第3章单级放大器_源跟随器

合集下载

单级放大器2

单级放大器2
源跟随器并不是必须的驱动器。
考虑负载电阻RL,则: 1 1 ⇒ //RL g mb g mb
AV ≈
g m1
共栅放大器
共栅放大器的概念
在共栅级中,以栅极为基准,信号从MOS 管的源极输 入,漏极输出。 共栅放大器的特点大器
大信号分析
直流分析:假设Vin从Vdd下降。
⎞ ⎟ RD ⎟ ⎠
∂Vout W = − μ nCox (Vb − Vin − VTH )(− 1 − η )RD ∂Vin L = g m RD (1 + η )
同相放大 体效应使增益增加
共栅放大器
等效电路分析:
当Rs = 0,V1 = −Vin。 设ro ⇒ 1 ,RD ⇒ 1 。 go gD
(g m + g mb ) = 50Ω
I D ↑, g m ↑ .
调节M2的尺寸和偏置,选小尺寸。
g m = 2 μ nCox (W / L )I D
共栅放大器
例:M1得到输入电压变化ΔV,通过50Ω的传输线传送。 a) 满足传输线原理,接收端匹配
50Ω时,功率传输效率最高
RD = 50Ω
RD = 50Ω
结论:a) 体效应使输入阻抗降低。
1 1 或 b) 当 ro >> RD,RD / ro ≈ 0 rin ≈ gm g m + g mb
在忽略沟道长度调制的情况下,从M1源极所看到的输入阻抗相同。 c) 当
RD >> ro ⇒ rin → ∞
只有在漏端负载阻抗很小时,共栅级的输入阻抗才会较低。
2 d) 一般, RD ~ ro ⇒ rin → gm
Q ∂V ∂VTH = η out ∂Vin ∂Vin

运算放大器基础1——缓冲器跟随器

运算放大器基础1——缓冲器跟随器

运算放大器基础1——缓冲器/跟随器今天我们学习带有反馈的运放电路。

最简单的反馈,就是将运放输出直接接到运放的反相输入端,这种电路有一个特定的名称——“缓冲器/跟随器”(Buffer Amplifier),其输出总是跟随着输入,主要的作用是阻抗变换。

以下,我们来逐一分析。

一、缓冲器/跟随器对于任何有反馈的运放电路,我们需要记住两条原则:运放反相和正相输入端电压总是相等运放反相和正相输入端没有电流输入运放作为缓冲器的电路如下:图1-运放作为缓冲器电路对于缓冲器电路,由于输出直接连接了反相输入,根据上述两条原则,所以Vout = Vin+ = Vin-。

可见,运放此时并没有放大电压,那运放起了什么作用?答案是阻抗变换。

二、阻抗变换我们知道电源有内阻,负载有阻抗(不考虑频率响应的话,阻抗就等于电阻)。

图2-电源内阻与负载阻抗对于电压型负载来说,电源内阻越小、负载阻抗越大越好,这样它获得的电压越大。

如果电源内阻较大,而负载阻抗较小,那负载就无法获得较高份额的电压。

对于这种情况,需要加入缓冲器:图3-通过运放缓冲器作为阻抗变换缓冲器的特点是输入阻抗无穷大,而输出阻抗又很小,在它后面接上负载,可以让负载保证获得较大电压。

三、缓冲器/跟随器案例我们来构建一个案例,如下图,电源输入是12V,通过稳压二极管获得9V电压,后又经过两个10KΩ电阻分压获得4.5V电压,并以此为负载供电。

那么,假设我们的负载是200Ω,如果直接到10KΩ电阻上,负载上的电压是多少呢?还是4.5V吗?图4-负载直接接在10KΩ电阻上,负载电压降低可见,实际负载的电压只有173mV。

大家可以通过KVL公式(基尔霍夫电压定律)计算一下是不是这个结果。

如果通过运放缓冲器接到10KΩ电阻上,是什么结果呢?图5-负载通过缓冲器接在10KΩ电阻上,负载电压稳定可见,由于运放的高输入阻抗、低输出阻抗,使得最终负载获得的电压还是4.5V。

(全文完)。

mos管的单元放大电路 辅导讲义

mos管的单元放大电路  辅导讲义
图1.12使用电容负载的源极跟随器
2.交流通路和小信号等效电路
图1.13电容负载源极跟随器交流小信号等效电路图
1.3.2单级共漏放大电路的主要关系式和参数
1.输出电压与输入电压之间的关系(说明详细推导过程,画出二者之间的关系曲线并进行分析);
电路的直流传输特性曲线如图1.14所示。当输入电压很低时,M1管关断,偏置电流为0,输出电平也为0.当M1栅极电压上升,M2进入线性区,偏置电流快速增大。当M1和M2都进人饱和区后,随着M1栅极电平的上升,因为漏极电流基本不变,所以M1源极电平跟着上升,这就是电压跟随效应。由于M2管的输出阻抗有限,所以即使在饱和区,漏极电流ID也将随My管栅极电压的上升而有所增加。而M1管的背栅效应将起到和M2管的沟道长度调制效应相反的作用,在M1管栅极电压上升时,使漏极电流下降。总的来说,由于两种效应的存在,使得源极跟随器的直流电压跟随效果受到影响。而且为了使两个MOS管都工作在饱和区,电路输入和输出直流电平的幅度范围都有一定的限制。
1.2.2单级共栅放大电路的主要关系式和参数8
1.3单级共漏放大电路11
1.3.1单级共漏放大电路组成和原理11
1.3.2单级共漏放大电路的主要关系式和参数12
2其它形式的MOS管放大电路14
2.1源极反馈的共源放大电路14
2.1.1电路组成和原理14
2.1.2主要关系式和参数15
2.1.3源极反馈的共源放大电路的特点和应用18
源极跟随器的电路图如图1.12所示,其中NMOS管M1是输入管,信号从栅极输入,从源极输出,漏极是公共交流地,所以也叫做共漏放大器。在使用P衬底的MOS工艺中,所有NMOS管的衬底都接在最低电位。所以源极跟随器的衬底电位低于源极的电位,将会出现背栅效应。M1管源极下的M2管作为电流源,为M1提供一直流电流通路。

模拟集成电路设计教学大纲

模拟集成电路设计教学大纲

模拟集成电路设计教学大纲目录一、课程开设目的和要求2二、教学中应注意的问题2三、课程内容及学时分配2第一章模拟电路设计绪论2第二章MOS器件物理基础2第三章单级放大器3第四章差动放大器3第五章无源与有源电流镜3第六章放大器的频率特性3第八章反馈3第九章运算放大器3高级专题3四、授课学时分配4五、实践环节安排4六、教材及参考书目5课程名称:模拟集成电路设计课程编号:055515英文名称:Analog IC design课程性质:独立设课课程属性:专业限选课应开学期:第5学期学时学分:课程总学时___48,其中实验学时一-一8。

课程总学分--3学生类别:本科生适用专业:电子科学与技术专业的学生。

先修课程:电路、模拟电子技术、半导体物理、固体物理、集成电路版图设计等课程。

一、教学目的和要求CMOS模拟集成电路设计课程是电子科学与技术专业(微电子方向)的主干课程,在教学过程中可以培养学生对在先修课程中所学到的有关知识和技能的综合运用能力和CMOS模拟集成电路分析、设计能力,掌握微电子技术人员所需的基本理论和技能,为学生进一步学习硕士有关专业课程和日后从事集成电路设计工作打下基础。

二、教学中应注意的问题1、教学过程中应强调基本概念的理解,着重注意引导和培养学生的电路分析能力和设计能力2、注重使用集成电路设计工具对电路进行分析仿真设计的训练。

3、重视学生的计算能力培养。

三、教学内容第一章模拟电路设计绪论本课程讨论模拟CMOS集成电路的分析与设计,既着重基本原理,也着重于学生需要掌握的现代工业中新的范例。

掌握研究模拟电路的重要性、研究模拟集成电路以及CMOS模拟集成电路的重要性,掌握电路设计的一般概念。

第二章MOS器件物理基础重点与难点:重点在于MOS的I/V特性以及二级效应。

难点在于小信号模型和SPICE模型。

掌握MOSFET的符号和结构,MOS的I/V特性以及二级效应,掌握MOS 器件的版图、电容、小信号模型和SPICE模型,会用这些模型分析MOS电路。

模拟集成电路设计原理复习第一部分

模拟集成电路设计原理复习第一部分

rout
ro2
8000 1.6 0.1
128k
If : Vout 0.5V
I o u t
V rout
0.5 128k
3.9A
1 gm
vgs2
gm2vgs2
i rgs2 vx
改进的电流镜
共源共栅电流镜
VN VGS0 VX VY VN VGS3 VX VGS0 VGS3 VGS0 VGS3 VY VX
用电阻模拟gmb—对源跟随器成立
戴维南等效电路--〉分压电路
共栅级
AV
Vout Vin
gm gmb go go gD
AV
gm
gmb ro 1RD =gm
RD ro
gmb ro RD
ro
gm gmb RD 1 gmRD
共栅级
共栅级输出阻抗:
Vin 0
gm Vin Vs ro
Vin
gm Vin Vs ro
gmbVs
Vs
Rs
Io gm Vin Vs
Vs ro
gmbVs
Io
Vs Rs
Io gm Vin Io RS
Io RS ro
gmbIo RS
Gm
Io Vin
Rs 1
g m ro gm gmb
Rs
ro
gm 1 gm Rs
共源级
考虑输出阻抗:输入接地,输出加激励
非全差分输入电路分析 输入信号不是大小相等、方向相反、Vp不是交流地 将输入分为差模输入部分和共模输入部分
Vin1
Vin1
Vin 2 2
Vin1
Vin 2 2
Vin2
Vin2
Vin1 2
Vin1

NMOS源极跟随器课程设计

NMOS源极跟随器课程设计

NMOS源极跟随器课程设计一、课程目标知识目标:1. 学生能理解NMOS晶体管的原理与工作特性,掌握其作为源极跟随器的应用。

2. 学生能够解释并计算NMOS源极跟随器的关键参数,如输入阻抗、输出阻抗、增益和频率响应。

3. 学生能够运用所学知识分析NMOS源极跟随器的电路图,并进行简单的设计。

技能目标:1. 学生能够运用仿真软件搭建并测试NMOS源极跟随器电路,掌握电路调试的基本技巧。

2. 学生通过小组合作,提高沟通与协作能力,能够共同解决电路设计中的问题。

情感态度价值观目标:1. 学生培养对电子电路的兴趣,增强对电子工程学科的认识和热爱。

2. 学生在课程学习过程中,形成良好的科学态度,认识到团队协作的重要性。

3. 学生通过实践操作,培养动手能力和创新思维,激发探索未知领域的热情。

课程性质:本课程为电子技术基础课程,结合学生特点和教学要求,注重理论与实践相结合,提高学生的实际操作能力。

学生特点:学生处于高年级阶段,具备一定的电子电路基础,具有较强的求知欲和动手能力。

教学要求:教师应引导学生从理论到实践,注重培养学生的创新意识和团队合作精神,提高解决实际问题的能力。

通过本课程的学习,使学生能够将所学知识应用于实际电路设计中。

二、教学内容本章节教学内容主要包括以下几部分:1. NMOS晶体管的基本原理与特性:介绍NMOS晶体管的结构、工作原理、主要参数及其在模拟电路中的应用。

- 教材章节:第二章“晶体管原理及其应用”- 内容列举:晶体管的结构、载流子运动、阈值电压、漏电流等。

2. 源极跟随器电路分析:讲解NMOS源极跟随器的工作原理、电路特点、关键参数计算。

- 教材章节:第三章“模拟放大器”- 内容列举:源极跟随器电路、输入阻抗、输出阻抗、电压增益、频率响应。

3. NMOS源极跟随器的设计与仿真:结合实际案例,指导学生进行源极跟随器电路设计与仿真。

- 教材章节:第四章“模拟电路设计与仿真”- 内容列举:设计原理、参数选择、仿真方法、调试技巧。

静态工作点稳定的放大器射极跟随器

静态工作点稳定的放大器射极跟随器
共集电极电路
射极跟随器输出
具有低输出阻抗和高输入 阻抗,使得负载对放大器 性能影响较小。
STEP 03
电压负反馈
通过引入电压负反馈,减 小放大器的失真和噪声。
信号从射极跟随器的发射 极输出,通过负载电阻将 电流转换为电压。
偏置电路和稳定电路
01
02
03
偏置电路
为晶体管提供合适的静态 工作点,使放大器在正常 工作范围内。
频率响应பைடு நூலகம்失真度
频率响应定义
频率响应是指放大器对不同频率信号的放大能力,通常以 幅频特性和相频特性来表示。
失真度定义
失真度是指放大器输出信号与输入信号相比的失真程度, 通常以谐波失真、互调失真等指标来衡量。
影响因素
频率响应和失真度受到晶体管参数、电路拓扑、电源电压 等因素的影响。
提高方法
通过采用宽带运放、补偿电路等技术手段,可以扩展放大 器的频带宽度;通过优化电路参数、采用负反馈等技术手 段,可以降低放大器的失真度。
静态工作点稳定的放 大器射极跟随器
• 引言 • 静态工作点稳定原理 • 放大器射极跟随器的电路结构 • 放大器射极跟随器的性能指标 • 静态工作点稳定放大器射极跟随器的设计 • 静态工作点稳定放大器射极跟随器的应用
目录
Part
01
引言
目的和背景
深入了解射极跟随器的工 作原理和特点
探讨射极跟随器在放大器 设计中的重要性
从而提高放大器的线性度。
02
减小失真
当输入信号幅度较大时,如果静态工作点不稳定,晶体管可能会进入饱
和或截止区,导致输出信号失真。稳定的静态工作点可以减小这种失真。
03
提高放大器的稳定性
稳定的静态工作点可以减小温度、电源电压等外部因素对放大器性能的

《模拟集成电路设计》教学大纲

《模拟集成电路设计》教学大纲

《模拟集成电路设计》课程教学大纲一、课程基本信息1、课程编码:2、课程名称(中/英文):模拟集成电路设计/ Design of Analog integrated Circuits3、学时/学分:56学时/3.5学分4、先修课程:电路基础、信号与系统、半导体物理与器件、微电子制造工艺5、开课单位:微电子学院6、开课学期(春/秋/春、秋):秋7、课程类别:专业核心课程8、课程简介(中/英文):本课程为微电子专业的必修课,专业核心课程,是集成电路设计方向最核心的专业课程之一。

本课程主要介绍典型模拟CMOS集成电路的工作原理、设计方法和设计流程、仿真分析方法,以及模拟CMOS集成电路的最新研发动态。

通过该课程的学习,将为学生今后从事集成电路设计奠定坚实的理论基础。

9、教材及教学参考书:教材:《模拟集成电路设计》,魏廷存,等编著教学参考书:1)《模拟CMOS集成电路设计》(第2版).2)《CMOS模拟集成电路设计》二、课程教学目标本课程为微电子专业的必修课,专业核心课程,是集成电路设计方向最核心的专业课程之一。

通过该课程的学习,将为学生今后从事集成电路设计奠定坚实的理论基础。

本课程主要介绍典型模拟CMOS集成电路的工作原理、设计方法和设计流程、仿真分析方法,以及模拟CMOS模拟集成电路的最新研发动态。

主要内容有:1)模拟CMOS集成电路的发展历史及趋势、功能及应用领域、设计流程以及仿真分析方法;2)CMOS元器件的工作原理及其各种等效数学模型(低频、高频、噪声等);3)针对典型模拟电路模块,包括电流镜、各种单级放大器、运算放大器、比较器、基准电压与电流产生电路、时钟信号产生电路、ADC与DAC电路等,重点介绍其工作原理、性能分析(直流/交流/瞬态/噪声/鲁棒性等特性分析)和仿真方法以及电路设计方法;4)介绍模拟CMOS集成电路设计领域的最新研究成果,包括低功耗、低噪声、低电压模拟CMOS集成电路设计技术。

电子学目录(全)

电子学目录(全)

电子学●第1章电子学基础●1.1 概述●1.2 电压、电流与电阻●1.2.1 电压与电流●1.2.2 电压与电流之间的关系:电阻●1.2.3 分压器●1.2.4 电压源和电流源●1.2.5 戴维南等效电路●1.2.6 小信号电阻●1.3 信号●1.3.1 正弦信号●1.3.2 信号幅度与分贝●1.3.3 其他信号●1.3.4 逻辑电平●1.3.5 信号源●1.4 电容与交流电路●1.4.1 电容●1.4.2 RC电路:随时间变化的V与I●1.4.3 微分器●1.4.4 积分器● 1.5 电感与变压器●1.5.1 电感●1.5.2 变压器●1.6 阻抗与电抗●1.6.1 电抗电路的频率分析●1.6.2 RC滤波器●1.6.3 相位矢量图●1.6.4 “极点”与每二倍频的分贝数●1.6.5 谐振电路与有源滤波器●1.6.6 电容的其他应用●1.6.7 戴维南定理推广●1.7 二极管与二极管电路●1.7.1 二极管●1.7.2 整流●1.7.3 电源滤波●1.7.4 电源的整流器结构●1.7.5 稳压器●1.7.6 二极管的电路应用●1.7.7 感性负载与二极管保护●1.8 其他无源元件●1.8.1 机电器件●1.8.2 显示部分●1.8.3 可变元器件●第2章晶体管●2.1 概述●2.1.1 第一种晶体管模型:电流放大器●2.2 几种基本的晶体管电路●2.2.1 晶体管开关射极跟随器●2.2.2 信号幅度与分贝●2.2.3 射极跟随器作为稳压器●2.2.4 射极跟随器偏置●2.2.5 晶体管电流源●2.2.7 单位增益的反相器●2.2.8 跨导●2.3 用于基本晶体管电路的Ebers-Moll模型●2.3.1 改进的晶体管模型:跨导放大器●2.3.2 对射极跟随器的重新审视●2.3.3 对共射放大器的重新视●2.3.4 共射放大器的偏置●2.3.5 镜像电流源●2.4 几种放大器组成框图●2.4.1 推挽输出级●2.4.2 达林顿连接●2.4.3 自举电路●2.4.4 差分放大器●2.4.5 电容与密勒效应●2.4.6 场效应晶体管●2.5 一些典型的体管电路●2.5.1 稳压源●2.5.2 温度控制器●2.5.3 带体管与二管的简单辑电路●2.6 电路示例●2.6.1 电路集锦●2.6.2 不合理电路●2.7 补充题●第3章场效应管●3.1 概述●3.1.1 FET的特性●3.1.2 FET的种类●3.1.3 FET的普遍特性●3.1.4 FET漏极特性●3.1.5 FET特性参数的制造偏差●3.2 基本 FET电路●3.2.1 JFET电流源●3.2.2 FET放大器●3.2.3 源极跟随器●3.2.4 FET栅极电流●3.2.5 FET用做可变电阻●3.3 FET开关●3.3.1 FET模拟开关●3.3.2 场效应管开关的限性●3.3.3 一些场效应管模拟开关举例●3.3.4 MOSFET逻辑和电源开关●3.3.5 MOSFET使用注意事项●3.4 电路示例●3.4.1 电路集锦●3.4.2 不合理电路●第4章反馈和运算放大器●4.1 概述●4.1.1 反馈●4.1.2 运算放大器●4.1.3 黄金规则●4.2 基本器●4.2.1 反相放大器●4.2.2 同相放器●4.2.3 跟随器●4.2.4 电流源●4.2.5 运器●4.3 运算放器●4.3.1 线性电路●4.3.2 非线性电路●4.4 运算放大器特性详分析●4.4.1 偏离理想运算放大器特性●4.4.2 运算放大器限制对电路特性的影响●4.4.3 低功率编器●4.5 详细分析精选的运算放大器电路●4.5.1 对数放大器●4.5.2 有源峰值检波器●4.5.3 抽样和保持●4.5.4 有源箱位器●4.5.5 绝对值电路●4.5.6 积分器●4.5.7 微分器●4.6 单电源供电的运算放器●4.6.1 单电源交流放大器的偏置●4.6.2 单电源运算放大器●4.7 比较器和施密特触发器●4.7.1 比较器●4.7.2 施密特触发器●4.8 有限增益放大器的反馈●4.81 增益公式●4.8.2 反馈对放大电路的影响●4.8.3 晶体管反馈放大器的两个例子●4.9 一些典型的运算放大器电路●4.9.1 通用的实验放大器●4.9.2 压控振荡器●4.9.3 带Ro补偿的JFET线性开关●4.9.4 TTL过零检测器●4.9.5 负载电流感应电路●4.10 反馈放大器的频率补偿●4.10.1 增益和相移与频率的关系●4.10.2 放大器的补偿方法●4.10.3 反馈网络的频率响应●4.11 电路示例●4.11.1 电路集锦●4.11.2 不合理电路●4.12 补充题●第5章有源滤波器和振荡器●5 .1 有源滤波器●5.1.1 RC滤波器的频率响应●5.1.2 LC滤波器的理想性能●5.1.3 有源滤波器:一般描述●5.1.4 滤波器的主要性能指标●5.1.5 滤波器类型●5.2 有源器●5.2.1 VCVS电路●5.2.2 使用简化表格设计VCVS滤波器●5.2.3状态可变的器●5.2.4双T型陷波滤波器●5.2.5 回转滤波器的实现●5.2.6 开关电容滤波器●5.3 振荡器●5.3.1 振荡器介绍●5.3.2 阻尼振荡器●5.3.3 经典定时芯片:555●5.3.4 压控振荡器●5.3.5 正交振荡器●5.3.6文氏电桥和LC振荡器●5.3.7 LC振荡器●5.3.8 石英晶体振荡器●5.4 电路例●5.4.1 电路集锦●5.5 补充题●第6章稳压器和电源电路●6.1采用典型稳压芯片723的基本稳压电路●6.1.1 723稳压器●6.1.2 正电压稳压器●6.1.3 大电流稳压器●6.2散热和功率设计●6.2.1 功率晶体管及其散热●6.2.2 反馈限流保护●6.2.3 杠杆式过压保护●6.2.4大电流功率器件电源设计的进一步研究●6.2.5 可编程电源●6.2.6 电源电路实例●6.2.7 其他稳压芯片●6.3 未稳压电源●6.3.1 交流器件●6.3.2变压器●6.3.3 直流器件●6.4基准●6.4.1 齐纳管●6.4.2 能带隙基准源●6.5 3端和4端稳压器●6.5.1 3端稳压器●6.5.2 3端可调稳压芯片●6.5.3 3端稳压器注意事项●6.5.4 开关稳压器和直流直流转换器●6.6 专用电源电路●6.6.1 高压稳压电路.●6.6.2 低噪声低漂移电源●6.6.3 微功耗稳压器●6.6.4 快速电容(电荷泵)电压转换器●6.6.5 恒流源●6.6.6 商用供电模块●6.7 电路示例●6.7.1 电路集锦●6.7.2 不合理电路●6.8 补充题●第7章精密电路和低噪声技术●7.1 精密运算放大器设计技术●7.1.1 精度与动态范围的关系●7.1.2 误差预算●7.1.3 电路示例:带自动调零的精密●7.1.4 精密设计的误差预算●7.1.5 元器件误差●7.1.6 放大器的输入误差●7.1.7 放大器输出误差●7.1.8 自动调零(斩波器稳定)放大器●7.2 差分和仪器用放大器●7.2.1 差分放大器●7.2.2 标准3运算放大器仪器用放大器●7.3 放大器噪声●7.3.1 噪声的起源和种类●7.3.2 信噪比和噪声系数●7.3.3 晶体管放大器的电压和电流声●7.3.4 晶体管的低噪声设计●7.3.5 场效应管噪声●7.3.6 低噪声晶体管的选定●7.3.7 差分和反馈放大器的噪声●7.4 噪声测量和噪声源●7.4.1 无需噪声源的测量●7.4.2 有噪声源的测量●7.4.3 噪声和信号源●7.4.4 带宽限制和电压均方根值的测量●7.4.5 混合噪声●7.5 干扰:屏蔽和接地●7.5.1 干扰●7.5.2 信号接地●7.5.3 仪器之间的接地●7.6 电路例●7.6.1 电路集锦●7.7 补充题●第8章数字电子学●8.1 基本辑概念●8.1.1 数字与模拟●8.1.2 逻辑状态●8.1.3 数码●8.1.4 门和真值表●8.1.5 门的分立电路●8.1.6 门电路举例●8.1.7 有效电平辑表示法●8.2 TTL和CMOS●8.2.1 一般门的分类●8.2.2 IC门电路●8.2.3 TTL和CMOS特性●8.2.4 三态门和集电开路器件●8.3 组●8.3.1 逻辑等式●8.3.2 最小化卡诺图●8.3.3 用IC实现的组合功能●8.3.4 任意真值表的实现●8.4 时序辑●8.4.1 存储器件:触发器●8.4.2 带时钟的触发器●8.4.3 存储器和门组合:序辑●8.4.4 同步器●8.5 单稳态触发器●8.5.1 一次触发特性●8.5.2 单稳态电例●8.5.3 有关单态触发器的注意事项●8.5.4 计数器的定时●8.6 利用集成电路实现的时序功能●8.6.1 锁存器和寄存器●8.6.2 计数器●8.6.3 移位寄存器●8.6.4 时序PAL●8.6.5 各种时功能●8.7 一些典型的数字电路●8.7.1 模n计数器:时间的例子●8.7.2 多用LED数字显示●8.7.3 恒星望远镜驱动●8.7.4 n脉冲产生器●8.8 辑问题●8.8.1 直流问题●8.8.2 开关问题●8.8.3 TTL和CMOS的先天缺陷●8.9 电路示例●8.9.1 电路集锦●8.9.2 不合理电路●8.10 补充题●第9章数字与模拟●9.1 CMOS和TTL逻辑电路●9.1 逻辑电路●9.1.1 数字逻辑电路家系列的发展历史●9.1.2 输入和输出特性●9.1.3 逻辑系列之间的接口●9.1.4 驱动CMOS和TTL输人端●9.1.5 用比较器和运算放大器驱动数字●9.1.6 关于辑输入的一些说明●9.1.7 比较器●9.1.8 用CMOS和TTL驱动外部数字●9.1.9 与MOS规模集成电路的接●9.1.10 光电子●9.2 数字信号和长线传输●9.2.1 电路板上的连接●9.2.2 板卡间的连接●9.2.4 驱动电缆●9.2.3 数据总线●9.3 模/数转换●9.3.1 模/数转换概述●9.3.2 数/模转换器●9.3.3 时域(平均)D/A转换器●9.3.4 乘法D/A转换器●9.3.5 如何选择D/A转换器●9.3.6 模/数转换器●9.3.7 电荷平衡技术●9.3.8一些特殊的A/D和D/A转换器●9.3.9 A/D转换器选择●9.4 A/D转换示例●9.4.1 16通道A/D数据采集系统●9.4.2 31/2位数字电计●9.4.3 库仑计●9.5 锁相环●9.5.1 锁相环介绍●9.5.2 锁相环设计●9.5.3 设计实例:频器 (518)●9.5.4 锁相环的捕捉和锁定●9.5.5 锁相环的一些应用●9.6 伪随机特列525●9.6.1 数字噪声的生成●9.6.2 反馈移位寄存器序列●9.6.3 利用最大长度序列生成模拟噪声●9.6.4 移位寄存器序列的功率谱●9.6.5 低通滤波●9.6.6 小结●9.6.7 数字滤波器●9.7 电路示例●9.7.1 电路集锦.●9.7.2 不合理电路●第10章微型计算机●10.1小型计算机、微型计算机与微处理器●10.1.1 计算机的结构●10.2 计算机的指令集●10.2.1 汇编语言和机器语言●10.2.2 简化的8086/8指令集●10.2.3 一个编程实例●10.3 总线信号和接口●10.3.1 基本的总线信号:数据、地址、选通●10.3.2 可编程/0:数据输出●10.3.3 可编程I/O:数据输人●10.3.4 可编程I/O:状态寄存器●10.3.5 中断●10.3.6 中断处理●10.3.7 一般中断●10.3.8 直接存储器访问●10.3.9 IBM PC总线信号综述●10.3.10 同步总线通信与异步总线通信的比较●10.3.11 其他微型计算机总线●10.3.12 将外围设备与计算机连接●10.4 软件系统概念●10.4.1 编程●10.4.2 操作系统、文件以及存储器的使用●10.5 数据通信概念●10.5.1 串行通信和ASCII●10.5.2 并行通信:Centronics、SCSI、IPI 和GPIB(488)●10.5.3 局域网●10.5.4 接口实例:硬件数据打包●10.5.5 数字格式●第11章微处理器●11.1 68008的详细介绍●11.1.1 寄存器、存储器和I/O●11.1.2 指令集和寻址●11.1.3 机器语言介绍●11.1.4 总线信号●11.2 完整的设计实例:模拟信号均衡器●11.2.1 电路设计●11.2.2 编制程序:任务的确定●11.2.3 程序编写:详细介绍●11.2.4 性能●11.2.5 一些设计后的想法●11.3 微处理器的配套芯片●11.3.1 中规模集成电路●11.3.2 外围大规模集成电路芯片●11.3.3 存储器●11.3.4 其他微处理器●11.3.5 仿真器、开发系统、逻辑分析器和评估板●第12章电气结构●12.1 基本方法●12.1.2 印制电路原型板●12.1.3 绕线镶嵌板●12.2 印制电路●12.2.1 印制电路板生产●12.2.2 印制电路板设计●12.2.3 印制电路板器件安装●12.2.4 印制电路板的进一步考虑●12.2.5 高级技术●12.3 仪器结构●12.3.1 电路板安装●12.3.2 机壳●12.3.3 提示●12.3.4 冷却●12.3.5 关于电子器件的注意事项●12.3.6 器件采购●第13章高频和高速技术●13.1 高频放大器●13.1.1 高频晶体管放大器●13.1.2 高频放大器交流模型●13.1.3 高频计算举例●13.1.4 高频放大器参数●13.1.5 宽带设计举例●13.1.6 改进的交流模型●13.1.7 分流级联对●13.1.8 放大器模块●13.2 射频电路●13.2.1 传输线●13.2.2 短线、巴仑线和变压器●13.2.3 调谐放大器●13.2.4 射频电元件●13.2.5 信号幅度或功率检测●13.3 射频通信:AM●13.3.1 通信基本概念●13.3.2 幅度调制●13.3.3 超外差接收机●13.4 高级调制技术●13.4.1 单边带●13.4.2 频率调制…●13.4.3 频移键控●13.4.4 脉冲调制技术●13.5 射频电路●13.5.1 电路结构●13.5.2 射频放大器●13.6 高速开关●13.6.1 晶体管模型●13.6.2 仿真建模工具●13.7 高速开关电路举例●13.7.1 高压驱动器●13.7.2 集电极开路总线驱动器●13.7.3 举例:光电倍增器前置放大器●13.8 电路示例●13.8.1 电路集锦●13.9 补充题●第14章低功耗设计●14.1 引言●14.1.1 低功耗应用●14.2 电源●14.2.1 电池类型●14.2.2 插在墙上的便携式电源●14.2.3 太阳能电池●14.2.4 信号电流●14.3 电源开关和微功耗稳压器●14.3.1 电源开关●14.3.2 微功耗稳压器●14.3.3 参考地●14.3.4 微功耗电压参考和温度传感器●14.4 线性微功耗设计技术●14.4.1 微功耗线性设计●14.4.2 分立器件线性设计举例●14.4.3 微功耗运算放大器●14.4.4 微功耗比较器●14.4.5 微功耗定时器和振荡器●14.5 微功耗数字设计●14.5.1 CMOS●14.5.2 CMOS低功耗保持●14.5.3 微功耗微处理器及其外围器件●14.5.4 微处理器设计举例:温度记录仪●14.6 电路示例●14.6.1 电路集锦●第15章测量与信号处理●15.1 概述●15.2 测量传感器●15.2.1 温度●15.2.2 光强度●15.2.3 应变和位移●15.2.4 加速度、压力、力和周转率(速度)●15.2.5 磁场●15.2.6 真空计●15.2.7 粒子检测器●15.2.8 生物和化学电压探针●15.3 精度标准和精度测量●15.3.1 频率标准●15.3.2 频率、周期和时间间隔测量●15.3.3 电压和阻抗标准与测量●15.4 限制带宽技术●15.4.1 信噪比问题●15.4.2 信号平均和多通道计数●15.4.3 信号周期化●15.4.4 锁定检测●15.4.5 脉冲高度分析●15.4.6 时间幅度转换器●15.5 频谱分析和傅里叶变换●15.5.1 频谱分析仪●15.5.2 离线频谱分析●15.6 电路示例●15.6.1 电路集锦。

3源跟随器、共栅、共源共栅放大器分析v2

3源跟随器、共栅、共源共栅放大器分析v2

2、共栅极电路如下图所示,负载电阻为20k。电源电 压3.3V。 衬底接地。 (1) NMOS尺寸(W/L)=5u/0.5u, Vb=1.0V,通过DC和OP分析确定直 流工作点。分别通过AC和TRAN分析 得到此共栅极的增益,并与手工计算 结果相比较。
(2) 共源级电路各种参数与上同,这 里Vin是直流为1.0V 交流为5mV的 正弦小信号,仿真得到其增益并与共 栅极增益相比较,对比较结果进行分 析。 (3) 手工计算共栅极的输入阻抗,并与仿真结果相 比较。
3、设计电路,通过仿真获得下面共源共栅级电路的增 益及输出阻抗,采用100uA电流源做负载。所有器件 尺寸自选,共栅极的栅极偏置自行设定。对电路依次进 行OP,DC,AC,TRAN分析,输出阻抗仿真。
实验课3 源跟随器、共栅极、共源 共栅放大器分析
目标: 1、源跟随器的电压跟随特性分析。 2、共栅级增益、输入阻抗的分析。 3、共源共栅放大器的增益及输出阻抗分析。
一些有用的提示
使用Avanwaves自带的计算函数f(x,y),对波形计算。
1、将需பைடு நூலகம்参与运算的信号,左键选定,按压滚轮拖动其至最上方的表达式栏。 2、定义结果名称,点击右下方Apply
一些有用的提示
3、双击下方第三竖栏内自己定义的结果名称,得到对应的输出曲线。 4、关于Avanwaves自带函数的应用请参考,userguid或help文件。
1、采用NMOS设计源跟随器,其负载为20k的电阻。 电源电压3.3V。 (没有特别说明时源衬短接) (1) NMOS尺寸(W/L)=50u/0.5u, 对输入执行DC扫描,观 察输入输出的跟随特性,指出跟随特性较好的输入电压范围。计 算并仿真输入输出电压平移大概为多少? (2) 将衬底接地,重新执行(1)的分析,其结果有何不同?为 什么会有这种变化? (3)NMOS衬底接地,对所设计源跟随器进行OP,DC,AC, TRAN分析仿真,并对仿真结果进行简要描述。

第三章 多级放大器

第三章 多级放大器
3. 单端输入—双端输出(非平衡输入—平衡输出)
第三章 多级放大器
3.3.2 差分放大器 3.3.5 差分放大器的四种接法
4. 单端输入—单端输出(非平衡输入—平衡输出)
第三章 多级放大器
3.3.2 差分放大器 3.3.5 差分放大器的四种接法
各种输入方式的特点:
1. 双端输入(平衡输入)
第三章 多级放大器
变压器耦合和光电耦合可以实现前后级的地 线隔离;而阻容耦合和变压器耦合则会使得放 大器的低频相应变差。 多级放大器的带宽窄于单级放大器,放大器 的级数越多,则带宽越窄。 直接耦合放大器有一个特殊问题,那就是前 级静态工作点的变动会被后级放大器放大,从 而导致后级放大器静态工作点的较大偏移,乃 至使其无法正常工作,从而引出一种特殊放大 器形式——差分放大器。
将输入信号分成两个互为反相的信号,则可以实现差动输出。 如果电路完全对称,则差动输出就可以克服温漂。 但是依然存在下述缺点
1. 发射级电阻Re的接入使得放大器的增益大大下降。
2. 信号源和基极电源不共地。
第三章 多级放大器
3.3.2 差分放大器 3.3.2 差分放大器的形成3
如果电路完全对称,则发射级电阻Re上的差动电流为零,输 入信号将直接作用到管子的发射结,从而发射级电阻Re对放 大器差动增益的影响消失。 发射级电阻Re对温漂的抑制作用依然有效(即负反馈调节作 用依然存在),所以电路既保留了对温漂的强烈的抑制作用, 又保证了电路的高增益。 但是依然存在下述缺点 1. 信号源和基极电源不共地。
第三章 多级放大器
多级放大器往往要求能够提供合适的输入、输 出阻抗以及足够的电压电流增益,这可以通过 将不同组态的放大器进行级联(共射放大器及 跟随器)来实现。

集成电路设计基础_华中科技大学中国大学mooc课后章节答案期末考试题库2023年

集成电路设计基础_华中科技大学中国大学mooc课后章节答案期末考试题库2023年

集成电路设计基础_华中科技大学中国大学mooc课后章节答案期末考试题库2023年1.画小信号等效电路时,恒定电流源视为。

答案:开路2.模拟集成电路设计中可使用小信号分析方法的是。

答案:增益3.模拟集成电路设计中可使用大信号分析方法的是()。

答案:输出摆幅4.题1-1-1 中国高端芯片联盟正式成立时间是:。

答案:2016年7月5.题1-1-2 如下不是集成电路产业特性的是:。

答案:低风险6.题1-1-3 摩尔定律是指集成电路上可容纳的晶体管数目,约每隔:个月便会增加一倍,性能也将提升一倍。

答案:187.MOS管的小信号模型中,体现沟长调制效应的参数是()。

答案:8.工作在饱和区的MOS管,可以被看作是一个。

答案:电压控制电流源9.下图中的MOS管工作在区(假定Vth=0.7V)。

【图片】答案:饱和区10.一个MOS管的本征增益表述错误的是。

答案:与MOS管电流无关11.工作在区的MOS管,其跨导是恒定值。

答案:饱和12.MOS管中相对最大的寄生电容是。

答案:栅极氧化层电容13.MOS管的小信号输出电阻【图片】是由MOS管的效应产生的。

答案:沟长调制14.题1-1-4 摩尔定律之后,集成电路发展有三条主线,以下不是集成电路发展主线的是:。

答案:SoC15.题1-1-5 单个芯片上集成约50万个器件,按照规模划分,该芯片为:。

答案:VLSI16.题1-1-6 年发明了世界上第一个点接触型晶体管。

答案:194717.题1-1-7 年发明了世界上第一块集成电路。

答案:195818.题1-1-8 FinFET等多种新结构器件的发明人是:。

答案:胡正明19.题1-1-9 集成电路代工产业的缔造者:。

答案:张忠谋20.题1-1-10 世界第一块集成电路发明者:。

答案:基尔比21.MOS管一旦出现现象,此时的MOS管将进入饱和区。

答案:夹断22.MOS管从不导通到导通过程中,最先出现的是。

答案:耗尽23.在CMOS模拟集成电路设计中,我们一般让MOS管工作在区。

2_第二讲_单级放大器

2_第二讲_单级放大器
10
2)小信号增益Av MOS管在饱和状态下,电路的输入输出特性:
小信号增益:
输入输出 变化之比 (斜率)
=-△IDRD/△Vin =-gmRD
M1将输入电压的变化△Vin转换为△ ID,即gm △Vin, 进一步转换为输出电压的变化-gmRD △Vin。
11
3)小信号模型
由小信号模型ቤተ መጻሕፍቲ ባይዱ析可知:
39
(3)小信号增益Av
Av=Vout/Vin=-Gm Rout0
第一步:计算等效跨导Gm
Gm
Iout Vin
RS
1
gmro gm gmb
RS ro
第二步:计算等效输出电阻
Rout
Rout0 Rout RD
40
通过计算等效跨导Gm、等效输出电阻Rout,可以简便地 得出Av。
4、辅助定理
20
5、输入-输出特性曲线
饱和区,输入 输出呈线性
电路的输入输出特性

,M1截止,Vout等于

,M1、M2饱和导通,输入输出呈线性关系

,M1进入线性区,输入输出呈非线性关系
21
(二)采用PMOS二极管负载
没有体 效应
有体 效应

以PMOS二极管连接 为负载的共源极
两种负载的小信号增益:
Av
32
1、等效跨导Gm
Vout=VDD—IDRD
等效跨导
和gm有 何区别?
VGS是Vin的函数
VGS Vin ID RS
VGS / Vin 1 RS ID / Vin Gm
Gm
gm 1 gm RS
1/(1/gm+RS)
也可以通过小信号模型求得,如下:

模拟电子技术教程第3章习题答案

模拟电子技术教程第3章习题答案

第3章 习题1. 概念题:(1)在放大电路中,三极管或场效应管起的作用就是 将一种形式的电量转换为另一种形式的电量 。

(2)电源的作用是 为能量转换提供能源 ,如果离开电源,放大器可以工作吗( 不能 )(3)单管放大器的讲解从电容耦合形式开始,这是因为 阻容耦合放大器设计和计算相对来说要简单点 ,如果信号和负载直接接入,其 工作点 的计算将要复杂的多。

(4)在共射放大器的发射极串接一个小电阻,还能认为是共射放大器吗( 能 )在共集放大器的集电极串接一个小电阻,还能认为是共集放大器吗( 能 )(5)在模电中下列一些说法是等同的,(A 、C 、F )另一些说法也是等同的。

(B 、D 、E )A. 直流分析B. 交流分析C. 静态分析D. 动态分析E. 小信号分析F. 工作点分析(6)PN 结具有单向导电性,信号电压和电流的方向是随时间变化的,而交流信号却能在放大电路中通过并获得放大,这是因为 放大器输出端获取的交流信号其实就是电流或电压的相对变化量 。

(7) β大的三极管输入阻抗 也大 ,小功率三极管的基本输入阻抗可表示为EQTbb'be I U )1(r r β++≈。

(8)画直流通路比画交流通路复杂吗(不)在画交流通路时直流电压源可认为 短路 ,直流电流源可认为 开路 ,二极管和稳压管只考虑其 动态内阻 即可。

(9)求输出阻抗时负载R L 必须 断开 ,单管放大器输出阻抗最难求的是共 集电极 放大器,其次是共 源 放大器。

(10)对晶体管来说,直流电阻指 晶体管对所加电源呈现的等效电阻 ,交流电阻指 在一定偏置下晶体管对所通过的信号呈现的等效电阻 ,对纯电阻元件有这两种电阻之区分吗( 无 )(11)在共射级放大器或共源放大器中,电阻R C 或R D 的作用是 把电流I C 或I D 的变化转换为电压的变化 。

(12)放大电路的非线性失真包括 饱和 失真和 截止 失真,引起非线性失真的主要原因是 放大器工作点偏离放大区 。

CMOS单级放大器性能仿真实验报告

CMOS单级放大器性能仿真实验报告

一:实验目的
1、掌握电阻负载、带源极负反馈的共源级的性能仿真方法
2、掌握源跟随器、共源共栅级的性能仿真方法。

二:实验数据
1:电阻负载共源电路图如下:
2:带源极负反馈的共源接法电路图如下:
3:源跟随器
4:共源共栅极
二:实验思考题
1:
区别:带反馈的当输入电压增大时,漏源电流增加的没有不带反馈的快,即跨导变小了。

原因:输入端是栅极,输出端是漏极,若带了源级负反馈电阻,当栅极输入电压升高时,漏源电流会增大,其中电流经过源级负反馈电阻,使源端的电压升高,导致栅源电压减小,漏源电流电流降低。

2:在R=1000时跨导变小了!
Vdd,所以随着Vdd的增加,N1各点的电压也会随着增加。

漏极放大器(源跟随器)原理

漏极放大器(源跟随器)原理

漏极放大器(源跟随器)原理漏极放大器,也被称为源跟随器,是一种常见的放大电路。

它的主要作用是将输入信号的电压放大,并且输出信号的电压与输入信号的电压保持相同,从而实现信号的放大和阻抗匹配。

漏极放大器的原理基于场效应晶体管(FET)的工作原理。

在漏极放大器中,FET的漏极被连接到电源,源极被连接到负载电阻,而栅极则连接到输入信号源。

漏极放大器的输出信号通过负载电阻来测量。

当输入信号施加到栅极上时,栅极电压会控制FET的导通。

具体来说,当栅极电压高于阈值电压时,FET会导通,电流从漏极流向源极。

这样,输入信号的变化会导致栅极电压的变化,从而控制FET的导通程度。

因此,漏极放大器可以将输入信号的电压放大,并且输出信号的电压与输入信号的电压保持一致。

漏极放大器的工作原理可以通过以下步骤来解释:1. 当输入信号施加到栅极上时,栅极电压高于阈值电压,FET 导通。

2. 由于FET导通,电流从漏极流向源极,通过负载电阻。

3. 通过负载电阻的电流会产生一个输出电压,该电压与输入信号的电压相同。

4. 输出电压可以通过调整负载电阻的值来控制。

漏极放大器的主要特点是输入阻抗高、输出阻抗低、电压增益大。

它的输入阻抗高,是因为FET的栅极电流非常小,几乎没有流入栅极的电流。

输出阻抗低,是因为FET的漏极电流可以通过负载电阻直接流出。

电压增益大,是因为输出电压与输入信号的电压保持一致。

漏极放大器在实际应用中有广泛的用途,例如作为信号放大器、缓冲放大器、驱动器等。

它可以将输入信号的电压放大到需要的幅度,并且与后续电路进行匹配,从而实现信号的传输和处理。

总结起来,漏极放大器是一种利用场效应晶体管的特性实现信号放大和阻抗匹配的电路。

它的工作原理是通过控制FET的导通程度,将输入信号的电压放大,并且输出信号的电压与输入信号的电压保持一致。

漏极放大器具有输入阻抗高、输出阻抗低、电压增益大等特点,广泛应用于各种电子设备中。

第3章单级放大器_源跟随器

第3章单级放大器_源跟随器

华侨大学IC设计中心
模拟CMOS集成电路设计 第三章 单级放大器
华侨大学·电子与信息工程学院 电子工程系 杨骁 凌朝东
xiaoyanghqu@
华侨大学IC设计中心
3.3 源跟随器(共漏极)(Source Follower)
对共源级的分析指出,在一定范围的电源电压 下,要获得更高的电压增益,负载阻抗必须尽 可能大。如果这种电路驱动一个低阻抗负载, 为了使信号电平的损失小到可以忽略不计,就 必须在放大器后面放置一个“缓冲器”。源跟 随器(也叫做共漏级放大器)就可以起到一个 电压缓冲器的作用。
源跟随器电压增益与输入电压关系
Av = Gm Rout
华侨大学IC设计中心
Rs = gm Rs ( g m + g mb ) + 1
g m ≈ 0 增益从零开始单调增大 随着漏电流和 g m变大
Vin ≈ VTH
Av =
gm
( g m + g mb )
用电流源代替电阻
华侨大学IC设计中心
Gm = g m 1
GM = g m
RO = 1 1 1 || || ro ≈ g m g mb g m + g mb
ROut = RS // Ro = RS //
1 g m + g mb
Av = Gm Rout
Rs = gm Rs ( g m + g mb ) + 1
1 g m + g mb RS = = 1 RS ( g m + g mb ) + 1 RS + g m + g mb RS
Rout
1 rO 1 rO 2 RL = gmb + gm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果把衬底和源接在一起,可以消除由体效应引 起的非线性。由于所有的NMOS管共用一个衬底, 这样的方法通常仅对PMOS管有效。
源跟随器特点
华侨大学IC设计中心
由于体效应导致的非线性、由于电平移 动导致电压余度的消耗以及差的驱动能 力,这些缺点限制了这种结构的应用。 源跟随器最一般的应用是完成电平移动。
华侨大学IC设计中心
模拟CMOS集成电路设计 第三章 单级放大器
华侨大学·电子与信息工程学院 电子工程系 杨骁 凌朝东
xiaoyanghqu@
华侨大学IC设计中心
3.3 源跟随器(共漏极)(Source Follower)
对共源级的分析指出,在一定范围的电源电压 下,要获得更高的电压增益,负载阻抗必须尽 可能大。如果这种电路驱动一个低阻抗负载, 为了使信号电平的损失小到可以忽略不计,就 必须在放大器后面放置一个“缓冲器”。源跟 随器(也叫做共漏级放大器)就可以起到一个 电压缓冲器的作用。
源跟随器电压增益与输入电压关系
Av = Gm Rout
华侨大学IC设计中心
Rs = gm Rs ( g m + g mb ) + 1
g m ≈ 0 增益从零开始单调增大 随着漏电流和 g m变大
Vin ≈ VTH
Av =
gm
( g m + g mb )
用电流源代替电阻
华侨大学IC设计中心
Gm = g m 1
GM = g m
RO = 1 1 1 || || ro ≈ g m g mb g m + g mb
ROut = RS // Ro = RS //
1 g m + g mb
Av = Gm Rout
Rs = gm Rs ( g m + g mb ) + 1
1 g m + g mb RS = = 1 RS ( g m + g mb ) + 1 RS + g m + g mb RS
Rout
1 rO 1 rO 2 RL = gmb + gm
1 Av = g m rO1 rቤተ መጻሕፍቲ ባይዱ 2 RL g mb + g m
衬偏效应影响
华侨大学IC设计中心
即使源跟随器用理想电流源来偏置,输入-输出 特性仍表现出一些非线性,这源于阈值电压与源 极电压之间的非线性。
Av = Gm Rout Rs g = gm = m = 1 ( g m + g mb ) (1 + η ) Rs ( g m + g mb ) + 1
Vin < VTH
源跟随器(共漏极) 大信号分析
华侨大学IC设计中心
M1处于截止状态,等于零 V >V M1导通进入饱和区 ,输出跟随 输入电压变化
in TH
Vin < VTH
源跟随器(共漏极)
小信号分析
华侨大学IC设计中心
Id GM = |Vout =0 Vin
ROUT Vx 1 1 || || ro || Rs = |Vin =0 ROUT = g m g mb Ix
相关文档
最新文档