反射光的强度来分析样品的特性。
散射光谱通过测量样品中散射的红外光来获得有关样品粒子大小和形状的信息。
红外光谱分析在许多领域中得到广泛应用,特别是在有机化学、生化分析、材料科学和环境监测等领域。
通过对红外吸收谱的解析和比对,可以快速准确地识别和鉴定样品中的化合物。
此外,红外光谱分析技术还具有非破坏性、实时性和高灵敏度的优点,因此成为许多科学研究和工业应用中不可或缺的分析手段。
红外光谱分析原理
![红外光谱分析原理](https://img.taocdn.com/s3/m/579525fb68dc5022aaea998fcc22bcd126ff42eb.png)
红外光谱分析原理红外光谱分析是一种常用的化学分析方法,它利用物质对红外光的吸收特性来确定物质的结构和成分。
红外光谱分析原理是基于物质分子的振动和转动引起的特定频率的吸收现象。
下面将详细介绍红外光谱分析的原理及其应用。
首先,红外光谱分析原理是建立在分子的振动和转动运动上的。
分子内部的原子以不同的方式振动和转动,产生了不同的红外光谱。
当分子受到红外光的照射时,部分红外光被吸收,而其余的红外光则被散射或透射。
通过测量被吸收的红外光的强度和频率,就可以得到物质的红外光谱图谱。
其次,红外光谱分析原理是基于物质的分子结构和成分来确定的。
不同的分子结构和成分会导致不同的红外光谱特征。
因此,通过对比待测物质的红外光谱和已知物质的红外光谱,就可以确定待测物质的结构和成分。
此外,红外光谱分析原理还可以用于定量分析。
通过测量红外光谱的吸收峰的强度和频率,可以确定物质的含量。
这种定量分析方法被广泛应用于化学、生物、医药等领域。
总的来说,红外光谱分析原理是一种非常重要的化学分析方法,它可以用于确定物质的结构和成分,进行定量分析,以及研究物质的性质和反应。
在实际应用中,红外光谱分析已经成为化学、生物、医药等领域的重要工具,为科学研究和工程应用提供了重要的支持。
综上所述,红外光谱分析原理是基于物质分子的振动和转动引起的特定频率的吸收现象,通过测量红外光谱的吸收强度和频率,可以确定物质的结构和成分,进行定量分析,以及研究物质的性质和反应。
红外光谱分析在化学、生物、医药等领域具有重要的应用价值,为科学研究和工程应用提供了重要的支持。
红外光谱分析原理
![红外光谱分析原理](https://img.taocdn.com/s3/m/826662af162ded630b1c59eef8c75fbfc77d94b7.png)
红外光谱分析原理
红外光谱分析是一种常用的无损检测方法,用于确定化学物质的结构和组成。
其原理基于分子的光谱吸收特性,通过测量样品在不同波长红外辐射下的吸收光谱,来识别样品中的化学键和官能团。
红外光谱分析使用的是红外辐射,其波长范围为0.78至1000
微米,对应的频率范围为12800至10波数。
样品与红外辐射
相互作用后,会吸收一部分光谱,形成一个特定的吸收带。
每个分子都有一个独特的红外吸收谱图,因此通过比较样品的红外吸收谱和已知物质的红外谱图数据库,可以确定样品的成分。
红外光谱分析所测量的是样品对不同波长红外辐射的吸收强度。
红外辐射在与样品相互作用时,其能量与样品的分子振动模式相互转移。
不同官能团和化学键的振动会在红外光谱上表现出不同的吸收带,从而反映出样品的化学组成和结构信息。
常见的红外光谱吸收带包括相对于振动的拉伸、弯曲和扭转等模式。
一般来说,红外光谱的吸收带呈现为峰的形式,峰的位置和形状可以提供有关样品成分和结构的信息。
例如,C-H键的伸缩振动在波数范围2800至3000波数之间,C=O键的伸
缩振动在1650至1800波数之间。
红外光谱分析可以应用于各种领域,包括化学、制药、环境监测等。
它是一种快速、准确、无损的分析方法,能够对样品进行定性和定量分析。
此外,红外光谱仪的设备也逐渐变得便携化和小型化,使得红外光谱分析更加便捷和实用。
红外光谱工作原理
![红外光谱工作原理](https://img.taocdn.com/s3/m/3d3558500a4e767f5acfa1c7aa00b52acfc79cee.png)
红外光谱工作原理一、简介红外光谱技术是一种通过测量物质对红外光的吸收来研究物质分子结构的分析方法。
由于它能够提供关于分子化学键的丰富信息,因此被广泛应用于化学、生物学、医学和环境科学等领域。
二、基本原理红外光谱的原理基于分子振动和转动能级跃迁。
当特定波长的红外光照射到物质上时,如果光子的能量与分子振动或转动能级差相匹配,那么该光子将被吸收。
通过测量不同波长下的吸收情况,我们可以获得分子的振动和转动信息,进一步推断出分子结构。
在红外光谱中,波长范围在 2.5~25μm(对应频率为4000~400cm-1)的红外光被称为"红外线",是研究的主要区域。
由于不同化学键或基团在该区域有不同的吸收特征,因此可以用来鉴别不同的化学物质。
三、红外光谱的特点1.特征性:每种分子都有自己独特的红外光谱,类似于人的指纹,因此可以通过红外光谱来确定物质的分子组成。
2.敏感性:红外光谱对于某些特定的化学键非常敏感,例如C-H、O-H和N-H等,因此可以用于检测痕量物质的存在。
3.无损分析:红外光谱是一种非破坏性分析方法,样品在分析过程中不会被破坏或消耗,可以用于后续的其它分析。
4.局限性:对于一些极性分子或大分子,其红外吸收可能较弱,导致其红外光谱的分辨率较低。
此外,由于水的强红外吸收,水溶液中的样品在红外光谱分析中可能会受到限制。
四、红外光谱的应用1.物质鉴定:利用红外光谱的特征性,可以用于鉴定未知物质的化学组成。
只需将未知物的红外光谱与已知化合物的红外光谱进行比对,即可确定未知物的分子结构。
2.化学反应监控:在化学反应过程中,通过实时监测反应物和产物的红外光谱变化,可以了解反应进程和反应机理。
这对于化学合成和化学反应动力学研究具有重要意义。
3.生物样品分析:由于生物分子如蛋白质、核酸等具有丰富的红外活性基团,红外光谱技术可以用于研究生物分子的结构和功能。
例如,蛋白质二级结构的研究、DNA序列分析等。
红外吸收法
![红外吸收法](https://img.taocdn.com/s3/m/9d7ee81fbc64783e0912a21614791711cd797942.png)
红外吸收法红外吸收法,又称作傅里叶红外光谱法,简称FTIR。
它是一种常用于物质组成分析的技术手段,也是近年来生物医药研究领域越来越受关注的技术手段之一。
那么什么是红外吸收法呢?以下是一些相关参考内容。
一、原理简介红外吸收法是一种光谱学方法,它利用吸收红外辐射的物质的特点来分析样品,从而推断出样品的化学组成和结构。
当样品吸收红外光时,分子的化学键会发生振动、弯曲和拉伸,这些振动会发出独特的红外辐射。
通过检测这些辐射,可以获取样品的红外光谱图,从而推断出样品的组成和结构。
二、仪器构成红外吸收法的实现需要红外吸收光谱仪,它通常由光源、样品室、光学元件、检测器和数据处理系统五部分组成。
其中,光源提供可见到红外的连续谱线辐射,样品室用于存放样品,光学元件用于对样品中的光进行分析和转换,检测器则将样品吸收后的光信号转换为电信号,最后数据处理系统会将电信号转换为图形输出。
三、应用领域红外吸收法广泛应用于化学、制药、食品、材料等领域的组成分析和质量控制。
在生物医药领域,红外吸收法也得到越来越多的应用。
例如,用于分析药物的结构和纯度,检测细胞和组织的成分,以及测定蛋白质、核酸和多糖等生物大分子的结构等。
四、优缺点红外吸收法具有灵敏度高、非破坏性、无需处理或加工样品等优点,能够同时分析多组分样品,并可以检测样品中的微量成分。
但同时也存在如对水分敏感等问题,需要进行正确保养和维护。
总体来说,红外吸收法是一种十分有用的分析技术,可以广泛应用于工业和科研领域。
随着其应用范围的不断扩大,红外吸收法的研究也在不断深入,相信在不久的将来,红外吸收法会在更多方面得到应用和推广。
红外光谱测试分析
![红外光谱测试分析](https://img.taocdn.com/s3/m/652071933086bceb19e8b8f67c1cfad6185fe97a.png)
红外光谱测试分析引言:红外光谱测试是一种常用的实验技术,用于分析样品的化学结构、官能团及其化学环境。
它是通过观察和记录样品在红外区域(4000至400 cm^-1)的吸收、散射或透射红外辐射而得到的。
红外光谱测试广泛应用于有机、无机、生物、聚合物等领域。
本文将介绍红外光谱测试的原理、仪器、样品制备以及数据分析等内容。
一、红外光谱测试原理红外光谱测试基于物质与红外辐射的相互作用。
红外光谱仪将红外辐射通过样品,然后测量样品吸收、散射或透射的光强。
红外辐射包含许多波长,在红外区域中的每种波长都与特定的分子振动模式相对应。
当样品中的分子振动发生时,它们会吸收特定波长的红外光,从而产生特征峰。
根据这些特征峰的位置和强度可以推断样品的化学组成和结构。
二、红外光谱测试仪器红外光谱测试仪器主要由光源、样品盒、分光器和探测器等组成。
常见的红外光谱仪有傅里叶变换红外光谱仪(FTIR)和色散红外光谱仪(dispersive IR)。
其中,FTIR光谱仪具有高分辨率、高灵敏度和快速测量的优点,被广泛应用于科研和工业领域。
三、样品制备样品制备是红外光谱测试的关键步骤之一、样品可以是固体、液体或气体。
对于固体样品,常用的方法是将样品与适合的红外吸收剂混合,然后挤压成适当的片状样品。
对于液体样品,可以使用液态电池夹持装置保持样品在红外光束中。
对于气体样品,需要将气体置于透明的气室中,并对室内气体进行红外光谱的测量。
四、红外光谱数据分析红外光谱数据分析是针对测得的吸收谱进行的。
常见的红外光谱数据分析包括鉴定功能性团、质谱相关性分析和量子化学计算等。
鉴定功能性团是通过对比样品的吸收峰位置和精确峰位表进行的。
质谱相关性分析是利用红外光谱和质谱数据之间的相关性,为红外光谱的解释提供重要信息。
量子化学计算是通过计算得到的理论红外光谱与实际测量的红外光谱进行比对,以验证实验结果的准确性。
结论:红外光谱测试是一种重要的化学分析技术,广泛应用于化学、材料、药物和环境等领域。
红外光谱分析
![红外光谱分析](https://img.taocdn.com/s3/m/651a97abf9c75fbfc77da26925c52cc58bd6901d.png)
红外光谱分析简介红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,用于研究物质的结构和组成。
通过测量物质对红外辐射的吸收和散射情况,可以获取有关分子振动和结构的信息。
红外光谱分析广泛应用于有机化合物的鉴定和定量分析、材料分析、环境和食品安全监测等领域。
原理红外光谱分析基于物质分子的振动和转动产生的谱线。
大部分物质的振动频率位于红外光谱范围内,因此该技术可以用来研究物质的结构和组成。
红外光谱分析的原理可概括为以下几个方面:1.吸收谱线:物质分子在特定波长的红外辐射下,会吸收特定频率的红外光,产生吸收谱线。
不同官能团或结构单位的振动频率不同,因此吸收谱线可以用来识别物质的组成和结构。
2.波数:红外光谱中使用波数来表示振动频率。
波数与波长的倒数成正比,常用的单位是cm-1。
波数越大,振动频率越高。
3.力常数:物质分子中的振动频率受到分子内力的限制,可以通过量化力常数来描述。
力常数与振动能量相关,可以通过红外光谱数据计算得到。
4.傅里叶变换红外光谱(FTIR):FTIR是一种常用的红外光谱仪器,利用傅里叶变换原理将红外辐射的吸收信号转换为频率谱线。
FTIR具有快速、高分辨率和高灵敏度的特点,适用于各种物质的分析。
实验步骤进行红外光谱分析通常需要以下步骤:1.样品制备:将待分析的样品制备成适当形式,如固体样品可以通过压片或混合胶制备成薄片,液体样品可以直接放置在红外吸收盒中。
在制备过程中需要注意去除杂质和保持样品的均匀性。
2.仪器校准:使用已知物质进行仪器校准,确保红外光谱仪的准确性和灵敏度。
校准样品通常是有明确红外光谱特征的化合物,如苯环等。
3.获取红外光谱:将样品放置在红外光谱仪中,启动仪器进行红外辐射的扫描。
扫描过程中,红外光谱仪会记录样品对吸收红外辐射的响应。
得到光谱数据后,可以进行后续的数据处理和分析。
4.数据处理和分析:利用软件工具对得到的光谱数据进行处理和分析。
红外光谱的介绍
![红外光谱的介绍](https://img.taocdn.com/s3/m/a2937224cbaedd3383c4bb4cf7ec4afe04a1b10d.png)
红外光谱的介绍一、红外光谱技术概述红外光谱是一种重要的光谱分析技术,通过测量物质对红外光的吸收特性,可以揭示物质内部的分子结构和化学组成。
红外光谱技术具有无损、快速、准确的特点,广泛应用于化学、生物学、医学、环境科学等领域。
二、红外光谱的基本原理红外光谱的原理基于分子振动和转动能级跃迁。
当一束特定波长的红外光照射到样品上时,如果光子的能量与分子振动或转动能级差相匹配,就会发生能级跃迁,分子吸收光子能量并转化为振动或转动能量。
通过测量光子被吸收的波长和强度,可以推导出样品的分子结构和组成。
三、红外光谱的类型根据测量的波长范围,红外光谱可以分为近红外光谱、中红外光谱和远红外光谱。
中红外光谱是研究最多和应用最广泛的红外光谱类型,其波长范围在2.5~25μm之间。
中红外光谱主要由分子振动能级跃迁产生,可以提供丰富的分子结构信息。
四、红外光谱的应用1. 化学分析:红外光谱可以用于鉴定未知化合物的结构和组成,通过比对标准谱图数据库可以确定化合物类型。
2. 药物分析:红外光谱可以用于药物质量控制和药品真伪鉴别,有助于确保药物的有效性和安全性。
3. 食品分析:红外光谱可以用于食品成分分析和质量检测,如检测食品中的添加剂、营养成分和污染物。
4. 环境监测:红外光谱可以用于检测环境中的有害物质,如污染物、有毒气体等,有助于环境监测和治理。
5. 生物医学研究:红外光谱可以用于生物医学研究,如蛋白质结构分析、细胞代谢研究等,有助于深入了解生物分子结构和功能。
6. 工业生产:红外光谱可以用于工业生产中原材料、中间产物和最终产品的质量控制,提高生产效率和产品质量。
7. 考古学研究:红外光谱可以用于文物鉴定和保护,如鉴定文物材料的成分和年代,为文物保护提供科学依据。
五、红外光谱技术的发展趋势随着科技的不断发展,红外光谱技术也在不断进步和完善。
未来,红外光谱技术的发展将主要集中在以下几个方面:1. 高分辨率光谱仪的开发:提高光谱仪的分辨率和灵敏度,能够更准确地分析复杂样品中的微量组分。
红外光谱的原理
![红外光谱的原理](https://img.taocdn.com/s3/m/7ae311f4f021dd36a32d7375a417866fb94ac042.png)
红外光谱的原理红外光谱是一种用于分析物质结构和成分的重要工具,它利用物质对红外辐射的吸收特性来获取样品的信息。
红外光谱分析是基于分子在吸收红外辐射时发生的振动和转动的原理,通过测定物质在红外光谱范围内的吸收特性,可以得到物质的结构、组成和性质等信息。
红外光谱的原理主要包括以下几个方面:1. 分子振动和转动。
分子在吸收红外辐射时会发生振动和转动。
分子内部的原子围绕共振频率进行振动,而整个分子则围绕其自身的转动轴进行转动。
不同的化学键和官能团对红外辐射的吸收具有特定的频率和强度,因此可以通过观察样品在不同频率下的吸收情况来确定其化学结构和成分。
2. 红外光谱图谱。
红外光谱图谱是以波数(频率的倒数)为横坐标,吸收强度为纵坐标的图谱。
不同的化学键和官能团在红外光谱图谱上呈现出特定的吸收峰,通过对比样品的光谱图谱和标准物质的光谱图谱,可以确定样品的结构和成分。
3. 红外光谱仪。
红外光谱仪是用于测定样品红外光谱的仪器,它通常由光源、样品室、光学系统和检测器等部分组成。
光源产生红外辐射,样品室将样品置于辐射中,光学系统将样品吸收的辐射转换为信号,检测器将信号转化为光谱图谱。
红外光谱仪通常具有高分辨率、高灵敏度和高稳定性,能够准确地测定样品的红外光谱。
4. 红外光谱的应用。
红外光谱在化学、生物、材料、环境等领域具有广泛的应用价值。
在化学分析中,红外光谱可以用于确定化合物的结构和成分;在生物医学领域,红外光谱可以用于检测生物分子的结构和功能;在材料科学中,红外光谱可以用于研究材料的性能和应用;在环境监测中,红外光谱可以用于分析大气、水体和土壤中的污染物。
总之,红外光谱的原理是基于分子在红外辐射下的振动和转动特性,通过测定样品在不同频率下的吸收情况来获取样品的结构和成分信息。
红外光谱具有广泛的应用价值,为化学、生物、材料和环境等领域的研究和应用提供了重要的技术支持。
化学反应的红外光谱分析
![化学反应的红外光谱分析](https://img.taocdn.com/s3/m/9763c6faf021dd36a32d7375a417866fb84ac0dd.png)
化学反应的红外光谱分析红外光谱分析是一种基于分子振动和转动引起的光吸收现象的分析技术。
它在化学研究和应用领域中具有广泛的应用,尤其是在化学反应研究中。
本文将介绍化学反应的红外光谱分析原理、方法和应用。
一、红外光谱分析原理红外光谱是指在红外区域(波长为0.78-1000微米)的电磁辐射。
当红外光通过样品时,与样品中的化学键振动和分子转动相互作用,产生共振吸收,从而形成红外光谱图。
在红外光谱图中,吸收峰的位置和强度与样品的化学组成和结构有关。
红外光谱分析原理可以分为两个方面:分子振动和转动。
1. 分子振动分子振动包括键伸缩、弯曲、扭转和振动组合等。
不同化学键的振动频率和强度不同,因此可以通过测量特定频率范围内的红外吸收峰来确定样品中的化学键的存在和类型。
例如,羟基和甲基的振动频率范围分别为3300-3600 cm^-1和2800-3000 cm^-1。
2. 分子转动分子转动指的是分子整体的旋转运动。
红外光谱分析中主要研究微弱转动光谱,即转动光谱中的维尔南图(Villain)峰或高分辨转动光谱中的S或R支。
通过对分子转动的研究,可以确定样品中分子结构的平面和对称性。
二、红外光谱分析方法红外光谱分析主要有三种常用方法:透射法、反射法和全反射法。
1. 透射法透射法是将样品放置在透明的红外吸收窗格中,通过红外光线透射样品后在探测器上检测红外光的强度。
此方法适用于固体、液体和气体样品。
2. 反射法反射法是将样品放置在反射金属片上,通过红外光线反射后在探测器上检测红外光的强度。
此方法适用于固体和液体样品。
3. 全反射法全反射法是将样品放置在内部反射元件(例如晶体或纤维)上,通过全反射现象,使红外光在样品与空气之间多次反射,增强了样品的吸收信号。
此方法适用于固体和液体样品。
三、红外光谱分析应用红外光谱分析在化学反应研究中有广泛的应用。
1. 样品鉴定红外光谱可以用于鉴定化合物的结构和组成,特别是有机化合物。
通过与已知化合物的光谱比对,可以确定未知化合物的结构和功能基团。
红外吸收光谱法原理
![红外吸收光谱法原理](https://img.taocdn.com/s3/m/40ea60cdb8d528ea81c758f5f61fb7360b4c2bba.png)
红外吸收光谱法原理
红外吸收光谱法是一种常见的分析技术,其原理是通过测量样品吸收红外辐射的能力来获得关于样品分子结构和化学性质的信息。
红外辐射是电磁波的一种,具有较长的波长,处于可见光和微波之间的频率范围。
红外吸收光谱法基于分子在红外辐射下的振动和旋转转换而产生的谱带。
分子的振动可以分为两种类型:拉伸振动和弯曲振动。
拉伸振动是指分子中化学键的伸缩运动,而弯曲振动是指分子中非线性结构的原子发生弯曲运动。
不同类型的振动将具有特定的频率和能量。
当红外辐射通过样品时,其中的特定波长将与样品中分子的振动频率相匹配,导致分子吸收光能量。
测量仪器将记录样品吸收的红外辐射强度,并以谱图的形式表现出来。
在谱图上,吸收强度以峰值的形式呈现,每个峰代表特定类型的化学键或功能基团。
通过与已知化合物的红外光谱进行比较,可以确定未知样品中存在的功能基团和化学键类型。
因此,红外吸收光谱法被广泛应用于有机化学、材料科学、环境分析等领域,用于物质的鉴定、定量分析以及结构表征。
总之,红外吸收光谱法利用分子对特定波长的红外辐射的吸收能力,探测样品中的振动和旋转转换过程,从而揭示样品分子结构和化学性质的信息。
红外吸收光谱法的原理
![红外吸收光谱法的原理](https://img.taocdn.com/s3/m/015b0e480640be1e650e52ea551810a6f524c8f5.png)
红外吸收光谱法的原理红外吸收光谱法(Infrared absorption spectroscopy)是一种常用的分析方法,通过测量物质对红外辐射的吸收来研究物质的结构和组成。
其原理基于物质分子的振动和转动,当红外辐射通过样品时,与样品分子相互作用并导致红外辐射被吸收或散射。
进一步,通过测量样品吸收的红外辐射强度,可以得到关于样品内部分子结构和组成的信息。
红外辐射是电磁波的一部分,具有比可见光更长的波长。
红外吸收光谱法利用这种波长特性,通过对样品在红外区域的吸收进行定量或定性分析。
红外吸收光谱法可以用于有机物、无机物、聚合物以及生物分子等各种类型的样品分析。
在红外吸收光谱法中,仪器设备包括一个红外光源、分光器、样品室和检测器。
红外光源产生宽频谱的红外辐射,经过分光器将红外辐射按波长分成多个特定范围。
样品室是一个透明的容器,用于容纳样品。
样品与红外辐射相互作用后,部分辐射被吸收,其余的辐射经过样品,最后被检测器接收。
检测器将接收到的辐射转化为电信号,并通过放大和处理,能够得到样品在各个波长下的吸收谱图。
红外吸收光谱图谱展示了样品在红外区域的吸收峰,峰的位置和强度可以提供关于样品中的化学键、官能团以及分子结构的信息。
每个官能团和化学键都有具有特定的频率和振动模式,当红外辐射与样品分子振动模式相吻合时,就会发生吸收。
因此,通过观察吸收峰的位置和形状,可以推断出样品中存在的官能团和化学键的类型。
总之,红外吸收光谱法利用物质对红外辐射的吸收特性,通过测量红外辐射在样品中的吸收程度,可以获得关于样品的结构和组成的信息。
这种分析方法广泛应用于化学、材料科学、生物科学等领域,为研究和分析各种样品提供了有力的工具。
红外光谱分析的原理及应用
![红外光谱分析的原理及应用](https://img.taocdn.com/s3/m/4cdadeda4bfe04a1b0717fd5360cba1aa8118c9c.png)
红外光谱分析的原理及应用红外光谱分析是现代分析化学中一种重要的分析方法,广泛应用于物质的结构、成分的分析与鉴定等方面。
本文将从原理和应用两个方面介绍红外光谱分析。
一、原理红外光谱分析是利用分子中吸收红外光的特性,通过分析吸收带位移和强度来鉴定物质的结构和成分。
根据分子中化学键的振动和转动,红外光谱可以分为伸缩振动和弯曲振动两种。
其中伸缩振动又分为对称伸缩振动和不对称伸缩振动,对应的波数通常分别为3300 cm-1和3000 cm-1左右。
弯曲振动则分为摇摆弯曲振动和出弯曲振动,常见的波数为1500 cm-1左右和600 cm-1左右。
红外光谱的分析通常需要借助傅里叶变换红外光谱仪来获取样品的光谱图。
该仪器可以通过样品吸收的红外光的干涉光谱,进而得到物质的红外吸收光谱。
二、应用1.质量检验红外光谱分析可以用于物质的成分和结构的分析与鉴定。
这对于制造商和消费者都非常重要。
制造商可以通过红外光谱分析检验其制造的产品结构和杂质成分的情况,以确保质量符合标准。
而消费者可以通过红外光谱分析检验产品是否真实,从而避免假冒伪劣产品。
2.生物医学检验红外光谱分析在生物医学检验中也有广泛的应用。
比如,可以通过红外光谱分析来检测制药中的成分和结构,检验药效和副作用。
此外,红外光谱分析还可以用于检测人体组织中的蛋白质和核酸等,从而辅助医生进行诊断和治疗。
3.环境监测红外光谱分析也可以用于环境监测。
例如,可以通过检测大气中的有机物、重金属和气体状的污染物等,以了解环境污染的情况。
此外,还可以利用红外分光技术检测地震矿场的地下水质量,从而保护水源。
4.石油和食品行业红外光谱分析在石油和食品行业中也有广泛的应用。
在石油行业中,例如,可以通过红外光谱分析来检测油品成分和结构,从而确保油品的质量。
在食品行业中,红外光谱分析可以用于安全检验和营养但量的检测。
综上所述,红外光谱分析具有广泛的应用前景,可以用于物质的成分和结构鉴定、生物医学检验、环境监测等领域。
红外光谱分析的原理和应用
![红外光谱分析的原理和应用](https://img.taocdn.com/s3/m/eb83ee540a4e767f5acfa1c7aa00b52acec79c40.png)
红外光谱分析的原理和应用红外光谱分析是一种广泛应用于化学、生物、材料等领域的分析方法。
本文将介绍红外光谱分析的原理以及其在不同领域的应用。
一、原理红外光谱分析是通过测量样品在红外光区的吸收和散射现象来获取样品的结构信息。
红外光是电磁波的一种,其波长介于可见光和微波之间,具有高频率和短波长的特点。
在红外光的作用下,样品中的分子会发生振动和转动,不同振动和转动状态对应着不同的吸收峰。
通过测量吸收峰的位置、强度和形状,可以确定样品的化学组成和结构。
二、应用1. 化学分析红外光谱分析在化学分析中有着广泛的应用。
通过红外光谱可以识别化合物的官能团,并确定它们的存在、数量和相对位置。
例如,在有机化学中,可以通过红外光谱来确定化合物的醛、酮、羧酸等官能团的存在。
红外光谱还可以用于定性和定量分析,如药物分析、食品分析等。
2. 生物医学研究红外光谱分析在生物医学研究中也有着重要的应用。
通过红外光谱可以分析生物大分子(如蛋白质、核酸等)的结构和构象。
这对于研究生物分子的功能以及分子间相互作用具有重要意义。
此外,红外光谱还可以用于医学诊断,如检测血液中的脂质、蛋白质等成分的含量和变化,以及识别疾病标志物等。
3. 材料研究在材料科学领域,红外光谱分析也发挥着不可替代的作用。
通过红外光谱可以研究材料的结构、性质和变化。
例如,可以通过红外光谱来分析材料中的功能团、晶格结构、表面性质等。
红外光谱还可以用于检测材料的纯度、识别材料的组成和品质等。
4. 环境监测红外光谱分析在环境监测中也得到了广泛应用。
通过红外光谱可以检测和分析空气、水体和土壤中的污染物。
例如,可以通过红外光谱来检测空气中的有机物、水中的重金属离子、土壤中的有机和无机物等。
红外光谱分析在环境监测中具有高灵敏度、快速性和无破坏性的特点,在环保领域具有广阔的应用前景。
综上所述,红外光谱分析作为一种重要的分析方法,具有广泛的应用领域。
通过测量样品在红外光区的吸收和散射现象,可以获取样品的结构信息和化学组成。
红外光谱的原理及特点应用
![红外光谱的原理及特点应用](https://img.taocdn.com/s3/m/1e66bc5cc381e53a580216fc700abb68a982ad28.png)
红外光谱的原理及特点应用一、红外光谱的原理红外光谱是一种物质分析方法,基于不同物质对红外辐射的吸收特性进行分析。
其原理基于物质分子中的化学键振动或分子转动引起的能量吸收。
当物质受到红外光的照射时,会发生分子能级的跃迁,从而产生特定的吸收峰,通过测量这些吸收峰的强度和波数位置,可以确定物质的成分和结构。
红外光谱的原理可以通过以下几个方面来解释:1.分子振动:物质中的原子通过化学键连接,当红外辐射作用于物质时,分子中的原子会发生振动。
不同类型的化学键振动会产生不同的红外光谱特征。
例如,碳氢键、羟基、羧基等都有特定的红外吸收峰。
2.分子转动:除了分子振动外,物质中的分子还可以发生转动。
这些转动也会在红外光谱中产生吸收峰,但通常在较低波数范围内(2-25 cm^-1)。
3.红外光的作用:红外光通常是通过辐射源和光谱仪生成,然后照射到待测物上。
物质吸收红外光的能力与其分子结构和化学键的特性密切相关。
根据不同的红外光谱特点,可以推断物质的组成和结构。
二、红外光谱的特点红外光谱分析具有以下几个特点:1.高分辨率:红外光谱仪可以测量到物质吸收红外光的波数范围。
红外光谱图是一个连续的曲线,可以通过峰的形状和位置来区分不同的化学键。
高分辨率的红外光谱仪可以准确地测量吸收峰的强度和位置,从而提供更准确的分析结果。
2.非破坏性:红外光谱是一种非破坏性的分析方法。
物质在吸收红外光后并不会发生任何变化,可以保留样品的完整性。
因此,红外光谱可以对固体、液体和气体样品进行分析,而无需破坏或改变样品的状态。
3.快速分析:红外光谱分析可以在几分钟内完成,具有快速的分析速度。
这使得红外光谱成为工业生产中的一种常见分析方法,用于了解原材料和成品的组成和结构。
4.宽波段范围:红外光谱在波数范围上具有很大的灵活性,可以用于不同波段的分析。
常见的红外光谱波段有近红外(780-2500 nm)、中红外(2.5-25 µm)和远红外(25-1000 µm)。
红外光谱知识点总结
![红外光谱知识点总结](https://img.taocdn.com/s3/m/d4de3ece70fe910ef12d2af90242a8956aecaa52.png)
红外光谱知识点总结一、红外光谱的基本原理1. 红外辐射红外光波长范围为0.78~1000微米,是可见光和微波之间的一部分光谱。
物质在光谱范围内会吸收、散射和发射红外光。
这些过程可以用来获取物质的结构信息。
2. 分子振动分子在吸收红外辐射时,分子内部的振动模式会发生变化,这些振动模式会导致物质对不同波长的红外光有不同的吸收峰。
根据分子结构、键的类型和位置不同,红外吸收峰会出现在不同的波数位置。
3. 红外吸收谱红外吸收谱是将物质对不同波数的红外光的吸收强度绘制成图谱。
在红外吸收谱中,不同的振动模式会对应不同的吸收峰,通过谱图的解析可以得到物质的结构信息。
4. 红外光谱仪红外光谱仪是用于测定物质的红外吸收光谱的仪器,它主要包括光源、分光器、样品室、检测器和数据处理系统等部分。
常见的红外光谱仪有光散射型、光路差型和干涉型等。
二、红外光谱的仪器分析技术1. 光散射型红外光谱仪光散射型红外光谱仪是通过散射光进行分析的,它适用于固态样品和粉末样品的分析。
该仪器操作简单,对样品的要求不高,但是分辨率较低。
2. 光路差型红外光谱仪光路差型红外光谱仪利用干涉光进行分析,可以获得高分辨率的红外光谱。
它适用于高精度的定量分析和结构鉴定,但是对样品的平整度和光路的稳定性要求较高。
3. 干涉型红外光谱仪干涉型红外光谱仪采用光源产生的连续光通过光栅或凸透镜分散成各个不同波数的光线,对于样品吸收光线的强度进行检测,然后通过计算机进行数据处理。
其优点是分辨率高、峰型窄、精确度高,适用于各种样品的定性、定量和成分分析。
4. 远红外光谱和近红外光谱远红外光谱仪可以用于检测液体样品和气态样品,其波数范围在4000~400 cm-1之间。
而近红外光谱则适用于固态和半固态样品的分析,波数范围在12500~4000 cm-1之间。
三、红外光谱的谱图解析1. 物质的结构信息根据红外光谱谱图的解析可以获得物质的结构信息,如键的种类、键的位置、分子的构型等。
红外光谱分析
![红外光谱分析](https://img.taocdn.com/s3/m/b2ee00516d175f0e7cd184254b35eefdc8d315f2.png)
红外光谱分析一、引言红外光谱分析是一种广泛应用于化学、物理、生物等领域的分析技术。
通过对物质吸收、发射、散射红外光谱的研究,可以确定物质的分子结构、功能基团和化学键等信息。
本文将介绍红外光谱分析的原理、仪器设备和应用领域,并探讨其在不同领域的应用前景。
二、原理及仪器设备A. 红外光谱的原理红外光谱是指物质在红外辐射下的吸收、发射、散射谱。
红外光谱谱图中的吸收峰对应着物质的特定振动模式,通过与已知物质的吸收峰进行比对,可以确定待测物质的组成和结构。
B. 红外光谱仪的工作原理红外光谱仪主要由红外光源、样品室、光谱分析器和红外光谱仪操作系统组成。
红外光源发出红外辐射,经过样品室中的待测物质,被吸收部分将影响到传入光谱分析器的光线,分析器将光信号转换成电信号,并在计算机操作系统中显示光谱图。
C. 常用红外光谱仪的类型1. 红外线分光光度计2. 红外线显微镜3. 傅里叶红外光谱仪4. 近红外光谱仪三、应用领域A. 化学领域1. 有机化合物分析:红外光谱可以确定有机化合物的官能团和分子结构,用于鉴定化合物纯度、反应程度等。
2. 药物研发:通过红外光谱分析药物的活性成分、药效成分,提高药物研发的效率与质量。
B. 环境领域1. 空气污染监测:红外光谱可用于检测大气中的有害气体,如二氧化碳、一氧化碳等,对环境保护和监测具有重要意义。
2. 水质分析:利用红外光谱可以检测水中溶解的有机物和无机物,分析水质的污染程度。
C. 生物医学领域1. 蛋白质结构研究:红外光谱可以研究蛋白质的次级结构,帮助研究蛋白质的折叠、稳定性等关键问题。
2. 癌症诊断:通过对血液、尿液等样本的红外光谱分析,可以实现对肿瘤的早期检测与诊断。
四、红外光谱分析的前景与挑战A. 前景红外光谱分析作为一种非破坏性、快速、准确的分析方法,具有广泛的应用前景。
随着红外光谱仪器设备的不断更新,红外光谱分析技术在多个领域得到了广泛应用,并取得了一系列有益的成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业军士:zx1234(zx1234)
积分:88 声望:17
[查看该用户在资料中心上传的资料]
[个人资料] [给他留言] [帖子合集]
[回复] [引用] [维护]
--------------------------------------------------------------------------------
近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。
中红外光区(2.5 ~ 25μm )
绝大多数有机化合物和无机离子的基频吸收带出现在该光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。
一、产生红外吸收的条件
1 . 辐射光子具有的能量与发生振动跃迁所需的跃迁能量相等
红外吸收光谱是分子振动能级跃迁产生的。因为分子振动能级差为0.05~1.0eV,比转动能级差(0.0001 ? 0.05eV)大,因此分子发生振动能级跃迁时,不可避免地伴随转动能级的跃迁,因而无法测得纯振动光谱,但为了讨论方便,以双原子分子振动光谱为例说明红外光谱产生的条件。若把双原子分子(A-B)的两个原子看作两个小球,把连结它们的化学键看成质量可以忽略不计的弹簧,则两个原子间的伸缩振动,可近似地看成沿键轴方向的间谐振动。
衰减全反射(ATR)是FRIR的进样附件,通常为单点接触衰减全反射。可以有效的得到聚合材料的红外图谱,不再需要进行样品处理。
在室温时,分子处于基态,此时,伸缩振动的频率很小。当有红外辐射照射到分子时,若红外辐射的光子所具有的能量恰好等于分子振动能级的能量差时,则分子将吸收红外辐射而跃迁至激发态,导致振幅增大。
只有当红外辐射频率等于振动量子数的差值与分子振动频率的乘积时,分子才能吸收红外辐射,产生红外吸收光谱。
(2)辐射与物质之间有耦合作用
红外吸收光谱分析(转贴)
分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到 分子的振动-转动光谱,这种光谱称为红外吸收光谱。
红外吸收光谱也是一种分子吸收光谱。
当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。
紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且该法是鉴定化合物和测定分子结构的最有用方法之一。
为满足这个条件,分子振动必须伴随偶极矩的变化。红外跃迁是偶极矩诱导的,即能量转移的机制是通过振动过程所导致的偶极矩的变化和交变的电磁场(红外线)相互作用 发生的。分子由于构成它的各原子的电负性的不同,也显示不同的极性,称为偶极子。通常用分子的偶极矩来描述分子极性的大小。当偶极子处在电磁辐射的电场中时,该电场作周期性反转,偶极子将经受交替的作用力而使偶极矩增加或减少。由于偶极子具有一定的原有振动频率,显然,只有当辐射频率与偶极子频率相匹时,分子才与辐射相互作用(振动耦合)而增加它的振动能,使振幅增大,即分子由原来的基态振动跃迁到较高振动能级。因此,并非所有的振动都会产生红外吸收,只有发生偶极矩变化的振动才能引起可观测的红外吸收光谱,该分子称之为红外活性的。
一、红外光区的划分
红外光谱在可见光区和微波光区之间,波长范围约为 0.75 ~ 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5μm ),中红外光区(2.5 ~ 25μm ),远红外光区(25 ~ 1000μm )。
近红外光区(0.75 ~ 2.5μm )
远红外光区 (25 ~ 1000μm )
该区的吸收带主要是由气体分子中的纯转动跃迁振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。 由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。
红外吸收光谱一般用T~?曲线或T~ 波数曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长?(单位为μm ),或波数(单位为cm-1)。
波长?与波数之间的关系为:
波数/ cm-1 =104 /( ? / μm )
中红外区的波数范围是4000 ~ 400 cm-1 。
二、红外光谱法的特点
当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一致,二者就会产生共振,此时光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。如果用连续改变频率的红外光照射某样品,由于试样对不同频率的红外光吸收程度不同,使通过试样后的红外光在一些波数范围减弱,在另一些波数范围内仍然较强,用仪器记录该试样的红外吸收光谱,进行样品的定性和定量分析。