图的基本概念与邻接矩阵的实现

合集下载

离散图论知识点总结

离散图论知识点总结

离散图论知识点总结一、基本概念图(Graph)是离散数学中的一个重要概念,它由顶点集合V和边集合E组成。

一般用G (V,E)来表示,其中V={v1,v2,…,vn}是有限非空集合,E是V中元素的无序对的集合。

图分为有向图和无向图。

无向图中的边是无序的,有向图中的边是有序的。

图中存在一些特殊的图,比如完全图、树、路径、回路等。

二、图的表示方法1. 邻接矩阵邻接矩阵是一种常见的图的表示方法,它使用一个二维数组来表示图的关系。

对于一个n 个顶点的图,邻接矩阵是一个n*n的矩阵A,其中A[i][j]表示顶点i到顶点j之间是否存在边。

对于无向图,A[i][j]=1表示顶点i与顶点j之间存在边,A[i][j]=0表示不存在。

对于有向图,A[i][j]=1表示i指向j的边存在,A[i][j]=0表示不存在。

2. 邻接表邻接表是另一种常见的图的表示方法。

它将图的信息储存在一个数组中,数组的每个元素与图的一个顶点相对应。

对于每个顶点vi,数组中储存与该顶点邻接的顶点的信息。

邻接表可以用链表或者数组来表示,链表表示的邻接表比较灵活,但是在查找某个边的相邻顶点时需要遍历整个链表。

三、图的性质1. 度图中每个顶点的度是与其相邻的边的数目。

对于无向图,顶点的度等于与其相邻的边的数目;对于有向图,则分为入度和出度。

2. 连通性对于无向图G,若图中任意两个顶点都有路径相连,则称图G是连通的。

对于有向图G,若从任意一个顶点vi到任意一个顶点vj都存在路径,则称G是强连通的。

3. 路径和回路路径是指图中一系列的边,连接图中的两个顶点;回路是指起点与终点相同的路径。

路径的长度是指路径中边的数目。

4. 树和森林一个无向图,如果是连通图且不存在回路,则称为树。

一个无向图,若它不是连通图,则称为森林。

四、图的常见算法1. 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法,它从图的某个顶点vi出发,访问它的所有邻接顶点,再对其中未访问的顶点继续深度优先搜索。

图的基本概念

图的基本概念

图的同构
• 定义:给定两个图G1=(V1,E1)和G2=(V2,E2).如果 在V1和V2之间存在双射f 使得 (u,v)E1 iff (f(uБайду номын сангаас, f(v))E2 则称G1和G2同构(isomorphic),记作 G1 G2 .
• 若 G1 G2,则有
(1) |V(G1)| = |V(G2)|, |E(G1)| = |E(G2)|; (2) G1和G2结点度的非增序列相同; (3) G1的任一导出子图在G2中都有与之同构的导出子
Lu Chaojun, SJTU
24
图的表示法:邻接表
• 将正向表的m维向量B拆成n个列表,第i个 列表存储vi的所有后继.
• 列表通常采用链表结构. • 链表中每个单元除了可以存储后继结点,
还可以存储权值,形如:
vi
vi的(直接)后继# wij
Lu Chaojun, SJTU
25
End
Lu Chaojun, SJTU
(2) 图G中度为奇数的结点必有偶数个. (3) 有向图中:正度之和=负度之和=边数. (4) Kn的边数为n(n1)2. (5) 非空简单图中一定存在度相同的结点.
Lu Chaojun, SJTU
9
赋权图
• 定义:如果给图G=(V,E)的每条边ek 都赋以 一个实数wk作为该边的权(weight),则称G 是赋权图.
图;反之亦然.
Lu Chaojun, SJTU
16
例:同构
• 下图显示了图G与它的补图同构.
Lu Chaojun, SJTU
17
例题
证明:任意6个人中必有三人相互认识或者有三人 互不相识.
证:作K6并给边涂色:红=认识,蓝=不认识.只要证图 中必有同色三角形. v1有5条边,由抽屉原则必有三边同色(设为红), 这三边的另一顶点设为v2, v3, v4. △v2v3v4有一边为红色,则与v1构成红色△; △v2v3v4的三边无红色,则构成蓝色△.

图的基本操作与应用

图的基本操作与应用

图的基本操作与应用图是一种重要的数据结构,广泛应用于计算机科学和相关领域。

本文将介绍图的基本操作和常见的应用场景,通过详细讲解来帮助读者更好地理解和应用图。

一、图的定义和表示图是由节点(顶点)和边组成的集合。

节点表示实体,边表示节点之间的关系。

图可以用以下方式进行表示:邻接矩阵和邻接表。

1. 邻接矩阵:用二维数组表示图的连接关系,其中数组元素a[i][j]表示节点i到节点j是否存在一条边。

2. 邻接表:使用链表或数组的方式表示节点的连接关系。

每个节点对应一个链表,链表中存储与该节点相连接的其他节点。

二、图的基本操作1. 添加节点:图中可以通过添加节点来增加实体。

添加节点时,需要更新相应的连接关系,即在邻接矩阵或邻接表中添加对应的行或节点。

2. 添加边:向图中添加边可以表示节点之间的关系。

在邻接矩阵中,将对应的元素设置为1。

在邻接表中,将对应的节点添加到该节点的链表中。

3. 删除节点:从图中删除节点时,需要将与该节点相关的边一并删除。

删除节点后,对应的行或链表也需要进行相应的调整。

4. 删除边:删除边可以断开节点之间的关系。

在邻接矩阵中,将对应的元素设置为0。

在邻接表中,删除对应的节点。

三、图的应用场景1. 社交网络分析:图可以用于分析社交网络中的关系,如朋友关系、粉丝关系等。

可以通过图的遍历算法,寻找潜在的朋友或影响力人物。

2. 路径规划:图可以表示地理空间中的路径,如导航系统中的道路网络。

可以使用图的最短路径算法,如Dijkstra算法或A*算法,来计算最优路径。

3. 组织架构图:图可以用于表示组织或公司的架构,帮助人们更好地理解不同部门之间的关系和沟通路径。

4. 网络流量分析:图可以用于分析网络中的流量,如网络路由、数据传输等。

可以通过图的最大流算法,如Ford-Fulkerson算法,来优化网络流量分配和传输效率。

5. 数据库关系图:图可以用于表示数据库中的关系表,帮助人们理解和查询表之间的关系,如主外键关系等。

图论导引参考答案

图论导引参考答案

图论导引参考答案图论导引参考答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。

图由节点和边组成,节点表示对象,边表示对象之间的连接关系。

图论在计算机科学、网络分析、社交网络等领域有着广泛的应用。

本文将介绍图论的基本概念和常见算法,并提供一些参考答案来帮助读者更好地理解和应用图论。

一、图的基本概念1.1 有向图和无向图图可以分为有向图和无向图两种类型。

有向图中,边有方向,表示节点之间的单向关系;而无向图中,边没有方向,表示节点之间的双向关系。

1.2 路径和环路径是指图中一系列节点和边的连续序列,路径的长度为路径中边的数量。

如果路径的起点和终点相同,则称之为环。

1.3 连通图和连通分量在无向图中,如果任意两个节点之间都存在路径,则称该图为连通图。

连通图中的极大连通子图称为连通分量。

1.4 强连通图和强连通分量在有向图中,如果任意两个节点之间都存在路径,则称该图为强连通图。

强连通图中的极大强连通子图称为强连通分量。

二、图的存储方式2.1 邻接矩阵邻接矩阵是一种常见的图的存储方式,使用一个二维矩阵来表示图中节点之间的连接关系。

矩阵的行和列分别表示节点,矩阵中的元素表示节点之间是否存在边。

2.2 邻接表邻接表是另一种常见的图的存储方式,使用一个数组和链表的结构来表示图中节点之间的连接关系。

数组中的每个元素表示一个节点,链表中的每个节点表示与该节点相连的边。

三、常见图算法3.1 深度优先搜索(DFS)深度优先搜索是一种用于遍历图的算法。

从图中的一个节点开始,沿着一条路径一直深入直到无法继续为止,然后回溯到上一个节点,继续深入其他路径。

DFS可以用于判断图的连通性、寻找路径等问题。

3.2 广度优先搜索(BFS)广度优先搜索也是一种用于遍历图的算法。

从图中的一个节点开始,先访问其所有相邻节点,然后再依次访问这些节点的相邻节点,以此类推。

BFS可以用于计算最短路径、寻找连通分量等问题。

3.3 最小生成树算法最小生成树算法用于求解一个连通图的最小生成树,即包含图中所有节点且边的权重之和最小的子图。

ACM基础——图

ACM基础——图

Status CreateMG(MGraph &G){ //无向图的构造 int i,j,k,v1,v2; scanf("%d%d",&G.vexnum,&G.arcnum); for(i=0;i<G.vexnum;i++) scanf(“%d”,&G.vexs[i]); //输入顶点数据 for(i=0;i<G.vexnum;i++) for(j=0;j<G.vexnum;j++) G.arcs[i][j].adj = 0; //初始化结束 for(k=0;k<G.arcnum;k++){ scanf("%d%d",&v1,&v2); i=LocateVex(G,v1); j=LocateVex(G,v2); G.arcs[i][j].adj=1; G.arcs[j][i].adj=G.arcs[i][j].adj; //创建有向图屏蔽此句 } return OK; }
0 0 0
1
1 0 0
Байду номын сангаас
3
2 1 2
V2
V4
V3 V4
图的邻接矩阵表示
# define INFINITY INT_MAX //表示不可达 # define MAX_VERTEX_NUM 20 //最大顶点个数
typedef int VRType;
//顶点关系类型
typedef int VertexType; //顶点数据类型

• 图的基本概念 • 图的存储 • 图的遍历
图(Graph)是由有穷非空的顶点集合和一个描述 顶点之间关系的边(或者弧)的集合组成。

图基本算法图的表示方法邻接矩阵邻接表

图基本算法图的表示方法邻接矩阵邻接表

图基本算法图的表⽰⽅法邻接矩阵邻接表 要表⽰⼀个图G=(V,E),有两种标准的表⽰⽅法,即邻接表和邻接矩阵。

这两种表⽰法既可⽤于有向图,也可⽤于⽆向图。

通常采⽤邻接表表⽰法,因为⽤这种⽅法表⽰稀疏图(图中边数远⼩于点个数)⽐较紧凑。

但当遇到稠密图(|E|接近于|V|^2)或必须很快判别两个给定顶点⼿否存在连接边时,通常采⽤邻接矩阵表⽰法,例如求最短路径算法中,就采⽤邻接矩阵表⽰。

图G=<V,E>的邻接表表⽰是由⼀个包含|V|个列表的数组Adj所组成,其中每个列表对应于V中的⼀个顶点。

对于每⼀个u∈V,邻接表Adj[u]包含所有满⾜条件(u,v)∈E的顶点v。

亦即,Adj[u]包含图G中所有和顶点u相邻的顶点。

每个邻接表中的顶点⼀般以任意顺序存储。

如果G是⼀个有向图,则所有邻接表的长度之和为|E|,这是因为⼀条形如(u,v)的边是通过让v出现在Adj[u]中来表⽰的。

如果G是⼀个⽆向图,则所有邻接表的长度之和为2|E|,因为如果(u,v)是⼀条⽆向边,那么u会出现在v的邻接表中,反之亦然。

邻接表需要的存储空间为O(V+E)。

邻接表稍作变动,即可⽤来表⽰加权图,即每条边都有着相应权值的图,权值通常由加权函数w:E→R给出。

例如,设G=<V,E>是⼀个加权函数为w的加权图。

对每⼀条边(u,v)∈E,权值w(u,v)和顶点v⼀起存储在u的邻接表中。

邻接表C++实现:1 #include <iostream>2 #include <cstdio>3using namespace std;45#define maxn 100 //最⼤顶点个数6int n, m; //顶点数,边数78struct arcnode //边结点9 {10int vertex; //与表头结点相邻的顶点编号11int weight = 0; //连接两顶点的边的权值12 arcnode * next; //指向下⼀相邻接点13 arcnode() {}14 arcnode(int v,int w):vertex(v),weight(w),next(NULL) {}15 arcnode(int v):vertex(v),next(NULL) {}16 };1718struct vernode //顶点结点,为每⼀条邻接表的表头结点19 {20int vex; //当前定点编号21 arcnode * firarc; //与该顶点相连的第⼀个顶点组成的边22 }Ver[maxn];2324void Init() //建⽴图的邻接表需要先初始化,建⽴顶点结点25 {26for(int i = 1; i <= n; i++)27 {28 Ver[i].vex = i;29 Ver[i].firarc = NULL;30 }31 }3233void Insert(int a, int b, int w) //尾插法,插⼊以a为起点,b为终点,权为w的边,效率不如头插,但是可以去重边34 {35 arcnode * q = new arcnode(b, w);36if(Ver[a].firarc == NULL)37 Ver[a].firarc = q;38else39 {40 arcnode * p = Ver[a].firarc;41if(p->vertex == b) //如果不要去重边,去掉这⼀段42 {43if(p->weight < w)44 p->weight = w;45return ;46 }47while(p->next != NULL)48 {49if(p->next->vertex == b) //如果不要去重边,去掉这⼀段50 {51if(p->next->weight < w);52 p->next->weight = w;53return ;54 }55 p = p->next;56 }57 p->next = q;58 }59 }60void Insert2(int a, int b, int w) //头插法,效率更⾼,但不能去重边61 {62 arcnode * q = new arcnode(b, w);63if(Ver[a].firarc == NULL)64 Ver[a].firarc = q;65else66 {67 arcnode * p = Ver[a].firarc;68 q->next = p;69 Ver[a].firarc = q;70 }71 }7273void Insert(int a, int b) //尾插法,插⼊以a为起点,b为终点,⽆权的边,效率不如头插,但是可以去重边74 {75 arcnode * q = new arcnode(b);76if(Ver[a].firarc == NULL)77 Ver[a].firarc = q;78else79 {80 arcnode * p = Ver[a].firarc;81if(p->vertex == b) return; //去重边,如果不要去重边,去掉这⼀句82while(p->next != NULL)83 {84if(p->next->vertex == b) //去重边,如果不要去重边,去掉这⼀句85return;86 p = p->next;87 }88 p->next = q;89 }90 }91void Insert2(int a, int b) //头插法,效率跟⾼,但不能去重边92 {93 arcnode * q = new arcnode(b);94if(Ver[a].firarc == NULL)95 Ver[a].firarc = q;96else97 {98 arcnode * p = Ver[a].firarc;99 q->next = p;100 Ver[a].firarc = q;101 }102 }103void Delete(int a, int b) //删除以a为起点,b为终点的边104 {105 arcnode * p = Ver[a].firarc;106if(p->vertex == b)107 {108 Ver[a].firarc = p->next;109 delete p;110return ;111 }112while(p->next != NULL)113if(p->next->vertex == b)114 {115 p->next = p->next->next;116 delete p->next;117return ;118 }119 }120121void Show() //打印图的邻接表(有权值)122 {123for(int i = 1; i <= n; i++)124 {125 cout << Ver[i].vex;126 arcnode * p = Ver[i].firarc;127while(p != NULL)128 {129 cout << "->(" << p->vertex << "," << p->weight << ")";130 p = p->next;131 }132 cout << "->NULL" << endl;133 }134 }135136void Show2() //打印图的邻接表(⽆权值)137 {138for(int i = 1; i <= n; i++)140 cout << Ver[i].vex;141 arcnode * p = Ver[i].firarc;142while(p != NULL)143 {144 cout << "->" << p->vertex;145 p = p->next;146 }147 cout << "->NULL" << endl;148 }149 }150int main()151 {152int a, b, w;153 cout << "Enter n and m:";154 cin >> n >> m;155 Init();156while(m--)157 {158 cin >> a >> b >> w; //输⼊起点、终点159 Insert(a, b, w); //插⼊操作160 Insert(b, a, w); //如果是⽆向图还需要反向插⼊161 }162 Show();163return0;164 }View Code 邻接表表⽰法也有潜在的不⾜之处,即如果要确定图中边(u,v)是否存在,只能在顶点u邻接表Adj[u]中搜索v,除此之外没有其他更快的办法。

邻接矩阵的乘法

邻接矩阵的乘法

邻接矩阵的乘法邻接矩阵是图论中最基本的数据结构之一,它用于表示有向图和无向图中的顶点和边。

邻接矩阵乘法是计算两个邻接矩阵相乘的算法,它在图论和计算机科学领域中都有广泛应用。

本文将详细介绍邻接矩阵乘法的概念、实现方法和应用场景。

一、概念1. 邻接矩阵邻接矩阵是一个二维数组,其中每个元素表示两个顶点之间是否存在一条边。

对于无向图而言,邻接矩阵是一个对称矩阵;对于有向图而言,邻接矩阵则不一定是对称的。

2. 邻接矩阵乘法邻接矩阵乘法是指将两个有向图或无向图的邻接矩阵相乘得到一个新的邻接矩阵。

在计算机科学中,通常使用这种方法来计算两个图之间的路径或者连接关系。

二、实现方法1. 常规算法常规的邻接矩阵乘法算法需要进行三重循环操作。

具体来说,就是先将第一个邻接矩阵的每一行和第二个邻接矩阵的每一列相乘,然后将结果相加得到新的邻接矩阵。

这种算法的时间复杂度为O(n^3)。

2. Strassen算法Strassen算法是一种优化的邻接矩阵乘法算法,它将三重循环操作转换成了七个子问题。

通过递归调用自身来解决这些子问题,可以将时间复杂度降低到O(n^2.81)。

3. Coppersmith-Winograd算法Coppersmith-Winograd算法是目前已知的最快的邻接矩阵乘法算法,它将时间复杂度降低到了O(n^2.376)。

该算法使用了分治和线性代数的技巧,并且需要大量的预处理和内存空间。

三、应用场景1. 图论中的最短路径问题在图论中,最短路径问题是指找到两个顶点之间距离最短的路径。

通过使用邻接矩阵乘法可以计算出两个图之间所有可能的路径,并且找出其中距离最短的一条路径。

2. 计算机网络中的路由选择在计算机网络中,路由选择是指选择从一个网络节点到另一个网络节点的最佳路径。

通过使用邻接矩阵乘法可以计算出网络中所有节点之间的距离,并且找出最佳的路由选择方案。

3. 机器学习中的矩阵运算在机器学习中,矩阵运算是非常常见的操作。

图论的基础概念和算法

图论的基础概念和算法

图论的基础概念和算法图论是数学的一个分支,研究的对象是图。

图是由一组互不相连的节点(顶点)和连接这些节点的边(边)组成的数学结构。

图论的基础概念包括顶点、边、路径、环、度数等。

本文将介绍图论的基础概念以及常用的图算法。

一、基础概念1. 图的定义和表示图由顶点集合和边集合组成。

顶点集合用V表示,边集合用E表示。

图可以用邻接矩阵或邻接表来表示。

邻接矩阵是一个二维数组,用来表示图中顶点之间的连接关系。

邻接表是一个链表数组,用来表示每个顶点相邻顶点的列表。

2. 顶点和边顶点是图的基本组成单位,用来表示图中的一个节点。

边是连接两个顶点的线段,用来表示两个顶点之间的关系。

3. 路径和环路径是由一系列相邻顶点连接而成的顶点序列。

路径的长度是指路径上经过的边的数目。

环是起点和终点相同的路径。

4. 度数顶点的度数是指与其相邻的边的数目。

入度是指指向该顶点的边的数目,出度是指由该顶点指向其他顶点的边的数目。

图中顶点的度数可以用来判断顶点的重要性。

二、常用算法1. 广度优先搜索(BFS)广度优先搜索是一种用来遍历和搜索图的算法。

从一个起始顶点开始,逐层扩展,先访问距离起始顶点最近的顶点,然后访问它们的相邻顶点,并逐渐向外扩展。

广度优先搜索可以用来计算两个顶点之间的最短路径。

2. 深度优先搜索(DFS)深度优先搜索是另一种常用的图遍历算法。

从一个起始顶点开始,沿着一条路径尽可能深入地访问图,直到不能再继续深入为止,然后回溯到上一个顶点,继续探索其他路径。

深度优先搜索可以用来计算连通分量、拓扑排序和寻找环等。

3. 最小生成树最小生成树是指图中通过连接所有顶点的子图,并且该子图的边权重之和最小。

常用的最小生成树算法包括Prim算法和Kruskal算法。

Prim算法从一个顶点开始,逐步扩展最小生成树的边,直到包含所有顶点为止。

Kruskal算法则是从边的权重最小的边开始,逐步增加边到最小生成树中,直到包含所有顶点为止。

4. 最短路径算法最短路径算法用来计算两个顶点之间的最短路径。

计算机中图的名词解释

计算机中图的名词解释

计算机中图的名词解释在计算机领域中,图(Graph)是一种常见的数据结构,用于描述对象之间的关系和相互作用。

图的概念最早由数学家欧拉提出,并且在计算机科学中得到广泛运用。

本文将从图的基本概念和操作开始,逐步介绍计算机中图的相关术语和应用。

1. 图的基本概念图由节点(Node)和边(Edge)组成。

节点表示对象或实体,边表示节点之间的连接关系。

图可以分为有向图(Directed Graph)和无向图(Undirected Graph)。

在有向图中,边具有方向性,表示从一个节点流向另一个节点;而在无向图中,边没有方向性,表示两个节点之间的相互关系。

2. 图的存储方式为了在计算机中表示和处理图,常见的存储方式有邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。

邻接矩阵是一个二维数组,其中行和列表示节点,矩阵的值表示节点之间是否有边相连。

邻接表则使用链表的形式来表示节点之间的连接关系,每个节点对应一个链表,链表中存储了与该节点相连的其他节点。

3. 图的遍历图的遍历是指沿着图中的路径,依次访问所有节点的过程。

常见的图遍历算法有深度优先搜索(Depth-First Search)和广度优先搜索(Breadth-First Search)。

深度优先搜索先选择一个起始节点,沿着路径一直深入直到无法继续,然后回溯到其他未访问的节点,继续深入;而广度优先搜索则是从起始节点开始,并逐层扩展,逐层访问。

4. 最短路径算法最短路径算法用于计算两个节点之间的最短路径,即路径上边的权值之和最小。

其中,最常用的最短路径算法是狄克斯特拉算法(Dijkstra Algorithm)。

该算法通过逐步更新节点到其他节点的距离,找到起始节点到目标节点的最短路径。

5. 拓扑排序拓扑排序(Topological Sorting)是一种对有向无环图进行排序的算法。

在有向图中,如果节点 A 的边指向节点 B,那么 B 必须在 A 之后才能出现在排序结果中。

图论

图论

图论1.图的基本概念图:由一些点和连接两点间的连线组成图1在这个图中,521,,,v v v 称为这个图的顶点,顶点之间的连线621,,,e e e 称为这个图的边。

通常我们用V 表示一个图中所有顶点的集合,用E 表示一个图中所有边的集合。

于是一个图G 通常被定义为()E V G ,=,在上图中{}521,,,v v v V =,{}621,,,e e e E = 图的阶数:一个图中含有的顶点数。

例如上图中含有5个顶点,故上图称为5阶图 有向边(弧):如果在图的定义中要求边e 对应的序偶><b a ,是有序的,即前后顺序是不能颠倒的,则称边e 为有向边或弧。

无向边:如果在图的定义中要求边e 对应的序偶><b a ,是无序的,即前后顺序是可以颠倒的,则称边e 为无向边无向图:如果一个图中的每一条边都是无向边,则称这个图为无向图 有向图:如果一个图中的每一条边都是有向边,则称这个图为有向图 如果图的某个顶点和某条边是相联的,则称它们是相关联的顶点的次数:在无向图中把与某个顶点相关联的边数称为该顶点的次数。

环算两次,顶点v 的次数记为()v d在有向图中从顶点v 出去的边数,称为顶点v 的出度,记为()v d +进入顶点v 的边数,称为顶点v 的入度,记为()v d-,()()()v d v dv d -++=定理:一个图中所有的顶点的次数之和等于边数之和的两倍 推论:任何图中奇数次顶点的总数必为偶数例:一次聚会中,认识奇数个人的人数必为偶数 孤立点:次数为0的顶点。

图2 图3多重边:在图中,如果两个顶点之间的边多于一条,那么这几条边就称为多重边。

多重图:含有多重边的图环:如果图中某条边的起点和终点为同一个顶点,那么称这条边为环 简单图:既没有多重边又没有环的图在图中如果顶点i v 和j v 之间至少存在一条边,那么称顶点i v 和j v 是相邻的。

如果边i e 和j e 之间至少有一个共同顶点,则称边i e 和j e 是相邻的子图:设有图()111,E V G =和()221,E V G =,如果21V V ⊆并且21E E ⊆,则称图1G 是图2G 的一个子图生成子图:,如果21V V =并且21E E ⊆,则称图1G 是图2G 的一个生成子图图4图5链:以顶点开始以顶点结束的顶点和边的非空有限交替序列 例如43152v e v e v 就是一条链,而4312v e v v 却不是一条链圈:如果一条链的起点和终点是同一个顶点,则称这条链是一个圈如21152v e v e v路:当一条链中所有边和所有顶点均不相同时就称这条链为路 回路:如果一个圈中的所有边均不向图并且除第一个顶点和最后一个顶点相同外其余顶点都不相同,则称这个圈为回路连通图:如果某个图中的任何两个顶点之间至少存在一条链,则称这个图为连通图在实际的应用中,经常会涉及到图中各个顶点之间的某种联系,例如,在城市公路交通图中,需要说明两个路口之间的路段的长度,这时就需要给图的边赋以某个数值(称为线权)或给顶点赋以某个数值(称为点权),我们把这种赋以了数值的图称为加权图或网络。

《离散数学》第6章 图的基本概念

《离散数学》第6章  图的基本概念

E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。

图论的基本概念和应用

图论的基本概念和应用

图论的基本概念和应用图论是数学中的一个重要分支,研究的是图的性质和图之间的关系。

图论在计算机科学、网络科学、运筹学等领域有着广泛的应用。

本文将介绍图论的基本概念和一些常见的应用。

图的定义图是由节点(顶点)和边组成的一种数据结构。

节点表示对象,边表示对象之间的关系。

图可以分为有向图和无向图两种类型。

有向图有向图中,边是有方向的,表示从一个节点到另一个节点的关系。

如果从节点A到节点B存在一条边,那么我们称节点A指向节点B。

无向图无向图中,边是没有方向的,表示两个节点之间的关系。

如果两个节点之间存在一条边,那么我们称这两个节点是相邻的。

图的表示方法图可以用多种方式进行表示,常见的有邻接矩阵和邻接表两种方法。

邻接矩阵邻接矩阵是一个二维数组,其中行和列分别表示图中的节点,数组元素表示节点之间是否存在边。

如果节点i和节点j之间存在边,则邻接矩阵中第i行第j列的元素为1,否则为0。

邻接表邻接表是一种链表的形式,其中每个节点都有一个链表,链表中存储了与该节点相邻的节点。

邻接表更加节省空间,适用于稀疏图。

图的遍历图的遍历是指从图中的某个节点出发,按照一定规则依次访问图中的所有节点。

常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

深度优先搜索(DFS)深度优先搜索是一种递归的遍历算法,从起始节点开始,沿着一条路径尽可能深入地访问图中的节点,直到无法继续深入为止,然后回溯到上一个节点,继续访问其他未被访问过的节点。

广度优先搜索(BFS)广度优先搜索是一种非递归的遍历算法,从起始节点开始,按照距离起始节点的距离逐层访问图中的节点。

首先访问起始节点,然后访问与起始节点相邻的所有节点,再访问与这些相邻节点相邻的所有未被访问过的节点,以此类推。

图的应用图论在许多领域都有着广泛的应用,下面介绍几个常见的应用场景。

社交网络分析社交网络是一个典型的图结构,其中节点表示用户,边表示用户之间的关系。

通过对社交网络进行图论分析,可以研究用户之间的关系、社区发现、信息传播等问题。

离散数学图论基本概念解释

离散数学图论基本概念解释

离散数学图论基本概念解释离散数学是一个研究离散对象及其关系和操作的数学分支,而图论则是离散数学的一个重要分支,用于研究图结构以及图中各种相关问题。

本文将对离散数学图论的基本概念进行解释。

一、图的定义图是指由一组顶点和连接这些顶点的边组成的数学结构。

图可以用G=(V, E)来表示,其中V表示顶点集合,E表示边的集合。

顶点之间的连接关系用边来表示,边有可能是有向的或无向的。

二、图的分类1. 无向图:图中的边没有方向,表示顶点之间的无序关系。

无向图可以是简单图(没有自环和重复边)或多重图(包含自环和多条重复边)。

2. 有向图:图中的边有方向,表示顶点之间的有序关系。

有向图也可以是简单图或多重图。

3. 加权图:顶点之间的边带有权重,用于表示边的强度或成本。

加权图可以是无向图或有向图。

三、图的常用术语1. 顶点的度:无向图中与某个顶点连接的边的数量称为该顶点的度。

在有向图中,顶点的度分为出度和入度,分别表示从该顶点出发的边的数量和指向该顶点的边的数量。

2. 路径:在图中,路径是指由一系列顶点和它们之间所连接的边组成的序列。

路径的长度是指路径中经过的边的数目。

3. 连通图:如果图中的任意两个顶点都存在一条路径相连,则称该图为连通图。

如果图非连通,则称为非连通图。

4. 完全图:如果一个无向图的任意两个顶点之间都有边相连,则称该图为完全图。

完全图有边n(n-1)/2条,其中n表示顶点的数量。

四、图的表示方法1. 邻接矩阵:邻接矩阵是一种以二维矩阵的形式来表示图的方法。

矩阵的行和列分别表示顶点,矩阵中的元素表示相应的边。

如果两个顶点之间存在边,就用1表示;否则,用0表示。

2. 邻接表:邻接表是一种以链表的形式来表示图的方法。

每个顶点都对应一个链表,链表中存储与该顶点相连的其他顶点。

五、图的遍历算法1. 深度优先搜索(DFS):DFS是一种用于遍历图的算法,它从一个初始顶点开始,沿着一条路径一直走到底,然后回溯到上一个顶点,再继续沿另一条路径走到底。

图论中的图的着色与染色问题

图论中的图的着色与染色问题

图论中的图的着色与染色问题图论是数学的一个分支,研究的是图的性质和图的应用。

在图论中,图的着色与染色问题是一个经典且重要的研究课题。

图的着色问题是指如何用有限的颜色对图的顶点或边进行染色,使得相邻的顶点或边具有不同的颜色。

本文将介绍图的着色与染色问题的基本概念和应用。

一、图的基本概念1. 无向图和有向图无向图由一些顶点和连接这些顶点的边组成,边没有方向性。

而有向图中,边是有方向性的,连接两个顶点的边有始点和终点之分。

2. 邻接矩阵和邻接表邻接矩阵是一种表示图的方法,用一个矩阵表示图中各个顶点之间的连接关系。

邻接表是另一种表示图的方法,用链表的形式表示图中各个顶点之间的连接关系。

二、图的着色问题图的着色问题是指如何用有限的颜色对图的顶点或边进行染色,使得相邻的顶点或边具有不同的颜色。

图的着色问题有以下两种情况:1. 顶点着色对于无向图或有向图的顶点,通过对每个顶点进行染色,使得图中任何相邻的顶点具有不同的颜色。

这里的相邻顶点指的是通过一条边相连的顶点。

2. 边着色对于无向图或有向图的边,通过对每条边进行染色,使得图中任何相邻的边具有不同的颜色。

这里的相邻边指的是有共同始点或终点的边。

三、图的染色算法对于图的着色问题,有不同的染色算法可以解决。

在这里我们介绍两种常用的染色算法:贪心算法和回溯算法。

1. 贪心算法贪心算法是一种基于局部最优策略的算法。

对于图的顶点着色问题,贪心算法的策略是从一个未染色的顶点开始,将其染上一个可用的颜色,并将该颜色标记为已占用,然后继续处理下一个未染色的顶点。

如果当前顶点没有可用的颜色可染,则需要增加一个新的颜色。

2. 回溯算法回溯算法是一种穷举所有可能性的算法。

对于图的着色问题,回溯算法的策略是从一个未染色的顶点开始,尝试不同的颜色进行染色,如果发现染色后与相邻顶点冲突,就回溯到上一个顶点重新尝试其他颜色,直到所有顶点都被染色。

四、图的着色问题的应用图的着色问题在实际中有广泛的应用。

离散数学第七章图的基本概念

离散数学第七章图的基本概念

4.无向图的连通性
若无向图G中任何两顶点都连通,则称G是连通图.
对于任意的无向图G.设V1,V2,…,Vk是顶点之间连通关系的 等价类,则称他们的导出子图为G的连通分支.用p(G)表示G 的连通分支数.
V1 e1
e2 e3
V3
e4 V2
V4
a
de
h
i
b
c
f
g
5.有向图的连通性
若略去有向图D中各边的键头,所得无向图是无向连通图,则 称D是弱连通图(或称D是连通图).
(2) mij d (vi )(i 1,2,..., n)
j 1
mn
nm
n
(3) mij mij d(vi ) 2m
j1 i1
i1 j1
i 1
m
(4) mij 0 vi是孤立点 j 1
(5)若第j列与第k列相同, 则说明e j与ek为平行边.
2.有向图的关联矩阵
设有向图D=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em} 1, vi为ej的始点
e1,e2,e3},{e1,e2,
e2
e4},{e9}等边割集 ,e9是桥.
e3 V4
e5 e6
V5 e4
V6
e9
V7
7.3 图的矩阵表示
1.无向图的关联矩阵
设无向图G=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em}
令mij为顶点vi与ej的关联次数, 则称(mij)n×m为G的关联矩阵.记为M(G)
若Γ 满足:vi-1,vi为ei的端点(若G为有向图,vi-1是ei的始 点,vi是ei的终点)i=1,2,…,k,则称Γ 为G中通路,v0,vk分 别称为通路的始点和终点,Γ 中边的数目k称为通路长度.

图论知识点总结笔记

图论知识点总结笔记

图论知识点总结笔记一、图的基本概念1. 图的定义图是由节点(顶点)和连接节点的边构成的一种数据结构。

图可以用来表示各种关系和网络,在计算机科学、通信网络、社交网络等领域有着广泛的应用。

在图论中,通常将图记为G=(V, E),其中V表示图中所有的节点的集合,E表示图中所有的边的集合。

2. 节点和边节点是图中的基本单位,通常用来表示实体或者对象。

边是节点之间的连接关系,用来表示节点之间的关联性。

根据边的方向,可以将图分为有向图和无向图,有向图的边是有方向的,而无向图的边是没有方向的。

3. 度度是图中节点的一个重要度量指标,表示与该节点相连的边的数量。

对于有向图来说,可以分为入度和出度,入度表示指向该节点的边的数量,出度表示由该节点指向其他节点的边的数量。

4. 路径路径是图中连接节点的顺序序列,根据路径的性质,可以将路径分为简单路径、环路等。

在图论中,一些问题的解决可以归结为寻找合适的路径,如最短路径问题、汉密尔顿路径问题等。

5. 连通性图的连通性是描述图中节点之间是否存在路径连接的一个重要特征。

若图中每一对节点都存在路径连接,则称图是连通的,否则称图是非连通的。

基于图的连通性,可以将图分为连通图和非连通图。

6. 子图子图是由图中一部分节点和边组成的图,通常用来描述图的某个特定属性。

子图可以是原图的结构副本,也可以是原图的子集。

二、图的表示1. 邻接矩阵邻接矩阵是一种常见的图表示方法,通过矩阵来表示节点之间的连接关系。

对于无向图来说,邻接矩阵是对称的,而对于有向图来说,邻接矩阵则不一定对称。

2. 邻接表邻接表是另一种常用的图表示方法,它通过数组和链表的组合来表示图的节点和边。

对于每一个节点,都维护一个邻接点的链表,通过链表来表示节点之间的连接关系。

3. 关联矩阵关联矩阵是另一种图的表示方法,通过矩阵来表示节点和边的关联关系。

关联矩阵可以用来表示有向图和无向图,是一种比较灵活的表示方法。

三、常见的图算法1. 深度优先搜索(DFS)深度优先搜索是一种常见的图遍历算法,通过递归或者栈的方式来遍历图中所有的节点。

图的基本概念及其矩阵表

图的基本概念及其矩阵表

04 图的矩阵应用
最短路径问题
Dijkstra算法
基于贪心策略,从源节点开始逐步向外扩展,每次找到距离源节点最近的节点, 直到扩展到目标节点,得到最短路径。
Bellman-Ford算法
通过动态规划的思想,从源节点开始逐步更新节点间的距离,直到所有节点都 被访问过,最终得到最短路径。
最小生成树问题
图的匹配算法
匈牙利算法
用于解决二分图最大匹配问题,即在二分图中找到最大的匹配数。
Hopcroft算法
用于一般图的匹配问题,通过不断在图上增加或删除边来寻找最大匹配。
06 图论的应用领域
计算机科学
算法设计与分析
图论是计算机科学中算法设计与分析的重要工具,用于解决诸如 最短路径、最小生成树、网络流等问题。
Prim算法
从任意一个节点开始,逐步添加边, 每次选择权值最小的边,直到所有节 点都在生成树中,得到最小生成树。
Kruskal算法
按照边的权值从小到大排序,依次添 加边,如果添加的边不会形成环,则 添加到生成树中,最终得到最小生成 树。
网络流问题
Ford-Fulkerson算法
通过不断寻找增广路径并增加其容量,直到没有增广路径为止,得到最大网络流 。
对于一些特殊的矩阵,如对称矩阵、 反对称矩阵等,它们的转置具有特殊 的性质。例如,对称矩阵的转置等于 它本身,而反对称矩阵的转置是它的 负数。
矩阵求逆
要点一
矩阵求逆定义
对于一个非奇异矩阵(即行列式不为零 的矩阵),它的逆矩阵是一个与原矩阵 乘积为单位矩阵(即对角线元素为1, 其余元素为0的矩阵)的矩阵。
矩阵乘法是线性代数中的一种基本运算,它按照一定的规则将两个矩阵相乘,得到一个新 的矩阵。

数据结构——图

数据结构——图

数据结构——图图是一种重要的数据结构,它以顶点和边的方式来表示数据之间的关系。

在计算机科学和信息技术领域,图被广泛应用于解决各种问题,如网络路由、社交网络分析和数据挖掘等。

本文将介绍图的基本概念、表示方法和常见算法,以及图在实际应用中的一些案例。

一、图的基本概念图是由顶点集合和边集合组成的有序对,用G=(V,E)表示,其中V表示顶点集合,E表示边集合。

图可以分为有向图和无向图两种类型,有向图的边具有方向性,无向图的边没有方向性。

1. 顶点(Vertex):图中的一个元素,可以用来表示某个实体。

2. 边(Edge):顶点之间的连接关系,可以用来表示实体之间的关联。

3. 路径(Path):在图中顶点之间经过的一系列边和顶点构成的序列。

4. 环(Cycle):在图中由一个顶点开始经过若干边后再回到该顶点的路径。

5. 连通图(Connected Graph):图中任意两个顶点之间存在路径。

二、图的表示方法图可以使用邻接矩阵和邻接表两种方式进行表示。

1. 邻接矩阵:邻接矩阵是一个二维数组,其中数组元素表示顶点之间的边,若两个顶点之间存在边,则对应元素为1或权重值,否则为0或无穷大。

2. 邻接表:邻接表由一个顶点数组和一个边链表组成,顶点数组存储顶点的信息,边链表存储每个顶点的邻接顶点。

三、常见图算法图的常见算法包括深度优先搜索(DFS)和广度优先搜索(BFS)、最短路径算法(Dijkstra算法和Floyd算法)以及最小生成树算法(Prim算法和Kruskal算法)等。

1. 深度优先搜索(DFS):从图的一个顶点出发,沿着一条路径一直深入直到没有未访问过的邻接顶点,然后返回并查找其他路径。

DFS 可以用于查找连通图中的所有顶点以及判断图中是否存在环等。

2. 广度优先搜索(BFS):从图的一个顶点出发,首先访问其所有邻接顶点,然后按照相同的方式访问每个邻接顶点的邻接顶点,直到所有顶点都被访问。

BFS可以用于查找最短路径、拓扑排序以及解决迷宫等问题。

电子科技大学《图论及其应用》复习总结--第一章图的基本概念

电子科技大学《图论及其应用》复习总结--第一章图的基本概念

电⼦科技⼤学《图论及其应⽤》复习总结--第⼀章图的基本概念⼀、重要概念图、简单图、图的同构、度序列与图序列、偶图、补图与⾃补图、两个图的联图、两个图的积图1.1 图⼀个图G定义为⼀个有序对(V, E),记为G = (V, E),其中(1)V是⼀个有限⾮空集合,称为顶点集或边集,其元素称为顶点或点;(2)E是由V中的点组成的⽆序点对构成的集合,称为边集,其元素称为边,且同⼀点对在E中可出现多次。

注:图G的顶点数(或阶数)和边数可分别⽤符号n(G) 和m(G)表⽰。

连接两个相同顶点的边的条数,叫做边的重数。

重数⼤于1的边称为重边。

端点重合为⼀点的边称为环。

1.2 简单图⽆环⽆重边的图称为简单图。

(除此之外全部都是复合图)注: 1.顶点集和边集都有限的图称为有限图。

只有⼀个顶点⽽⽆边的图称为平凡图。

其他所有的图都称为⾮平凡图。

边集为空的图称为空图。

2.n阶图:顶点数为n的图,称为n阶图。

3.(n, m) 图:顶点数为n的图,边数为m的图称为(n, m) 图1.3 邻接与关联:顶点u与v相邻接:顶点u与v间有边相连接(u adj v);其中u与v称为该边的两个端点。

注:1.规定⼀个顶点与⾃⾝是邻接的。

2.顶点u与边e相关联:顶点u是边e的端点。

3.边e1与边e2相邻接:边e1与边e2有公共端点。

1.4 图的同构设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点集合间存在双射,使得边之间存在如下关系:u1,v1∈V1,u2,v2∈ V2 ,设u1↔u2,v1↔v2,; u1v1∈E1 当且仅当u2v2∈E2,且u1v1与u2v2的重数相同。

称G1与G2同构,记为:G1≌G2注:1、图同构的两个必要条件: (1) 顶点数相同;(2) 边数相同。

2、⾃⼰空间的理解:通过空间的旋转折叠可以进⾏形态转换1.5 完全图、偶图1、在图论中,完全图是⼀个简单图,且任意⼀个顶点都与其它每个顶点有且只有⼀条边相连接。

离散数学-图的矩阵表示

离散数学-图的矩阵表示

使用压缩矩阵
对于稠密图(边数较多的 图),可以使用压缩矩阵 来减少存储空间和计算时 间。
使用动态规划
对于某些特定的问题,可 以使用动态规划来优化算 法,提高计算效率。
05
离散数学-图的矩阵表示的挑战和未
来发展方向
离散数学-图的矩阵表示的挑战
计算复杂性
图的矩阵表示的计算复杂性较高, 特别是对于大规模图,需要消耗 大量的计算资源和时间。
表示图中任意两个顶点之间距离的矩阵, 距离矩阵中的元素d[i][ j]表示顶点i和顶点j 之间的最短路径长度。
图的邻接矩阵
1
邻接矩阵是表示图中顶点之间连接关系的常用方 法,其优点是简单直观,容易理解和计算。
2
邻接矩阵的行和列都对应图中的顶点,如果顶点i 和顶点j之间存在一条边,则矩阵中第i行第j列的 元素为1,否则为0。
THANKS
感谢观看
3
通过邻接矩阵可以快速判断任意两个顶点之间是 否存在边以及边的数量。
图的关联矩阵
01
关联矩阵是表示图中边和顶点之间关系的常用方法,
其优点是能够清晰地展示图中边的连接关系。
02
关联矩阵的行和列都对应图中的边,如果边e与顶点i相
关联,则矩阵中第i行第e列的元素为1,否则为0。
03
通过关联矩阵可以快速判断任意一条边与哪些顶点相
图的矩阵表示的算法复杂度分析
创建邻接矩阵的时间复杂 度:O(n^2),其中n是顶 点的数量。
查找顶点之间是否存在边 的复杂度:O(1)。
创建关联矩阵的时间复杂 度:O(m),其中m是边的 数量。
查找边的权重复杂度: O(1)。
图的矩阵表示的算法优化策略
01
02
03
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G = (V, R) V={A, B, C, D, E} R={<A,B>, <A,E>, <B,C>, <C,D>, <D,B>,<D,A>, <E,C> }
有向图、无向图
A
B
E
CD
B A
F
C D
E
邻接点、度
A
B
E
CD
B A
F
C D
E
子图
A
B
E
CD
B CD
稀疏图、稠密图
n:顶点个数 e:边数 e ≧ nlogn
int v1 = theEdge->vertex1(); int v2 = theEdge->vertex2(); if (v1 < 1 || v2 < 1 || v1 > n || v2 > n || v1 == v2)
throw std::out_of_range("invalid");
template <class T> bool adjacencyWDigraph<T>::existsEdge(int i, int j) const {// Return true iff (i,j) is an edge of the graph.
if (i < 1 || j < 1 || i > n || j > n || a[i][j] == noEdge) return false;
路径和路径长度
A
B
E
C
D
A->B->C->D A->E->C->D
简单路径
A
B
E
C
D
A->B->C->D A->E->C->D->B->C->D
连通图
B
C
A
D
F
E
a、连通图
B
C
A
D
F
E
b、非连通图
强连通图
A
B
E
CD
a、强连通图
A
B
E
CD
b、非强连通图
生成树
B A
F
C
D E
B A
F
C
D E

A
for (int i = 1; i <= n; i++)
// initialize adjacency matrix std::fill(a[i], a[i] + n + 1, noEdge);
A0
}
B0
C0
D0
E0
BCD E
0000 0000 0000 0000 0000
AdjacencyWDigraph
15
A9
11
B7 3
21
E
C2 D
图的存储表示
一、图的数组(邻接矩阵)存储表示 二、图的邻接表存储表示 三、有向图的十字链表存储表示 四、无向图的邻接多重表存储表示
无向图-邻接矩阵
B A
F
C D
E
ABCD E F
A010010 B100011 C000101 D0 0 1 0 0 1 E110000 F011100
else return true;
} template <class T> void adjacencyWDigraph<T>::eraseEdge(int i, int j) {// Delete the edge (i,j).
if (i >= 1 && j >= 1 && i <= n && j <= n && a[i][j] != noEdge) {
数据结构
{a1, a2, a3, …, an} 研究数据的组织方法,以提高程序性能 。
研究在线性存储模型中,如何用顺序、链式或二者的组合 方式组织数据,以提高增、删、改、查的性能。
线性存储器模型
0 1 2 3
……
n
内存?外存?
1、编程空间 2、流式文件 3、……
实例
假设有5位同学的成绩表: 2006001 99 2006003 80 2006004 85 2006005 60 2006006 70
组织方式-顺序
存储地址 Lo
Lo+m
存储内容 元素1
元素2
……..
Lo+(i-1)*m 元素i ……..
Lo+(n-1)*m 元素n
2006001 99 2006003 80 2006004 85 2006005 60 2006006 70
组织方式-链式
存储内容
L0
元素1
P
2006001 99
元素3
1、邻接矩阵 2、邻接表 3、十字链表
V2
V1
V4
V3
类的派生层次-基于邻接矩阵
AdjacencyWDigraph
graph
AdjacencyWgraph
AdjacencyDigraph
Adjacencygraph
graph类
template<class T> class graph{
public: virtual ~graph() {} virtual int numberOfVertices() const = 0; virtual int numberOfEdges() const = 0; virtual bool existsEdge(int, int) const = 0; virtual void insertEdge(edge<T>*) = 0; virtual void eraseEdge(int, int) = 0; virtual int degree(int) const = 0; virtual int inDegree(int) const = 0; virtual int outDegree(int) const = 0; virtual bool directed() const = 0; virtual bool weighted() const = 0; virtual vertexIterator<T>* iterator(int) = 0; virtual void output(std::ostream&) const = 0;
AdjacencyWDigraph
template <class T> bool adjacencyWDigraph<T>::make2dArray(T ** &x, int numberOfRows, int numberOfColumns) {// Create a two dimensional array.
AdjacencyWDigraph
。。。。。 public:
adjacencyWDigraph(int numberOfVertices = 0, T theNoEdge = 0); ~adjacencyWDigraph(){delete2dArray(a, n + 1);}; int numberOfVertices() const{return n;} int numberOfEdges() const {return e;} bool existsEdge(int, int) const; void insertEdge(edge<T>*); void eraseEdge(int, int); int degree(int) const{throw std::invalid_argument("no degree");} int inDegree(int) const; int outDegree(int) const; bool directed() const {return true;} bool weighted() const {return true;} vertexIterator<T>* iterator(int) ; void output(std::ostream&) const ; private: bool make2dArray(T ** &x, int numberOfRows, int numberOfColumns); void checkVertex(int theVertex) const; };
if (numberOfVertices < 0)
throw std::out_of_range("number of vertices must be >= 0");
n = numberOfVertices;
e = 0;
noEdge = theNoEdge;
make2dArray(a, n + 1, n + 1);
};
AdjacencyWDigraph
template <class T> class weightedEdge : public edge<T> {
public: weightedEdge(int theV1, int theV2, T theW) {v1 = theV1; v2 = theV2; w = theW;} ~weightedEdge() {}; int vertex1() const {return v1;} int vertex2() const {return v2;} T weight() const {return w;} operator T() const {return w;} void output(std::ostream& out) const{ out << "(" << v1 << ", " << v2 << ", " << w << ")
相关文档
最新文档