平面四节点等参单元有限元程序
Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参单元的有限元程序
Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参单元的有限元程序:c--------------------------------------------------------------------------c.....FEA2DP---A finite element analysis program for2D elastic problemscc Tangent matrix is stored with varioud band methodc This program is used to demonstrte the usage of vrious bandc Storage schem of symmetric and unsymmetric tangent matrixcc Wang shunjinc At chongqing vniversity(06/06/2013)c-------------------------------------------------------------------------program FEA2DPcc a(1)-a(n1-1):x(ndm,nummnp);a(n1)-a(n2-1):f(ndf,numnp)c a(n2)-a(n3-1):b(neq);a(n3)-a(n4-1):ad(neq)c a(n4)-a(n5-1):al(nad);a(n5)-a(n6-1):nu(nad)cc ia(1)-ia(n1-1):ix(nen1,numel);ia(n1)-ia(n2-1):id(ndf,numnp)c ia(n2)-ia(n3-1):jd((ndf*numnp);ia(n3)-ia(n4-1):idl(nen*numel*ndf)cimplicit real*8(a-h,o-z)dimension a(100000),ia(1000)character*80headcommon/cdata/numnp,numel,nummat,nen,neqcommon/sdata/ndf,ndm,nen1,nstcommon/iofile/ior,iowcnmaxm=100000imaxm=1000ior=1iow=2cc Open files for data input and outputcopen(ior,file='input.dat',form='formatted')open(iow,file='output.dat')cc.....Read titlecread(ior,'(a)')headwrite(iow,'(a)')headcc.....Read and print control informationcc numnp:number of nodesc numel:number of elementsc nummat:number of material typesc nload:number of loadsc ndm:number of coordinats of each nodec ndf:number of degrees of freedomc nen:number of nodes in each elementcread(ior,'(7i5)')numnp,numel,nummat,nload,ndm,ndf,nenwrite(iow,2000)numnp,numel,nummat,nload,ndm,ndf,nen cc.....Set poiters for allocation of data arrayscnen1=nen+4nst=nen*ndfnneq=ndf*numnpcn1=ndm*numnp+1n2=n1+ndf*numnp+1ci1=nen1*numel+1i2=i1+ndf*numnp+1i3=i2+ndf*numnp+1i4=i3+numel*nen*ndf+1cc.....Call mesh input subroutine to read all mesh dataccall pmesh(a(1),a(n1),ia(1),ia(i1),ndf,ndm,nen1,nload)cpute profileccall profil(ia(i2),ia(i3),ia(i1),ia(1),ndf,nen1,nad)cn3=n2+neq+1n4=n3+neq+1n5=n4+nad+1n6=n5+nad+1cc The lengthes of real and integer arrayscwrite(iow,2222)n6,i4cc The lengthes of array exceeds the limitationcif(n6>nmaxm.or.i4>imaxm)thenif(n6>nmaxm)write(iow,3333)n6,nmaxmif(i4>nmaxm)write(iow,4444)i4,imaxmstopend ifctute and aseemble element arraysccall assem(nad,ia(1),ia(i1),ia(i2),a(1),a(n2),a(n3),1a(n4),a(n5))cc Form load vectorccall pload(ia(i1),a(n1),a(n2),nneq,neq)cc.....Triangular decomposition of a matrix stored in profile formccall datri(ndf,numnp,ia(i2),neq,nad,.false.,a(n3),a(n5),a(n5))cc For unsymmtric tangent matirxc Call datri(ndf,numnp,ia(i2),neq,nad,.true.,a(n3),a(n4),a(n5))cc Solve equationsccall dasol(ndf,numnp,a(n2),ia(i2),neq,nad,aengy,a(n3),a(n5),a(n5)) cc For unsymmetric tangent matrixc Call dasol(ndf,numnp,a(n2),ia(i2),neq,nad,aengy,a(n3),a(n5),a(n5)) cc Output nodal displacementsccall prtdis(ia(i1),a(n2),ndf,numnp,neq)cc.....Close input and output files;destroy temporary disk filescclose(ior)close(iow)cc.....Input/output formatsc1000format(20a4)2000format(//x5x,'number of nodal points=',i6/15x,'number of elements=',i6/25x,'number of material sets=',i6/35x,'number of nodal loads=',i6/45x,'dimension of coordinate space=',i6/55x,'degree of freedoms/node=',i6/65x,'nodes per element(maximum)=',i6)2222format(//,10x,'the lengthe of real array is',i10,/,110x,'the lengthe of integer array is',i10)3333format(//,10x,'the lengthe of real array',i10,'exceed the',1'maximun value',i10)4444format(//,10x,'the lengthe of integer array',i10,'exceed the',1'maximun value',i10)cstopendccsubroutine pmesh(x,f,ix,id,ndf,ndm,nen1,nload)cc......Data input routine for mesh descriprioncimplicit real*8(a-h,o-z)dimension x(ndm,numnp),f(ndf,numnp),id(ndf,numnp),ix(nen1,numel)common/bdata/head(20)common/cdata/numnp,numel,nummat,nen,neqcommon/mater/ee,xnu,itypecommon/iofile/ior,iowcc.....Input constrain codes and nodal coordinate datacc id(k,j):constrain code of kth degree of freedom of node j,=0:free,=1:fixed c x(k,j):kth coordinate of node jcdo i=1,numnpread(ior,'(3i5,2f10.4)')j,(id(k,j),k=1,ndm),(x(k,j),k=1,ndm) end docwrite(iow,'(//17hnodal coordinates,/)')do i=1,numnpwrite(iow,'(3i5,2f10.4)')i,(id(k,i),k=1,ndm),(x(k,i),k=1,ndm) end docc.....element data inputcc ix(k,j):global node number of kth node in element jcdo i=1,numelread(ior,'(9i5)')j,(ix(k,j),k=1,nen)end docwrite(iow,'(//,18helement definition,/)')do i=1,numelwrite(iow,'(9i5)')j,(ix(k,j),k=1,nen)end docc.....Material data inputcc ee:young's modulus,xnu:poisson ratioc itype:type of problem,=1,:plane stress,=2:plane strain,=3:axi-symmetric cread(ior,'(2f10.4,i5)')ee,xnu,itypewrite(iow,'(//,19hmateial properties,/)')write(iow,'(2(e10.4,5x),i5)')ee,xnu,itypecc.....force/disp data inputcc f(k,j):concentrate load at node j in k directioncf=0.0d0do i=1,nloadread(ior,'(i5,2f10.4)')j,(f(k,j),k=1,ndf)end docwrite(iow,'(//,20happlied nodal forces,/)')do i=1,nloadwrite(iow,'(i5,2f10.4)')j,(f(k,j),k=1,ndf)end docreturncc format statementsc2000format('mesh1>',$)3000format(1x,'**warning**element connections necessary'1'to use block in macro program')4000format('**current problem valies**'/i6,'nodes,',1i5,'elmts,',i3,'matls,',i2,'dims,',i2,'dof/node,',2i3,'nodes/elmt')endccsubroutine assem(nad,ix,id,jd,x,b,ad,al,au)cc Call element subroutine and assemble global tangent matrixcimplicit real*8(a-h,o-z)dimension ilx(nen),xl(ndf,nen),ld(ndf,nen),s(nst,nst),p(nst)dimension ix(nen1,numel),id(ndf,numnp),jd(ndf*numnp)dimension x(ndm,numnp),b(neq),ad(neq),al(nad),au(nad)common/cdata/numnp,numel,nummat,nen,neqcommon/sdata/ndf,ndm,nen1,nstcnel=nencc elenment loopcdo320n=1,numels=0.0d0!element stiffness matrixp=0.0d0!nodal forcene=ndo310i=1,nenilx(i)=ix(i,ne)!current element definitiondo k=1,ndmxl(k,i)=x(k,ilx(i))!nodal coords in current elementend dokk=ilx(i)do k=1,ndfld(k,i)=id(k,kk)!equation numbersend do310continuecc Call element libccall elmt01(xl,ilx,s,p,ndf,ndm,nst)cc Asemmble tangent matrix and load vector if neededccall dasbly(ndf,nad,s,p,ld,jd,nst,b,ad,al,au)c320continue!end element loopcreturnendccsubroutine dasbly(ndf,nad,s,p,ld,jp,ns,b,ad,al,au)cc.....Assemble the symmetric or unsymmetric arrays for'dasol'cimplicit real*8(a-h,o-z)c logical alfl,aufl,bfldimension ad(neq),al(nad),au(nad)dimension ld(ns),jp(ndf*numnp),b(neq),s(ns,ns),p(ns)common/cdata/numnp,numel,nummat,nen,neqcommon/iofile/ior,iowcc alfl=true:for unsymmetric matirx assemblec alfl=false:for symmetric matirx assemblec s:element stiffness matrixc p:load or internal force vectorc ad:diagonal elementsc au:upper triangle elementsc al:lower triangle elementsc jp:pointer to last element in each row/column of al/au respectivec ld:equation numbers of each freedom degree in an element(get from id) cc.....Loop through the rows to perform the assemblycdo200i=1,nsii=ld(i)if(ii.gt.0)thenc if(aufl)then!assemble stiffness matrixcc.....Loop through the columns to perform the assemblycdo100j=1,nsif(ld(j).eq.ii)thenad(ii)=ad(ii)+s(i,j)elseif(ld(j).gt.ii)thenjc=ld(j)jj=ii+jp(jc)-jc+1au(jj)=au(jj)+s(i,j)c if(alfl)al(jj)=al(jj)+s(j,i)!unsymmetricendif100continueendifc if(bfl)b(ii)=b(ii)+p(i)!assemble nodal forcec endif200continuecreturnendccsubroutine dasol(ndf,numnp,b,jp,neq,nad,energy,ad,al,au)cc.....Solution of symmetric equations in profile formc.....Coeficient matrix must be decomposed into its triangularc.....Factor using datri beforce using dasol.cc jp:pointer to last element in each row/column of al/au respecive ccimplicit real*8(a-h,o-z)dimension ad(neq),al(nad),au(nad)dimension b(neq),jp(ndf*numnp)common/iofile/ior,iowdata zero/0.0d0/cc.....Find the first nonzero entry in the ring hand sidecdo is=1,neqif(b(is).ne.zero)go to200end dowrite(iow,2000)returnc200if(is.lt.neq)thencc.....Reduce the right hand sidecdo300j=is+1,neqjr=jp(j-1)jh=jp(j)-jrif(jh.gt.0)thenb(j)=b(j)-dot(al(jr+1),b(j-jh),jh)end if300continueend ifcc.....Multiply inverse of diagonal elementscenergy=zerodo400j=is,neqbd=b(j)b(j)=b(j)*ad(j)energy=energy+bd*b(j)400continuecc.....backsubstitutioncif(neq.gt.1)thendo500j=neq,2,-1jr=jp(j-1)jh=jp(j)-jrif(jh.gt.0)thencall saxpb(au(jr+1),b(j-jh),-b(j),jh,b(j-jh))end if500continueend ifcreturnc2000format('**dasol warning1**zero right-hand-side vector') endccsubroutine datest(au,jh,daval)cc.....test for rankcimplicit real*8(a-h,o-z)dimension au(jh)cdaval=0.0d0cdo j=1,jhdaval=daval+abs(au(j))end docreturnendccsubroutine datri(ndf,numnp,jp,neq,nad,flg,ad,al,au)cc.....Triangular decomposiontion of a matrix stored in profile form cimplicit real*8(a-h,o-z)logical flgdimension jp(ndf*numnp),ad(neq),al(nad),au(nad)common/iofile/ior,iowcc.....n.b.tol should be set to approximate half-word precision.cdata zero,one/0.0d0,1.0d0/,tol/0.5d-07/cc.....Set initial values for contditioning checkcdimx=zerodimn=zerocdo j=1,neqdimn=max(dimn,abs(ad(j)))end dodfig=zerocc.....Loop through the columns to perform the triangular decomposition cjd=1do200j=1,neqjr=jd+1jd=jp(j)jh=jd-jrif(jh.gt.0)thenis=j-jhie=j-1cc.....If diagonal is zeor compute a norm for singularity testcif(ad(j).eq.zero)call datest(au(jr),jh,daval)do100i=is,iejr=jr+1id=jp(i)ih=min(id-jp(i-1),i-is+1)if(ih.gt.0)thenjrh=jr-ihidh=id-ih+1au(jr)=au(jr)-dot(au(jrh),al(idh),ih)if(flg)al(jr)=al(jr)-dot(al(jrh),au(idh),ih)end if100continueend ifcc.....Reduce the diagonalcif(jh.ge.0)thendd=ad(j)jr=jd-jhjrh=j-jh-1call dredu(al(jr),au(jr),ad(jrh),jh+1,flg,ad(j))cc.....Check for possible errors and print warningscif(abs(ad(j)).lt.tol*abs(dd))write(iow,2000)jif(dd.lt.zero.and.ad(j).gt.zero)write(iow,2001)jif(dd.gt.zero.and.ad(j).lt.zero)write(iow,2001)jif(ad(j).eq.zero)write(iow,2002)jif(dd.eq.zero.and.jh.gt.0)thenif(abs(ad(j)).lt.tol*daval)write(iow,2003)jendifendifcc.....Stroe reciprocal of diagonal,compute condition checkscif(ad(j).ne.zero)thendimx=max(dimx,abs(ad(j)))dimn=min(dimn,abs(ad(j)))dfig=max(dfig,abs(dd/ad(j)))ad(j)=one/ad(j)end if200continuecc.....Print conditioning informationcdd=zeroif(dimn.ne.zero)dd=dimx/dimnifig=dlog10(dfig)+0.6write(iow,2004)dimx,dimn,dd,ifigcreturncc.....formatsc2000format('**datri warning1**loss of at least7digits in', 1'reducing diagonal of equation',i5)2001format('**datri warning2**sign of changed when', 1'reducing equation',i5)2002format('**datri warning3**reduced diagonal is zero zeri for', 1'equation',i5)2003format('**datri warning4**rank failure ffo zero unreduced', 1'diagonal in equation',i5)2004format(//'conditon check:d-max',e11.4,';d-min',e11.4, 1';ratio',e11.4/'maximim no.diagonal digits lost:',i3) 2005format('cond ck:dmax',1p1e9.2,';dmin',1p1e9.2,1';ratio',1p1e9.2)endccsubroutine dredu(al,au,ad,jh,flg,dj)cc.....Reduce diagonal element in triangular decompositioncimplicit real*8(a-h,o-z)logical flgdimension al(jh),au(jh),ad(jh)cdo j=1,jhud=au(j)*ad(j)dj=dj-al(j)*udau(j)=udend docc.....Finish computation of column of al for unsymmetric matricescif(flg)thendo j=1,jhal(j)=al(j)*ad(j)end doend ifcreturnendccsubroutine profil(jd,idl,id,ix,ndf,nen1,nad)cpute profile of global arrayscimplicit real*8(a-h,o-z)dimension jd(ndf*numnp),idl(numel*nen*ndf),id(ndf,numnp),1ix(nen1,numel)common/cdata/numnp,numel,nummat,nen,neqcommon/frdata/maxfcommon/iofile/ior,iowcc jd:column hight(address of diagonal elements)c id:boudary condition codes before this bubroutine's runningc id:equation numbers in global array(excluded restrained nodes)after running c idl:element strech orderc nad:total number of non-zero elements except diagonal elementsc in global tangent matrixcc.....Set up the equation numberscneq=0cdo10k=1,numnpdo10n=1,ndfj=id(n,k)if(j.eq.0)thenneq=neq+1id(n,k)=neqelseid(n,k)=0endif10continuecpute column heightsccall pconsi(jd,neq,0)cdo50n=1,numelmm=0nad=0do30i=1,nenii=iabs(ix(i,n))if(ii.gt.0)thendo20j=1,ndfjj=id(j,ii)if(jj.gt.0)thenif(mm.eq.0)mm=jjmm=min(mm,jj)nad=nad+1idl(nad)=jjendif20continueend if30continueif(nad.gt.0)thendo40i=1,nadii=idl(i)jj=jd(ii)jd(ii)=max(jj,ii-mm)40continueendif50continuecpute diagongal pointers for profilecnad=0jd(1)=0if(neq.gt.1)thendo60n=2,neqjd(n)=jd(n)+jd(n-1)60continuenad=jd(neq)end ifcc.....Set element search order to sequentialcdo70n=1,numelidl(n)=n70continuecc.....equation summarycmaxf=0mm=0if(neq.gt.0)mm=(nad+neq)/neqwrite(iow,2001)neq,numnp,mm,numel,nad,nummatcreturnc2001format(5x,'neq=',i5,5x,'numnp=',i5,5x,'mm=',i5,/5x, 1'numel=',i5,5x,'nad=',i5,5x,'nummat=',i5/) endcsubroutine saxpb(a,b,x,n,c)cc.....Vector times scalar added to second vectorcimplicit real*8(a-h,o-z)dimension a(n),b(n),c(n)cdo k=1,nc(k)=a(k)*x+b(k)end docreturnendcsubroutine pconsi(iv,nn,ic)cc.....Zero integer arraycdimension iv(nn)cdo n=1,nniv(n)=icend docreturnendcsubroutine elmt01(xl,ilx,s,p,ndf,ndm,nst)cc.....plane linear elastic element routinec ityp=1:plane stressc=2:plane strainc=3:axisymmetriccimplicit real*8(a-h,o-z)dimension xl(ndm,nen),ilx(nen),sigr(6)dimension d(18),s(nst,nst),p(nst),shp(3,9),sg(16),tg(16),wg(16)character wd(3)*12common/cdata/numnp,numel,nummat,nen,neqcommon/mater/ee,xnu,itypecommon/iofile/ior,iowdata wd/'plane stress','plane strain','axisymmetric'/cc xl(ndm,nen):coords of each node in current elementc ilx(nen):element definition of current elementc d(18):materials propertiesc s(nst,nst):element stiffness matrixc p(ns):nodal force and internal forcec shp(3,9):shape function and its derivativesc sg(16),tg(16),wg(16):weight coefficients of guass intergtation c l,k:integration pointscl=2k=2e=eenel=nencc d(14):thickness;d(11),d(12):body forcesc.....Set material patameter type and flagscityp=max(1,min(ityp,3))j=min(ityp,2)cd(1)=e*(1.+(1-j)*xnu)/(1.+xnu)/(1.-j*xnu)d(2)=xnu*d(1)/(1.+(1-j)*xnu)d(3)=e/2./(1.+xnu)d(13)=d(2)*(j-1)if((d(14).le.0.0d0).or.ityp.ge.2)d(14)=1.0d(15)=itypd(16)=ed(17)=xnud(18)=-xnu/el=min(4,max(1,l))k=min(4,max(1,k))d(5)=ld(6)=kc d(9)=t0c d(10)=e*alp/(1.-j*xnu)lint=0cwrite(iow,2000)wd(ityp),d(16),d(17),d(4),l,k,d(14),1d(11),d(12)cc.....stiffness/residual computationcl=kcc Compute cordinates and weights of integtation pointc`sg,tg:cootds;wg=wp*wqcif(l*l.ne.lint)call pguass(l,lint,sg,tg,wg)cpute integrals of shape functionscdo340l=1,lintcc Compute shape function and their derivatives to local and global coordinate systemccall shape(sg(l),tg(l),xl,shp,xsj,ndm,nen,ilx,.false.)cc Compute global coordinates of integration pointscxx=0.0yy=0.0do j=1,nenxx=xx+shp(3,j)*xl(1,j)yy=yy+shp(3,j)*xl(2,j)end doxsj=xsj*wg(l)*d(14)!xsj+|j|(sp,tq)*wp*wq*tcpute jacobian correction for plane stress and strain problemscif(ityp.le.2)thendv=xsjxsj=0.0zz=0.0c sigr4=-d(11)*dv!d(11)body forceelsecc For anisymmetric problemcdv=xsj*xx*3.1415926*2.zz=1./xxc sigr4=sigr(4)*xsj-d(11)*dvendifj1=1cc.....Loop over rowscdo330j=1,nelw11=shp(1,j)*dvw12=shp(2,j)*dvw22=shp(3,j)*xsjw22=shp(3,j)*dv*zzccpute the internal forces out of balancecc p(j1)=p(j1)-(shp(1,j)*sigr(1)+shp(2,j)*sigr(2))*dvc1-shp(3,j)*sigr4c p(j1+1)=p(j1+1)-(shp(1,j)*sigr(2)+shp(2,j)*sigr(3))*dvc1+d(12)*shp(3,j)*dv!d(12)body force cc.....Loop over columns(symmetry noted)c Compute stiffness matrixck1=j1a11=d(1)*w11+d(2)*w22a21=d(2)*w11+d(1)*w22a31=d(2)*(w11+w22)a41=d(3)*w12a12=d(2)*w12a32=d(1)*w12a42=d(3)*w11do320k=j,nelw11=shp(1,k)w12=shp(2,k)w22=shp(3,k)*zzs(j1,k1)=s(j1,k1)+w11*a11+w22*a21+w12*a41s(j1+1,k1)=s(j1+1,k1)+(w11+w22)*a12+w12*a42s(j1,k1+1)=s(j1,k1+1)+w12*a31+w11*a41s(j1+1,k1+1)=s(j1+1,k1+1)+w12*a32+w11*a42k1=k1+ndf320continuej1=ndf+j1330continue340continuecc.....Make stiffness symmetriccdo360j=1,nstdo360k=j,nsts(k,j)=s(j,k)360continuecreturncc.....Formats for input-outputc1000format(3f10.0,3i10)1001format(8f10.0)2000format(/5x,a12,'linear elastic element'//110x,'modulus',e18.5/10x,'poission ratio',f8.5/10x,'density',e18.5/ 210x,'guass ptr/dir',i3/10x,'stress pts',i6/10x,'thickness',e16.5/310x,'1-gravity',e16.5/10x,'2-gtavity',e16.5/10x,'alpha',e20.5/410x,'base temp',e16.5/)2001format(5x,'element stresses'//'elmt1-coord',2x,'11-stress',2x, 1'12-stress',2x,'22-stress',2x,'33-stress',3x,'1-coord',2x,3x,2'2-stress'/'matl2-coord',2x,'11-strain',2x,'12-strain'2x,3'22-strain',2x,'33-strain',6x,'angle'/39('-'))2002format(i4,0p1f9.3,1p6e11.3/i4,0p1f9.3,1p4e11.3,0p1f11.2/) 5000format('input:e,nu,rho,pts/stiff,pts/stre',1',type(1=stress,2=strain,3=axism)',/3x,'>',$)5001format('input:thickness,1-body force,1-body force,alpha,' 1,'temp-base'/3x,'>',$)endcsubroutine shape(ss,tt,xl,shp,xsj,ndm,nel,ilx,flg)cc.....Shape function routine for two dimension elementscimplicit real*8(a-h,o-z)logical flgdimension xl(ndm,nel),s(4),t(4),x(nel)dimension shp(3,nel),xs(2,2),sx(2,2)data s/-0.5d0,0.5d0,0.5d0,-0.5d0/,1t/-0.5d0,-0.5d0,0.5d0,0.5d0/cc.....Form4-node quatrilateral shape functionscc nel:nuber of nodes per elementcdo100i=1,4shp(3,i)=(0.5+s(i)*ss)*(0.5+t(i)*tt)shp(1,i)=s(i)*(0.5+t(i)*tt)shp(2,i)=t(i)*(0.5+s(i)*ss)100continuecc.....Form triangge bu adding their and fourth together for triangle element cif(nel.eq.3)thendo i=1,3shp(i,3)=shp(i,3)+shp(i,4)enddoendifcc.....Add quatratic terms if necessary for element with more than4nodes cif(nel.gt.4)call shap2(ss,tt,shp,ilx,nel)cc.....Construct jacobian and its inversecdo125i=1,2do125j=1,2xs(i,j)=0.0do120k=1,nelxs(i,j)=xs(i,j)+xl(i,k)*shp(j,k)120continue125continuecc xsj:determinate of jacob matrixcxsj=xs(1,1)*xs(2,2)-xs(1,2)*xs(2,1)cif(flg)returnc flg=false:form global derivativescif(xsj.le.0.0d0)xsj=1.0sx(1,1)=xs(2,2)/xsjsx(2,2)=xs(1,1)/xsjsx(1,2)=-xs(1,2)/xsjsx(2,1)=-xs(2,1)/xsjcc....Form global derivativescdo130i=1,neltp=shp(1,i)*sx(1,1)+shp(2,i)*sx(2,1)shp(2,i)=shp(1,i)*sx(1,2)+shp(2,i)*sx(2,2)shp(1,i)=tp130continuecreturnendcsubroutine shap2(s,t,shp,ilx,nel)cc....Add quadtatic function as necessarycimplicit real*8(a-h,o-z)dimension shp(3,9),ilx(nel)cs2=(1.-s*s)/2.t2=(1.-t*t)/2.do100i=5,9do100j=1,3shp(j,i)=0.0100continuecc.....Midsize nodes(serenipity)cif(ilx(5).eq.0)go to101shp(1,5)=-s*(1.-t)shp(2,5)=-s2shp(3,5)=s2*(1.-t)101if(nel.lt.6)go to107if(ilx(6).eq.0)go to102shp(1,6)=t2shp(2,6)=-t*(1.+s)shp(3,6)=t2*(1.+s)102if(nel.lt.7)go to107if(ilx(7).eq.0)go to103shp(1,7)=-s*(1.+t)shp(2,7)=s2shp(3,7)=s2*(1.+t)103if(nel.lt.8)go to107if(ilx(8).eq.0)go to104shp(1,8)=-t2shp(2,8)=-t*(1.-s)shp(3,8)=t2*(1.-s)cc.....Interior node(lagragian)c104if(nel.lt.9)go to107if(ilx(9).eq.0)go to107shp(1,9)=-4.*s*t2shp(2,9)=-4.*t*s2shp(3,9)=4.*s2*t2cc.....Correct edge nodes for interior node(lagrangian) cdo106j=1,3do105i=1,4105shp(j,i)=shp(j,i)-0.25*shp(j,9)do106i=5,8106if(ilx(i).ne.0)shp(j,i)=shp(j,i)-.5*shp(j,9)cc.....Correct corner nodes for presense of midsize nodes c107do108i=1,4k=mod(i+2,4)+5l=i+4do108j=1,3108shp(j,i)=shp(j,i)-0.5*(shp(j,k)+shp(j,l))returnendcsubroutine pguass(l,lint,r,z,w)cc.....Guass points and weights for two dimensionscimplicit real*8(a-h,o-z)dimension lr(9),lz(9),lw(9),r(16),z(16),w(16)c common/eldtat/dm,n,ma,mct,iel,neldata lr/-1,1,1,-1,0,1,0,-1,0/,lz/-1,-1,1,1,-1,0,1,0,0/data lw/4*25,4*40,64/cc lint:number of integration pointsc r,z:coordinates of integration pointsc w:wp*wq,product of the two weightsclint=l*lcc.....1x1integerationc1r(1)=0.z(1)=0.w(1)=4.creturncc.....2x2integerationc2g=1.0/sqrt(3.d0)do i=1,4r(i)=g*lr(i)z(i)=g*lz(i)w(i)=1.end docreturncc.....3x3integerationc3g=sqrt(0.60d0)h=1.0/81.0d0cdo i=1,9r(i)=g*lr(i)z(i)=g*lz(i)w(i)=h*lw(i)enddocreturncendcsubroutine pload(id,f,b,nneq,neq) cc.....Form load vector in compact formcimplicit real*8(a-h,o-z)dimension f(nneq),b(neq),id(nneq)common/iofile/ior,iowcb=0.0d0cj=id(n)if(j.gt.0)thenb(j)=f(n)endifenddocreturnendcsubroutine prtdis(id,b,ndf,numnp,neq)cc Print out nodal displacementscimplicit real*8(a-h,o-z)dimension id(ndf,numnp),b(neq),u(ndf,numnp)common/iofile/ior,iowcu=0.0d0do100i=1,numnpdo j=1,ndfn=id(j,i)if(n>0)u(j,i)=b(n)end do100continuecc Out nodal displacementscwrite(iow,'(//,19hnodal displacements,/)')do i=1,numnpwrite(iow,'(5x,i5,2x,3(e12.4,3x))')i,(u(k,i),k=1,ndf) end docreturnendcdouble precision function dot(a,b,n)implicit real*8(a-h,o-z)dimension a(n),b(n)cc.....Dot product functioncdot=0.0d0do10k=1,ndot=dot+a(k)*b(k)10continuereturn end。
有限元讲义弹性力学平面问题有限单元法(四结点四边形等参元,八结点曲线四边形等参元,问题补充)分析
2.6 四结点四边形单元(The four-node quadrilateral element)前面介绍了四结点的矩形单元其位移函数:xy y x U 4321αααα+++=xy y x V8765αααα+++=为双线性函数,应力,应变在单元内呈线性变化,比常应力三角形单元精度高。
但它对边界要求严格。
本节介绍的四结点四边形等参元,它不但具有较高的精度,而且其网格划分也不受边界的影响。
对任意四边形单元(图见下面)若仍直接采用前面矩形单元的位移函数,在边界上它便不再是线性的(因边界不与x,y 轴一致),这样会使得相邻两单元在公共边界上的位移可能会出现不连续现象(非协调元),而使收敛性受到影响。
可以验证,利用坐标变换就能解决这个问题,即可以通过坐标变换将整体坐标中的四边形(图a )变换成在局部坐标系中与四边形方向无关的边长为2的正方形。
正方形四个结点i,j,m,p 按反时钟顺序对应四边形的四个结点i j m p 。
正方形的 1-=η 和 1=η 二条边界,分别对应四边形的i ,j 边界和p,m 边界;ξ=-1和ξ=+1分别对应四边形的i ,p 边界和j ,m 边界。
如果用二组直线等分四边形的四个边界线段,使四边形绘成一个非正交网格,那么该非正交网格在正方形上对应着一个等距离的规则网格(见图a, b )。
当然, 局部坐标上的A 点与整体坐标的A 点对应。
一、四结点四边形等参单元的形函数及坐标变换由于可以将整体坐标下的四边形单元变换成局部坐标下的正方形单元,对于这种正方形单元,自然仍取形函数为: ξηαηαξαα2321+++=U ξηαηαξαα8765+++=V引入边界条件,即可得位移函数:∑=ijmpi i U N Ui ijmpi V N V ∑==写成矩阵形式:{}{}[]{}ee p i p i ed N d N N N N V U f =⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧=000 式中形函数: ()()()ηηξξηξi i i N ++=1141, ()p m j i ,,, 按照等参元的定义,我们将坐标变换式亦取为: p p m m j j i i i ijmpi x N x N x N x N x N x +++==∑p p m m j j i i i ijmpi y N y N y N y N y N y +++==∑ ()162-- 式中形函数N 与位移函数中的完全一致。
平面四边形四节点等参单元Fortran源程序
C ************************************************C * FINITE ELEMENT PROGRAM *C * FOR Two DIMENSIONAL ELASticity PROBLEM *C * WITH 4 NODE *C ************************************************PROGRAM ELASTICITYcharacter*32 dat,cchDIMENSION SK(80000),COOR(2,300),AE(4,11),MEL(5,200),& WG(4),JR(2,300),MA(600),R(600),iew(30),STRE(3,200)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)WRITE(*,*)'PLEASE ENTER INPUT FILE NAME'READ(*,'(A)')DATOPEN(4,FILE=dat,STATUS='OLD')OPEN(7,FILE='OUT',STATUS='UNKNOWN')READ(4,*)NP,NE,NM,NRWRITE(7,'(A,I6)')'NUMBER OF NODE---------------------NP=',npWRITE(7,'(A,I6)')'NUMBER OF ELEMENT------------------NE=',neWRITE(7,'(A,I6)')'NUMBER OF MATERIAL-----------------NM=',nm WRITE(7,'(A,I6)')'NUMBER OF surporting---------------NC=',NrCALL INPUT (JR,COOR,AE,MEL)CALL CBAND (MA,JR,MEL)DO I=1,NHSK(I)=0.0enddoCALL SK0(SK,MEL,COOR,JR,MA,AE)do I=1,NR(I)=0.0enddopause 'aaa'stopREAD(4,*)NCP,NBE,izWRITE(*,'(5i8)')NCP,NBE,izWRITE(7,'(5i8)')NCP,NBE,izIF(NCP.GT.0)CALL CONCR(NCP,R,JR)IF(NBE.GT.0) CALL BODYR(NBE,R,MEL,COOR,JR,AE) IF(iz.GT.0)thendo jj=1,izREAD (4,*)Js,nse,(WG(I),I=1,4)read(4,*)(iew(m),m=1,nse)CALL FACER(iew,NSE,R,MEL,COOR,JR,WG)enddoendifCALL DECOP (SK,MA)CALL FOBA (SK,MA,R)CALL OUTDISP(NP,R,JR)CALL STRESS (COOR,MEL,JR,AE,R,STRE)WRITE(7,'(A)')' PROGRAM SAFF HAS BEEN ENDED'WRITE(*,'(A)')' PROGRAM SAFF HAS BEEN ENDED'STOPc RETURNENDC *********************************************SUBROUTINE INPUT (JR,COOR,AE,MEL)DIMENSION JR(2,*),COOR(2,*),AE(4,*),MEL(5,*)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHDO 70 I=1,NPREAD(4,*) IP,X,YCOOR(1,IP)=XCOOR(2,IP)=Y70 CONTINUEDO 11 J=1,NEREAD(4,*)NEE,NME,(MEL(I,NEE),I=1,4)MEL(5,NEE)=NME11 CONTINUEDO 10 I=1,NPDO 10 J=1,210 JR(J,I)=1DO 20 I=1,NRREAD(4,*) IP,IX,IYJR(1,IP)=IXJR(2,IP)=IY20 CONTINUEN=0DO 30 I=1,NPDO 30 J=1,2IF (JR(J,I)) 30,30,2525 N=N+1JR(J,I)=N30 CONTINUEDO 55 J=1,NMREAD (4,*)JJ,(AE(I,JJ),I=1,4)WRITE(*,910) JJ,(AE(I,JJ),I=1,4)55 CONTINUE910 FORMAT (/20X,'MATERIAL PROPERTIES'/(3X,I5,4(1x,E8.3))) RETURNENDC **********************************************SUBROUTINE CBAND (MA,JR,MEL)DIMENSION MA(*),JR(2,*),MEL(5,*),NN(8)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHDO 65 I=1,N65 MA(I)=0DO 90 IE=1,NEDO 75 K=1,4IEK=MEL(K,IE)DO 95 M=1,2JJ=2*(K-1)+MNN(JJ)=JR(M,IEK)95 CONTINUE75 CONTINUEL=NDO 80 I=1,2*4NNI=NN(I)IF(NNI.EQ.0) GO TO 80IF(NNI.LT.L) L=NNI80 CONTINUEDO 85 M=1,2*4JP=NN(M)IF(JP.EQ.0) GO TO 85JPL=JP-L+1IF(JPL.GT.MA(JP)) MA(JP)=JPL85 CONTINUE90 CONTINUEMX=0MA(1)=1DO 10 I=2,NIF(MA(I).GT.MX) MX=MA(I)MA(I)=MA(I)+MA(I-1)10 CONTINUENH=MA(N)WRITE(7,'(A,I8)')'TOTAL DEGREES OF FREEDOM-----------N= ',NWRITE(7,'(A,I8)')'MAX-SEMI-BANDWIDTH-----------------MX=',MX WRITE(7,'(A,I8)')'TOTAL-STORAGE----------------------NH=',NH 500 FORMAT (/5X,'FREEDOM N='*,I5,3X,'SEMI-BANDWI. MX=',I5,3X,* 'STORAGE NH=',I7)RETURNENDC **********************************************SUBROUTINE SK0(SK,MEL,COOR,JR,MA,AE)DIMENSION SK(*),MEL(5,*),COOR(2,*),JR(2,*),MA(*), * AE(4,*),XYZ(2,4),iven(4)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN4/ NEE,NMECOMMON /GAUSS/ RSTG(3),H(3)H(1)=0.5555555555555560H(2)=0.8888888888888890H(3)=H(1)RSTG(1)=-0.7745966692414830RSTG(2)=0.00RSTG(3)=-RSTG(1)DO 10 IE=1,NENEE=IENME=MEL(5,IE)DO 75 K=1,4IEK=MEL(K,IE)iven(k)=IEKDO 95 M=1,2JJ=2*(K-1)+MNN(JJ)=JR(M,IEK)95 XYZ(M,K)=COOR(M,IEK)75 CONTINUECALL STIF(XYZ,AE,iven)DO 60 I=1,8DO 60 J=1,8II=NN(I)JJ=NN(J)IF ((JJ.EQ.0).OR.(II.LT.JJ)) GO TO 60JN=MA(II)-(II-JJ)SK(JN)=SK(JN)+SKE(I,J)60 CONTINUE70 CONTINUEwrite(7,1111) ((ske(i,j),j=1,8),i=1,8)1111 format(2x,8f12.2)10 CONTINUERETURNENDC *********************************************SUBROUTINE STIF(XYZ,AE,iven)DIMENSION AE(4,*),DNX(2,4),XYZ(2,*),iven(*),* RJAC(2,2)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN4/ NEE,NMECOMMON /GAUSS/ RSTG(3),H(3)DO 40 I=1,8RF(I)=0.00DO 30 J=1,8SKE(I,J)=0.0030 CONTINUE40 CONTINUEE=AE(1,NME)U=AE(2,NME)GAMA=AE(3,NME)D1=E*(1.00-U)/((1.00+U)*(1.00-2.00*U))D2=E*U/((1.00+U)*(1.00-2.00*U))D3=E*0.50/(1.00+U)DO 120 I=1,4II=2*(I-1)I1=II+1I2=II+2DO 115 J=1,4JJ=2*(J-1)J1=JJ+1J2=JJ+2DXX=0DXY=0DYX=0DYY=0DO 99 IS=1,3S=RSTG(IS)SH=H(IS)DO 98 IR=1,3R=RSTG(IR)RH=H(IR)CALL FDNX (XYZ,DNX,DET,R,S,RJAC,iven,NEE) DNIX=DNX(1,I)DNIY=DNX(2,I)DNJX=DNX(1,J)DNJY=DNX(2,J)DXX=DXX+DNIX*DNJX*DET*RH*SHDXY=DXY+DNIX*DNJY*DET*RH*SHDYX=DYX+DNIY*DNJX*DET*RH*SHDYY=DYY+DNIY*DNJY*DET*RH*SH98 CONTINUE99 CONTINUESKE(I1,J1)=DXX*D1+DYY*D3SKE(I2,J2)=DYY*D1+DXX*D3SKE(I1,J2)=DXY*D2+DYX*D3SKE(I2,J1)=DYX*D2+DXY*D3115 CONTINUE120 CONTINUERETURNENDC *********************************************SUBROUTINE CONCR(NCP,R,JR)DIMENSION R(*),JR(2,*),XYZ(2)DO 100 I=1,NCPREAD (4,*) IP,PX,PYXYZ(1)=PXXYZ(2)=PYDO 95 J=1,2L=JR(J,IP)IF(L.EQ.0) GO TO 95R(L)=R(L)+XYZ(J)95 CONTINUE100 CONTINUERETURNENDC **********************************************SUBROUTINE BODYR(NBE,R,MEL,COOR,JR,AE)DIMENSION R(*),MEL(5,*),COOR(2,*),JR(2,*),& AE(4,*),XYZ(2,4),iven(4)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)COMMON /GAUSS/ RSTG(3),H(3)H(1)=1.0H(2)=1.0RSTG(1)=-0.5773502691896260RSTG(2)=-RSTG(1)DO 10 IE=1,NBEDO I=1,8RF(I)=0.00ENDDOc READ(4,*)NEENEE=ieNME=MEL(5,NEE)GAMA=AE(3,NME)DO 75 K=1,4IEK=MEL(K,NEE)iven(k)=iekDO 95 M=1,2JJ=2*(K-1)+MNN(JJ)=JR(M,IEK)95 XYZ(M,K)=COOR(M,IEK)75 CONTINUEDO 99 IS=1,2S=RSTG(IS)SH=H(IS)DO 98 IR=1,2RR=RSTG(IR)RH=H(IR)CALL FUN8 (XYZ,RR,S,DET)DO 30 I=1,4J=2*IRF(J)=RF(J)-FUN(I)*RH*SH*DET*GAMA 30 CONTINUE98 CONTINUE99 CONTINUECALL ASLOAD (R)10 CONTINUERETURNENDC *********************************************SUBROUTINE FACER(iew,NSE,R,MEL,COOR,JR,WG)DIMENSION R(*),MEL(5,*),COOR(2,*),JR(2,*),wg(*)* ,XYZ(2,4),iew(*),PR(2)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN4/ NEE,NMECOMMON /GAUSS/ RSTG(3),H(3)H(1)=1.0H(2)=1.0RSTG(1)=-0.5773502691896260RSTG(2)=-RSTG(1)nwf=0nnf=0ir=wg(1)+0.1if(ir.eq.1)nwf=1if(ir.eq.2)nnf=1DO 510 IE=1,NSEDO I=1,8RF(I)=0.00ENDDOnee=iew(ie)DO 575 K=1,4IEK=MEL(K,NEE)DO 595 M=1,2JJ=2*(K-1)+MNN(JJ)=JR(M,IEK)595 XYZ(M,K)=COOR(M,IEK)575 CONTINUEIF(NWF.EQ.1) thenGAMA=WG(2)Z0=WG(3)NSU=WG(4)+0.1CALL SURLOD (NSU,XYZ,PR,Z0,GAMA,1)endifIF(NNF.EQ.1) thenq=WG(2)NSU=WG(4)+0.1do j=1,2PR(J)=qenddoCALL SURLOD (NSU,XYZ,PR,Z0,GAMA,2)endifCALL ASLOAD (R)510 CONTINUERETURNENDC *********************************************SUBROUTINE SURLOD (NSU,XYZ,PR,Z0,GAMA,NSI)DIMENSION XYZ(2,*),RST(3),PR(2),KCRD(4),KFACE(2,4), & FVAL(4),NODES(2),FACT(4)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN4/ NEE,NMECOMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)COMMON /GAUSS/ RSTG(3),H(3)DATA KCRD/1,1,2,2/DATA KFACE/1, 4,* 2, 3,* 1, 2,* 4, 3/DATA FVAL/-1.00,1.00,-1.00,1.00/ FACT(1)=1.0FACT(2)=-1.0FACT(3)=-1.0FACT(4)=1.0FACTNUS=FACT(NSU)DO I=1,2J=KFACE(I,NSU)NODES(I)=JENDDOIF (NSI.EQ.1) THENDO I=1,2J=NODES(I)Z=Z0-XYZ(2,J)PR(I)=0.00IF (Z.GT.0.00) PR(I)=Z*GAMA ENDDOENDIFML=KCRD(NSU)IF(ML.EQ.1)MM=2IF(ML.EQ.2)MM=1RST(ML)=FVAL(NSU)DO 70 LX=1,2RST(MM)=RSTG(LX)CALL FUN8 (XYZ,RST(1),RST(2),DET)PXYZ=0.00DO 25 I=1,2J=NODES(I)PXYZ=PXYZ+FUN(J)*PR(I)25 CONTINUEA1=XJAC(MM,2)A2=-XJAC(MM,1)30 DO 60 I=1,2J=NODES(I)K2=2*JK1=K2-1Q=PXYZ*FUN(J)*H(LX)*FACTNUSRF(K1)=RF(K1)+Q*A1RF(K2)=RF(K2)+Q*A260 CONTINUE70 CONTINUERETURNENDC *********************************************SUBROUTINE ASLOAD (R)DIMENSION R(*)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)DO 20 I=1,8L=NN(I)IF (L.EQ.0) GO TO 20R(L)=R(L)+RF(I)20 CONTINUERETURNENDC ***********************************************SUBROUTINE DECOP (SK,MA)DIMENSION SK(*),MA(*)COMMON /CMN2/ N,MX,NHDO 50 I=2,NL=I-MA(I)+MA(I-1)+1K=I-1L1=L+1IF (L1.GT.K) GO TO 30DO 20 J=L1,KIJ=MA(I)-I+JM=J-MA(J)+MA(J-1)+1IF (L.GT.M) M=LMP=J-1IF (M.GT.MP) GO TO 20DO 10 LP=M,MPIP=MA(I)-I+LPJP=MA(J)-J+LPSK(IJ)=SK(IJ)-SK(IP)*SK(JP)10 CONTINUE20 CONTINUE30 IF (L.GT.K) GO TO 50DO 40 LP=L,KIP=MA(I)-I+LPLPP=MA(LP)SK(IP)=SK(IP)/SK(LPP)II=MA(I)SK(II)=SK(II)-SK(IP)*SK(IP)*SK(LPP) 40 CONTINUE50 CONTINUEENDC *************************************************************SUBROUTINE FOBA (SK,MA,R)DIMENSION SK(*),MA(*),R(*)COMMON /CMN2/ N,MX,NHDO 10 I=2,NL=I-MA(I)+MA(I-1)+1K=I-1IF (L.GT.K) GO TO 10DO 5 LP=L,KIP=MA(I)-I+LPR(I)=R(I)-SK(IP)*R(LP)5 CONTINUE10 CONTINUEDO 20 I=1,NII=MA(I)45 R(I)=R(I)/SK(II)20 CONTINUEDO 30 J1=2,NI=2+N-J1L=I-MA(I)+MA(I-1)+1IF (L.GT.K) GO TO 30DO 25 J=L,KIJ=MA(I)-I+J55 R(J)=R(J)-SK(IJ)*R(I)25 CONTINUE30 CONTINUERETURNENDC *****************************************************************SUBROUTINE STRESS(COOR,MEL,JR,AE,R,STRE)DIMENSION XYZ(2,4),DNX(2,4),AE(4,*),STRE(3,*),& COOR(2,*),MEL(5,*),JR(2,*),RJAC(2,2),SIG(3),& B(3,8),R(*),iven(4)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)DO 106 IE=1,NENME=MEL(5,IE)DO 300 K=1,4IEK=MEL(K,IE)DO 310 M=1,2310 XYZ(M,K)=COOR(M,IEK)DO 320 M=1,2JRR=2*(K-1)+M320 NN(JRR)=JR(M,IEK)300 CONTINUEE=AE(1,NME)U=AE(2,NME)D1=E*(1.00-U)/((1.00+U)*(1.00-2.00*U))D2=E*U/((1.00+U)*(1.00-2.00*U))D3=0.50*E/(1.00+U)SS=0.0RR=0.0CALL FDNX (XYZ,DNX,DET,RR,SS,RJAC,iven,IE)DO 30 I=1,4II=2*(I-1)J1=II+1J2=II+2BI=DNX(1,I)CI=DNX(2,I)B(1,J1)=BIB(2,J1)=0.B(3,J1)=CIB(1,J2)=0.B(2,J2)=CIB(3,J2)=BI30 CONTINUEDO 55 II=1,3SIG(II)=0.0055 CONTINUEDO 70 K=1,8NA=NN(K)IF (NA.EQ.0) GO TO 70DO 60 L=1,3SIG(L)=SIG(L)+B(L,K)*R(NA) 60 CONTINUE70 CONTINUESX=D1*SIG(1)+D2*SIG(2)SY=D2*SIG(1)+D1*SIG(2)SXY=D3*SIG(3)STRE(1,IE)=SXSTRE(2,IE)=SYSTRE(3,IE)=SXY106 CONTINUECALL OUTSTRE(NE,STRE)RETURNENDC *********************************************SUBROUTINE FDNX (XYZ,DNX,DET,R,S,RJAC,iven,NEE)DIMENSION XYZ(2,*),DNX(2,*),RJAC(2,2),iven(*)COMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)CALL FUN8 (XYZ,R,S,DET)IF (DET.LT.1.0E-5)THENWRITE(7,600) NEE,R,S,detWRITE(7,*) (iven(m),m=1,4)STOPENDIFREC=1.00/DETRJAC(1,1)=REC*XJAC(2,2)RJAC(2,2)=REC*XJAC(1,1)RJAC(2,1)=-REC*XJAC(2,1)RJAC(1,2)=-REC*XJAC(1,2)DO 30 K=1,4DO 20 I=1,2DNX(I,K)=0.DO 25 M=1,2DNX(I,K)=DNX(I,K)+RJAC(I,M)*PN(M,K)25 CONTINUE20 CONTINUE30 CONTINUE600 FORMAT (1X,'ERR0R*** NEGTIVE OR ZERO ' * 'JACOBIAN DETERMINANT FOR '* 'ELEMENT'/'ELE.=',I5,' R=',F10.5,6X,'S=',F10.5, * 'det=',f12.5)RETURNENDC *********************************************SUBROUTINE FUN8 (XYZ,R,S,DET)DIMENSION XYZ(2,*),XI(4),ETA(4)COMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)DATA XI/-1.0,1.0,1.0,-1.0/DATA ETA/-1.0,-1.0,1.0,1.0/DO 10 I=1,4G1=(1.0+XI(I)*R)G2=(1.0+ETA(I)*S)FUN(I)=0.25*G1*G2PN(1,I)=0.25*XI(I)*G2PN(2,I)=0.25*ETA(I)*G110 CONTINUEDO 80 I=1,2DO 75 J=1,2DET=0.00DO 70 K=1,4DET=DET+PN(I,K)*XYZ(J,K)70 CONTINUEXJAC(I,J)=DET75 CONTINUE80 CONTINUEDET=XJAC(1,1)*XJAC(2,2)* -XJAC(2,1)*XJAC(1,2)RETURNENDC **********************************************SUBROUTINE OUTDISP(NP,R,JR)DIMENSION R(*),JR(2,*),U(2)WRITE(*,650)WRITE(7,650)DO I=1,NPDO M=1,2L=JR(M,I)IF(L.EQ.0)U(M)=0.0IF(L.GT.0)U(M)=R(L)ENDDOWRITE(*,'(5X,I5,10X,2E14.3)') I,UWRITE(7,'(5X,I5,10X,2E14.3)') I,UENDDO650 FORMAT(/25X,'NODAL DISPLACEMENTS'/8X, * 'NODE',13X,'X-COMP.',8X,'Y-COMP.')RETURNENDC **********************************************SUBROUTINE OUTSTRE(NE,STRE)DIMENSION STRE(3,*),ST(6)WRITE(*,700)WRITE(7,700)DO IE=1,NESX=STRE(1,IE)SY=STRE(2,IE)SXY=STRE(3,IE)ST(1)=SXST(2)=SYST(3)=SXYH1=SX+SYH2=SQRT((SX-SY)*(SX-SY)+4.0*SXY*SXY)ST(4)=(H1+H2)/2.0ST(5)=(H1-H2)/2.0IF(ABS(SXY).LT.1.0E-4)THENIF (SX.GT.SY) ST(6)=0.0IF (SX.LE.SY) ST(6)=90.0ELSEST(6)=ATAN((ST(4)-SX)/SXY)*57.29578ENDIFWRITE(*,'(6X,I4,3X,6F11.3)') IE,STWRITE(7,'(6X,I4,3X,6F11.3)') IE,STENDDO700 FORMAT(/30X,'ELEMENT STRESSES'/5X, *'ELEMENT',5X,'X-STRESS',3X,'Y-STRESS',*2X,'XY-STRESS',1X,'MAX-STRESS',1X,*'MIN-STRESS',4X,'ANGLE'/)RETURNENDC *********************************************。
第九章 平面广义四节点等参元 GQ4
18.24 23.00 23.24 23.06 23.43 23.78 23.02 23.04 23.69 23.67 23.82 23.9
0.2113 0.2209 0.2287 0.2221 0.23337 0.2226 0.222 0.2661 0.2261 0.2393 0.2377 0.2360
式中 N e 为单元 e 的插值函数矩阵 值函数对应的广义形函数形式为
De 为单元 e 的广义自由度向量 一阶广义节点插 y , (i = 1,2,3,4) 0 x2 0 y2 0
1 0 x 0 y N ei = ϕ ei 0 1 0 x 0 1 0 x 0 y N =ϕ 0 1 0 x 0
9.3.3
剪切自锁考查
MacNeal 细长梁问题
弹性模量为 E = 106 泊松比为
计算简图见图 9-3
材料参数选为
ν = 0.3 纯
弯和端部受剪两种工况 计算网格及工况如图 9-3 中(a) 格计算结果列于表 9-3 中
(b)和(c)
不同工况下各种网
0.5 50 0.2 1 工况 1 0.5 50 工况 2
( ) (E )(B )
i T e g
(9-10)
j e g
式中 n g 为单元内高斯点个数 取值
t 表示材料的厚度
下标 g 表示该表达式在高斯点处的
W g 为高斯点积分权系数 具体的数值实现步骤如下
(1) 按照所选用的高斯积分阶次 (2) 按单元节点循环 i. 形成该单元的所有高斯点局部坐标 (ξ i ,η i )
vC
网格 a
ε A (max) ε B (min)
vC
网格 b
ε A (max) ε B (min)
最新平面四边形4结点等参有限单元法
有限元程序设计平面四边形4结点等参有限单元法程序设计1、程序功能及特点a.该程序采用四边形4节点等参单元,能解决弹性力学的平面应力应变问题。
b.前处理采用网格自动划分技术,自动生成单元及结点信息。
b.能计算受集中力、自重体力、分布面力和静水压力的作用。
c.计算结点的位移和单元中心点的应力分量及其主应力。
d.后处理采取整体应力磨平求得各个结点的应力分量。
e.算例计算结果与ANSYS计算结果比较,并给出误差分析。
f.程序采用Visual Fortran 5.0编制而成。
2、程序流程及图框图2-1程序流程图图2-2子程序框图其中,各子程序的主要功能为:INPUT――输入原始数据HUAFEN――自动网格划分,形成COOR(2,NP),X,Y的坐标值与单元信息CBAND――形成主元素序号指示矩阵MA(*)SKO――形成整体刚度矩阵[K]CONCR――计算集中力引起的等效结点荷载{R}eBODYR――计算自重体力引起的等效结点荷载{R}eFACER――计算分布面力引起的等效结点荷载{R}eDECOP――支配方程LU三角分解FOBA――LU分解直接解法中的回代过程OUTDISP――输出结点位移分量STRESS――计算单元应力分量OUTSTRE――输出单元应力分量STIF――计算单元刚度矩阵FDNX――计算形函数对整体坐标的导数TiiyNxN⎥⎦⎤⎢⎣⎡∂∂∂∂,=i1,2,3,4。
FUN8――计算形函数及雅可比矩阵[J]SFUN ――应力磨平-单元下的‘K’=NCN‘SCN――应力磨平-单元下的右端项系数‘CN‘SUMSKN――应力磨平-单元下的右端项集成到总体的‘P‘SUMSTRS――应力磨平-单元下的集成到总体的‘K‘GAUSTRSS――高斯消元求磨平后的应力3、输入数据及变量说明当程序开始运行时,按屏幕提示,键入数据文件的名字。
在运行程序之前,根据程序中INPUT需要的数据输入建立一个存放原始数据的文件,这个文件的名字为INDAT.DAT。
平面四节点等参单元matlab实现
计算力学报告平面四节点等参单元学生姓名:**学号:********一、问题描述及分析在无限大平面内有一个小圆孔。
孔内有一集中力p,试求用有限元法编程和用ANSYS软件求出各点应力分量和位移分量,并比较二者结果。
根据圣维南原理建立半径为10mm的大圆,设小圆孔的半径a=0.5mm,在远离大圆边界的地方模型是比较精确的。
由于作用在小圆孔上的力引起的位移随距离的衰减非常快,所以可以把大圆边界条件设为位移为零。
二、有限元划分描述在划分单元时,单元数量比较多,于是我采取了使用ansys软件建模自动划分单元网格的方法。
具体操作如下:打开ansys,在单元类型中选择solid->Quad 4 node 182单元;建立类半径为0.5外半径为10的圆环;使用mashtool中的智能划分和将单元退化成三角形单元;使用工具栏中List中的Nodes和Elements 选项将节点和单元数据导出并导入Excle中,总共得到了207个单元和229个节点。
如下图:图1三、有限元程序及求解程序求解使用了matlab语言。
具体如下:程序:clcclearE=2e11; %弹性模量NU=0.3; %泊松比t=0.1; %厚度X=xlsread('D:\data','nodes'); %读取节点坐标elem=xlsread('D:\data','elements'); %读取单元编号w=[1,2,3,4,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]; %有位移约束的节点n=size(X,1); %节点数m=size(elem,1); %单元数K=zeros(2*n); %初始总体刚度矩阵for i=1:msyms Ks Et x y I1 I2 a b B; %定义可能存在的变量e=[1,1;-1,1;-1,-1;1,-1];for j=1:4 %形函数N(j)=0.25*(1+e(j,1)*Ks)*(1+e(j,2)*Et);endx=0;y=0;for j=1:4 %标准母单元映射到真实单元x=x+N(j)*X(elem(i,j),1);y=y+N(j)*X(elem(i,j),2);endJ1=jacobian([x;y],[Ks;Et]); %雅克比矩阵及其转置J=J1';for j=1:4I1=diff(N(j),Ks); %形函数分别对Ks和Et的偏导数I2=diff(N(j),Et);C=(J^-1)*[I1;I2];a=C(1); %形函数对x,y的偏导数b=C(2);B(1,2*j-1)=a; %组成B阵B(1,2*j)=0;B(2,2*j-1)=0;B(2,2*j)=b;B(3,2*j-1)=b;B(3,2*j)=a;endD=(E/(1-NU*NU))*[1,NU,0;NU,1,0;0,0,(1-NU)/2]; %D阵k=zeros(8,8);Kss=[-0.906179,-0.538469,0,0.538469,0.906179]; %5*5高斯积分点Ett=[-0.906179,-0.538469,0,0.538469,0.906179];H=[0.236926,0.478628,0.568888,0.478628,0.236926];%高斯积分权系数for j=1:5 %高斯积分求单元刚度阵for l=1:5Ks=Kss(j);Et=Ett(l);B=subs(B);J=subs(J);k=k+H(j)*H(l)*B'*D*B*det(J);endendG=zeros(8,2*n); %初始总刚变换矩阵G(1,2*elem(i,1)-1)=1; %总刚变换矩阵G(2,2*elem(i,1))=1;G(3,2*elem(i,2)-1)=1;G(4,2*elem(i,2))=1;G(5,2*elem(i,3)-1)=1;G(6,2*elem(i,3))=1;G(7,2*elem(i,4)-1)=1;G(8,2*elem(i,4))=1;K=K+G'*k*G; %总体刚度矩阵合成endKK=K;b=size(w,1);for i=1:bK(2*w(i)-1,2*w(i)-1)=1e20;K(2*w(i),2*w(i))=1e20;end %置大数法f=zeros(2*n,1); %初始载荷矩阵f(10)=-10e3; %加载荷10kNU=K\f; %节点位移for i=1:m %将每个单元各个节点位移集合u(:,i)=[U(2*elem(i,1)-1);U(2*elem(i,1));U(2*elem(i,2)-1);U(2*elem(i,2));U(2*ele m(i,3)-1);U(2*elem(i,3));U(2*elem(i,4)-1);U(2*elem(i,4))];endfor i=1:m %求单元应力syms Ks Et x y I1 I2 a b B;e=[1,1;-1,1;-1,-1;1,-1];for j=1:4N(j)=0.25*(1+e(j,1)*Ks)*(1+e(j,2)*Et);endx=0;y=0;for j=1:4x=x+N(j)*X(elem(i,j),1);y=y+N(j)*X(elem(i,j),2);endJ1=jacobian([x;y],[Ks;Et]);J=J1';for j=1:4I1=diff(N(j),Ks);I2=diff(N(j),Et);C=(J^-1)*[I1;I2];a=C(1);b=C(2);B(1,2*j-1)=a;B(1,2*j)=0;B(2,2*j-1)=0;B(2,2*j)=b;B(3,2*j-1)=b;B(3,2*j)=a; %以上同前面部分为得到B阵endD=(E/(1-NU*NU))*[1,NU,0;NU,1,0;0,0,(1-NU)/2];w=D*B*u(:,i);w1=subs(w,{Ks,Et},{1,1}); %求单元上各节点的应力sigma1(:,i)=double(w1);w2=subs(w,{Ks,Et},{-1,1});sigma2(:,i)=double(w2);w3=subs(w,{Ks,Et},{-1,-1});sigma3(:,i)=double(w3);w4=subs(w,{Ks,Et},{1,-1});sigma4(:,i)=double(w4);endc=[24,29,47,58,78,79,137,149,160,166,186]'; %如截图选取圆半径方向的节点号d=[166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 ,185]';%圆周方向选择的节点号e=size(c,1);f=size(d,1);sigmar=zeros(3,e); %r相同角度不同节点应力矩阵sigmat=zeros(3,f); %角度不同r不同节点应力矩阵msigmar=zeros(1,e); %半径方向节点处的mises应力msigmat=zeros(1,f); %圆周方向节点处的mises应力for i=1:e %绕节点平均g=0;for j=1:m %判断节点在单元的那个位置并加上相应的应力值if elem(j,1)-c(i)==0g=g+1;sigmar(:,i)=sigmar(:,i)+sigma1(:,j);endif elem(j,2)-c(i)==0g=g+1;sigmar(:,i)=sigmar(:,i)+sigma2(:,j);endif elem(j,3)-c(i)==0g=g+1;sigmar(:,i)=sigmar(:,i)+sigma3(:,j);endif elem(j,4)-c(i)==0g=g+1;sigmar(:,i)=sigmar(:,i)+sigma4(:,j);endendsigmar(:,i)=sigmar(:,i)/g; %求应力绕节点平均msigmar(:,i)=(0.5*((sigmar(1,i)-sigmar(2,i))^2+sigmar(1,i)^2+sigmar(2,i)^2+6*(si gmar(3,i))^2))^0.5; %求节点处的mises应力endmsigmar %mises应力for i=1:f %同上g=0;for j=1:mif elem(j,1)-d(i)==0g=g+1;sigmat(:,i)=sigmat(:,i)+sigma1(:,j);endif elem(j,2)-d(i)==0g=g+1;sigmat(:,i)=sigmat(:,i)+sigma2(:,j);endif elem(j,3)-d(i)==0g=g+1;sigmat(:,i)=sigmat(:,i)+sigma3(:,j);endif elem(j,4)-d(i)==0g=g+1;sigmat(:,i)=sigmat(:,i)+sigma4(:,j);endendsigmat(:,i)=sigmat(:,i)/g;msigmat(:,i)=(0.5*((sigmat(1,i)-sigmat(2,i))^2+sigmat(1,i)^2+sigmat(2,i)^2+6*(si gmat(3,i))^2))^0.5;endmsigmat四、计算结果:1.ANSYS软件计算结果计算结果分别罗列圆周方向的单元和半径方向的单元位移和应力。
有限元程序设计第七章 平面问题的有限单元法Q4
4 (1, +1)
3 (1, +1)
x x( ,)
y
y(
,
)
1 (x1, y1)
2 (x2, y2) x
1 (1, 1)
节点条件:
xi yi
x(i ,i ) y(i ,i )
2 (1, 1)
x
y
1 1
2 2
3 3
4 4
(1,1) (1, 1) (3,3) (1,1) (2,2 ) (1, 1) (4,4) (1,1)
3 (1, +1) (u3, v3)
N3
at node 1
1 4
(1 )(1
) 1
1
0
N3
at node 2
1 4
(1 )(1 ) 1
1
0
N3
at node 3
1 4
(1 )(1
) 1
1
1
N3
at node 4
1 4
(1 )(1 ) 1
1
0
Delta 性质
4
Ni N1 N2 N3 N4
i 1
1 4
[(1 )(1)
(1
)(1 )
(1
)(1 )
(1 )(1)]
1 4
[2(1 )
2(1 )]
1
2b
2a 1 (1, 1)
(u1, v1)
2 (1, 1) (u2, v2)
单位分解性
20
等参单元
应变矩阵
ε(x(,), y(,)) u(,) N(,)qe B(,)qe
x
Ni
x
Ni
y
x y
求导链式法则
有限元2-弹性力学平面问题(26四结点四边形等参元,27八结点曲线四边形等参元)
y y
2 6 3 b
称为雅可比(Jacabian)矩阵,而把它的行 列式 |J| 称为雅可比行列式。
有限单元法
土木工程学院
P-13/69
把式坐标变换公式(2-6-1)代入[J]得:
N i x i J N i x i N N i 1 y i N N i 1 y i N 2 N 2 N 3 N 3 x 1 N 4 x 2 N x 4 3 x 4 y 1 y 2 y 3 y 4
将(2-6-6)代入即可获得[B], [B]是ξ,η的函数。
有限单元法
土木工程学刚的一般表达式:
T
K t B D B dxdy
求出四结点四边形的单元刚度矩阵。 在按上述公式作积分运算时,必须把面积元dxdy 变换成dξdη,图a上的面积元abdc的面积等于矢量ab 与矢量ac的矢量积的模,即微元为
V NiVi
ijmp
引入边界条件,即可得位移函数:
U N iU i
ijmp
有限单元法
土木工程学院
P-7/69
写成矩阵形式:
N N U e e 1 0 4 0 f d N d 0N 0N V 1 4
对照2.4中的形函数表达式,便知:
x N x N x N x N x i i j j m m p p
自然同理可得:
y N y N y N y N y i i j j m m p p
有限元程序的过程
有限元程序设计的一些总结2012.11.051、program main因为我现在所看的有限元平面计算程序还未考虑施工过程,不需考虑分级加载的情况,所以相对来说主程序是比较简单的。
只需要控制整个程序的流程就可以了。
现在我所涉及到的主程序流程如下图所示:inputmmaaskfff solve stress xhs xhs1xhsoutput这样的话只需要熟悉各流程(子程序)的作用,就可以从宏观上把握最简单的有限元平面程序的框架。
在主程序中只需要调用各子程序就可以了。
2、subroutine inputInput子程序要实现的功能是将建立的有限元模型的基本信息输入到程序中去,以便进行信息处理。
因为我毕业设计做的就相当于一个有限元前处理过程,我对这个相对来说熟悉点。
一般平面应力应变问题,需要输入的信息包括:单元信息,节点信息,约束信息,材料信息,荷载信息(一般在fff子程序中输入)。
(1)单元信息:各个单元的编号、四个节点号(平面等参单元,注意编号顺序)、材料号。
(2)节点信息:节点号、节点x坐标、节点y坐标(平面问题)(3)约束信息:a.零位移约束。
一般1表示自由,0表示约束b.非零位移约束。
(我放在荷载信息中给出的,参看fff子程序)(4)材料信息:材料信息的输入与所采用的模型相关,如弹性模型、E-B模型等等(我理解的是考虑不同的本构关系)。
如果采用弹性模型,则一般输入信息为:材料号、容重、弹性模量、泊松比。
(5)荷载信息在fff 再谈。
注:真正input.txt 以什么样的格式编写,与各人的习惯有关,只需要把以上信息包含进去就可以了。
3、subroutine mma子程序mma 的作用是:对自由度编号、找出每行的半带宽、储存主元位置 因为整体刚度矩阵K 是一个高度稀疏、非零元素呈带状分布、对称的矩阵,在程序中是以一维变半带宽存储结构储存的。
什么叫一维变半带宽存储结构?首先,它是一维存储结构。
K 是一个nh*nh 的矩阵,将K 按一维储存就是用一个(nh*nh )*1的向量去逐行存储K 中的元素。
有限元程序分析与算例
有限元程序分析与算例有限元分析程序与算例平面四节点等参元分析程序一、源程序:! 程序节点4。
对于!implicitdoubleprecision(a-h,o-z)dimensiona(115000)integeria(115000)equivalence(ia,a)character*12ar,br;250格式(//“pleaseinputfilenameofdata=”)读(*,400)AR400格式(a12) open(15,file=ar,status='old')write(*,350)350格式(//“PleaseOutpFileNameOfData=”)读取(*,400)bropen(16,file=br,status='unknown')callcontrolnby=1n1=1n2=n1+np*2n3=n2+np*2n4=n3+np*3n5=n4+np*2*nbyn6=n5+np*nby*2n7=n6+4*nm*nbyn8=n7+2*nw*nbyn9=n8+npn10=n9+ndp n11=n10+6*ndp*nbynspace=115000-n11!c--n1=man2=jrn3=nrrn4=coorn5=rn6=ae!c--n7=wgn8=ivn9=ndpn10=dvn11=skwrite(16,800)nspace-1-有限元分析程序与算例800格式(40x,'nspace=',i8)callinput(ia(n1),ia(n2),a(n4),a(n5),a(n6),a(n7),ia(n3))打开(12,file='element',status='unknown',form='unformated')打开(7,file='load',status='unknown',form='unformated')打开(10,file='graph1',status='unknown')打开(11,file='graph2',status='unknown')打开(13,file='graph3',status='unknown')do10ie=1,necallsdtk4(ia(n1),ia(n2),a(n4),a(n6),a(n7))callasload(a(n5),8)10连续呼叫带(ia(n1))calloutput(ia(n2),a(n5),0)callasesk(a(n11),ia(n1))callstress(a(n6)、a(n5)、ia(n1)、a(n9))关闭(12,status='delete')写入(16700)700format(2x,'programhasbeenended')stopend!c************************************************************************************************子程序控制read(15,*)np,ne,nm,nr,nw,ni,nf,ndpwrite(16,600)np,ne,nm,nr,nw,ni,nf,ndp600格式('numberofnode..np='、i5、/&1x、'numberofelement..ne='、i5、/&1x、'numberofmaterial..nm='、i5、/&1x、'NumberOfConstant..nr='、i5、/&1x、'numberofwaterpresskind..nw='、i5、/&1x、'numberofconcen.)trateload,nf=',i5,/&1x,'PlaneStrestressorPlanestain,ni=',i5/&1x,'numberofknown-displacement……………………………ndp=',i5)returnend-2-有限元分析程序与算例!c**********************************************************************************************子程序输入(ma,jr,coor,r,ae,wg,nrr)!cimplicitdoubleprecision(a-h,o-z)do10i=1,npdo10j=1,210jr(j,i)=1write(16,500)do20i=1,nrread(15,*)nn,irnrr(1,i)=nnnrr(2,i)=ir(1)nrr(3,i)=ir(2)do15j=1,2jr(j,nn)=ir(j)15继续20write(16,600)((nrr(i,j),i=1,3),j=i,i)n=0do30i=1,npdo30j=1,2if(jr(j,i))30,30,2525n=n+1jr(j,i)=n30继续do40i=1,nma(i)=040继续do70i=1,np读(15,*)nn,xyif(nn.ne.i)goto60do45j=1,245coor(j,nn)=xy(j)goto7060write(16,750)nn,i!cstop33370continue-3-有限元分析程序与算例写(16800)(nn,(jr(i,nn),i=1,2),(coor(j,nn),j=1,2),nn=1,np)读(15,*)((ae(i,j),i=1,4),j=1,nm)write(16,910)(j,(ae(i,j),i=1,4),j=1,nm)if(ni.eq.0)goto75do73j=1,nmae(2,j)=ae(2,j)/(1.+ae(2,j))ae(1,j)=ae(1,j)*(1.-ae(2,j)*ae(2,j))73continue75continueif(nw.eq.0)goto80读(15,*)((wg(i,j),i=1,2),j=1,nw)写(16960)(j,(wg(i,j),i=1,2),j=1,nw)80do85i=1,nr(i)=0.085continueif(nf.eq.0)goto200write(16,980)do100i=1,nfread(15,*)nn,xywrite(16,990)nn,xydo95j=1,2l=jr(j,nn)如果(l.eq.0)转到95r(l)=r(l)+xy(j)95continue100继续200continue500格式(/25x,'nodalinformation'/10x,'constrined&messagenodeno.state'/)600格式(6x,8(i5,2x,2i1))750format(1x,'***fatalerror***',/,'cards',&'input',i5,'isnotequalto',i5)800格式(1x,'nodeno',2x,'x-freedom',2x&'y-freedom',2x,'x-coordinat',2x,'y-coordinat',&/(1x,i5,2i10,4x,2f14.4))910格式(/20x,'materialproperties',/2x&'n.m.',5x,'youngsmodulus',5x,'poisionratio',&4x,'unitweightwidth'/(1x,i5,4e16. 4))960格式(/5x,'parameteresofwaterand'、'parameteresofwaterand'、'siltpressure'/2x,'np',2x,'zero-pressure'、'surface',8x,'unitweight'/(1x,i5,2f15.5))980格式(/20x,'concentradedforces'/1x&-4-有限元分析程序及实例'nodeno.',8x,'x-direction',8x,'y-direction'/)990format(1x,i5,2f20.6)returnend!c***************************************************************************************************子程序频带(ma)!c$large:ma!cimplicitdoubleprecision(a-h,o-z)dimensionma(*)如果(ma(i)。
平面四边形四节点等参单元Fortran源程序复习过程
平面四边形四节点等参单元F o r t r a n源程序C ************************************************C * FINITE ELEMENT PROGRAM *C * FOR Two DIMENSIONAL ELASticity PROBLEM *C * WITH 4 NODE *C ************************************************PROGRAM ELASTICITYcharacter*32 dat,cchDIMENSION SK(80000),COOR(2,300),AE(4,11),MEL(5,200),& WG(4),JR(2,300),MA(600),R(600),iew(30),STRE(3,200)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)WRITE(*,*)'PLEASE ENTER INPUT FILE NAME'READ(*,'(A)')DATOPEN(4,FILE=dat,STATUS='OLD')OPEN(7,FILE='OUT',STATUS='UNKNOWN')READ(4,*)NP,NE,NM,NRWRITE(7,'(A,I6)')'NUMBER OF NODE---------------------NP=',npWRITE(7,'(A,I6)')'NUMBER OF ELEMENT------------------NE=',ne WRITE(7,'(A,I6)')'NUMBER OF MATERIAL-----------------NM=',nm WRITE(7,'(A,I6)')'NUMBER OF surporting---------------NC=',Nr CALL INPUT (JR,COOR,AE,MEL)CALL CBAND (MA,JR,MEL)DO I=1,NHSK(I)=0.0enddoCALL SK0(SK,MEL,COOR,JR,MA,AE)do I=1,NR(I)=0.0enddopause 'aaa'stopREAD(4,*)NCP,NBE,izWRITE(*,'(5i8)')NCP,NBE,izWRITE(7,'(5i8)')NCP,NBE,izIF(NCP.GT.0)CALL CONCR(NCP,R,JR)IF(NBE.GT.0) CALL BODYR(NBE,R,MEL,COOR,JR,AE)IF(iz.GT.0)thendo jj=1,izREAD (4,*)Js,nse,(WG(I),I=1,4)read(4,*)(iew(m),m=1,nse)CALL FACER(iew,NSE,R,MEL,COOR,JR,WG)enddoendifCALL DECOP (SK,MA)CALL FOBA (SK,MA,R)CALL OUTDISP(NP,R,JR)CALL STRESS (COOR,MEL,JR,AE,R,STRE)WRITE(7,'(A)')' PROGRAM SAFF HAS BEEN ENDED'WRITE(*,'(A)')' PROGRAM SAFF HAS BEEN ENDED'STOPc RETURNENDC *********************************************SUBROUTINE INPUT (JR,COOR,AE,MEL)DIMENSION JR(2,*),COOR(2,*),AE(4,*),MEL(5,*)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHDO 70 I=1,NPREAD(4,*) IP,X,YCOOR(1,IP)=XCOOR(2,IP)=Y70 CONTINUEDO 11 J=1,NEREAD(4,*)NEE,NME,(MEL(I,NEE),I=1,4)MEL(5,NEE)=NME11 CONTINUEDO 10 I=1,NPDO 10 J=1,210 JR(J,I)=1DO 20 I=1,NRREAD(4,*) IP,IX,IYJR(1,IP)=IXJR(2,IP)=IY20 CONTINUEN=0DO 30 I=1,NPDO 30 J=1,2IF (JR(J,I)) 30,30,2525 N=N+1JR(J,I)=N30 CONTINUEDO 55 J=1,NMREAD (4,*)JJ,(AE(I,JJ),I=1,4)WRITE(*,910) JJ,(AE(I,JJ),I=1,4)55 CONTINUE910 FORMAT (/20X,'MATERIAL PROPERTIES'/(3X,I5,4(1x,E8.3))) RETURNENDC **********************************************SUBROUTINE CBAND (MA,JR,MEL)DIMENSION MA(*),JR(2,*),MEL(5,*),NN(8)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHDO 65 I=1,N65 MA(I)=0DO 90 IE=1,NEDO 75 K=1,4IEK=MEL(K,IE)DO 95 M=1,2JJ=2*(K-1)+MNN(JJ)=JR(M,IEK)95 CONTINUE75 CONTINUEL=NDO 80 I=1,2*4NNI=NN(I)IF(NNI.EQ.0) GO TO 80IF(NNI.LT.L) L=NNI80 CONTINUEDO 85 M=1,2*4JP=NN(M)IF(JP.EQ.0) GO TO 85JPL=JP-L+1IF(JPL.GT.MA(JP)) MA(JP)=JPL85 CONTINUE90 CONTINUEMX=0MA(1)=1DO 10 I=2,NIF(MA(I).GT.MX) MX=MA(I)MA(I)=MA(I)+MA(I-1)10 CONTINUENH=MA(N)WRITE(7,'(A,I8)')'TOTAL DEGREES OF FREEDOM-----------N= ',N WRITE(7,'(A,I8)')'MAX-SEMI-BANDWIDTH-----------------MX=',MX WRITE(7,'(A,I8)')'TOTAL-STORAGE----------------------NH=',NH500 FORMAT (/5X,'FREEDOM N='*,I5,3X,'SEMI-BANDWI. MX=',I5,3X,* 'STORAGE NH=',I7)RETURNENDC **********************************************SUBROUTINE SK0(SK,MEL,COOR,JR,MA,AE)DIMENSION SK(*),MEL(5,*),COOR(2,*),JR(2,*),MA(*), * AE(4,*),XYZ(2,4),iven(4)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN4/ NEE,NMECOMMON /GAUSS/ RSTG(3),H(3)H(1)=0.5555555555555560H(2)=0.8888888888888890H(3)=H(1)RSTG(1)=-0.7745966692414830RSTG(2)=0.00RSTG(3)=-RSTG(1)DO 10 IE=1,NENEE=IENME=MEL(5,IE)DO 75 K=1,4IEK=MEL(K,IE)iven(k)=IEKDO 95 M=1,2JJ=2*(K-1)+MNN(JJ)=JR(M,IEK)95 XYZ(M,K)=COOR(M,IEK)75 CONTINUECALL STIF(XYZ,AE,iven)DO 60 I=1,8DO 60 J=1,8II=NN(I)JJ=NN(J)IF ((JJ.EQ.0).OR.(II.LT.JJ)) GO TO 60JN=MA(II)-(II-JJ)SK(JN)=SK(JN)+SKE(I,J)60 CONTINUE70 CONTINUEwrite(7,1111) ((ske(i,j),j=1,8),i=1,8)1111 format(2x,8f12.2)10 CONTINUERETURNENDC *********************************************SUBROUTINE STIF(XYZ,AE,iven)DIMENSION AE(4,*),DNX(2,4),XYZ(2,*),iven(*),* RJAC(2,2)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN4/ NEE,NMECOMMON /GAUSS/ RSTG(3),H(3)DO 40 I=1,8RF(I)=0.00DO 30 J=1,8SKE(I,J)=0.0030 CONTINUE40 CONTINUEE=AE(1,NME)U=AE(2,NME)GAMA=AE(3,NME)D1=E*(1.00-U)/((1.00+U)*(1.00-2.00*U))D2=E*U/((1.00+U)*(1.00-2.00*U))D3=E*0.50/(1.00+U)DO 120 I=1,4II=2*(I-1)I1=II+1I2=II+2DO 115 J=1,4JJ=2*(J-1)J1=JJ+1J2=JJ+2DXX=0DXY=0DYX=0DYY=0DO 99 IS=1,3S=RSTG(IS)SH=H(IS)DO 98 IR=1,3R=RSTG(IR)RH=H(IR)CALL FDNX (XYZ,DNX,DET,R,S,RJAC,iven,NEE) DNIX=DNX(1,I)DNIY=DNX(2,I)DNJX=DNX(1,J)DNJY=DNX(2,J)DXX=DXX+DNIX*DNJX*DET*RH*SHDXY=DXY+DNIX*DNJY*DET*RH*SHDYX=DYX+DNIY*DNJX*DET*RH*SHDYY=DYY+DNIY*DNJY*DET*RH*SH98 CONTINUE99 CONTINUESKE(I1,J1)=DXX*D1+DYY*D3SKE(I2,J2)=DYY*D1+DXX*D3SKE(I1,J2)=DXY*D2+DYX*D3SKE(I2,J1)=DYX*D2+DXY*D3115 CONTINUE120 CONTINUERETURNENDC ********************************************* SUBROUTINE CONCR(NCP,R,JR)DIMENSION R(*),JR(2,*),XYZ(2)DO 100 I=1,NCPREAD (4,*) IP,PX,PYXYZ(1)=PXXYZ(2)=PYDO 95 J=1,2L=JR(J,IP)IF(L.EQ.0) GO TO 95R(L)=R(L)+XYZ(J)95 CONTINUE100 CONTINUERETURNENDC ********************************************** SUBROUTINE BODYR(NBE,R,MEL,COOR,JR,AE) DIMENSION R(*),MEL(5,*),COOR(2,*),JR(2,*),& AE(4,*),XYZ(2,4),iven(4)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)COMMON /GAUSS/ RSTG(3),H(3)H(1)=1.0H(2)=1.0RSTG(1)=-0.5773502691896260RSTG(2)=-RSTG(1)DO 10 IE=1,NBEDO I=1,8RF(I)=0.00ENDDOc READ(4,*)NEENEE=ieNME=MEL(5,NEE)GAMA=AE(3,NME)DO 75 K=1,4IEK=MEL(K,NEE)iven(k)=iekDO 95 M=1,2JJ=2*(K-1)+MNN(JJ)=JR(M,IEK)95 XYZ(M,K)=COOR(M,IEK)75 CONTINUEDO 99 IS=1,2S=RSTG(IS)SH=H(IS)DO 98 IR=1,2RR=RSTG(IR)RH=H(IR)CALL FUN8 (XYZ,RR,S,DET)DO 30 I=1,4J=2*IRF(J)=RF(J)-FUN(I)*RH*SH*DET*GAMA30 CONTINUE98 CONTINUE99 CONTINUECALL ASLOAD (R)10 CONTINUERETURNENDC *********************************************SUBROUTINE FACER(iew,NSE,R,MEL,COOR,JR,WG) DIMENSION R(*),MEL(5,*),COOR(2,*),JR(2,*),wg(*) * ,XYZ(2,4),iew(*),PR(2)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN4/ NEE,NMECOMMON /GAUSS/ RSTG(3),H(3)H(1)=1.0H(2)=1.0RSTG(1)=-0.5773502691896260RSTG(2)=-RSTG(1)nwf=0nnf=0ir=wg(1)+0.1if(ir.eq.1)nwf=1if(ir.eq.2)nnf=1DO 510 IE=1,NSEDO I=1,8RF(I)=0.00ENDDOnee=iew(ie)DO 575 K=1,4IEK=MEL(K,NEE)DO 595 M=1,2JJ=2*(K-1)+MNN(JJ)=JR(M,IEK)595 XYZ(M,K)=COOR(M,IEK)575 CONTINUEIF(NWF.EQ.1) thenGAMA=WG(2)Z0=WG(3)NSU=WG(4)+0.1CALL SURLOD (NSU,XYZ,PR,Z0,GAMA,1)endifIF(NNF.EQ.1) thenq=WG(2)NSU=WG(4)+0.1do j=1,2PR(J)=qenddoCALL SURLOD (NSU,XYZ,PR,Z0,GAMA,2)endifCALL ASLOAD (R)510 CONTINUERETURNENDC *********************************************SUBROUTINE SURLOD (NSU,XYZ,PR,Z0,GAMA,NSI)DIMENSION XYZ(2,*),RST(3),PR(2),KCRD(4),KFACE(2,4), & FVAL(4),NODES(2),FACT(4)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN2/ N,MX,NHCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN4/ NEE,NMECOMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)COMMON /GAUSS/ RSTG(3),H(3)DATA KCRD/1,1,2,2/DATA KFACE/1, 4,* 2, 3,* 1, 2,* 4, 3/DATA FVAL/-1.00,1.00,-1.00,1.00/FACT(1)=1.0FACT(2)=-1.0FACT(3)=-1.0FACT(4)=1.0FACTNUS=FACT(NSU)DO I=1,2J=KFACE(I,NSU)NODES(I)=JENDDOIF (NSI.EQ.1) THENDO I=1,2J=NODES(I)Z=Z0-XYZ(2,J)PR(I)=0.00IF (Z.GT.0.00) PR(I)=Z*GAMAENDDOENDIFML=KCRD(NSU)IF(ML.EQ.1)MM=2IF(ML.EQ.2)MM=1RST(ML)=FVAL(NSU)DO 70 LX=1,2RST(MM)=RSTG(LX)CALL FUN8 (XYZ,RST(1),RST(2),DET) PXYZ=0.00DO 25 I=1,2J=NODES(I)PXYZ=PXYZ+FUN(J)*PR(I)25 CONTINUEA1=XJAC(MM,2)A2=-XJAC(MM,1)30 DO 60 I=1,2J=NODES(I)K2=2*JK1=K2-1Q=PXYZ*FUN(J)*H(LX)*FACTNUSRF(K1)=RF(K1)+Q*A1RF(K2)=RF(K2)+Q*A260 CONTINUE70 CONTINUEENDC ********************************************* SUBROUTINE ASLOAD (R)DIMENSION R(*)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)DO 20 I=1,8L=NN(I)IF (L.EQ.0) GO TO 20R(L)=R(L)+RF(I)20 CONTINUERETURNENDC *********************************************** SUBROUTINE DECOP (SK,MA)DIMENSION SK(*),MA(*)COMMON /CMN2/ N,MX,NHDO 50 I=2,NL=I-MA(I)+MA(I-1)+1K=I-1L1=L+1IF (L1.GT.K) GO TO 30DO 20 J=L1,KIJ=MA(I)-I+JM=J-MA(J)+MA(J-1)+1IF (L.GT.M) M=LMP=J-1IF (M.GT.MP) GO TO 20DO 10 LP=M,MPIP=MA(I)-I+LPJP=MA(J)-J+LPSK(IJ)=SK(IJ)-SK(IP)*SK(JP)10 CONTINUE20 CONTINUE30 IF (L.GT.K) GO TO 50DO 40 LP=L,KIP=MA(I)-I+LPLPP=MA(LP)SK(IP)=SK(IP)/SK(LPP)II=MA(I)SK(II)=SK(II)-SK(IP)*SK(IP)*SK(LPP)40 CONTINUE50 CONTINUEENDC *************************************************************SUBROUTINE FOBA (SK,MA,R)DIMENSION SK(*),MA(*),R(*)COMMON /CMN2/ N,MX,NHDO 10 I=2,NL=I-MA(I)+MA(I-1)+1K=I-1IF (L.GT.K) GO TO 10DO 5 LP=L,KIP=MA(I)-I+LPR(I)=R(I)-SK(IP)*R(LP)5 CONTINUE10 CONTINUEDO 20 I=1,NII=MA(I)45 R(I)=R(I)/SK(II)20 CONTINUEDO 30 J1=2,NI=2+N-J1L=I-MA(I)+MA(I-1)+1K=I-1IF (L.GT.K) GO TO 30DO 25 J=L,KIJ=MA(I)-I+J55 R(J)=R(J)-SK(IJ)*R(I)25 CONTINUE30 CONTINUERETURNENDC ***************************************************************** SUBROUTINE STRESS(COOR,MEL,JR,AE,R,STRE)DIMENSION XYZ(2,4),DNX(2,4),AE(4,*),STRE(3,*),& COOR(2,*),MEL(5,*),JR(2,*),RJAC(2,2),SIG(3),& B(3,8),R(*),iven(4)COMMON /CMN1/ NP,NE,NM,NRCOMMON /CMN3/ RF(8),SKE(8,8),NN(8)COMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)DO 106 IE=1,NENME=MEL(5,IE)DO 300 K=1,4IEK=MEL(K,IE)DO 310 M=1,2310 XYZ(M,K)=COOR(M,IEK)DO 320 M=1,2JRR=2*(K-1)+M320 NN(JRR)=JR(M,IEK)300 CONTINUEE=AE(1,NME)U=AE(2,NME)D1=E*(1.00-U)/((1.00+U)*(1.00-2.00*U))D2=E*U/((1.00+U)*(1.00-2.00*U))D3=0.50*E/(1.00+U)SS=0.0RR=0.0CALL FDNX (XYZ,DNX,DET,RR,SS,RJAC,iven,IE) DO 30 I=1,4II=2*(I-1)J1=II+1J2=II+2BI=DNX(1,I)CI=DNX(2,I)B(1,J1)=BIB(2,J1)=0.B(3,J1)=CIB(1,J2)=0.B(2,J2)=CIB(3,J2)=BI30 CONTINUEDO 55 II=1,3SIG(II)=0.0055 CONTINUEDO 70 K=1,8NA=NN(K)IF (NA.EQ.0) GO TO 70DO 60 L=1,3SIG(L)=SIG(L)+B(L,K)*R(NA)60 CONTINUE70 CONTINUESX=D1*SIG(1)+D2*SIG(2)SY=D2*SIG(1)+D1*SIG(2)SXY=D3*SIG(3)STRE(1,IE)=SXSTRE(2,IE)=SYSTRE(3,IE)=SXY106 CONTINUECALL OUTSTRE(NE,STRE)RETURNENDC *********************************************SUBROUTINE FDNX (XYZ,DNX,DET,R,S,RJAC,iven,NEE) DIMENSION XYZ(2,*),DNX(2,*),RJAC(2,2),iven(*)COMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)CALL FUN8 (XYZ,R,S,DET)IF (DET.LT.1.0E-5)THENWRITE(7,600) NEE,R,S,detWRITE(7,*) (iven(m),m=1,4)STOPENDIFREC=1.00/DETRJAC(1,1)=REC*XJAC(2,2)RJAC(2,2)=REC*XJAC(1,1)RJAC(2,1)=-REC*XJAC(2,1)RJAC(1,2)=-REC*XJAC(1,2)DO 30 K=1,4DO 20 I=1,2DNX(I,K)=0.DO 25 M=1,2DNX(I,K)=DNX(I,K)+RJAC(I,M)*PN(M,K)25 CONTINUE20 CONTINUE30 CONTINUE600 FORMAT (1X,'ERR0R*** NEGTIVE OR ZERO '* 'JACOBIAN DETERMINANT FOR '* 'ELEMENT'/'ELE.=',I5,' R=',F10.5,6X,'S=',F10.5,* 'det=',f12.5)RETURNENDC *********************************************SUBROUTINE FUN8 (XYZ,R,S,DET)DIMENSION XYZ(2,*),XI(4),ETA(4)COMMON /CMN5/ FUN(4),PN(2,4),XJAC(2,2)DATA XI/-1.0,1.0,1.0,-1.0/DATA ETA/-1.0,-1.0,1.0,1.0/DO 10 I=1,4G1=(1.0+XI(I)*R)G2=(1.0+ETA(I)*S)FUN(I)=0.25*G1*G2PN(1,I)=0.25*XI(I)*G2PN(2,I)=0.25*ETA(I)*G110 CONTINUEDO 80 I=1,2DO 75 J=1,2DET=0.00DO 70 K=1,4DET=DET+PN(I,K)*XYZ(J,K)70 CONTINUEXJAC(I,J)=DET75 CONTINUE80 CONTINUEDET=XJAC(1,1)*XJAC(2,2)* -XJAC(2,1)*XJAC(1,2)RETURNENDC ********************************************** SUBROUTINE OUTDISP(NP,R,JR)DIMENSION R(*),JR(2,*),U(2)WRITE(*,650)WRITE(7,650)DO I=1,NPDO M=1,2L=JR(M,I)IF(L.EQ.0)U(M)=0.0IF(L.GT.0)U(M)=R(L)ENDDOWRITE(*,'(5X,I5,10X,2E14.3)') I,UWRITE(7,'(5X,I5,10X,2E14.3)') I,UENDDO650 FORMAT(/25X,'NODAL DISPLACEMENTS'/8X, * 'NODE',13X,'X-COMP.',8X,'Y-COMP.')RETURNENDC ********************************************** SUBROUTINE OUTSTRE(NE,STRE)DIMENSION STRE(3,*),ST(6)WRITE(*,700)WRITE(7,700)DO IE=1,NESX=STRE(1,IE)SY=STRE(2,IE)SXY=STRE(3,IE)ST(1)=SXST(2)=SYST(3)=SXYH1=SX+SYH2=SQRT((SX-SY)*(SX-SY)+4.0*SXY*SXY)ST(4)=(H1+H2)/2.0ST(5)=(H1-H2)/2.0IF(ABS(SXY).LT.1.0E-4)THENIF (SX.GT.SY) ST(6)=0.0IF (SX.LE.SY) ST(6)=90.0ELSEST(6)=ATAN((ST(4)-SX)/SXY)*57.29578ENDIFWRITE(*,'(6X,I4,3X,6F11.3)') IE,STWRITE(7,'(6X,I4,3X,6F11.3)') IE,STENDDO700 FORMAT(/30X,'ELEMENT STRESSES'/5X,*'ELEMENT',5X,'X-STRESS',3X,'Y-STRESS',*2X,'XY-STRESS',1X,'MAX-STRESS',1X,*'MIN-STRESS',4X,'ANGLE'/)RETURNENDC *********************************************。
平面有限元分析-等参单元
等参元变换的条件为 J ≠ 0 ,因此在有限元网格划分时,要 特别注意这一点。
等参单元等效节点力(4节点)
(1)集中力引起的单元节点载荷
单元内某点受到集中载荷P=[Px Py]T,移置到单元节 点上的等效节点力为:
j
同理 得
dη = ∂x dηi + ∂y dη j
∂η
∂η
∂x dξ
dA =
dξ × dη
=
∂ξ
∂x
dη
∂µ
∂y dξ ∂x
∂ξ
∂y
dη
=
∂ξ
∂x
∂η ∂µ
∂y
∂ξ
∂y
dξdη
∂η
等参单元刚度(4节点)
因为
∂x ∂y
J
=
∂ξ
∂x
∂ξ
∂y
∂η ∂η
雅可比行列式 Jacobi
曲边面积元dA:
dA = J dξdη
8 平面问题有限元分析 等参单元
8.1等参曹单国元华刚度(4节点) 8.2等参单元等效节点力(4节点) 8.3矩形单元(8节点) 8.4等参单元(8节点) 8.5高斯积分法
等参单元刚度(4节点)
4
4
=u ∑= Ni (ξ ,η )ui ,v ∑ Ni (ξ ,η )vi
=i 1 =i 1
4
4
=x ∑= Ni (ξ ,η ) xi , y ∑ Ni (ξ ,η ) yi
i =1
4
y = ∑ Ni (ξ ,η ) yi
i =1
有限元导论-第六章 等参数单元
14.
% 平面应力的弹性常数
15.
A1 = mu ;
16.
A2 = (1-mu)/2 ;
17.
A3 = E/(1-mu^2) ;
18.
% 平面应变的弹性常数
19.
%A1 = mu/(1-mu) ;
20.
%A2 = (1-2*mu)/2/(1-mu) ;
21.
%A3 = E*(1-mu)/(1+mu)/(1-2*mu) ;
1、四节点单元
在平面问题中,我们曾经介 绍了两种最简单的单元,三角形 单元和矩形单元。所采用的是线 性和双线性的位移模式,他们是 对实际位移分布的最低级逼近, 精度有限。矩形单元难以应用于 非规则边界和构造梯度网格以获 取关键区域的细节。这节介绍的 平面等参元是直边或曲边的任意 四边形,可以适应不规则的边界 和构造梯度网格,并具有较高的 精度。
28.
% 2 x 2 高斯积分点和权系数
29.
x = [-0.577350269189626, 0.577350269189626] ;
30.
w = [1, 1] ;
31.
for i=1:1:length(x)
32.
for j=1:1:length(x)
33.
B = MatrixB( ie, x(i), x(j) ) ;
权系数 2
1
5 9 0.555555555555555
0.6 0.774596669241483
3
5
0
8 9 0.888888888888888
二阶的高斯积分法
1111f(,)dd11im 1Wif(i,)djn1Wj im 1Wif(i,j)
有限元教学程序及使用说明
附录有限元教学程序及使用说明§A-1平面三角形3结点有限元程序1、程序名:FEM3.FOR,FEM3.EXE2、程序功能本程序能计算弹性力学的平面应力问题和平面应变问题;能考虑自重和结点集中力两种荷载的作用,在计算自重时y轴取垂直向上为正;能处理非零已知位移,如支座沉降的作用。
主要输出的内容包括:结点位移、单元应力、主应力、第一主应力与x轴的夹角以及约束结点的支座反力。
程序采用Visual Fortran 编制而成,输入数据全部采用自由格式。
3、程序流程及框图图A-1 程序流程图277278图A-2 程序框图其中,各子程序的功能如下:INPUT ——输入结点坐标、单元信息和材料参数; MR ——形成结点自由度序号矩阵;FORMMA ——形成指标矩阵MA (N )并调用其他功能子程序,相当于主控程序; DIV ——取出单元的3个结点号码和该单元的材料号并计算单元的b i ,c i 等; MGK ——形成整体劲度矩阵并按一维存放在SK (NH )中; LOAD ——形成整体结点荷载列阵F ; OUTPUT ——输出结点位移或结点荷载;TREAT ——由于有非零已知位移,对K 和F 进行处理; DECOMP ——整体劲度矩阵的分解运算; FOBA ——前代、回代求出未知结点位移 ; ERFAC ——计算约束结点的支座反力; KRS ——计算单元劲度矩阵中的子块K rs 。
4、程序使用说明当程序开始运行时,按屏幕提示,键入数据文件的名字。
在运行程序之前,必须根据程序中输入要求建立一个存放原始数据的文件,这个文件的名字由少于8个字符或数字组成。
数据文件包括如下内容: ⑴ 总控信息,共一条,9个数据NP ,NE ,NM ,NR ,NI ,NL ,NG ,ND ,NC NP ——结点总数; NE ——单元总数;NM ——材料类型总数;279NR ——约束结点总数;NI ——问题类型标识,0为平面应力问题,1为平面应变问题; NL ——受荷载作用的结点的数目;NG ——考虑自重作用为1,不计自重为0; ND ——非零已知位移结点的数目;NC ——要计算支座约束反力的结点数目。
平面四节点等参单元分析程序
\变分原理与有限元大作业平面四节点等参单元分析程序.姓名:潘清学号:SQ完成时间:2011-4-26:一、概述通常情况下的有限元分析过程是运用可视化分析软件(如ANSYS、ABAQUS、SAP等)进行前处理和后处理,而中间的计算部分一般采用自己编制的程序来运算。
具有较强数值计算和处理能力的Fortran语言是传统有限元计算的首选语言。
随着有限元技术的逐步成熟,它被应用在越来越复杂的问题处理中,但在实际应用中也暴露出一些问题。
有时网格离散化的区域较大,而又限于研究精度的要求,使得划分的网格数目极其庞大,结点数可多达数万个,从而造成计算中要运算的数据量巨大,程序运行的时间较长的弊端,这就延长了问题解决的时间,使得求解效率降低。
因为运行周期长,不利于程序的调试,特别是对于要计算多种运行工况时的情况;同时大数据量处理对计算机的内存和CPU 提出了更高的要求,而在实际应用中,单靠计算机硬件水平的提高来解决问题的能力是有限的。
因此,必须寻找新的编程语言。
随着有限元前后处理的不断发展和完善,以及大型工程分析软件对有限元接口的要求,有限元分析程序不应只满足解题功能,它还应满足软件工程所要求的结构化程序设计条件,能够对存储进行动态分配,以充分利用计算机资源,它还应很容易地与其它软件如CAD 的实体造型,优化设计等接口。
现在可编写工程应用软件的计算机语言较多,其中C语言是一个较为优秀的语言,很容易满足现在有限元分析程序编程的要求。
C语言最初是为操作系统、编译器以及文字处理等编程而发明的。
随着不断完善,它已应用到其它领域,包括工程应用软件的编程。
近年来,C语言已经成为计算机领域最普及的一个编程语言,几乎世界上所有的计算机都装有C的编译器,从PC机到巨型机到超巨型的并行机,C与所有的硬件和操作系统联系在一起。
用C 编写的程序,可移植性极好,几乎不用作多少修改,就可在任何一台装有ANSI、C编译器的计算机上运行。
C既是高级语言,也是低级语言,也就是说,可用它作数值计算,也可用它对计算机存储进行操作。
第5章 平面问题有限元分析-等参单元
2020/6/30
平面问题有限元分析-等参单元
2
5.1四节点矩形单元位移函数
如图所示的矩形单元,不失一般性,令矩形单元的长、
宽分别为2a、2b。矩形单元有4个节点,共8个自由度,即 共有8个节点位移,采用类似三角形单元的分析方法,同样 可以完成对矩形单元的力学特性分析。
y
4 3
2b
o
1
2a
2
o
x
2020/6/30
14
5.2四节点矩形单元应变与应力矩阵
由前面的讨论可以发现,四边形单元的位移模式比常
应变三角形单元所采用的线性位移模式增添了项(即相
当于xy项),把这种位移模式称为双线性模式。在这种模 式 下 , 单 元 内 的 应 变 分 量 将 不 再 是 常 量 , 这 一 点 可 以 从Be 的表达式中看出。另外四边形单元的位移模式中的1 ~ 7 与 三角形单元相同,它反映了刚体位移和常应变,而且在单
求出α1, α2, α3, α4;α 5, α 6 , α7 , α8
u1 1 1 1
u2 1 1 1
u3 1 1 1
1
u4 1
1 1 1 1
1 1
1 1 1 1
11 1 1
1 1 1 1
1 1 1 1 1 u1
23 4
1 4
1
1
1
1 1 1
1 1 1
1
1 1
uu23 u4
5 1 1 1 1 v1
K
e rs
4ab
Et 1
2
K1
K3
K2
K4
式中:
K1
b2rs
1
rs
3
1
有限元:第三章 平面问题高阶单元
l
P
Vy
(3-59)
(3-55)为
PS i H m N i Sx h P
(a)在四节点成立,有
u1 u2 u3 u4
1 u1 u 2 u 3 u 4 4 1 2 3 4 1 2 u 2 u 3 u1 u 4 1 2 3 4 4 解出: 1 2 3 4 1 3 u 3 u 4 u1 u 2 4 1 2 3 4 1 4 u1 u 3 u 2 u 4 4
(沿逆时针方向为边界正向)
1 .对 2-3 边, 1, d 0
1 P P PS i = Sx 1 N i Sx h PSy i PSy
0
x y d
3 .对 3-4 边
1 , d 0
x y d
n
2 2
PS i
1 PSx PSx N i h 1 PSy i PSy
6. Gauss 数值积分 一维 Gauss 积分公式
(3-49)
式中
N i , i 1 i 4 , N i , i 1 i 4 N N i, x 1 i , J N i, y N i ,
(3-50)
因此得
(3-51)
4. 将(3-43)代入物理方程,得
例: 常应变元是等参元。 二、形函数的性质 1. 形函数 N i , 在节点处具有 0,1 性质 (3-41) : N i j , j
有限元程序的过程
有限元程序设计的一些总结2012.11.051、program main因为我现在所看的有限元平面计算程序还未考虑施工过程,不需考虑分级加载的情况,所以相对来说主程序是比较简单的。
只需要控制整个程序的流程就可以了。
现在我所涉及到的主程序流程如下图所示:inputmmaaskfff solve stress xhs xhs1xhsoutput这样的话只需要熟悉各流程(子程序)的作用,就可以从宏观上把握最简单的有限元平面程序的框架。
在主程序中只需要调用各子程序就可以了。
2、subroutine inputInput子程序要实现的功能是将建立的有限元模型的基本信息输入到程序中去,以便进行信息处理。
因为我毕业设计做的就相当于一个有限元前处理过程,我对这个相对来说熟悉点。
一般平面应力应变问题,需要输入的信息包括:单元信息,节点信息,约束信息,材料信息,荷载信息(一般在fff子程序中输入)。
(1)单元信息:各个单元的编号、四个节点号(平面等参单元,注意编号顺序)、材料号。
(2)节点信息:节点号、节点x坐标、节点y坐标(平面问题)(3)约束信息:a.零位移约束。
一般1表示自由,0表示约束b.非零位移约束。
(我放在荷载信息中给出的,参看fff子程序)(4)材料信息:材料信息的输入与所采用的模型相关,如弹性模型、E-B模型等等(我理解的是考虑不同的本构关系)。
如果采用弹性模型,则一般输入信息为:材料号、容重、弹性模量、泊松比。
(5)荷载信息在fff 再谈。
注:真正input.txt 以什么样的格式编写,与各人的习惯有关,只需要把以上信息包含进去就可以了。
3、subroutine mma子程序mma 的作用是:对自由度编号、找出每行的半带宽、储存主元位置 因为整体刚度矩阵K 是一个高度稀疏、非零元素呈带状分布、对称的矩阵,在程序中是以一维变半带宽存储结构储存的。
什么叫一维变半带宽存储结构?首先,它是一维存储结构。
K 是一个nh*nh 的矩阵,将K 按一维储存就是用一个(nh*nh )*1的向量去逐行存储K 中的元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
//控制信息读入
fscanf(fp1,"%d",&np);
fscanf(fp1,"%d",&ne);
fscanf(fp1,"%d",&nr1);
fscanf(fp1,"%d",&nr2);
fscanf(fp1,"%d",&nd);
exit(1);
}
fprintf(fp2,"位移为:\n"); //输出位移
for(i=0;i<n;i+=2)
fprintf(fp2,"u%d=%f v%d=%f\n",i/2+1,p[i],i/2+1,p[i+1]);
fprintf(fp2,"\n各单元应力:Sx,\tSy,\tSxy,\tS1,\tS2,\tSmises\n"); //输出单元应力
float *x,*y,*p,**pp,u1,u2; //x,y,me,nrr,p为输入信息
float coords[2][4],det,fun[4],pn[2][4],xjac[2][2],rjac[2][2],dnx[2][4]; //求单刚定义的变量
int *LD,**me,*nrr,*nu,*IS,nn; //nn为变带宽一维组中元素个数
void output() //结果输出函数
{ int i,j;
FILE *fp2;
fp2=fopen("output.dat","w"); //运算结果放在output.dat中
if(fp2==NULL)
{
printf("cann't open the file !\n");
}
}
for(i=0;i<nr1;i++) //读入固定位移约束条件
{
fscanf(fp1,"%d",&nrr[i]);//x方向约束的节点号
nrr[i]=(nrr[i]-1)*2; //转化为自由度序号,abaqus模型节点编号从1开始,C语言中从0开始
}
//ns存放各节点的应力
void input() //输入函数定义
{
int i,j;
FILE *fp1;
fp1=fopen("input.dat","r"); //要输入的内容放在input.dat中
if(fp1==NULL)
{
printf("cann't open the file !\n");
}
void tecplot() //结果生成tecplot文件
{ int i,j;
float bl=1.0; //位移显示比例
FILE *fp3;
fp3=fopen("tecplot.plt","w"); //运算结果放在tecplot.plt中
if(fp3==NULL)
{
a[i][j]=0;
}
}
return a;
}
float *float_one_array_malloc(int n) //实型一维动态数组分配
{
float *a;
int j;
a=(float *)malloc(n*sizeof(float));
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<iomanip.h>
#include<iostream.h>
float **float_two_array_malloc(int m,int n) //实型二维动态数组分配
{
int *a;
int j;
a=(int *)malloc(n*sizeof(int));
for (j=0; j<n; j++)
{
a[j]=0;
}
return a;
}
//全局变量定义
int np,ne,nr1,nr2,nd,nf,n,ndf,ld,nm,nu1,nu2;
}
for(i=0;i<nu1;i++) //读入非零位移载荷
{
fscanf(fp1,"%d",&nu[i]);//x方向约束的节点号
nu[i]=(nu[i]-1)*2; //转化为自由度序号,abaqus模型节点编号从1开始,C语言中从0开始
}
for(i=0;i<nu2;i++)
fscanf(fp1,"%d",&nf);
fscanf(fp1,"%d",&ld);
fscanf(fp1,"%d",&nm);
fscanf(fp1,"%d",&nu1);
fscanf(fp1,"%f",&u1);
fscanf(fp1,"%d",&nu2);
fscanf(fp1,"%f",&u2);
for(i=0;i<nm;i++) //读入材料信息
{
for(j=0;j<4;j++)
{
fscanf(fp1,"%f",&mat[j][i]);
}
mat[0][i]=mat[0][i]-1;mat[1][i]=mat[1][i]-1; //abaqus模型节点编号从1开始,C语言中从0开始
fprintf(fp3," ZONE N=%d,E=%d,F=FEPOINT,ET=quadrilateral\n",np,ne);
for(j=0;j<np;j++)
{
fprintf(fp3,"%.4f\t%.4f\t%.4f\t%.4f\t",x[j]+bl*p[j*2],y[j]+bl*p[j*2+1],p[j*2],p[j*2+1]);
{
float **a;
int i,j;
a=(float **)malloc(m*sizeof(float *));
for (i=0;i<m;i++)
{
a[i]=(float *)malloc(n*sizeof(float));
for (j=0; j<n; j++)
fscanf(fp1,"%f",&y[i]);
}
for(i=0;i<ne;i++)
{
for(j=0;j<nd;j++)
{
fscanf(fp1,"%d",&me[j][i]);
me[j][i]=me[j][i]-1; //abaqus模型节点编号从1开始,C语言中从0开始
{
fscanf(fp1,"%d",&nu[nu1+i]);//y方向约束的节点号,abaqus模型节点编号从1开始,C语言中从0开始
nu[nu1+i]=(nu[nu1+i]-1)*2+1;
}
fclose(fp1);
printf("读入信息完成......\n");
}
{
printf("cann't open the file !\n");
exit(1);
}
fprintf(fp3," TITLE = ' test '\n");
fprintf(fp3," VARIABLES=x,y,Ux,Uy,Sx,Sy,Sxy,Smax,Smin,Smises\n");
fscanf(fp1,"%f%f",&pp[i][0],&pp[i][1]);
for(i=0;i<n;i++)
p[i]=0.0;
for(i=0;i<ld;i++)
{
j=int(pp[i][0]);
p[j]=pp[i][1];
}
LD[0]=0;
for(k=0;k<np;k++)
{
ig=np;
me=int_two_array_malloc(nd,ne); //单元节点的总体编号
mat=float_two_array_malloc(4,nm);//单元材料数组,先定义为各向同性材料
//原始数据读入
for(i=0;i<np;i++)
{
fscanf(fp1,"%f",&x[i]);
for (i=0;i<m;i++)
{
a[i]=(int *)malloc(n*sizeof(int));
for (j=0; j<n; j++)
{