三相变压器星形和三角形连接中的几个基本关系(精)
中级变配电工试题
一、名词解释:1、接线组别: 根据变压器原副边线电动势的相位关系,把变压器绕组的连接分成各种不同的组合叫接线组别。
2、阻抗电压百分数:短路阻抗电压与额定电压比值的百分数。
3、自耦变压器的公共绕组、串联绕组:自耦变压器一次绕组和二次绕组所共有的那一部分是公共绕组。
与公共绕组串联的那一部分是串联绕组。
4、自耦变压器的标准容量及效益系数:自耦变压器公共绕组的容量称为自耦变压器的标准容量。
自耦变压器的标准容量与其通过容量的比值叫它的效益系数。
5、短路电流的电动力:当电力系统发生短路时,巨大的短路电流流过电器设备和导体,会在它们之间产生很大的电动力。
6、短路电流的热效应:当系统发生短路故障时,巨大的短路电流会使导体大量发热,使导体温度急剧上升。
7、单压式灭弧装置:开断过程中灭弧室所需的吹弧压力由动触头系统带动的压气活塞所产生。
8、弹簧储能:在弹簧机构未带动断路器合闸前要将弹簧储能,即将弹簧拉伸或压缩。
9、断路器的控制电源:给断路器的控制回路供电的电源。
10、断路器的防跳装置:防止断路器“跳跃”的电气闭锁装置。
11、闭锁断路器的动作:断路器的操作动力消失或不足时,闭锁断路器用动作。
12、自同期:将未被励磁的发电机达到额定转速时投入电力系统。
准同期:将已经励磁的发电机在达到一定的条件后投入电力系统。
13、滑差角频率:脉冲电压的角频率的差值称滑差角频率。
14、滑差周期:脉动电压由零起,升到最大值,最后有降到零所需时间为滑差周期。
15、高频通道:就是指高频电流流通的路径,是用来传送高频信号的。
16、自动重合闸前加速:是由无选择性电流速断和过电流保护配合组成的。
17、自动重合闸后加速:当电网中不允许采用自动重合闸前加速保护时,为加速切除永久性故障,可采用自动重合闸后加速保护。
18、自动按频率负荷:应根据具体的电力系统可能发生的最大功率缺额来考虑按频率自动减负荷装置所减负荷的总值。
19、相继动作:按照一定的顺序一次动作。
三相变压器的连接组别(星形连接、三角形连接)
三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。
如下图(a)、(b)所示。
当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。
同样,三个副线圈的连接方式也应当有这两种接法。
三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。
但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。
时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。
以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。
变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。
三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。
以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。
如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。
Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。
新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。
三相变压器的联接方式和联结组别的判定方法
三相变压器的联接方式和联结组别的判定方法目录一.首端、尾端和同名端的概念1. 变压器绕组的路端子和首尾端2. 两个绕组的同名端3. 首端、尾端跟同名端的关系4. 同名端的测试方法二.三相变压器的联结方式和联结方式的标号1. 表示联结方式的字母符号2. 表示联结组别的数字符号3. 表示三相变压器结线状况的标号三.三相变压器联结组别的判定方法1. Y-d形结线的变压器联结组别的判定方法2. D-y形结线的变压器联结组别的判定方法3. Y-y形结线的变压器联结组别的判定方法4. D-d形结线的变压器联结组别的判定方法5. Z形变压器的联结组别的判定方法四.根据变压器组别标号绘制接线图的方法1. Y-y形接线的变压器结线图的绘制方法2. Y-d形和D-y形变压器结线图的绘制方法3. Z形变压器的结线组别的判定方法五.三相变压器负序相量图的绘制方法(正文)在电力系统,三相变压器是最重要的高压电器设备之一。
本文准备简单介绍三相变压器的结线原理和结线方式,并且重点介绍怎样根据结线方式来判断三相变压器的联结线组别。
所谓“联结组别”实际上就是弄清楚低压绕组上的电压的相位跟对应的高压绕组上的电压相位相比时,低压落后多大角度。
当计算和分析三相电路时,必须搞清楚这个问题。
并作相应的技术处理,否则,否则可能酿成重大事故。
当前,国内书刊介绍的判别三相变压器的联结组别的方法有多种,基本上都是按线电压来判别的。
可是,国际标准(我国已全面采用作为国家标准)中明确规定用相电压进行判断,在IEC标准中给出了相量示意图,但是并没有作解释。
在美国的大学课本中(见文献1)介绍了相量图的画法和结线组别的分析方法。
本文就是介绍这种方法的。
在学习介绍过程中,作者也提出了更简化的分析判定方法。
一.首端、尾端和同名端的概念1.变压器绕组的线路端子和首尾端三相变压器可以是由三个单相变压器通过外部连线组成,也可以制成一个整体的三相变压器。
不管用哪种方法组成三相变压器,总得要把各个端子的用途标示出来。
变压器连接组别及绕组方式
变压器连接组别及绕组方式三相变压器的连接组一、三相绕组的连接方法常见的连接方法有星形和三角形两种。
以高压绕组为例,星形连接是将三相绕组的末端连接在一起结为中性点,把三相绕组的首端分别引出,画接线图时,应将三相绕组竖直平行画出,相序是从左向右,电势的正方向是由末端指向首端,电压方向那么相反。
画相量图时,应将B相电势竖直画出,其它两相分别与其相差120°按顺时针排列,三相电势方向由末端指向首端,线电势也是由末端指向首端。
三角形连接是将三相绕组的首、末端顺次连接成闭合回路,把三个接点顺次引出,三角形连接又有顺接、倒接两种接法。
画接线图时,三相绕组应竖直平行排列,相序是由左向右,顺接是上一相绕组的首端与下一相绕组的末端顺次连接。
倒接是将上一相绕组的末端与下一相绕组的首端顺次连接。
画相量图时,仍将B相竖直向上画出,三相接点顺次按顺时针排列,构成一个闭合的等边三角形,顺接时三角形指向右侧,倒接时三角形指向左侧,每相电势与电压方向与星形接线一样。
也就是说,相量图是按三相绕组的连接情况画出的,是一种位形图。
其等电位点在图上重合为一点,任意两点之间的有向线段就表示两面三刀点间电势的相量,方向均由末端指向首端。
连接三相绕组时,必须严格按绕组端头标志和接线图进展,不得将一相绕组的首、末端互换,否那么会造成三相电压不对称,三相电流不平衡,甚至损坏变压器。
二、单相绕组的极性三相变压器的任一相的原、副绕组被同一主磁通所交链,在同一瞬间,当原绕组的某一端头为正时,副绕组必然有一个电位为正的对应端头,这两个相对应的端头就称为同极性端或同名端,通常以圆点标注。
变压器原、副绕组之间的极性关系取决于绕组的绕向和线端的标志。
当变压器原、副绕组的绕向一样,位置相对应的线端标志一样〔即同为首端或同为末端〕,在电源接通的时候,根据椤次定律,可以确定标志一样的端应同为高电位或同为低电位,其电势的相量是同相的。
如果仅将原绕组的标志颠倒,那么原、副绕组标志一样的线端就为反极性,其电势的相向即为反相。
三相变压器的连接组别
三相变压器的连接组别一、Dyn11与Yyn0的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,Y表示二次测绕组星型接线,n 表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位置Yyn0:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线。
当低压三相负载不平衡时,低压线圈存在零序电流,Yyn0连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真。
而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了。
所以说,Dyn11变压器比Yyn0变压器带不平衡负载的能力强。
但Yyn0变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法。
1)根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。
在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置。
2)Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。
这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。
若低压侧为三相供电的动力负载,一般均配置缺相保护,故此不会造成动力负载因缺相运行而烧毁。
电机星三角接法(三相异步电动机星形接法(Y)和三角形接法(Δ))
三相异步电动机星形接法(Y)和三角形接法(Δ)每根绕组都有两个接头,一为首端,一为尾端。
图 1中U1、 V1、 W1是首端,而U2、V2、W2是尾端。
连接绕组时,首端尾端不能搞错,错了就不能保证相间的空间电角度为120&s30;,影响正常旋转磁场的形成,这是我们接线时必须十分注意的问题。
绕组引出线标志Y系列电机第一相、第二相、第三相的首端分别为 U1、 V1、 W1;尾端分别为U2、V2、W2。
JO2老系列电机第一相、第二相、第三相的首端分别为Dl、D2、D3;尾端分别为D4、D5、 D6。
有些电机,绕组内部连接好了,只引出三根线,那它们的标志:在新系列电机为U、V、W,在老系列电机为D1、D2、D3。
要是有第四根标志为N的引出线,这是星接绕组的中性点。
接线螺技标志与绕组的标志完全相同,其标志有的用标号垫,有的在绝缘底座上压出凸纹。
接地螺钉的标志3.三相异步电动机有那几种接线方法?在接线盒里是怎样连接的?答:三相异步电动机定于绕组通常采用两种接线方法,即星形接法(Y)和三角形接法(Δ)。
功率大的电机,在每相绕组里由两条或两条以上的支路并联。
星形接法见图2,把三相统组的尾端连在一起,由三个首端去接电源。
当然也可以把三个首端连在一起,由三个尾端去接电源。
但是决不可在短接的星点上既有首端,又有尾端,否队便不能形成正常的旋转磁场.(参见问题1)在接线盒里(见图动)星点是用两个连接片连接的。
三角形接法见图3,它是由一根绕组的首端与另一格的尾端相连,形成一个三角形,再由三角形的顶点接向电源。
同样的道理,采用三角形接法,决不可用绕组的同名端(两个首端或两个尾端)接成三角形的顶点,否则,电机将不能正常运转。
一台电机,究竟采用星接还是角接,必须按照铭牌的规定,是不能随意变更的。
无论那种按法,接线时如果首尾端错了,接通电源后,不能形成正常的旋转磁场,这时:电机起动困难;有特殊响声;三相绕组中电流很不平衡,即使空载,电流也将大于额定值。
三相变压器
三相变压器的联结组
三相绕组的联结: 三相绕组的联结:星形联结和三角形联结 三相变压器绕组的首、末端标志如下: 三相变压器绕组的首、末端标志如下: A、B、C代表高压绕组的首端,X、Y、Z代表高压绕组的末端 代表高压绕组的首端, 代表低压绕组的首端, a、b、c代表低压绕组的首端,x、y、z代表低压绕组的末端 在三相变压器中, 在三相变压器中,我国主要采用星形联结和三角形联结两种
b相,现标为a相:把c相作为 相;把a相作为 相。原边的 相绕组 相 现标为 相 相作为b相 相作为c相 原边的A相绕组 相作为 相作为 实际上和副边的c相绕组同套在一个铁心柱上 实际上和副边的 相绕组同套在一个铁心柱上
A
B
C
A
c
X c
Y a
Z b
b
o
c yx z (b)
a
C
B
z
x
(a)
y
b
a
图 3-11 Y,y4联 组 结
三相变压器
三相变压器
本章研究的重点问题 目前各国电力系统均采用三相制, 目前各国电力系统均采用三相制,故使用得最广的是三相 变压器。 变压器。 从运行原理上看,三相变压器在对称负载下运行时, 从运行原理上看,三相变压器在对称负载下运行时,各 相的电压、电流幅值相等,相位互差120 120度 相的电压、电流幅值相等,相位互差120度,故可以取三相中 的任一相来研究, 的任一相来研究,即三相问题可以简化成单相问题 所列的基本方程式、等效电路、 所列的基本方程式、等效电路、相量图以及性能计算公 式等等, 式等等,对于三相变压器仍然适用 本章将研究三相变压器的几个特殊问题。即磁路系统、 本章将研究三相变压器的几个特殊问题。即磁路系统、联 结组、电动势、空载电流及磁通波形, 结组、电动势、空载电流及磁通波形,以及不对称运行等问题
[整理]三相变压器的连接组别.
三相变压器的连接组别一、Dyn11与Yyn0的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,Y表示二次测绕组星型接线,n 表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位置Yyn0:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线。
当低压三相负载不平衡时,低压线圈存在零序电流,Yyn0连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真。
而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了。
所以说,Dyn11变压器比Yyn0变压器带不平衡负载的能力强。
但Yyn0变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法。
1)根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。
在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置。
2)Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。
这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。
若低压侧为三相供电的动力负载,一般均配置缺相保护,故此不会造成动力负载因缺相运行而烧毁。
变压器三角形接线和星形接线的区别
电路的三个线圈的电流输入端为首端,电流输出端为末端。
将三个末端连接到一起,另三个端头接入三相电源,称为星接。
将每个线圈的首端同另一个线圈的末端相连接,形成三个并联端子,将这三个端子接入三相电源为角接。
以电源380V为例
星形接法每相线圈承受220V,而三角形接法每相承受380V
星形接法类似于串联,三角形接法类似于并联
一般的电机4kw以下的用星形接法,上4kw用三角形接法
1、在三相变压器中,原、副边只要有一边接成三角形,就能保证主磁通和电势为正弦波。
而三角形联结的绕组在原边或在副边所起的作用是一样的。
但是为了节省绝缘材料,实际上总是高压边采用星形接法,低压边采用三角形接法。
因为高压边在一定线电压下,其相电势仅为线电势的根号3分之一,而绝缘通常按相电势设计,所以用料较少。
并且主系统为大电流接地系统,也只能采用高压侧星形接线方式。
2、主变压器的接线方式采用△/Y,还有两个作用:(1)低压侧接成△,也就是发电机侧,有消除三次谐波的作用;(2)△/Y的接线方式在原来的差动保护回路中还有一个角度补偿的作用。
三相变压器地连接组别(星形连接、三角形连接)
三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。
如下图(a)、(b)所示。
当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。
同样,三个副线圈的连接方式也应当有这两种接法。
三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。
但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。
时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。
以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。
变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。
三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。
以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。
如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。
Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。
新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。
三相变压器极性及连接组别
曲折形(Z)连接的变压器极性判断
曲折形连接的变压器,其三个线圈按照一定的规律相互连接。极性判断时,需要 先确定曲折形连接的具体规律,然后根据规律判断每个线圈的极性。通常需要结 合变压器的铭牌、接线图等信息进行判断。
总结词:曲折形连接变压器的极性判断需要综合考虑多种因素,包括线圈的接线 规律、铭牌信息等。
极性及连接组别的选择还影响到无功补偿装置的补偿精度和响应速度,对 于电力系统的稳定性和经济性具有重要意义。
04
CATALOGUE
三相变压器极性及连接组别的测试方法
直流法测试三相变压器极性及连接组别
总结词
通过测量一次侧和二次侧的直流电阻来判定极性和连接组别。
详细描述
在三相变压器的一次侧和二次侧分别接入直流电源,测量各相的直流电阻值, 根据电阻值的大小和相位关系,可以判断出变压器的极性和连接组别。
3. 低压侧三个相绕组的末端连接 在一起形成中性点,但该中性点 不接地。
YNyn0d1连接组别
详细描述
1. 高压侧三个相绕组的首端分别 接到三相电源的A、B、C相上, 而它们的末端连接在一起称为中 性点,并接地。
2. 低压侧三个相绕组的首端分别 与高压侧相绕组的末端连接,形 成三角形接法。
总结词:中性点接地,高压侧三 角形接法,低压侧星形接法,低 压侧中性点不接地。
VS
详细描述
使用专用的变压器极性及连接组别测试仪 器,按照仪器操作说明进行测量,可以快 速准确地判断出变压器的极性和连接组别 。测试结果可以通过器自带的显示屏或 电脑软件进行查看和分析。
05
CATALOGUE
三相变压器极性及连接组别的维护与保养
三相变压器的连接组别(星形连接、三角形连接)
三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。
如下图(a)、(b)所示。
当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。
同样,三个副线圈的连接方式也应当有这两种接法。
三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。
但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。
时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。
以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。
变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。
三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。
以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。
如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。
Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。
新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。
变压器接法详解
变压器接法详解常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
(一)变压器接线组别变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“•”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。
由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通路,这样就增加了磁滞及涡流损耗;Dyn11接线中,奇次谐波电流可在高压绕组内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。
三相变压器的连接组别(星形连接、三角形连接)
三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。
如下图(a)、(b)所示。
当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。
同样,三个副线圈的连接方式也应当有这两种接法。
三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。
但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。
时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。
以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。
变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。
三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。
以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。
如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。
Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。
新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。
三相变压器的工作原理及接线方法(精)
三相变压器三相变压器原理三相变压器是 3个相同的容量单相变压器的组合.它有三个铁芯柱,每个铁芯柱都绕着同一相的 2个线圈,一个是高压线圈,另一个是低压线圈.三相变压器是电力工业常用的变压器.变压器接法与联结组用于国内变压器的高压绕组一般联成 Y 接法,中压绕组与低压绕组的接法要视系统情况而决定。
所谓系统情况就是指高压输电系统的电压相量与中压或低压输电系统的电压相量间关系。
如低压系配电系统,则可根据标准规定决定。
1.国内的 500、330、220与 110kV 的输电系统的电压相量都是同相位的,所以,对下列电压比的三相三绕组或三相自耦变压器, 高压与中压绕组都要用星形接法。
当三相三铁心柱铁心结构时, 低压绕组也可采用星形接法或角形接法, 它决定于低压输电系统的电压相量是与中压及高压输电系统电压相量为同相位或滞后 30°电气角。
500/220/LVkV─YN,yn0,yn0或 YN,yn0,d11220/110/LVkV─YN,yn0,yn0或 YN,yn0,d11330/220/LVkV─YN,yn0,yn0或 YN,yn0,d11330/110/LVkV─YN,yn0,yn0或 YN,yn0,d112.国内 60与 35kV 的输电系统电压有二种不同相位角。
如 220/60kV变压器采用 YNd11接法, 与 220/69/10kV变压器用 YN,yn0,d11接法,这二个 60kV 输电系统相差 30°电气角。
当 220/110/35kV变压器采用 YN,yn0,d11接法,110/35/10kV变压器采用 YN,yn0,d11接法,以上两个 35kV 输电系统电压相量也差 30°电气角。
所以,决定 60与 35kV 级绕组的接法时要慎重,接法必须符合输电系统电压相量的要求。
根据电压相量的相对关系决定 60与 35kV 级绕组的接法。
否则,即使容量对,电压比也对,变压器也无法使用,接法不对,变压器无法与输电系统并网。
三相变压器星形和三角形连接中的几个基本关系(精)
第五节三相变压器星形和三角形连接中的几个基本关系在三相变压器中,原边绕组的首端用大写字母A,B,C表示,其末端用X,Y,Z表示;副边绕组的首端用小写字母a,b,c表示,其末端用x,y,z表示;星形接法的中点用O 表示。
变压器连接组别的表示方法是以原边作为分子,以副边作为分母,后面的数字代表变压器的连接组别,即表示变压器原边绕组与副边绕组电势(或电压)的相位关系。
变压器连接组别的区分,采用时钟表示法,即把时钟的长针作为原边线电势的相量,并把它放在钟面12的位置上,而把时钟的短针作为副边线电势的相量,短针在钟面上所指的数字位置即为变压器的连接组别。
三相变压器的连接组别不仅与绕组在铁芯上的绕向即同名端的标记有关,而且还与三相绕组的接法有关。
下面是几种常用的连接方式。
1.Y / Y-12连接方式在图2-7-9中,取原边和副边绕组的同名端作为首端(即原、副边绕组的绕向相同,端点同名端的标记也相同),这时,原边和副边对应各相的相电势同相位,根据电工知识,原边与副边绕组的线电势也同相位,所以变压器连接组别为12,用Y / Y-12表示。
2.Y / ∆-11连接方式取原边和副边绕组的同名端作为首端,副边绕组按a-x→c-z→b-y→a依次连接。
这时,原边和副边对应各相的相电势同相位,但原边与副边绕组的线电势E AB和E ab的相位差30︒×11 = 330︒,故其组别为11,用Y / ∆-11表示。
3.Y / ∆-1连接方式图2-7-11是Y / ∆接法的另一种连接组别,副边绕组按a-x→b-y→c-z→a的次序连接。
这时,原边和副边对应各相的相电势同相位,但原边与副边绕组的线电势E AB和E ab的相位差30︒,故其组别为1,用Y / ∆-1表示。
三相变压器及连接组别
三相变压器的连接组别一、Dyn11与Yyn0的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,Y表示二次测绕组星型接线,n表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位置Yyn0:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线.当低压三相负载不平衡时,低压线圈存在零序电流,Yyn0连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真.而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了.所以说,Dyn11变压器比Yyn0变压器带不平衡负载的能力强.但Yyn0变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法.1〕根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点.在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置.2〕Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电X围减少至1/3.这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响.若低压侧为三相供电的动力负载,一般均配置缺相保护,故此不会造成动力负载因缺相运行而烧毁.采用Dyn11和Yyn0联结组别是根据用户要求确定.Dyn11与Yyn0相比优点如下:减少变压器损耗;降低谐波分量;有利于单相接地短路故障的切除;单相不平衡负荷可充分利用.配电变压器和组合式变压器联结组别<Dyn11与Yyn0联结>的特点以前的配电变压器大都采用Yyn0联结组别,现在国际上大多数国家的配电变压器采用Dyn0联结,究其原因,是由于采用Dyn11联结较之采用Yyn0联结有许多优点:1.三次谐波电流可在D联结的一次绕组内形成环流,使之不注入公共的高压电网中去.——4.5KA,这样就很难对断路器在保持上下级选择性情况下合理整定好.而对Dyn11联结却因短路电流大得多,故能合理整合.变压器允许中性线电流达到想电流的75%以上.因此其承受不平衡负载能力远比Yyn0联结变压器大.4.当高压侧一相熔丝熔断时,Dyn0联结变压器另两相负载仍可运行,而Yyn0联结却不行.目前,供配电系统的单相负载急剧增长,推广Dyn11联结变压器显得很有必要.国内多数制造厂生产的组合式变压器都采用Dyn11联结.进口的组合式变压器也以Dyn11联结为多.Dyn11联结组合式变压器用于中性点绝缘系统配电网事可行的.因为高压侧为D联结,所以在D 联结内有零序电流流通,当低压侧有不平衡负载时极限情况为单相短路.所以在Dyn11联结中,不存在低压侧不平衡负载会影响中性点电位位移的问题.还有,Dyn11联结变压器的单相短路电流与三相短路电流近似相等,这对选择熔丝是有利的.而Yyn0联结变压器的零序阻抗大于正序阻抗,单相短路电流要小于三相短路电流,在选择熔丝上要略微复杂些.据《民用建筑电气设计规X》规定,具有下列情况之一的,宜选用Dyn11联结的变压器:1.三相不平衡负载每相额定功率15%以上者.2.需要提高单相短路电流值,确保低压单相接地保护装置动作灵敏度者.3.需要限制三次谐波含量者.二、变压器的连接组别有24种接法就像时钟一样的24点在变压器的联接组别中"Yn"表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;"d"表示二次侧为三角形接线."11"表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度〔或超前30度〕.变压器的联接组别的表示方法是:大写字母表示一次侧〔或原边〕的接线方式,小写字母表示二次侧〔或副边〕的接线方式.Y〔或y〕为星形接线,D〔或d〕为三角形接线.数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针.变压器接线方式有4种基本连接形式:"Y,y"、"D,y"、"Y,d"和"D,d".我国只采用"Y,y"和"Y,d".由于Y连接时还有带中性线和不带中性线两种,不带中性线那么不增加任何符号表示,带中性线那么在字母Y后面加字母n表示.变压器接法与联结组用于国内变压器的高压绕组一般联成Y接法,中压绕组与低压绕组的接法要视系统情况而决定.所谓系统情况就是指高压输电系统的电压相量与中压或低压输电系统的电压相量间关系.如低压系配电系统,那么可根据标准规定决定.高压绕组常联成Y接法是由于相电压可等于线电压的57.7%,每匝电压可低些.1〕.国内的500、330、220与110kV的输电系统的电压相量都是同相位的,所以,对下列电压比的三相三绕组或三相自耦变压器,高压与中压绕组都要用星形接法.当三相三铁心柱铁心结构时,低压绕组也可采用星形接法或角形接法,它决定于低压输电系统的电压相量是与中压及高压输电系统电压相量为同相位或滞后30°电气角.500/220/LVkV─YN,yn0,yn0或YN,yn0,d11220/110/LVkV─YN,yn0,yn0或YN,yn0,d11330/220/LVkV─YN,yn0,yn0或YN,yn0,d11330/110/LVkV─YN,yn0,yn0或YN,yn0,d112〕.国内60与35kV的输电系统电压有二种不同相位角.如220/60kV变压器采用YNd11接法,与220/69/10kV变压器用YN,yn0,d11接法,这二个60kV输电系统相差30°电气角.当220/110/35kV变压器采用YN,yn0,d11接法,110/35/10kV变压器采用YN,yn0,d11接法,以上两个35kV输电系统电压相量也差30°电气角.所以,决定60与35kV级绕组的接法时要慎重,接法必须符合输电系统电压相量的要求.根据电压相量的相对关系决定60与35kV级绕组的接法.否那么,即使容量对,电压比也对,变压器也无法使用,接法不对,变压器无法与输电系统并网.3〕.国内10、6、3与0.4kV输电与配电系统相量也有两种相位.在##地区,有一种10kV与110kV 输电系统电压相量差60°电气角,此时可采用110/35/10kV电压比与YN,yn0,y10接法的三相三绕组电力变压器,但限用三相三铁心柱式铁心.4〕[1][2][3].但要注意:单相变压器在联成三相组接法时,不能采用YNy0接法的三相组.三相壳式变压器也不能采用YNy0接法.三相五柱式铁心变压器必须采用YN,yn0,yn0接法时,在变压器内要有三相变压器2接成角形接法的第四绕组,它的出头不引出<结构上要做电气试验时引出的出头不在此例>.5>.不同联结组的变压器并联运行时,一般的规定是联结组别标号必须相同.6>.配电变压器用于多雷地区时,可采用Yzn11接法,当采用z接法时,阻抗电压算法与Yyn0接法不同,同时z接法绕组的耗铜量要多些.Yzn11接法配电变压器的防雷性能较好.7>.三相变压器采用四个卷铁心框时也不能采用YNy0接法.8>.以上都是用于国内变压器的接法,如出口时应按要求供应合适的接法与联结组标号.9>.一般在高压绕组内都有分接头与分接开关相联.因此,选择分接开关时<包括有载调压分接开关与无励磁调压分接开关>,必须注意变压器接法与分接开关接法相配合<包括接法、试验电压、额定电流、每级电压、调压X围等>.对YN接法的有载调压变压器所用有载调压分接开关而言,还要注意中点必须能引出.三、变压器连接组别变压器的同一相高、低压绕组都是绕在同一铁芯柱上,并被同一主磁通链绕,当主磁通交变时,在高、低压绕组中感应的电势之间存在一定的极性关系同名端:在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个绕组间同极性的一端称为同名端,记作"˙".变压器联结组别用时钟表示法表示规定:各绕组的电势均由首端指向末端,高压绕组电势从A指向X,记为"ÈAX",简记为"ÈA" ,低压绕组电势从a指向x,简记为"Èa".时钟表示法:把高压绕组线电势作为时钟的长针,永远指向"12"点钟,低压绕组的线电势作为短针,根据高、低压绕组线电势之间的相位指向不同的钟点.确定三相变压器联结组别的步骤是:①根据三相变压器绕组联结方式〔Y或y、D或d〕画出高、低压绕组接线图〔绕组按A、B、C相序自左向右排列〕;②在接线图上标出相电势和线电势的假定正方向③画出高压绕组电势相量图,根据单相变压器判断同一相的相电势方法,将A、a重合,再画出低压绕组的电势相量图〔画相量图时应注意三相量按顺相序画〕;④根据高、低压绕组线电势相位差,确定联结组别的标号.Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种.对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种.标准组别的应用Yyn0组别的三相电力变压器用于三相四线制配电系统中,供电给动力和照明的混合负载;Yd11组别的三相电力变压器用于低压高于0.4kV的线路中;YNd11组别的三相电力变压器用于110kV以上的中性点需接地的高压线路中;YNy0组别的三相电力变压器用于原边需接地的系统中;Yy0组别的三相电力变压器用于供电给三相动力负载的线路中.在变压器的联接组别中"Yn"表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;"d"表示二次侧为三角形接线."11"表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度〔或超前30度〕.变压器的联接组别的表示方法是:大写字母表示一次侧〔或原边〕的接线方式,小写字母表示二次侧〔或副边〕的接线方式.Y〔或y〕为星形接线,D〔或d〕为三角形接线.数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针."Yn,d11",其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置.也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度〔或超前30度〕.变压器接线方式有4种基本连接形式:"Y,y"、"D,y"、"Y,d"和"D,d".我国只采用"Y,y"和"Y,d".由于Y连接时还有带中性线和不带中性线两种,不带中性线那么不增加任何符号表示,带中性线那么在字母Y后面加字母n表示.三相变压器在电力系统和三相可控整流的触发电路中,都会碰到变压器的极性和联接组别的接线问题.变压器绕组的联接组,是由变压器原、次边三相绕组联接方式不同,使得原、次边之间各个对应线电压的相位关系有所不同,来划分联接组别.通常是采用线电压矢量图对三相变压器的各种联接组别进行接线和识别,对初学者和现场操作者不易掌握.而利用相电压矢量图来对三相变压器各种联接组别进行接线和识别,此种方法具有易学懂、易记牢,在实用中即简便又可靠的特点,特别是对Y/△和△/Y的联接组,更显示出它的优越性.下面以实例来说明用相电压矢量图对三相变压器的联接组别的接线和识别的方法.1〕用相电压矢量图画出Y/△接法的接线图首先画出原边三相相电压矢量A、B、C,以原边A相相电压为基准,顺时针旋转到所要求的联接组.Y/△-11的联接组别,顺时针旋转了330°后再画出次边a相的相电压矢量,此a相相电压矢量在原边A相与B相反方向-B的合成矢量上,由于原次边三相绕组A、B、C和a、b、c相对应,我们把次边a相绕组的头连接次边b相绕组尾,作为次边a相的输出线,由此在三角形接法中,只要确定了次边a相的连结,其他两相的头尾连接顺序和引出线就不会弄错.因此根据原次边相电压矢量便可画出Y/△-11组接线图.2〕用相电压矢量图来识别Y/Δ接法的联接组别Y/△接法的联接组别,首先画出原边相电压矢量A、B、C,可以看出,次边a相绕组的尾连接C相绕组的头作为次边a相的输出线,由于次边a与原边A同相位,我们把次边a相相电压矢量画在原边相电压C和-A的中间,以原边A相为基准,顺时针旋转次边a相,它们之间的夹角为210°,由此这个接线图是Y/△-7组.3〕用相电压矢量图画出△/Y接法的接线图首先画出次边a、b、c三相相电压矢量图,以次边a相相电压矢量为基准,逆时针旋转到所要求联接组,再根据此矢量图画出该组别的接线图.先画出△/Y-5组的矢量图,再逆时针旋转150°,画出原边A相相电压矢量,此A相相电压矢量上,因此根据此矢量图便可画出△/Y-5组的接线图可知,次边a、b、c三个头作为a、b、c三相的输出端,原边A的尾C的头,B的尾接A的头,C的尾接B的头分别作为A、B、C三相的输出端.4〕用相电压矢量图,识别△/Y接法的联接组别首先画出以次边a、b、c三相电压为基准的矢量图,再根据原边绕组的接法,只要将A相画在次边矢量上,以原边A相顺时针旋转到次边a相之间的夹角是多少,就知道该△/Y的接线图它属于第几组.识别图中△/Y的接线图它属于几组,根据上面的方法,画出次边a、b、c三相相电压矢量图,从接线图中可以看出原边A相绕组的头连接B相绕组的尾作为原边A相引出线,因此我们把原边相电压矢量A画到次边矢量a和-b中间,而次边C相绕组的头作为次边a相输出,因此我们把次边矢量C 当成是矢量a调相来使用,然后以原边A相顺时旋转到次边a相,它们的夹角为270°,因此这个接线图为△/Y-9联接组.由此可见,用相电压矢量图来对三相变压器各种联接组别进行接线和识别的方法简单易学,却在现场实践过程中具有很高的实用价值.四、浅析配电变压器的联结组别变压器连接组别似乎仍存在某些问题,本文仅从国家设计规X的角度,浅析为什么配电变压器宜选用Dynll联结组别的问题.在解放前,我国配电变压器采用的联结组别基本上是Dyn11系统,大陆解放后,学习苏联,引进苏联的技术和设备,因而沿用了原苏联的配电系统及其Yyn0的联结组别.直到改革开放后,欧美日发达国家的技术及设备纷纷涌人中闰大陆,国际上普遍采用的Dynll也逐渐成为配电变压器的联结方式的主流:然而,几十年来的习惯势力仍然很大:##设计的图例符号常采用"Y-Y";国家相关标准及制造厂样本上之配电变压器联结组别也多表述为"Yyn0或Dynll"〔把"Yyn0"置于前列位置〕,使得配电变压器的联结组别仍有不少写成Yyno〔实际上井非工程设计所要求.首先,看看国家有关的设计规X.国标GB50052—95《供配电系统设计规X》第六章低压配电中第6.0.7条明确阐述:"在TN及TT"系统接地型式的低压电网中,宜选用Dynll结线组别的三相变压器作为配电变压器."为什么配电变压器宜选用Dynll联结呢?在编写该设计规X时,主编院〔原机械部二院〕已作了该规X的"条文说明".在此结合笔者的浅识,作简要的分析.1〕有利于抑制高次谐波电流对Yyn0结线的二相变压器,原边星形连接而无中线,故三次谐波电流不能流通.原边激磁电流波形为正弦波时,那么铁芯中磁通为平顶波,副边感应电势波形所含高次谐波分量大;激磁电流中以三次谐波为主的高次谐波电流在原边接成三角形条件下,可在原边形成环流,与原边接成星形相比,有利于抑制高次谐波电流,在当前电网中接用电力电子元件、气体放电灯等日益广泛、其功率越来越大的情况下,会使得电流波形畸变.即使三相负荷平衡,中性线中也流过以三次谐波为主的高次谐波电流,配电变压器的原边〔常为10kV侧〕采用三角形结线就抑制了此类高次谐波电流,这样就能保证供电波形的质量.2〕有利于单相接地短路故障的切除原边〔高压〕接成三角形〔D接〕,绕组内可通过零序循环电流〔感应产生〕,因而可与低压绕组零序电流互相平衡、去磁,因此,副边〔低压侧〕零序阻抗很小;若原边〔高压侧〕星接〔Y接〕,绕组不能流过零序电流,低压侧激磁时,其零序电流在变压器铁芯中产生零序磁通,但其磁路不能在铁芯内形成闭合,要走铁芯外面的空气,其磁阻很大,变压器的零序阻抗较大.若发生单相短路,其短路电流值就会相对地减小,致使在很多情况下,其单相接地短路电流几乎不能使低压断路器快速动作或使熔断器迅速熔断.通常,在相同的条件下,Dynll结线的变压器配电系统的单相短路电流为Yyn0结线时的3倍以上.因此,Dynll结线有利于单相接地短路故障的切除.当低压回路采用低压断路时,可考虑由三相过电流保护兼单相接地保护,而不必单独设置单相接地保护.3〕肩岂充分利用变压器的设备能力对于配电变压器,照明、空调、电炊、电热等餐厨家电220伏单相负荷往往占很大比重.尽管在工程设计及安装时,尽可能将各个单相负荷均匀分布在三相上,而由于运行时的情况千变万化,有时可能出现三相严重不平衡现象.三相负荷不平衡、每相功率因数相差较大、变压器处于不对称运行状态,副边中性线就有电流通过.上述《规X》中第6.0.8条明确规定:"在TN和TT系统接地型式的低压电网中,当选用Yyn0结线组别的三相变压器时,,其由单相不平衡负荷引起的中性线电流不得超过低压绕组额定电流的25%,且其一相的电流在满载时不得超过额定电流值."这一规定十分明确地限制了Yyn0结线时接用单相负荷的容量,从而限制了Yyno结线配电变压器的使用——此时,变压器设备能力不能充分利用.而Dyn11结线方式的变压器,对中性线电流没有限制,可达变压器低压侧之线〔相〕电流,从而能充分利用变压器的容量、发挥其设备能力,尤其适宜以单相负荷为主而出现三相不平衡的配电变压器.日前,国内大部分变压器生产厂所生产的配电变压器〔无论是油变和干变〕已同国际市场接轨,多采用Dyn11联结组别.只是对未改造好的老系统、在更换变压器时,个别的仍可采用Yyn0联结组别.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节三相变压器星形和三角形连接中的几个基本关系
在三相变压器中,原边绕组的首端用大写字母A,B,C表示,其末端用X,Y,Z表示;副边绕组的首端用小写字母a,b,c表示,其末端用x,y,z表示;星形接法的中点用O 表示。
变压器连接组别的表示方法是以原边作为分子,以副边作为分母,后面的数字代表变压器的连接组别,即表示变压器原边绕组与副边绕组电势(或电压)的相位关系。
变压器连接组别的区分,采用时钟表示法,即把时钟的长针作为原边线电势的相量,并把它放在钟面12的位置上,而把时钟的短针作为副边线电势的相量,短针在钟面上所指的数字位置即为变压器的连接组别。
三相变压器的连接组别不仅与绕组在铁芯上的绕向即同名端的标记有关,而且还与三相绕组的接法有关。
下面是几种常用的连接方式。
1.Y / Y-12连接方式
在图2-7-9中,取原边和副边绕组的同名端作为首端(即原、副边绕组的绕向相同,端点同名端的标记也相同),这时,原边和副边对应各相的相电势同相位,根据电工知识,原边与副边绕组的线电势也同相位,所以变压器连接组别为12,用Y / Y-12表示。
2.Y / ∆-11连接方式
取原边和副边绕组的同名端作为首端,副边绕组按a-x→c-z→b-y→a依次连接。
这时,原边和副边对应各相的相电势同相位,但原边与副边绕组的线电势E AB和E ab的相位差30︒×11 = 330︒,故其组别为11,用Y / ∆-11表示。
3.Y / ∆-1连接方式
图2-7-11是Y / ∆接法的另一种连接组别,副边绕组按a-x→b-y→c-z→a的次序连接。
这时,原边和副边对应各相的相电势同相位,但原边与副边绕组的线电势E AB和E ab的相位差30︒,故其组别为1,用Y / ∆-1表示。