塔吊基础设计计算书(桩基础)

合集下载

TC6013塔吊桩基础计算书

TC6013塔吊桩基础计算书

TC6013塔吊桩基础计算书本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机混凝土基础技术规程》(JGJ187-2009)、《建筑桩基技术规范》(JGJ94-2008)、《混凝土结构设计规范》(GB50010-2010)、《钢结构设计规范》(GB50017-2003)、《建筑地基基础设计规范》(GB 50007-2011)、《建筑结构荷载规范》(GB 50009-2012)等编制。

一、参数信息塔吊型号:QTZ100-TC6013, 自重(包括压重)F1=744.8kN,最大起重荷载F=80.0kN,塔吊倾覆力距M=1000.0kN.m,塔吊起重高度H=120.0m,塔身宽度B=1.6m,承台长度Lc或宽度Bc=5.00m,承台厚度Hc=1.40m,桩直径或方桩边长 d=0.40m,桩间距a=4.20m,基础埋深D=0.00m,保护层厚度:50.00mm,承台混凝土强度等级:C35,承台钢筋级别:HRB335,桩混凝土强度等级:C35,桩钢筋级别:HRB335,承台箍筋间距S=400.00mm。

二、荷载的计算1.自重荷载及起重荷载(1)塔机自重标准值:F kl=744.80kN(2)基础及附加构造自重标准值:G k = 25.0×Bc×Bc×Hc+0.00= 25.0×5.00×5.00×1.40+0.00 = 875.00kN;(3)起重荷载标准值:F qk=80.00kN1.风荷载计算(1)非工作状态下塔机塔身截面对角线方向所受风荷载标准值:塔机所受风线荷载标准值q sk'=0.8aβzμsμz W0a0BH/H=0.8×1.2×1.85×1.60×0.99×0.50×0.35×1.60=0.79kN/m塔机所受风荷载水平合力标准值F vk'=q sk'×H = 0.79×120.00 = 94.52kN标准组合的倾翻力矩标准值M k = 1000.00kN.m三、桩基承载力验算1.桩基竖向承载力验算取最不利的非工作状态荷载进行验算。

QTZ5513

QTZ5513

塔吊桩基础的计算书一. 参数信息塔吊型号:QTZ5513,自重(包括压重)F1=911kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=1967.0kN.m,塔吊起重最大高度H=150.00m,塔身宽度B=1.7m混凝土强度:C30,钢筋级别:Ⅱ级,承台长度Lc或宽度Bc=5.30m采用直径d=0.40m的砼强度为C80预应力管桩,桩基靠近13#钻孔,以强风化花岗岩作为桩端持力层.桩中心间距a=2.90m,承台厚度Hc=1.30m 基础埋深D=3.00m,承台箍筋间距S=200mm,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=911.0kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=1165.2kN塔吊的倾覆力矩 M=1.4×1967=2753.8kN.m三. 矩形承台弯矩的计算计算简图:?400预应力管桩图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第5.1.1条)其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=1.2×971=1165.2kN;G──桩基承台的自重,G=1.2×(25.0×Bc×Bc×Hc)=1095.5kN;Mx,My──承台底面的弯矩设计值(kN.m);xi,yi──单桩相对承台中心轴的XY方向距离(m);Ni──单桩桩顶竖向力设计值(kN)。

经计算得到单桩桩顶竖向力设计值:最大压力:N=(1165.2+1095.5)/4+2753.80×(2.90×1.414/2)/[2×(2.90×1.414/2)2]=1236.84kN,-106.5kN2. 矩形承台弯矩的计算(依据《建筑桩技术规范》JGJ94-94的第5.6.1条)其中 Mx1,My1──计算截面处XY方向的弯矩设计值(kN.m);xi,yi──单桩相对承台中心轴的XY方向距离(m);Ni1──扣除承台自重的单桩桩顶竖向力设计值(kN),Ni1=Ni-G/n。

塔吊四桩基础的计算书(TC7020)

塔吊四桩基础的计算书(TC7020)

(TC7020)塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=1260kN2) 基础以及覆土自重标准值G k=4.5×4.5×1.60×25=810kN3) 起重荷载标准值F qk=160kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m 2)W k=0.8×1.59×1.95×1.2×0.2=0.60kN/m2q sk=1.2×0.60×0.35×2=0.50kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.50×46.50=23.25kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×23.25×46.50=540.62kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m 2)W k=0.8×1.62×1.95×1.2×0.35=1.06kN/m2q sk=1.2×1.06×0.35×2.00=0.89kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.89×46.50=41.46kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×41.46×46.50=963.93kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=1639+0.9×(1400+540.62)=3385.55kN.m非工作状态下,标准组合的倾覆力矩标准值M k=1639+963.93=2602.93kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(1260+810.00)/4=517.50kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(1260+810)/4+Abs(2602.93+41.46×1.60)/4.95=1056.85kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(1260+810-0)/4-Abs(2602.93+41.46×1.60)/4.95=-21.85kN工作状态下:Q k=(F k+G k+F qk)/n=(1260+810.00+160)/4=557.50kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(1260+810+160)/4+Abs(3385.55+23.25×1.60)/4.95=1249.11kNQ kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(1260+810+160-0)/4-Abs(3385.55+23.25×1.60)/4.95=-134.11kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(1260+160)/4+1.35×(3385.55+23.25×1.60)/4.95=1412.92kN 最大拔力 N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h)/L=1.35×(1260+160)/4-1.35×(3385.55+23.25×1.60)/4.95=-454.42kN 非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×1260/4+1.35×(2602.93+41.46×1.60)/4.95=1153.38kN最大拔力 N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×1260/4-1.35×(2602.93+41.46×1.60)/4.95=-302.88kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。

塔吊桩基础计算范文

塔吊桩基础计算范文

塔吊桩基础计算范文
一、桩基数量的确定:
确定桩基数量需要根据塔吊的重量和地基承载能力进行计算。

通常情
况下,桩基数量可根据以下公式进行计算:
N=W/P
其中,N为桩基数量,W为塔吊的总重量,P为单根桩基的承载力。

这样可以保证单根桩基能够承受足够的力量。

二、桩基直径的确定:
桩基直径的确定需要结合地基的土壤类型、承载能力以及塔吊的重量
等多种因素进行考虑。

对于土壤承载能力较强的情况下,一般可以采用较
小的桩径;相反,对于土壤承载能力较弱的情况下,需要采用较大的桩径。

根据经验公式和试验结果,可以制定合理的桩径范围。

三、桩基深度的确定:
桩基深度的确定主要考虑的是地下水位、地质构造以及土层性质等因素。

通常情况下,为了保证桩基的稳定性,桩基的埋深应大于冻土深度以
及地下水位。

同时,需要对桩基周边土壤的承载能力进行充分的考虑,以
确定桩基的深度。

四、配筋的确定:
配筋是为了增加桩基的抗弯强度,提高桩基的承载能力。

根据桩基的
受力条件和受力特点,可以通过抗弯设计原理计算出合理的配筋数量和位置。

通常情况下,桩基的配筋应满足一定的比例,以保证桩基在受力时能
够充分发挥其抗弯强度。

总之,塔吊桩基础计算涉及了多个方面的内容,包括桩基数量、直径、深度以及配筋等关键参数的确定。

这些参数的选择需要综合考虑地基的承
载能力、土质条件以及塔吊的重量等因素,以保证桩基的稳定性和安全性。

在实际计算中,还需要对相关规范和标准进行参考,并尽量进行现场试验
和监测,以验证计算结果的合理性。

塔式起重机机基础计算书

塔式起重机机基础计算书

塔吊矩形板式桩基础计算书一、塔机属性塔机型号QTZ80(浙江建机)(m) 40塔机独立状态的最大起吊高度H塔机独立状态的计算高度H(m) 45塔身桁架结构方钢管塔身桁架结构宽度B(m) 1.6二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值塔身自重G(kN) 251(kN) 62.2 起重臂自重G1起重臂重心至塔身中心距离R(m) 23.4G1小车和吊钩自重G(kN) 3.82k三、桩顶作用效应计算矩形桩式基础布置图承台及其上土的自重荷载标准值:Gk =bl(hγc+h'γ')=5×5×(1.25×25+0×19)=781.25kN承台及其上土的自重荷载设计值:G=1.2Gk=1.2×781.25=937.5kN桩对角线距离:L=(ab 2+al2)0.5=(32+32)0.5=4.24m1、荷载效应标准组合轴心竖向力作用下:Qk =(Fk+Gk)/n=(490.2+781.25)/4=317.86kN荷载效应标准组合偏心竖向力作用下:Qkmax =(Fk+Gk)/n+(Mk+FVkh)/L=(490.2+781.25)/4+(1067.6+65.95×1.25)/4.24=588.93kNQkmin =(Fk+Gk)/n-(Mk+FVkh)/L=(490.2+781.25)/4-(1067.6+65.95×1.25)/4.24=46.8kN 2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Qmax =(F+G)/n+(M+Fvh)/L=(588.24+937.5)/4+(1577.89+92.33×1.25)/4.24=780.55kNQmin =(F+G)/n-(M+Fvh)/L=(588.24+937.5)/4-(1577.89+92.33×1.25)/4.24=-17.68kN 四、桩承载力验算桩身周长:u=πd=3.14×0.4=1.26m桩端面积:Ap=πd2/4=3.14×0.42/4=0.13m2Ra =uΣqsia·li+qpa·Ap=1.26×(0.46×15+2.04×15+1.41×15+4.77×25+9.04×50+0.28×70)+2200×0.1 3=1092.65kNQk =317.86kN≤Ra=1092.65kNQkmax =588.93kN≤1.2Ra=1.2×1092.65=1311.18kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=46.8kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向预应力钢筋截面面积:A ps=nπd2/4=11×3.14×10.72/4=989mm2 (1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Qmax=780.55kN 桩身结构竖向承载力设计值:R=2700kN满足要求!(2)、轴心受拔桩桩身承载力Qkmin=46.8kN≥0不需要进行轴心受拔桩桩身承载力计算!五、承台计算承台有效高度:h0=1250-50-20/2=1190mmM=(Qmax +Qmin)L/2=(780.55+(-17.68))×4.24/2=1618.29kN·mX方向:Mx =Mab/L=1618.29×3/4.24=1144.3kN·mY方向:My =Mal/L=1618.29×3/4.24=1144.3kN·m。

塔吊基础设计计算书

塔吊基础设计计算书

塔吊基础设计计算书四桩基础计算一、塔吊的基本参数信息塔吊型号:QTZ63,塔吊起升高度H=101.00m,塔吊倾覆力矩M=630.00kN.m,混凝土强度等级:C35,塔身宽度B=2.50m,基础以上土的厚度D=1.50m,自重F1=450.80kN,基础承台厚度Hc=1.00m,最大起重荷载F2=60.00kN,基础承台宽度Bc=4.00m,桩钢筋级别:II级钢,桩直径或者方桩边长=0.60m,桩间距a=3.50m,承台箍筋间距S=200.00mm,承台砼的保护层厚度=50.00mm。

二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F1=450.80kN,塔吊最大起重荷载F2=60.00kN,作用于桩基承台顶面的竖向力F=1.2×(F1+F2)=612.96kN,塔吊的倾覆力矩M=1.4×630.00=882.00kN。

三、矩形承台弯矩及单桩桩顶竖向力的计算图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算依据《建筑桩技术规范》JGJ94-94的第5.1.1条。

其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=612.96kN;G──桩基承台的自重G=1.2×(25×Bc×Bc×Hc/4+20×Bc×Bc×D/4)=1.2×(25×4.00×4.00×1.00+20×4.00×4.00×1.50)=1056.00kN;Mx,My──承台底面的弯矩设计值,取882.00kN.m;xi,yi──单桩相对承台中心轴的XY方向距离a/2=1.75m;Ni──单桩桩顶竖向力设计值(kN);经计算得到单桩桩顶竖向力设计值,最大压力:N=(612.96+1056.00)/4+882.00×1.75/(4×1.752)=543.24kN 。

C7022塔吊基础

C7022塔吊基础

塔吊桩基础的计算书一. 参数信息塔吊型号:SC7022,自重(包括压重)F1=900.00kN,最大起重荷载F2=160.00kN塔吊倾覆力距M=2400.00kN.m,塔吊起重高度H=48.70m,塔身宽度B=2m混凝土强度:C35,钢筋级别:Ⅱ级,承台长度Lc或宽度Bc=6.50m桩直径或方桩边长 d=1.00m,桩间距a=4.00m,承台厚度Hc=1.70m基础埋深D=0.00m,承台箍筋间距S=200mm,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=900.00kN2. 塔吊最大起重荷载F2=160.00kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=1272.00kN塔吊的倾覆力矩 M=1.4×2400.00=3360.00kN.m三. 矩形承台弯矩的计算计算简图:图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算(依据《建筑桩基础技术规范》JGJ94-94的第5.1.1条)其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=1.2×1060.00=1272.00kN;G──桩基承台的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D)=2154.75kN; M x,M y──承台底面的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──单桩桩顶竖向力设计值(kN)。

经计算得到单桩桩顶竖向力设计值:最大压力:N=(1272.00+2154.75)/4+3360.00×(4.00×1.414/2)/[2×(4.00×1.414/2)2]=1450.75kN 没有抗拔力!2. 矩形承台弯矩的计算(依据《建筑桩基础技术规范》JGJ94-94的第5.6.1条)其中 M x1,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i1──扣除承台自重的单桩桩顶竖向力设计值(kN),N i1=N i-G/n。

QTZ6510塔吊四桩基础的计算书

QTZ6510塔吊四桩基础的计算书

2#塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

一. 参数信息本计算书参考塔吊说明书荷载参数进行验算。

二. 荷载计算1. 塔机基础竖向荷载1) 塔机工作状态竖向荷载标准值F k=573kN2) 塔机非工作状态竖向荷载标准值F k=556kN3) 基础以及覆土自重标准值G k=6×6×(1.40×25+0.4×17)=1504.8kN2. 塔机基础水平荷载1) 工作状态下塔机基础水平荷载标准值F vk = 29.00kN2) 非工作状态下塔机基础水平荷载标准值F vk = 71.00kN3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k = 1600.00kN.m非工作状态下,标准组合的倾覆力矩标准值M k = 1722.00kN.m三. 桩竖向力计算非工作状态下:Qk =(Fk+Gk)/n=(556+1504.80)/4=515.20kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(556+1504.8)/4+Abs(1722.00+71.00×1.40)/6.22=807.95kN Q kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(556+1504.8-0)/4-Abs(1722.00+71.00×1.40)/6.22=222.45kN 工作状态下:Q k=(F k+G k+F qk)/n=(573+1504.80)/4=519.45kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(573+1504.8)/4+Abs(1600.00+29.00×1.40)/6.22=783.14kN Q kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(573+1504.8-0)/4-Abs(1600.00+29.00×1.40)/6.22=255.76kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(573)/4+1.35×(1600.00+29.00×1.40)/6.22=549.37kN最大拔力 N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h)/L=1.35×(573)/4-1.35×(1600.00+29.00×1.40)/6.22=-162.60kN非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×556/4+1.35×(1722.00+71.00×1.40)/6.22=582.87kN最大拔力 N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×556/4-1.35×(1722.00+71.00×1.40)/6.22=-207.57kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。

塔吊基础计算书

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

QTZ60塔吊桩基础的计算书

QTZ60塔吊桩基础的计算书

QTZ60(独立式)塔吊桩基础的计算书一. 参数信息塔吊型号:QTZ60,自重(包括压重)F1=378kN,最大起重荷载F2=60kN塔吊倾覆力距M=600kN.m,塔吊起重高度H=40.1m,塔身宽度B=1.6m混凝土强度:C35,钢筋级别:Ⅱ级,承台长度Lc或宽度Bc=5m桩直径d=0.6m,桩间距a=3.6m,承台厚度Hc=0.8m基础埋深D=1.5m,承台箍筋间距S=200mm,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算塔吊自重(包括压重)F1=378kN塔吊最大起重荷载F2=60kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=525.6kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 矩形承台弯矩的计算计算简图:图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-2008的第5.1.1条)其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=1.2×438=525.6kN; G──桩基承台的自重,G=1.2×(25.0×Bc×Lc×Hc+20.0×Bc×Lc×D)=1500.00kN;Mx,My──承台底面的弯矩设计值(kN.m);xi,yi──单桩相对承台中心轴的XY方向距离(m);Ni──单桩桩顶竖向力设计值(kN)。

经计算得到单桩桩顶竖向力设计值:最大压力:N=(525.6+1500)/4+840×(3.6×1.414/2)/[2×(3.6×1.414/2)2]=671.4kN没有抗拔力!2. 矩形承台弯矩的计算(依据《建筑桩技术规范》JGJ94-2008的第5.9.2条)其中 Mx1,My1──计算截面处XY方向的弯矩设计值(kN.m);xi,yi──单桩相对承台中心轴的XY方向距离(m);Ni1──扣除承台自重的单桩桩顶竖向力设计值(kN),Ni1=Ni-G/n。

塔吊基础计算书(CFG桩复合地基)

塔吊基础计算书(CFG桩复合地基)

塔吊桩基础计算书一. 参数信息塔吊型号: 中联QTZ80(5610)自重(包括压重): F1=694.3kN最大起重荷载: F2=60.00kN 塔吊倾覆力距: M=630.00kN.m塔吊起重高度: H=105.60m 塔身宽度: B=1.60m桩混凝土等级: C20 承台混凝土等级: C30 保护层厚度: 50mm 矩形承台边长: 6.00m承台厚度: Hc=1.350m 承台箍筋间距: S=200mm承台钢筋级别: Ⅱ级承台预埋件埋深: h=0.50m承台顶面埋深: D=5.000m 桩直径: d=0.400m桩间距: a=4.000m 桩钢筋级别: Ⅱ级桩入土深度: 23.0m 桩型与工艺: 干作业钻孔灌注桩二. 基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=6.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:由于偏心距 e=M/(F×1.2+G×1.2)=882.00/(904.8+5778.00)=0.13≤B/6=1.00所以按小偏心计算,计算公式如下:当考虑附着时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=754.3kN;G──基础自重与基础上面的土的自重,G=25.0×B c×B c×H c+20.0×B c×B c×D =4815.00kN;B c──基础底面的宽度,取B c=6.00m;W──基础底面的抵抗矩,W=B c×B c×B c/6=36.00m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;经过计算得到:最大压力设计值 P max=1.2×(754.3+4815.00)/6.002+882.00/36.00=210.14kPa最小压力设计值 P min=1.2×(754,3+4815.00)/6.002-882.00/36.00=161.14kPa有附着的压力设计值 P k=1.2×(754.3+4815.00)/6.002=185.64kPa四. 地基基础承载力验算Quk =Qsk + Q pk = u ∑qsik l i + q pk * Ap=1.257 (0.35*35+1.5*40+1.8*50+6.4*70+3*50+9.95*60) +2500*0.126=2021.06kN按规范安全系数标准计算单桩竖向承载力特征值Ra = Quk/2 =1010.53 kN复合地基承载力计算桩间距4m,采用正方形或矩形布桩m =0.0157取β=0.80fsp,k=m*Ra/Ap+β*(1-m)*fs,k= 0.0157*1010.53/0.1256+0.8*(1-0.0157)*120= 218.81kPa> P K偏心荷载作用:1.2×fsp,k=262.57 kPa >P kmax=210.14kPa满足要求。

_塔吊四桩基础

_塔吊四桩基础

塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2019)。

一. 参数信息本计算书依据塔吊规范JGJ187进行验算。

二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=660.8kN2) 基础以及覆土自重标准值G k=4×4×0.80×25=320kN3) 起重荷载标准值F qk=60kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)W k=0.8×0.7×1.95×1.54×0.2=0.34kN/m2q sk=1.2×0.34×0.35×1.83=0.26kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.26×100.00=25.85kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×25.85×100.00=1292.54kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m2) W k=0.8×0.7×1.95×1.54×0.35=0.59kN/m2q sk=1.2×0.59×0.35×1.83=0.45kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.45×100.00=45.24kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×45.24×100.00=2261.94kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=-387+0.9×(800+1292.54)=1496.29kN.m非工作状态下,标准组合的倾覆力矩标准值M k=387+2261.94=2648.94kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(660.8+320.00)/4=245.20kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(660.8+320)/4+Abs(2648.94+45.24×0.80)/3.89=935.73kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(660.8+320-0)/4-Abs(2648.94+45.24×0.80)/3.89=-445.33kN工作状态下:Q k=(F k+G k+F qk)/n=(720.8+320.00)/4=260.20kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(720.8+320)/4+Abs(1496.29+25.85×0.80)/3.89=650.32kNQ kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(720.8+320-0)/4-Abs(1496.29+25.85×0.80)/3.89=-129.92kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(720.8)/4+1.35×(1496.29+25.85×0.80)/3.89=769.93kN 最大拔力 N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h)/L=1.35×(720.8)/4-1.35×(1496.29+25.85×0.80)/3.89=-283.39kN 非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×660.8/4+1.35×(2648.94+45.24×0.80)/3.89=1155.24kN 最大拔力 N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×660.8/4-1.35×(2648.94+45.24×0.80)/3.89=-709.20kN 2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。

QTZ6013塔式起重机基础计算书

QTZ6013塔式起重机基础计算书

QTZ6013桩基础计算书一、计算依据1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-20114、《建筑结构荷载规范》GB50009-2012二、参数信息三、桩顶作用效应计算(图1)承台配筋图(图2)暗梁配筋图(图3)桩配筋图(图4)基础布置图承台及其上土的自重荷载标准值:Gk=bl(hγc+h'γ')=6.45×6.45×(1.7×25+0×19)=1768.106kN承台及其上土的自重荷载设计值:G=1.35Gk=1.35×1768.106=2386.943kN桩对角线距离:L=(ab2+al2)0.5=(3.52+3.52)0.5=4.95m1、荷载效应标准组合轴心竖向力作用下:Qk=(Gk1+Gk)/n=(779.3+1768.106)/4=636.852kN荷载效应标准组合偏心竖向力作用下:Q kmax=(Gk1+G k)/n+(M k+F Vk h)/L=(779.3+1768.106)/4+(2766+40.2×1.7)/4.95=1209 .475KNQ kmin=(Gk1+G k)/n-(M k+F Vk h)/L=(779.3+1768.106)/4-(2766+40.2×1.7)/4.95=64.22 8KN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(Fk+G)/n+(M+F v h)/L=(795.3+2386.943)/4+(1.35×2766+40.2×1.35×1.7)/4.95 =1568.602kNQ min=(Fk+G)/n-(M+F v h)/L=(795.3+2386.943)/4-(1.35×2766+40.2×1.35×1.7)/4.95=22.52kN四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14159×0.6=1.885m桩端面积:A p=πd2/4=3.14159×0.6×0.6/4=0.283m2承载力计算深度:min(b/2,5)=3.225m承台底净面积:A c=(bl-nA p)/n=(6.45×6.45-4×0.283)/4=10.118m2复合桩基竖向承载力特征值:R a=ψuΣq sia·l i+q pa·A p+ηc f ak A c=1×1.885×1803.48+1703.249×0.283+0.1×10.118×130. 06=4012.652kNQ k=636.852kN≤R a=4012.652kNQ kmax=1209.475kN≤1.2R a=1.2×4012.652=4815.182kN满足要求2、桩基竖向抗拔承载力计算Q kmin= 64.228KN≥0 kN满足要求不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=m1πd2/4=8×3.14159×18/1000×18/1000/4=0.002m2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=1568.602kN桩身结构竖向承载力设计值:R=1600kNQ=1568.602kN<=R=1600kN满足要求(2)、轴心受拔桩桩身承载力Q kmin=64.228kN≥0 kN满足要求不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009,第6.2.2条:纵向钢筋的最小配筋率,对于灌注桩不宜小于0.2%~0.65%(小直径桩取最高值);对于预制桩不宜小于0.8%;对于预应力管桩不宜小于0.45%。

QTZ6021板式桩基础塔吊方案计算书

QTZ6021板式桩基础塔吊方案计算书

QTZ6021板式桩基础塔吊方案计算书(按JGJ187-2009规范)矩形板式桩基础计算书一、塔机属性塔机型号 QTZ6021 塔机独立状态的最大起吊高度 H 0 (m) 40.00 塔机独立状态的计算高度 H(m) 43.00 塔身桁架结构方钢管塔身桁架结构宽度 B(m) 1.60 二、塔机荷载塔机竖向荷载简图 1 、塔机自身荷载标准值塔身自重 G 0矩形板式桩基础计算书一、塔机属性二、塔机荷载塔机竖向荷载简图QTZ6021板式桩基础塔吊方案计算书(按JGJ187-2009规范)(2)1 、塔机自身荷载标准值塔身自重 G 0 (kN) 251.00 起重臂自重 G 1 (kN) 37.40 起重臂重心至塔身中心距离 R G1 22.00 小车和吊钩自重 G2 (kN) 3.80 最大起重荷载 Q max (kN) 60.00 小车和吊钩至塔身中心的最小距离1、塔机自身荷载标准值塔身自重G0(kN)251.00起重臂自重G1(kN)37.40起重臂重心至塔身中心距离R G122.00小车和吊钩自重G2(kN) 3.80最大起重荷载Q max(kN)60.00小车和吊钩至塔身中心的最小距离R Qmax(m)11.50最小起重荷载Q min(kN)10.00最大吊物幅度R Qmin(m)50.00最大起重力矩M2(kN·m)Max[60.00×11.50,10.00×50.00]=690.002、风荷载标准值W k(kN/m2)QTZ6021板式桩基础塔吊方案计算书(按JGJ187-2009规范)(3)3 、塔机传递至承台荷载标准值工作状态塔机自重标准值 F k1 (kN)251.00+37.40+3.80+19.80+89.40 = 401.40 起重荷载标准值 F Qk (kN) 60.00 竖向荷载标准值 F k (kN) 401.40+60.00 = 461.40 水平荷载标准值 F v3、塔机传递至承台荷载标准值4、塔机传递至承台荷载设计值QTZ6021板式桩基础塔吊方案计算书(按JGJ187-2009规范)(4)三、桩顶作用效应计算承台布置桩数 n 4 承台高度 h(m) 1.25 承台长 l(m)4.80 承台宽 b(m) 4.80 承台长向桩心距 a l (m) 3.60 承台宽向桩心距 a b (m) 3.60 桩直径 d(m) 0.60 承台参数承台混凝土等级 C25 承台混三、桩顶作用效应计算承台布置桩数n4承台高度h(m) 1.25承台长l(m) 4.80承台宽b(m) 4.80承台长向桩心距a l(m) 3.60承台宽向桩心距a b(m) 3.60桩直径d(m)0.60承台参数承台混凝土等级C25承台混凝土自重γC(kN/m3)25.00承台上部覆土厚度h'(m)0.00承台上部覆土的重度γ'(kN/m3)19.00承台混凝土保护层厚度δ(mm)50配置暗梁是矩形桩式基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4.80×4.80×(1.25×25.00+0.00×19.00)=720.00kN承台及其上土的自重荷载设计值:G=1.2G k=1.2×720.00=864.00kN桩对角线距离:L=(a b2+a l2)0.5=(3.602+3.602)0.5=5.09m(责任编辑:品茗软件)QTZ6021板式桩基础塔吊方案计算书(按JGJ187-2009规范)(5)1 、荷载效应标准组合轴心竖向力作用下: Q k =(F k +Gk )/n=(401.40+720.00)/4=280.35kN 荷载效应标准组合偏心竖向力作用下: Q kmax =(F k +G k )/n+(M k +F Vk h)/L=(401.40+720.00)/4+(1263.60+75.371.25)/51、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k)/n=(401.40+720.00)/4=280.35kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k)/n+(M k+F Vk h)/L=(401.40+720.00)/4+(1263.60+75.37×1.25)/5.09=547.05kNQ kmin=(F k+G k)/n-(M k+F Vk h)/L=(401.40+720.00)/4-(1263.60+75.37×1.25)/5.09=13.65kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G)/n+(M+F v h)/L=(481.68+864.00)/4+(1840.40+105.52×1.25)/5.09=723.82kNQ min=(F+G)/n-(M+F v h)/L=(481.68+864.00)/4-(1840.40+105.52×1.25)/5.09=-50.98kN四、桩承载力验算(责任编辑:品茗软件)QTZ6021板式桩基础塔吊方案计算书(按JGJ187-2009规范)(6)1 、桩基竖向抗压承载力计算桩身周长: u=d=3.140.60=1.88m 桩端面积: A p =d2 /4=3.140.60 2 /4=0.28m 2 R a =uq sia l i +q pa A p=1.88(13.005.00+7.4024.00+1.6018.0)+200.000.28=568.13kN 2 、桩基竖向抗1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.60=1.88m桩端面积:A p=πd2/4=3.14×0.602/4=0.28m2R a=uΣq sia·l i+q pa·A p=1.88×(13.00×5.00+7.40×24.00+1.60×18.0)+200.00×0.28=568.13kN2、桩基竖向抗拔承载力计算Q kmin=13.65kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向预应力钢筋截面面积:A ps=nπd2/4=11×3.14×10.72/4=989mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=723.82kN桩身结构竖向承载力设计值:R=2700.00kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=13.65kN≥0不需要进行轴心受拔桩桩身承载力计算!(责任编辑:品茗软件)QTZ6021板式桩基础塔吊方案计算书(按JGJ187-2009规范)(7)五、承台计算承台配筋 ( 设暗梁 ) 承台梁上部配筋 HRB335 618 承台梁腰筋配筋 HPB235 414 承台梁底部配筋 HRB335 820 承台梁箍筋配筋 HPB235 12@200 承台梁箍筋肢数 n 4 暗梁计算宽度 l'(m) 0.60 1 、荷载计算塔五、承台计算1、荷载计算塔身截面对角线上立杆的荷载设计值:F max=F/n+M/(20.5B)=481.68/4+1840.40/(20.5×1.60)=933.77kNF min=F/n-M/(20.5B)=481.68/4-1840.40/(20.5×1.60)=-692.93kNV max=483.15kN,M max=341.66kN·m,M min=-681.24kN·m2、受剪切计算截面有效高度:h0=h-δc=1250-50=1200mm受剪切承载力截面高度影响系数:βhs=(800/1200)1/4=0.90塔吊边至桩边的水平距离:a1b=(a b-B-d)/2=(3.60-1.60-0.60)/2=0.70ma1l=(a l-B-d)/2=(3.60-1.60-0.60)/2=0.70m 计算截面剪跨比:λb'=a1b/h0=0.70/1.20=0.58,取λb=0.58;λl'= a1l/h0=0.70/1.20=0.58,取λl=0.58;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.58+1)=1.11αl=1.75/(λl+1)=1.75/(0.58+1)=1.11V max=483.15kN≤βhsαb f t l'h0=0.90×1.11×1270.00×0.60×1.20=913.23kNV max=483.15kN≤βhsαl f t l'h0=0.90×1.11×1270.00×0.60×1.20=913.23kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.60+2×1.20=4.00ma b=3.60m≤B+2h0=4.00m,a l=3.60m≤B+2h0=4.00m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台梁底部配筋αS1= M min/(α1f c l'h02)=681.24×106/(1.05×11.90×600×12002)=0.063ζ1=1-(1-2αS1)0.5=1-(1-2×0.063)0.5=0.065γS1=1-ζ1/2=1-0.065/2=0.967A S1=M min/(γS1h0f y1)=681.24×106/(0.967×1200×300)=1957mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.27/300)=max(0.2,0.19)=0.20%梁底需要配筋:A1=max(A S1, ρlh)=ma x(1957,0.002×600×1250)=1957mm2梁底部实际配筋:A S1'=2514mm2≥A S1=1957mm2满足要求!(2)、承台梁上部配筋αS2= M max/(α2f c l'h02)=341.66×106/(1.05×11.90×600×12002)=0.032ζ2=1-(1-2αS2)0.5=1-(1-2×0.032)0.5=0.032γS2=1-ζ2/2=1-0.032/2=0.984A S1=M max/(γS2h0f y2)=341.66×106/(0.984×1200×300)=965mm2最小配筋率:ρ=max(0.2,45f t/f y2)=max(0.2,45×1.27/300)=max(0.2,0.19)=0.20%梁上部需要配筋:A2=max(A S2, ρl'h)=max(965,0.002×600×1250)=1500mm2梁上部实际配筋:A S2'=1527mm2≥A S2=1500mm2满足要求!(3)、梁腰筋配筋梁腰筋按照构造配筋4Φ14(4)、承台梁箍筋计算箍筋抗剪计算截面剪跨比:λ'=(L-20.5B)/(2h0)=(4.80-20.5×1.60)/(2×1.20)=1.06取λ=1.50混凝土受剪承载力:1.75f t l'h0/(λ+1)=1.75×1.27×0.60×1.20/(1.50+1)=0.64kN V max=483.15kN>1.75f t l'h0/(λ+1)=0.64kNnA sv1/s=4×(3.14×122/4)/200=2.26(V-0.7f t l'h0)/(1.25f yv h0)=(483.15×103-0.7×1.27×600×1200)/(1.25×210×1200)=-0.50mm2/mm nA sv1/s≥(V-0.7f t lh0)/(1.25f yv h0)满足要求!配箍率验算ρsv=nA sv1/( l's)=4×(3.14×122/4)/(600×200)=0.38%≥p sv,min=0.24f t/f yv=0.24×1.27/210=0.15%满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。

塔吊基础设计计算书(桩基础)

塔吊基础设计计算书(桩基础)

塔吊基础设计计算书(桩基础)一、 编制依据1、 《起重机械安全规程》GB6067-2010;2、 《塔式起重机起重机械安全规程》GB5144-2012;3、 《建筑施工塔式起重机安装、使用、拆卸安全技术规程》JGJ196-2010 ;4、 《建筑机械使用安全技术规程》JGJ 33-2012 ;5、 《建筑施工安全检查标准》JGJ 59、19-2011 ;6、 塔式起重机图纸及说明书;二、 设计依据1、塔吊资料根据施工现场场地条件及周边环境情况,选用2台QTZ80塔式起 重机。

2、岩土力学资料,(BZK8孑L )序号 地层名称 厚度(m )桩侧阻力标准值q sia(kPa )岩层桩端极限阻力 标准值q pa ( kPa )1 人工填土2.0 /2 砾砂 14.3 403 强风化粉砂岩 0.7 604 中风化粉砂岩 1.0 100 1800 5微风化粉砂岩27.718040003、塔吊基础受力情况基础荷载基础顶面所受垂直力 基础顶面所受水平力 基础所受倾翻力矩 基础所受扭矩三、基础设计主要参数荷载工况P ( kN ) M ( kN.m )F kF h Mz 工作状态 非工作状态950 30 2780 340850703630F k .... F h ---- M —— M----塔吊基础受力示意图基础桩:4①400预制管桩承台混凝土等级:C30 ;承台面标高:-1.50m 。

比较桩基础塔吊基础的工作状态和非工作状态的受力情况,桩基础按非工作状态计算,受力如上图所示:F k=850.0kNG k = 25 X 4 X 4 X 1.50=600kNF h=70kNM k=3630+70 X 1.50=3735kN.m四、单桩允许承载力特征值计算1、单桩竖向承载力特征值:1 )、按地基土物理力学指标与承载力参数计算A p = n r2= 0.5027m 2R a 二艮a R ra R pa ( DBJ15-31-2003 ) ( 10.2.4-1 )G =0.40;C2 = 0.05; f rs - 10MPa; f rp =10MPaR sa q s」=3.1415926 0.8 (40 13.76 60 0.7) =1488.9kN3R ra1 =0.8U p C2f rs h r =0.8 3.1415926 0.8 0.05 10 10 0.5 =502.6kN3R ra2 =0.8U p C2f rs h r =0.8 3.1415926 0.8 0.05 10 10 1.0 =1005.2kN 式中:= 0.7”2E-jPgd ;=0.07226m.Wl 』072260.8=0.0289mb o =0.9(1.5d+0.5)=1.53m 桩长 L = 15.96m• L=0.60 X 15.96=9.576>4,按〉• L=4 查表 得:x =2.441(DBJ15-31-2003 ) ( 10.2.22 )0 6248 沢 2 汇1 78 汽 103 汇 0 05286R Ha = — (1.25 22 0.5625%)(1 0.8 ------------- 二^)=236.7kN 2 汉 1.78 汉 10 汉 0.65单桩抗拔力特征值计算 R ta =u^ i q sia l i 0.9G 0( DBJ15-31-2003 ) ( 10.2.10 )=950.9+180.5= 1131.4kN7 lU p Wsia j = 3.14 X 0.8 X (0.4 X 40 X 13.76+0.6 X 60 X 0.7 +0.7 X 100 X 1.0+0.7 X 180 X 0.5) = 950.9kN 0.9G 0 = 0.9 Xn X 0.4 2 X 15.96 X 25 = 180.5kN五、 单桩桩顶作用力计算和承载力验算1、轴心竖向力作用下F k +G k Q ik匕 (DBJ15-31-2003 ) ( 10.2.1-1 )33.14 0.832[0.822(82.0 102.80 1071) 0.5625% (0.8-0.06 2)2]EI=0.85E c I 0=0.85X 2.80 X 107 X 0.0 289=687820mb。

STT153塔吊基础计算书

STT153塔吊基础计算书

STT153塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

一. 参数信息塔吊型号: STT153塔机自重标准值:Fk1=2682.00kN起重荷载标准值:Fqk=80.00kN塔吊最大起重力矩:M=3041.00kN.m塔吊计算高度: H=60.6m塔身宽度: B=2.00m非工作状态下塔身弯矩:M1=5175kN.m桩混凝土等级: C35承台混凝土等级:C35保护层厚度: 50mm矩形承台边长: 5.00m承台厚度: Hc=1.350m承台箍筋间距: S=500mm承台钢筋级别: HRB400承台顶面埋深: D=0.000m桩直径: d=0.800m桩间距: a=3.400m 桩钢筋级别:HRB400桩入土深度: 40.00m 桩型与工艺:泥浆护壁钻(冲)孔灌注桩计算简图如下:二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=2682kN2) 基础以及覆土自重标准值G k=5×5×1.35×25=843.75kN承台受浮力:F lk=5×5×4.45×10=1112.5kN3) 起重荷载标准值F qk=80kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)=0.8×1.59×1.95×1.39×0.2=0.69kN/m2=1.2×0.69×0.35×2=0.58kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.58×60.60=35.10kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×35.10×60.60=1063.56kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.40kN/m2)=0.8×1.64×1.95×1.39×0.40=1.42kN/m2=1.2×1.42×0.35×2.00=1.19kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=1.19×60.60=72.41kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×72.41×60.60=2194.01kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=5175+0.9×(3041+1063.56)=8869.10kN.m非工作状态下,标准组合的倾覆力矩标准值M k=5175+2194.01=7369.01kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(2682+843.75)/4=881.44kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(2682+843.75)/4+(7369.01+72.41×1.35)/4.81=2434.55kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(2682+843.75-1112.5)/4-(7369.01+72.41×1.35)/4.81=-949.80kN 工作状态下:Q k=(F k+G k+F qk)/n=(2682+843.75+80)/4=901.44kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(2682+843.75+80)/4+(8869.10+35.10×1.35)/4.81=2756.10kNQ kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(2682+843.75+80-1112.5)/4-(8869.10+35.10×1.35)/4.81=-1231.35kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(2682+80)/4+1.35×(8869.10+35.10×1.35)/4.81=3435.97kN最大拔力N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h)/L=1.35×(2682+80)/4-1.35×(8869.10+35.10×1.35)/4.81=-1571.62kN非工作状态下:最大压力N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×2682/4+1.35×(7369.01+72.41×1.35)/4.81=3001.88kN最大拔力N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×2682/4-1.35×(7369.01+72.41×1.35)/4.81=-1191.53kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。

TC6517塔吊基础计算书

TC6517塔吊基础计算书

1#塔吊四桩基础的计算书(TC6517)依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187)。

一. 参数信息塔吊型号: TC6517(QTZ160) 塔机自重标准值:Fk1=800.00kN起重荷载标准值:Fqk=100.00kN塔吊最大起重力矩:M=1600.00kN.m 塔吊计算高度: H=54m塔身宽度: B=2.0m非工作状态下塔身弯矩:M1=3336.7kN.m 桩混凝土等级: C35承台混凝土等级:C35保护层厚度: 50mm 矩形承台边长: 4.00m承台厚度: Hc=1.400m承台箍筋间距: S=200mm 承台钢筋级别: HRB335桩直径: d=0.850m 桩间距: a=3.000m 桩钢筋级别:HRB335 桩入土深度: 17.30m 桩型与工艺: 大直径灌注桩(清底干净)计算简图如下:二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=800kN2) 基础自重标准值G k=4×4×1.40×25=560kN2. 附加弯矩计算1) 工作状态下附加弯矩计算a. 塔机水平合力标准值F vk=29.43 kNb. 附加弯矩标准值M sk=29.43×16.4=482.65kN.m2) 非工作状态下附加弯矩计算a. 塔机水平合力标准值F vk=118.6 kNb. 附加弯矩标准值M sk=118.6×16.4=1945.04kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=2587.6+482.65=3070.3kN.m非工作状态下,标准组合的倾覆力矩标准值M k=3336.7+2254.35=5281.7kN.m三. 桩竖向力计算非工作状态下:y=[(3/2)2+(3/2)2]0.5=2.12∑2y i=2×﹛[(3/2)2+(3/2)2]0.5﹜2=9Q k=(F k+G k)/n=(800+560.00)/4=340.00kNQ kmax=(F k+G k)/n+(M k+F vk×h)×y/∑2y i=(800+560)/4+(5281.7+118.6×1.40)×2.12/9=1624.8kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h) y/∑2y i=(800+560-40)/4-(3070.3+29.43×1.40)×2.12/9=-944.8kN 工作状态下:Q k=(F k+G k+F qk)/n=(800+560.00+100)/4=365.00kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h) y/∑2y i=(800+560+100)/4+(3070.3+×29.43×1.40)×2.12/9=1098.8kN Q kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h) y/∑2y i=(800+560+100-40)/4-(3070.3+×29.43×1.40)×2.12/9=-368.8kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h) y/∑2y i=1.35×(800+100)/4+1.35×(3070.3+×29.43×1.40) ×2.12/9=1483.4kN最大拔力 N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h) y/∑2y i=1.35×(800+100)/4-1.35×(3070.3+×29.43×1.40) ×2.12/9=-487.9kN非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h) y/∑2y i=1.35×800/4+1.35×(5281.7+118.6×1.40) ×2.12/9=2193.5kN最大拔力 N i=1.35×F k/n-1.35×(M k+F vk×h) y/∑2y i=1.35×800/4-1.35×(5281.7+118.6×1.40) ×2.12/9=-1275.5kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。

中联QTZ80(TC6012)塔吊非标桩基础方案计算书

中联QTZ80(TC6012)塔吊非标桩基础方案计算书

QTZ80(TC6012-6)非标桩基础方案计算书根据麓枫路站现场的实际情况及QTZ80(TC6012)塔机的预装位置地质条件进行计算。

现场桩采用直径800 灌注桩。

12 轴线附近塔吊基础承台底进入冠梁180mm,基础承台底布筋与冠梁顶部布筋高度一致,基础承台顶高出地面约20mm。

23 轴线附近塔吊基础承台底布筋与冠梁底部布筋高度一致,基础承台顶高出地面约100mm。

塔机承台宽度方向超出冠梁100mm。

桩基础示意见附图1,现场桩基础方案为:塔机桩基础承台1. 塔机基础承台大小5.6m*3.5m*1.3m;2. 基础承台上下层长度方向布筋30-φ25@190(HRB400);3. 基础承台上下层宽度方向均布筋24-φ25@148(HRB400);4. 架立筋180-φ12@380/296(HPB300);5. 基础承台上层主筋保护层厚度50mm,下层主筋保护层厚度130mm;6. 基础承台砼标号C35,施工时应捣实,养护期28 天(或达到额定强度);7. 确保固定基节的安装后其中心线与水平面垂直度误差小于1.5/1000;8. 预埋螺栓基础的四组地脚螺栓相对位置必须准确,保证地脚螺栓孔的对角线误差不大于2mm,确保固定基节的顺利安装;9. 钢筋的弯折等其他要求与厂家的基础图要求一致。

桩1. 共用原来的支护桩及冠梁,外加两根直径800mm 的灌注桩;2. 外加两根灌注桩定位尺寸详见附图1,桩底比基坑底低2m,桩顶进入承台100mm;3. 桩主筋通长布置,12-φ20@183(HRB400),见附图2;4. 桩身布置φ8(HPB300)螺旋箍筋,桩顶以下5D 螺旋箍筋间距100mm,其余间距300mm;5. 桩身每隔2m 设置加强筋φ20@2000(HRB400);6. 桩身混凝土≥水下C30;7. 桩端的持力层主要为强风化板岩,进入持力层深度从基坑底高度算起≥2m, 12 轴线塔吊L≥17.33m,23 轴线塔吊L≥16.53m;8. 灌注桩施工工艺同支护桩。

塔吊基础设计(非工作状态)

塔吊基础设计(非工作状态)

1号(非工作状态)塔吊桩基础的计算书一. 参数信息塔吊型号:QT80A,自重(包括压重)F1=1076.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=3875.40kN.m,塔吊起重高度H=120.00m,塔身宽度B=2.50m混凝土强度:C35,钢筋级别:Ⅱ级,承台边长Lc=5.00m桩直径或方桩边长d=0.80m,桩间距a=4.00m,承台厚度Hc=0.80m基础埋深D=1.50m,承台箍筋间距S=200mm,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=1076.00kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力F=1.2×(F1+F2)=1363.20kN塔吊的倾覆力矩M=1.4×3875.40=5425.56kN.m三. 承台弯矩的计算计算简图:图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算(依据《建筑桩基础技术规范》JGJ94-94的第5.1.1条)其中F──作用于桩基承台顶面的竖向力设计值,F=1.2×1136.00=1363.20kN;G──桩基承台的自重,G=1.2×(25.0×1.732×Bc×Bc×Hc/4+20.0×1.732×Bc ×Bc×D/4)=649.50kN;Mx,My──承台底面的弯矩设计值(kN.m);xi,yi──单桩相对承台中心轴的XY方向距离(m);Ni──单桩桩顶竖向力设计值(kN)。

经计算得到单桩桩顶竖向力设计值:最大压力:N=(1363.20+649.50)/3+(5425.56×4.00×1.732 / 3)/[(4.00×1.732/3)2+2×(4.00×1.732/6)2]=2237.08kN最大拔力:N=(1363.20+649.50)/3-(5425.56×4.00×1.732 / 3)/[(4.00×1.732/3)2+2×(4.00×1.732/6)2]=-895.28kN2. 矩形承台弯矩的计算(依据《建筑桩基础技术规范》JGJ94-94的第5.6.2.2条)其中Mx,My──计算截面处XY方向的弯矩设计值(kN.m);x1,y1──单桩相对承台计算轴的XY方向距离(m);Ni1──扣除承台自重的单桩桩顶竖向力设计值(kN),Ni1=Ni-G/n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塔吊基础设计计算书(桩基础)编制依据《建筑地基基础设计规范》( GB50007-2002 );《建筑地基基础设计规范》( DBJ 15-31-2003 );《建筑结构荷载规范》( GB 50009-2001 );《混凝土结构设计规范》(GB 50010-2002 );《简明钢筋混凝土结构计算手册》;《地基及基础》(高等学校教学用书)(第二版);建筑、结构设计图纸;塔式起重机使用说明书;岩土工程勘察报告。

设计依据塔吊资料根据施工现场场地条件及周边环境情况,选用1台QTZ160自升塔式起重机。

塔身自由高度56m,最大吊运高度为203米,最大起重量为10t,塔身尺寸为1.70m x 1.70 m,臂长65m。

岩土力学资料,(BZK8 孔)塔吊基础受力情况基础设计主要参数4①800钻孔桩,基础桩:标高-2.90m ,桩长为15.96m ,桩端桩顶入微风化0.5m 。

承台尺寸:平面4.0 X 4.0 m,厚度 h=1.50m ,桩与承台中心距离为 1.20m ;桩身混凝土等级:C25。

承台混凝土等级:C35;承台面标高:-1.50m (原地面标高 为-0.6m ,建筑物基坑开挖深度为-11.9m )比较桩基础塔吊基础的工作状态和非工作状态的受力 情况,桩基础按非工作状态计算,受力如上图所示:Fk=850.0kNGk=25X 4X 4X 1. 50=600kNFkFh M Mz 工作状态 950 30 2780 340 非工作状 态850703630F k ----基础顶面所受垂直力 F h ----基础顶面所受水平力 M ----基础所受倾翻力矩 M----基础所受扭矩FhF k塔吊基础受力示意图Fk=8bOk \=363%N.m2430 =70kbL.400CFh=70kNMk=3630+70X 1.50=3735kN.m单桩允许承载力特征值计算 单桩竖向承载力特征值:1) 、按地基土物理力学指标与承载力参数计算 Ap =n r2 = 0.5027m2R a =R sa R ra R pa(DBJ15-31-2003 ) ( 10.2.4-1 )C r = 0.40; C 2 =0.05; f rs =10MPa; f r p =10MPaR sa =2 q siah =3.1415926 0.8 (40 13.76 60 0.7) = 1488.9kNR ra1 =0.8u p C 2f r s h r =0.8 3.1415926 0.8 0.05 10 10’ 0.5 =502.6kN3R ra2 =0.8u p C 2f rs h r = 0.8 3.1415926 0.8 0.05 10 10 1.0 = 1005.2kN 32R pa 二 Gf rp A p =0.4 10 10 3.1415926 0.4 =2010.6kNR a =1488.9 502.6 1005.22010.6 = 5007.3kN2) 、桩身截面强度计算c f cA p = 0.7 X 16.7 X 103 X 0.502 7 = 5877kn式中:■- c = 0.7 ; fc = 16.7 X 10 3kn/m2 ; Ap = 0.5027m2 单桩水平承载力特征值计算C25 砼:Ec=2.80 X 10 4N/mm2=3. 15X 107kN/m2 ,ftk =1.78 X 103kN/m2Es=2.0 X 108kN/m2,二 0.3 2000 - 800(0.65% -0.3%) = 0.5625%2000 —400 820汉108 27 一1) 0.5625% (0.8 -0.06 2)2]2(2.80 10=0.07226m3I 。

罟=°^=0.0289m4EI=0.85Ecl0=0.85 X 2.80 X 107 X 0.0 289=687820335 101.53-------------- =0.60m-16878204f Es /-<Ec 丿32 3^^[0.8232W0-(DBJ15-31-2003 ) ( 10.2.19 )b0=0.9(1.5d+0.5)=1.53m桩长 L = 15.96m:• L=0.60 X 15.96=9.576>4,按〉• L=4 查表 得:x =2.441 ; f=0.768 ;m=2 (按圆形截面取值);N ik 丄 Gk =362.5kN ; \二 4 单桩抗拔力特征值计算 Ra =U p 二qsia l j* 0.9G 。

(10.2.10 )=950.9+180.5= 1131.4knU p 、 gal j3.14 X 0.8 X (0.4 X 40 X 13.76+0.6 X 60 X 0.7 +0.7 X 100 X 1.0+0.7 X 180X 0.5 ) = 950.9kn 0.9G0 = 0.9 XnX 0.4 2X 1 5.96 X2 5 = 180.5kN单桩桩顶作用力计算和承载力验算 轴心竖向力作用下0.8A n二 d E s盲1它"g82.0 102.80 107-J 0.5625%] =0.65m 2RHaa mftkW0(1.25 22订)(1; ;'k.),m ftk A nN ik (DBJ15-31-2003 )( 10.2.22 )RHa30.6248 2 1.78 1030.052860.768(1.25 22 0.5625%)(1 - 0.82 1.7「2050.65)= 236.7^(DBJ15-31-2003QikF kG k n(DBJ15-31-2003 ) ( 10.2.1 -1= 850 600 = 362.5 knvRa = 4906.7kN 4偏心竖向力作用下(满足要求)按照Mx作用在对角线进行计算Mx=MI^ 3735kN • m(10.2.1 -2 )_ 850 600 3735 1.2 2- 4 一2汇(1.2 汉、Z2)2=362.5 ± 1100.4「737.9kN £兀=1081.0kN (单桩抗拔力满足要求)水平力作用下(DBJ15-31-2003 )( 10.2.1 -3 )抗倾覆验算根据上图所示,可得:倾覆力矩M 倾二M F h H =3630 70 10.4 = 4358kN.m抗倾覆力矩 aM 抗二仇GQ — 2R ta b i2= (850 600) — 2 1081.0 2.8 =8663.6kN.m2故由上述计算结果,得Q ikmaxF kG knM kx% M ky X i、X i2(DBJ15-31-2003 )1.2R z =屮c f c A p6008.76kN二5877.0kN单桩承载力满足要求®=17.5kN<Rha =236.8kN (满足要求)Hik=也n8663.64358= 1.99 1.6 (抗倾覆满足要求)承台受冲切、受剪切承载力验算按照广东省地基基础设计规范中明确承台受冲切、 受剪切承载力采用验算h0的高度来判断。

(DBJ 15-31-2003 )( 10.5.4-1F i = F - 1.2 刀 Qki = Fk ‘= 950kn ,C35 混凝土: fc = 16.7n/mm2 ,uc = 4X 0. 2 = 0.8m ; h0 = 1500 — 100 — 35 = 1365mmJ F l u c h 0 =1365mm2 l c =2■- fc 8'■ 16.7(承台受冲切、受剪切承载力满足要求)承台配筋计算基础弯矩计算M 八 N i X i = 2X 1312.9 X 1. 2 = 3151kn.m(GB50007 — 2002 ) ( 8.5.16-1 )其中:N i=耳 Mx?叽:.850 3735 1.22 = 1312.9kn ;n ' y ixX i42 (1.22)=-2.4= 1.2m 2基础配筋 基础采用HRB335 钢筋,fy = 300n/mm2 ,950 103377mm8J nr-.nh0 =1500 - 100 - 35 = 1365mmP= 0.1 %, As 2= 0.1 %x 4000 X 136 5 = 5460mm2, 故按AS 1配筋。

取 26 ① 22 (① 22@150)as =26X 380.仁9882.6 mm 2 > As 1 = 8549.7 mm2(满足要求)塔吊基础平面灌注桩桩身配筋根据 DBJ 15-31-2003 中的10.3.9 的要求,本方案设计 中的桩不属于抗拔桩 及承受水 平力为主的桩,所以桩身 配 筋按最小配筋率计算。

灌注桩桩身按最小配筋率 0.5625 %计算。

As \ = ?A = 0.5625 % ~ 400 =2827 .4 mmAs iM 0.9f y h )3151 106 0.9 300 13652二12 ① 20 ,所以桩身按最小配筋率配筋,桩身配筋为A si = 314 .2 12 = 3770 .4mm 2> Asi。

相关文档
最新文档