数学方法插值

合集下载

插值方法

插值方法
第一章
插值方法
n次插值
为了计算函数值或分析函数的性态,必 须首先由实验或观测数据找出函数关系 的一个近似表达式.插值与逼近就是用简 单函数为各种离散数据建立连续的数学 模型,使其既能达到精度要求,又使计 算量尽可能小.插值与逼近理论是数值计 算的最基本内容.
插值的概念

已知函数y=f(x)在n+1个互异点x0, x1, …, xn上的函数值分别为y0, y1, …, yn ,构造 一个简单的函数P(x),满足条件 P(xi) =yi (i=0,1,…n) (1) 称这类问题为插值问题,称P(x)为函数 f(x)的插值函数, f(x)为被插值函数,点x0, x1, …, xn为插值节点,称(1)为插值条件.
( x x1 ) l0 ( x) ( x0 x1 )
其中
( x x0 ) l1 ( x) ( x1 x0 )
抛物插值(二次插值)
已知函数y=f(x)在三个互异点x0, x1, x2上的函数值分别 为y0, y1, y2,构造求一个二次式L2(x),满足条件: L2(x0)= y0 ,L2(x1)= y1 ,L2(x2)= y2. 二次Lagrange插值多项式为 L2(x)= y0l0(x) + y1l1(x) + y2l2(x)
已知
100 10,
121 11,
144 12
,试利用插
值法近似计算

115
.
分析 由题中已知条件本题可利用三点二次Lagrange 插值,也可利用三点二次Newton插值,它们所得结 果相同. 解 利用三点二次Lagrange插值.记 f ( x) x , x0 100, x1 121, x2 144, y0 10, y1 11, y2=12, 则f(x)的二次Lagrange插值多项式为

插值方法

插值方法
就是对应点上的函数值。这种形式的插值称作为拉
格朗日(Lagrange)插值。
2.n=2
线 性 插 值 只 利 用 两 对 值 (x0,y0) 及 (x1,y1) 求 得
y=f(x)的近似值,误差较大。
p2(x0)=y0,p2(x1)=y1,p2(x2)=y2
p2(x)是x的二次函数,称为二次插值多项式。
第1章 插值方法
插值法是一种古老的数学方法。早在 1000多年前,我国历法上已经记载了应用一 次插值和二次插值的实例。 拉格朗日(Lagrange)、牛顿 (Newton)、埃特金(Aitken)分别给出了 不同的解决方法。
1.1 拉格朗日插值公式 1.2 牛顿插值公式 1.3 埃特金插值公式 1.4 存在惟一性定理 1.5 插值余项 1.6 分段三次埃尔米特插值 1.7 三次样条插值 1.8 应用实例
[a,b],有与x有关的ξ(a<ξ<b)存在, 使得
其中ω(x)=(x-x0)(x-x1)…(x-xn)。
[例5] 设f(x)=lnx, 并假定已给出值表试近 似计算ln(0.6)的值,并指出精度。 值表 0.4 -0.916291
x lnx
0.5 -0.693147
0.7 -0.356675
0.8 -0.223144
(x∈[-5,5])。
取等距节点xi=-5+i(i=0,1,…,10), 试建立插值多项式 L10(x), 并作图形, 观察L10(x)对f(x)的逼近效果。
图1-3 例6的图形
1.6 分段三次埃尔米特插值
为了避免 Runge现象的发生 , 我们很自 然地会想到把区间[-5, 5]等分为10个小区 间, 在每一个小区间内应用低次插值。但由 于每个小区间只有两个端点(插值节点) , 按照我们已知的方法, 得到的将是一个分段 线性插值函数。

插值法

插值法

余项表达式只有在 f ( x)的高阶导数存在时才能 应用.
当n = 1时,线性插值余项为 1 1 R1 ( x ) = f ( ) 2 ( x ) = f ( ) ( x - x0 )( x - x1 ), [ x0 , x1 ] 2 2 当n = 2时,抛物插值的余项为 1 R2 ( x ) = f ( ) ( x - x0 )( x - x1 )( x - x 2 ), [ x0 , x 2 ] 6
1.2 二次插值
n=2
1.2.1 待定系数法 已知 x0 , x1 , x2; y0 , y1 ,y2 , 求 P2 ( x) = a0 a1 x a2 x 2
使得 P2 ( x 0 ) = y0 , P2 ( x1 ) = y1 , P2 ( x2 ) = y2
为求P2(x),将三点代入其表达式,即可得到三个方程式, 方程组的解是否存在? 若存在解,是否唯一?! 从而联立方程组解出系数a0, a1, a2即可:
插值
在离散数据的基础上补插连续函数,使得这条连 续曲线通过全部给定的离散数据点。插值是离散 函数逼近的重要方法,利用它可通过函数在有限 个点处的取值状况,估算出函数在其他点处的近 似值
早在6世纪,中国的刘焯已将等距二次插值 用于天文计算。17世纪之后,I.牛顿,J.-L. 拉格朗日分别讨论了等距和非等距的一般插 值公式。在近代,插值法仍然是数据处理和 编制函数表的常用工具,又是数值积分、数 值微分、非线性方程求根和微分方程数值解 法的重要基础,许多求解计算公式都是以插 值为基础导出的
插值法就是一种基本方法 一般地,构造某种简单函数代替原来函数。
当精确函数 y = f(x) 非常复杂或未知时,在一 系列节点 x0 … xn 处测得函数值 y0 = f(x0), … yn = f(xn),由此构造一个简单易算的近似函 数 g(x) f(x),满足条件g(xi) = f(xi) (i = 0, … n)。这里的 g(x) 称为f(x) 的插值函数。

插值的基本定义及应用

插值的基本定义及应用

插值的基本定义及应用插值是数学中的一种数值计算方法,用于根据给定的有限数据点,构造出一个函数,该函数在这些数据点上与原函数具有相同的性质。

基本上,插值问题可以总结为如何利用已知数据点来估计未知数据点的数值。

插值问题的基本定义是:给定一些已知的数据点,我们需要找到一个函数或曲线,使得这个函数或曲线通过这些已知的数据点,并且在这些点附近具有某种特定的性质。

具体而言,插值函数要满足以下两个条件:1. 插值函数通过已知的数据点,即对于给定的数据点(x_i, y_i),插值函数f(x)满足f(x_i) = y_i。

2. 插值函数在已知的数据点之间具有某种连续性或平滑性。

这意味着在已知的数据点之间,插值函数f(x)的一阶导数、二阶导数或其他导数连续或平滑。

插值方法可以用于解决各种实际应用问题,例如:1. 数据重构:在一些实际应用中,我们只能获得有限的数据点,但是我们需要整个函数的完整数据。

通过插值方法,我们可以从这些有限的数据点中恢复出整个函数的形状,以满足我们的需求。

2. 函数逼近:有时候,我们需要找到一个与已知数据点非常接近的函数或曲线,以便在未知点处进行预测。

通过插值方法,我们可以构造出一个逼近函数,在已知数据点附近进行预测。

3. 数据平滑:在一些实际问题中,我们的数据可能受到噪声或误差的影响,从而产生不规则或不平滑的曲线。

通过插值方法,我们可以使用平滑的插值曲线来去除噪声或误差,从而得到更加平滑的数据。

4. 图像处理:在图像处理中,插值方法被广泛应用于图像的放大、缩小、旋转、变形等操作中。

通过插值方法,可以在图像上生成新的像素值,以获得更高的图像质量。

常见的插值方法包括:1. 线性插值:线性插值是最简单的插值方法之一,它假设函数在已知数据点之间是线性的。

线性插值的插值函数是一条直线,通过已知数据点的两个端点。

2. 拉格朗日插值:拉格朗日插值是一种基于多项式的插值方法。

它通过一个n 次的多项式来插值n+1个已知数据点,保证插值函数通过这些已知数据点。

插值算法

插值算法

一插值算法简介:1:插值的涵义:在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。

插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。

早在6世纪,中国的刘焯已将等距二次插值用于天文计算。

17世纪之后,I.牛顿,J.-L.拉格朗日分别讨论了等距和非等距的一般插值公式。

在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。

插值问题的提法是:假定区间[a,b]上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……xn 处的值是f [x0],……f(xn),要求估算f(x)在[a,b]中某点的值。

其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0,C1,……Cn的函数类Φ(C0,C1,……Cn)中求出满足条件P(xi)=f(xi)(i=0,1,……n)的函数P(x),并以P()作为f()的估值。

此处f(x)称为被插值函数,c0,x1,……xn称为插值结(节)点,Φ(C0,C1,……Cn)称为插值函数类,上面等式称为插值条件,Φ(C0,……Cn)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

当估算点属于包含x0,x1……xn的最小闭区间时,相应的插值称为内插,否则称为外插。

2:插值的种类(1)多项式插值这是最常见的一种函数插值。

在一般插值问题中,若选取Φ为n次多项式类,由插值条件可以唯一确定一个n次插值多项式满足上述条件。

从几何上看可以理解为:已知平面上n +1个不同点,要寻找一条n次多项式曲线通过这些点。

插值多项式一般有两种常见的表达形式,一个是拉格朗日插值多项式,另一个是牛顿插值多项式。

(2)埃尔米特插值对于函数f(x),常常不仅知道它在一些点的函数值,而且还知道它在这些点的导数值。

第二章插值法

第二章插值法

lk ( xk 1 ) 0
n=2的情况,假定插值节点为
xk 1 , xk , xk 1 , 要求一个二次插值多项式L2 ( x),使它满足 L2 ( x j ) y j ( j k 1, k , k 1)
y L2 ( x)在几何上就是通过三点(xk-1 , yk 1 ),(xk , yk ),(xk+1, yk 1 )的抛物线
插值法
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6 §2.7 引言 拉格朗日插值 均差与牛顿插值公式 差分与等距节点插值 埃尔米特插值 分段低次插值 三次样条插值
一、插值问题
或者函数本身只是 一组实验数据,很 难对函数的性质进 行分析
对函数f (x),其函数形式可能很复杂且不利于在计算机上 ,
设函数
y f ( x ) 在区间 [a, b] 上有定义,且已知在
a x0 x1 x2 xn b
f ( xi ) yi , i 0,1,, n
如果存在一个简单函数 P ( x ),使得
P( xi ) f ( xi ) yi , i 0,1,, n
xx x x
如函数y sin x, 若给定 0, ]上5个等分点 [
其插值函数的图象如图
对于被插函数 ( x)和插值函数 ( x) f P
在节点xi处的函数值必然相等
但在节点外 ( x)的值可能就会偏离 ( x) P f 因此P( x)近似代替 ( x)必然存在着误差 f
整体误差的大小反映了插值函数的好坏
成立,则称 P ( x ) 为 f ( x ) 的插值函数
称点 xi , i 0,1,2,, n为插值节点
称区间 a , b]为插值区间 [

第5章 插值方法

第5章 插值方法

第5章插值方法5.1 插值问题概述假设f(x)是某个表达式很复杂,甚至根本写不出来的实函数,且已知f(x)在某个区间[a,b]上的n+1个互异的点x0,x1,…,x n处的函数值f(x0),f(x1),…,f(x n),我们希望找到一个简单的函数y=P(x),使得P(x k)=f(x k),k=0,1,…,n.这就是插值问题。

如果我们找到了这样的函数y=P(x),我们就可以在一定范围内利用P(x)近似表示f(x),从而解决了相应的计算问题。

1.利用函数值列表来表示插值问题对于一个插值问题来说,我们的已知条件就是n+1个互异的点处的函数值.回顾高等数学中学习过的函数的表示方法,我们可用下面表1的形式列出已知的函数值,并简称为由表1给出的插值问题。

表1:插值问题的函数值列表2.重要术语对于n+1个基点的插值问题,我们称:f(x) 为被插值函数;P(x)为插值函数;x0,x1,…,x n为插值基点或插值节点;P(x k)=f(x k),k=0,1,…,n为插值条件;[a,b]为插值区间。

注释:对于早期的插值问题来说,f(x)通常是已知的,比如对数函数,指数函数,三角函数等这些问题现在已经不用插值法来计算了;对于现在的许多实际问题来说,我们并不知道f(x)的具体形式,所对应的函数值可能是由测量仪器或其他物理设备中直接读出来的,f(x)只是一个概念中的函数。

3.多项式插值对于n+1个基点的插值问题,如果要求插值函数是次数不超过n 的多项式,记为P n(x),则相应的问题就是多项式插值,并且把P n(x)称为插值多项式。

实际上,我们所考虑的插值函数通常都是多项式函数或分段多项式函数。

由于次数不超过n的多项式的一般形式为P n((x)=a 0+a 1x+a 2x 2+…+a n x n (1)所以只要确定了n+1个系数a 0,a 1,a 2,a n ,我们便确定了一个插值多项式。

4.多项式插值的一般方法对于n+1个基点的多项式插值问题,我们完全可以用上一章中的办法来求插值多项式P n (x)的系数,a 0,a 1,a 2,a n ,它们可表为下面的线性方程组的解,所以多项式插值相对说来是很简单的。

插值法数学计算方法

插值法数学计算方法

插值法数学计算方法插值法是一种数学计算方法,用于在已知数据点的基础上,通过构建一条插值曲线来估计未知数据点的值。

插值法可以应用于各种数学问题中,例如逼近函数、插值多项式、差值等。

本文将详细介绍插值法的原理和常见的插值方法。

一、插值法的原理插值法的基本思想是通过已知数据点的函数值来构建一个函数表达式,该函数可以通过插值曲线来估计任意点的函数值。

根据已知数据点的数量和分布,插值法可以采用不同的插值方法来构建插值函数。

插值法的原理可以用以下几个步骤来描述:1.收集已知数据点:首先,需要收集一组已知的数据点。

这些数据点可以是实际测量得到的,也可以是其他方式获得的。

2.选择插值方法:根据问题的特性和数据点的分布,选择适合的插值方法。

常见的插值方法包括拉格朗日插值法、牛顿插值法、埃尔米特插值法等。

3.构建插值函数:通过已知数据点,利用选择的插值方法构建插值函数。

这个函数可以拟合已知数据点,并通过插值曲线来估计未知数据点。

4.估计未知数据点:利用构建的插值函数,可以估计任意点的函数值。

通过插值曲线,可以对未知数据点进行预测,获得相应的数值结果。

二、常见的插值方法1.拉格朗日插值法:拉格朗日插值法基于拉格朗日多项式,通过构建一个具有多项式形式的插值函数来逼近已知数据点。

插值函数可以通过拉格朗日基函数计算得到,式子如下:P(x) = ∑[f(xi) * l(x)], i=0 to n其中,P(x)表示插值函数,f(xi)表示已知数据点的函数值,l(x)表示拉格朗日基函数。

2.牛顿插值法:牛顿插值法基于牛顿差商公式,通过构建一个递归的差商表来逼近已知数据点。

插值函数可以通过牛顿插值多项式计算得到,式子如下:P(x) = f(x0) + ∑[(f[x0, x1, ..., xi] * (x - x0) * (x - x1)* ... * (x - xi-1)] , i=1 to n其中,P(x)表示插值函数,f[x0, x1, ..., xi]表示xi对应的差商。

数值计算方法插值法

数值计算方法插值法

f[x1,x2,x3] …
f[x0,x1,x2 ,x3]
例阶2.1差1商求值f(xi)= x3在节点 x=0, 2, 3, 5, 6上的各
解xi :
计算得如下表 f[xi] f[xi,xi+1]
f[xi,xi+1,xi+2 ]
f[xi,xi+1,xi+2 ,xi+2]
00
28
80 4 20
27 8 19 19 4 5
an x0 n an1x0 n1 a1x0 a0 f (x0 )
an x1n
an1
x n1 1
a1x1 a0
f (x1 )
an xn n an1xn n1 a1xn a0 f (xn )
这是惟一一个性关说于明待,定不参论数用何种方法来构a造的0,,n+也a11阶不, 线论性用, 方何an种形式来表示插值多项式,
由线性代数知,任何一个不高于n次的多项式, 都可以表示成函数
1, x x0 , (x x0 )(x x1 ),, (x x0 )(x x1 )(x xn1 )
的线性组合, 也就是说, 可以把满足插值条件 p(xi)=yi (i=0,1,…,n)的n次插值多项式, 写成如下形式
a0 a1(x x0) a2(x x0)(x x1) an (x x0)(x x1)(x xn1)
f[x0 , x1]=
f(x1)- f(x0) x1 – x0
f[x1 , x0]
f(x0)- f(x1) =
x0 – x1
f x0 , x1, x2 f x1, x2 , x0 f x0 , x2 , x1
性质3 若f[x, x0, x1 , …, xk ]是 x 的 m 次多项式, 则 f[x, x0, x1 ,…, xk , xk+1]是 x 的 m-1 次多项式

插值法简便公式

插值法简便公式

插值法简便公式在数学和统计学中,插值法是一种通过已知数据点来推断未知数据点的方法。

它在各种领域都有广泛的应用,如数值分析、数据处理、信号处理等。

插值法有多种方法,其中一种简便而常用的方法是线性插值法。

线性插值法是一种简单但有效的插值方法,它基于线性关系来推断未知数据点的值。

该方法假设已知数据点之间的变化是线性的,并通过线性方程来估计未知数据点的值。

线性插值法的简便公式如下:y = y1 + (x - x1) * (y2 - y1) / (x2 - x1)其中,x1和x2是已知数据点的横坐标,y1和y2是已知数据点的纵坐标,x是待估计数据点的横坐标,y是待估计数据点的纵坐标。

线性插值法的应用非常广泛。

例如,在气象学中,我们可以利用已知的气温数据点来推断未知地点的气温。

假设我们知道某地在早上8点的气温为20摄氏度,而在中午12点的气温为30摄氏度。

如果我们想知道该地在上午10点的气温,我们可以使用线性插值法来估计。

根据已知数据点和插值公式,我们可以计算出:y = 20 + (10 - 8) * (30 - 20) / (12 - 8) = 25摄氏度因此,根据线性插值法,该地在上午10点的气温大约为25摄氏度。

除了气象学,线性插值法还广泛应用于金融、工程、地理和计算机图形学等领域。

在金融领域,我们可以使用线性插值法来估计股票或商品的价格。

在工程领域,我们可以利用已知数据点来估计未知条件下的物理量。

在地理领域,我们可以使用线性插值法来推断未知地点的海拔高度。

在计算机图形学中,线性插值法常用于生成平滑的曲线和表面。

然而,线性插值法也存在一些限制。

首先,该方法仅适用于已知数据点之间的线性变化。

如果数据点之间的变化是非线性的,线性插值法可能会产生不准确的结果。

其次,该方法假设数据点之间的变化是连续的。

如果数据点之间存在间断或跳跃,线性插值法也可能不适用。

为了克服线性插值法的限制,人们还开发了其他插值方法,如多项式插值、样条插值和径向基函数插值等。

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析数值计算是一门应用数学学科,广泛应用于科学与工程领域。

在实际问题中,我们常常需要通过已知的离散数据点来估计未知的数值。

插值方法就是为了解决这个问题而设计的。

插值方法是一种基于已知数据点,推断出未知数据点的数值计算方法。

常见的插值方法有拉格朗日插值、牛顿插值等。

下面我们将重点介绍这两种方法。

1. 拉格朗日插值法拉格朗日插值法是插值方法中最常见的一种。

它是基于拉格朗日多项式的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

拉格朗日插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)根据已知数据点构造Lagrange插值多项式:L(x) = Σ(yi * Li(x)), i = 0, 1, ..., n其中,Li(x) = Π((x-xj)/(xi-xj)), j ≠ i(2)计算未知点x对应的函数值y:y = L(x)拉格朗日插值法的优点是简单易懂,计算方便。

然而,它也存在着一些问题,比如插值多项式的次数较高时,多项式在插值区间外的振荡现象明显,容易引起插值误差。

2. 牛顿插值法牛顿插值法是另一种常见的插值方法。

它是基于差商的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

牛顿插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)计算差商:f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ..., xi+k-1]) / (xi+k - xi)(2)根据已知数据点构造Newton插值多项式:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * Π(x - xj)), i = 0, 1, ..., n-1(3)计算未知点x对应的函数值y:y = N(x)牛顿插值法的优点是适用范围广,可以方便地添加新的数据点进行插值。

插值的基本概念

插值的基本概念

插值的基本概念插值(interpolation)是指在已知有限个数据点的情况下,通过某种数学方法构造出一个函数,使得这个函数在这些数据点上的函数值都与已知的数据相符合。

插值方法常被用于曲线拟合,图像处理,计算机辅助设计,地图制作等领域。

插值方法主要分为三类:多项式插值法、样条插值法和分段线性插值法。

以下分别介绍这三种方法的基本概念。

1. 多项式插值法多项式插值法是指用一个n次多项式来逼近已知的n+1个数据点,从而得到一个插值函数。

插值函数的形式为:f(x) = a0 + a1x + a2x^2 + ... + anxn其中a0, a1, a2, ... , an是n+1个待求系数,取决于已知数据点的值。

为了求得这些系数,需要使用某种算法,如拉格朗日插值法或牛顿插值法。

这两种方法都能够精确地通过已知点,并可方便地计算任意点的函数值。

但是,随着数据点的数量增加,多项式插值方法的计算量将急剧增加,可能导致算法不稳定或数值不可信。

2. 样条插值法样条插值法是一种更为复杂的插值方法,它将插值函数分为若干个小区间,并在每个区间内用一个低次多项式来逼近已知的数据点。

这些局部多项式的系数由已知数据点的值和导数共同决定,使得插值函数在各区间内的函数值和导数连续。

这种连续性和光滑性可以使得插值函数更加符合实际情况,尤其是较大的数据集。

3. 分段线性插值法分段线性插值法是一种简单而有效的插值方法,它在每两个连续的已知数据点间构造一条直线来逼近数据点,并用这些直线段拼接起来形成一个分段线性函数。

虽然这种方法没有样条插值法那么精确,但它计算简单,不需要过多的计算资源。

在实际应用中,分段线性插值法与其他插值方法搭配使用,以提高算法的效率和精度。

总之,插值方法是数学计算和图像处理等领域中不可或缺的工具之一。

通过使用适当方法的插值,可以更加准确和高效地处理数据和图像,从而得到更加可靠的结果。

数值分析中的(插值法)

数值分析中的(插值法)
与其他方法的结合
插值法可以与其他数值分析方法结合使用,以获得更准确和可靠的估计结果。例如,可以 考虑将插值法与回归分析、时间序列分析等方法结合,以提高数据分析的效率和精度。
THANKS
感谢观看
多项式的阶数
根据数据点的数量和分布情况,选择适当的多项式阶数,以确保多 项式能够更好地逼近真实数据。
计算多项式的系数
通过已知的数据点和多项式阶数,计算出多项式的系数,从而得到 完整的插值多项式。
计算插值多项式的导数
导数的计算
在某些应用中,需要计算插值多项式的导数,例如在 曲线拟合、数值微分等场景中。
总结词
牛顿插值法是一种基于差商的插值方法,通过构造差商表来逼近未知点的数值。
详细描述
牛顿插值法的基本思想是通过构造差商表来逼近未知点的数值,差商表中的每一 项都是根据前一项和后一项的差来计算的。该方法在数值分析中广泛应用于数据 拟合、函数逼近等领域。
样条插值法
总结词
样条插值法是一种通过已知的离散数据点来构造一个样条函 数,用于估计未知点的数值的方法。
常见的插值法
拉格朗日插值法
总结词
拉格朗日插值法是一种通过已知的离散数据点来构造一个多项式,用于估计未 知点的数值的方法。
详细描述
拉格朗日插值法的基本思想是通过构造一个多项式来逼近已知数据点,使得该 多项式在每个数据点的取值与实际值相等。该方法在数值分析中广泛应用于数 据拟合、函数逼近等领域。
牛顿插值法
增加采样点的数量可以减小离散化误差,提高插值结果的稳定
性。
选择合适的插值方法
02
根据具体情况选择适合的插值方法,如多项式插值、样条插值
等,以获得更好的逼近效果和稳定性。
引入阻尼项

常见插值方法及其的介绍

常见插值方法及其的介绍

常见插值方法及其介绍Inverse Distance to a Power (反距离加权插值法)”、“Kriging (克里金插值法)”、“Minimum Curvature (最小曲率)”、“Modified Shepard's Method (改进别德法)”、“Natural Neighbor(自然邻点插值法)”、“Nearest Neighbor (最近邻点插值法)”、“Polynomial Regression (多元回归法)”、“Radial Basis Function (径向基函数法)”、“Triangulation with Linear Interpolation (线性插值三角网法)”、“Moving Average (移动平均法)”、“ Local Polynomial (局部多项式法)”1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0的权重,所有其它观测点个几乎为0.0的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域产生围绕观测点位置的“牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低“牛眼” 影响。

2、克里金法克里金法是一种在许多领域都很有用的地质统计格网化方法。

插值法计算公式例子

插值法计算公式例子

插值法计算公式例子
插值法计算公式
数学内插法即“直线插入法”。

其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。

而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。

数学内插法说明点P反映的变量遵循直线AB反映的线性关系。

上述公式易得。

A、B、P三点共线,则:(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。

内插法原理
内插法原理:学内插法即“直线插入法”。

其原理是,若
A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。

内插法
内插法又称插值法。

根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f (x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。

按特定函数的性质分,有线性内
插、非线性内插等;按引数(自变量)个数分,有单内插、双内插和三内插等。

线性内插是假设在二个已知数据中的变化为线性关系,因此可由已知二点的座标(a, b)去计算通过这二点的斜线。

通俗地讲,线性内插法就是利用相似三角形的原理,来计算内插点的数据。

插值法公式

插值法公式

插值法公式1. 什么是插值法?插值法是一种通过已知数据点之间的曲线进行估算或推测的数值方法。

它可以用来估计缺失点的数值,或者通过已知数据点之间的曲线来做出预测。

插值法在数学、统计学、计算机科学和工程等领域都有广泛的应用。

2. 常用的插值法在插值法中,有多种算法可供选择,下面介绍几种常用的插值法。

2.1 线性插值法线性插值法是一种简单但常用的插值法。

它假设两点之间的曲线是一条直线,根据已知的两个点(x₁, y₁)和(x₂, y₂)之间的线性关系,可以推断出任意两点之间的数值。

线性插值法的公式如下:y = y₁ + (y₂ - y₁) / (x₂ - x₁) * (x - x₁)其中,y是待估算的数值,x是已知的数据点。

2.2 拉格朗日插值法拉格朗日插值法是一种常用的多项式插值法。

它利用已知的数据点构造一个多项式,并通过该多项式来估算任意点的数值。

拉格朗日插值法的公式如下:L(x) = ∑[i=0~n] yᵢ * Lᵢ(x)其中,L(x)表示估算值,yᵢ表示已知数据点的y值,Lᵢ(x)表示拉格朗日基函数,定义如下:Lᵢ(x) = ∏[j=0~n, j≠i] (x - xₓ₊₀₋₀ⱼ) / (xₓ₊₀₋₀ᵢ - xₓ₊₀₋₀ⱼ)在这里,n是已知数据点的数量,xₓ₊₀₋₀ⱼ是第j个已知数据点的x值。

2.3 三次样条插值法三次样条插值法是一种更复杂的插值方法,它利用三次多项式来逼近已知数据点之间的曲线。

三次样条插值法的公式如下:S(x) = aⱼ(x - xₓ₊₂₋₂)³ + bⱼ(x - xₓ₊₂₋₂)² + cⱼ(x - xₓ₊₂₋₂) + dⱼ其中,S(x)表示估算值,aⱼ、bⱼ、cⱼ和dⱼ是通过已知数据点计算得到的系数。

3. 插值法的应用插值法在很多领域都有广泛的应用。

下面列举几个常见的应用场景:•图像处理:在图像处理中,插值法可以用来放大或缩小图像,通过已有像素点之间的颜色值来估算新的像素点的颜色值。

数值分析课件-第02章插值法

数值分析课件-第02章插值法
数值分析课件-第02章插值法
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。

插值与拟合方法

插值与拟合方法

插值与拟合方法插值和拟合是数学中常用的方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。

插值和拟合方法是经典的数学问题,应用广泛,特别是在数据分析、函数逼近和图像处理等领域。

1.插值方法:插值方法是通过已知数据点的信息,推断出两个已知数据点之间的未知数据点的数值。

插值方法的目的是保证插值函数在已知数据点处与实际数据值一致,并且两个已知数据点之间的连续性良好。

最常用的插值方法是拉格朗日插值法和牛顿插值法。

拉格朗日插值法根据已知数据点的横纵坐标,构造一个多项式函数,满足通过这些数据点。

拉格朗日插值法可以用于任意次数的插值。

牛顿插值法是使用差商的概念进行插值。

差商是指一个多项式在两个数据点之间的斜率。

牛顿插值法通过迭代计算得到与已知数据点一致的多项式。

插值方法的优点是可以精确地经过已知数据点,但是在两个已知数据点之间的插值部分可能会出现震荡现象,从而导致插值结果不准确。

2.拟合方法:拟合方法是通过已知数据点的信息,找出一个函数或曲线,使其能够最好地拟合已知数据点。

拟合方法的目标是寻找一个函数或曲线,尽可能地逼近已知数据点,并且能够在未知数据点处进行预测。

最常用的拟合方法是最小二乘法。

最小二乘法是通过求解最小化残差平方和的问题来进行拟合。

残差是指已知数据点与拟合函数的差异。

最小二乘法的目标是找到一个函数,使得所有数据点的残差平方和最小。

拟合方法的优点是可以得到一个光滑的函数或曲线,从而可以预测未知数据点的数值。

但是拟合方法可能会导致过拟合问题,即过度拟合数据点,导致在未知数据点处的预测结果不准确。

除了最小二乘法,还有其他的拟合方法,如局部加权回归和样条插值等。

局部加权回归是一种基于最小二乘法的拟合方法,它通过赋予不同的数据点不同的权重,来实现对未知数据点的预测。

样条插值是一种基于多项式插值的拟合方法,它将整个数据集分段拟合,并且在分段部分保持连续性和光滑性。

总结:插值和拟合方法是数学中的经典方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。

数学方法:插值

数学方法:插值

计算量与n无关;
xn

用分段线性插值法求插值,并观察插值误差.
1 g ( x) , 6 x 6 2 1 x
1.在[-6,6]中平均选取5个点作插值(xch11)
2.在[-6,6]中平均选取11个点作插值(xch12)
3.在[-6,6]中平均选取21个点作插值(xch13)
4.在[-6,6]中平均选取41个点作插值(xch14) To MATLAB xch11,xch12, xch13,xch14







x
O
将四个插值点(矩形的四个顶点)处的函数值依次 简记为: f (xi, yj)=f1,f (xi+1, yj)=f2,f (xi+1, yj+1)=f3,f (xi, yj+1)=f4
25
分两片的函数表达式如下:
第一片(下三角形区域): (x, y)满足
插值函数为: f ( x, y) f1 (f 2 f1 )( x x i ) (f 3 f 2 )( y y j )
* *
y
*
y1 y0





x0 x1 x*
xn
返回
6
拉格朗日(Lagrange)插值
已知函数f(x)在n+1个点x0,x1,…,xn处的函数值为 y0,y1,…,yn 。求一n次多项式函数Pn(x),使其满足: Pn(xi)=yi,i=0,1,…,n. 解决此问题的拉格朗日插值多项式公式如下
直接验证可知 Ln x满足插值条件 , .
8

1 g ( x) , 5 x 5 2 1 x
采用拉格朗日多项式插值:选取不同插值 节点个数n+1,其中n为插值多项式的次数,当n 分别取2,4,6,8,10时,绘出插值结果图形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称为拉格朗日插值基函数。

拉格朗日(Lagrange)插值
特别地: 两点一次(线性)插值多项式:
x x0 x x1 L1 x y0 y1 x0 x1 x1 x0
三点二次(抛物)插值多项式:
x x0 x x2 x x0 x x1 x x1 x x2 L2 x y0 y1 y2 x0 x1 x0 x2 x1 x0 x1 x2 x2 x0 x2 x1
* *
y1 y0
y
*





x0 x1 x*
xn
返回
5
拉格朗日(Lagrange)插值
已知函数f(x)在n+1个点x0,x1,…,xn处的函数值为 y0,y1,…,yn 。求一n次多项式函数Pn(x),使其满足: Pn(xi)=yi,i=0,1,…,n. 解决此问题的拉格朗日插值多项式公式如下
28
再输入以下命令:
xi=1:0.2:5; yi=1:0.2:3;
zi=interp2(x,y,temps,xi',yi,'cubic');
mesh(xi,yi,zi) 画出插值后的温度分布曲面图. To MATLAB (wendu)
29
例 山区地貌:
在某山区测得一些地点的高程如下表。平面区域为 1200<=x<=4000,1200<=y<=3600) 试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。
O
x
19
已知 mn个节点
其中 互不相同,不妨设
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
20
第二种(散乱节点):
y



0
x
21
已知n个节点
其中 互不相同,
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
返回
22
最邻近插值
y
17
例 已知飞机下轮廓线上数据如下,求x每改变0.1时的y值。
X Y
0 0
3 1.2
5 1.7
7 2.0
9 2.1
y
11 2.0
12 1.8
13 1.2
14 1.0
15 1.6
机翼下 轮廓线







x
To MATLAB(plane) 返回
18
二维插值的定义
第一种(网格节点):
y
27
例:测得平板表面3*5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试作出平板表面的温度分布曲面z=f(x,y)的图形。
1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图. 输入以下命令: x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps) 2.以平滑数据,在x、y方向上每隔0.2个单位的地方进行插值.
Pn ( x ) L i ( x ) y i
i 0
n
其中Li(x) 为n次多项式:
( x x 0 )( x x 1 ) ( x x i 1 )( x x i 1 ) ( x x n ) L i (x) ( x i x 0 )( x i x 1 ) ( x i x i 1 )( x i x i 1 ) ( x i x n )
通过此例对最近邻点插值、双线性插值方法和双三次插值方法的插 值效果进行比较。
To MATLAB (moutain)
返回 30
用MATLAB作散点数据的插值计算
si ( xi ) si 1 ( xi ), si( xi ) si1 ( xi ), si( xi ) si1 ( xi ) (i 1, , n 1)
4) S ( x0 ) S ( xn ) 0 ( 自然边界条件) 2) 3) 4) ai , bi , ci , di S ( x)
y1 y0
y
*





y g ( x) 产生,, g 表达式复杂,,
或无封闭形式,, 或未知.。
4
x0 x1 x*
xn
构造一个(相对简单的)函数 y f ( x), 通过全部节点, 即
f ( x j ) y j ( j 0,1,n)
再用
f ( x) 计算插值,即 y f ( x ).
‘nearest’ :最邻近插值 ‘linear’ : 线性插值; ‘spline’ : 三次样条插值; ‘cubic’ : 立方插值。 缺省时: 分段线性插值。
注意:所有的插值方法都要求x是单调的,并且xi不能 16 够超过x的范围。
例:在1-12的11小时内,每隔1小时测量一次温 度,测得的温度依次为:5,8,9,15,25,29, 31,30,22,25,27,24。试估计每隔1/10小 时的温度值。
26
用MATLAB作网格节点数据的插值
z=interp2(x0,y0,z0,x,y,’method’)
被插值点 的函数值
插值 节点
被插值点
插值方法
‘nearest’ 最邻近插值 ‘linear’ 双线性插值 ‘cubic’ 双三次插值 缺省时, 双线性插值
要求x0,y0单调;x,y可取为矩阵,或x取 行向量,y取为列向量,x,y的值分别不能超出 x0,y0的范围。
g(x)为被插值函数。
13

1 g ( x) , 6 x 6 2 1 x
用三次样条插值选取11个基点计算插值(ych) To MATLAB ych(larg1)
返回
14
15
用MATLAB作插值计算
一维插值函数:
yi=interp1(x,y,xi,'method')
xi处的插 值结果 插值节点 被插值点 插值方法
( x1 , y2 )
( x2 , y2 )




( x1 , y1 ) ( x2 , y1 )



O
x
二维或高维情形的最邻近插值,与被插值点最邻近的 节点的函数值即为所求。 注意:最邻近插值一般不连续。具有连续性的最简单 的插值是分片线性插值。
返回
23
分片线性插值
三、用Matlab解插值问题
网格节点数据的插值
散点数据的插值
返回
3
一维插值的定义
已知 n+1个节点 ( x j , y j ) ( j 0,1,n,其中
xj 互不相同,不妨设 a x0 x1 xn b),
求任一插值点
x ( x j ) 处的插值 y * .
*
节点可视为由
X Y 1200 1600 2000 2400 2800 3200 3600 1200 1130 1320 1390 1500 1500 1500 1480 1600 1250 1450 1500 1200 1200 1550 1500 2000 1280 1420 1500 1100 1100 1600 1550 2400 1230 1400 1400 1350 1550 1550 1510 2800 1040 1300 900 1450 1600 1600 1430 3200 900 700 1100 1200 1550 1600 1300 3600 500 900 1060 1150 1380 1600 1200 4000 700 850 950 1010 1070 1550 980
hours=1:12; temps=[5 8 9 15 25 29 31 30 22 25 27 24]; h=1:0.1:12; t=interp1(hours,temps,h,'spline'); (直接输出数据将是很多的) plot(hours,temps,'+',h,t,hours,temps,'r:') %作图 xlabel('Hour'),ylabel('Degrees Celsius’) To MATLAB (temp)
返回
10
11
三次样条插值
比分段线性插值更光滑。
y



a
xi-1
xi
b
x
在数学上,光滑程度的定量描述是:函数 ( 曲 线 )的k阶导数存在且连续,则称该曲线具有 k阶光 滑性。 光滑性的阶次越高,则越光滑。是否存在较低 次的分段多项式达到较高阶光滑性的方法?三次 样条插值就是一个很好的例子。
直接验证可知 , Ln x满足插值条件 .
7

1 g ( x) , 5 x 5 2 1 x
采用拉格朗日多项式插值:选取不同插值 节点个数n+1,其中n为插值多项式的次数,当n 分别取2,4,6,8,10时,绘出插值结果图形.
To Matlab lch(larg1)
拉格朗日多项式插值的 这种振荡现象叫 Runge现象
y
(xi, yj+1) (xi+1, yj+1) (xi, yj) (xi+1, yj)







x
O
将四个插值点(矩形的四个顶点)处的函数值依次 简记为: f (xi, yj)=f1,f (xi+1, yj)=f2,f (xi+1, yj+1)=f3,f (xi, yj+1)=f4
相关文档
最新文档