高中物理功能关系知识点及习题总结复习课程
高三物理复习功能关系专题PPT课件 通用
(3)相互摩擦的系统内一对滑动摩擦力所 做功的和总是为负值,其绝对值恰好等于滑 动摩擦力与相对位移的乘积,即:恰好等于 系统损失的机械能,也等于产生的热力Q
四、能量守恒定律
1、定律内容:能量既不能凭空产生,也不能凭空消失,它 只能从一种形式转化成另一种形式,或者从一个物体转移到 另一个物体。 2、对能量守恒定律的理解: (1)某种形式的能减少,一定存在其他形式的能增加, 且减少量和增加量一定相等。 △减=△增 (2)某个物体的能减少,一定存在其他物体的能增加, 且减少量和增加量一定相等。 △减=△增
功能关系
专题
峨山一中
陈家丽
一、功和能的关系:
1、功和能的区别: (1) 功不是能。
(2)功是过程量,能是状态量。
(3)功和能不能相互转化。
2、功和能的联系:
(1)功和能单位相同
(2)做功的过程就是能量转化的 过程,能量的转化必须通过做功来 完成,功是能量转化的量度。做了 多少功就有多少能量发生转化。
3 Q mgH 4
练习:
1、一木块静止在光滑水平面上,被水平方向飞来的子弹击中,子 弹进入木块的深度为2cm,木块相对桌面移动了1cm,设木块对 子弹的阻力恒定,则产生的内能与子弹损失的动能之比为( B )
A. 1:1
C. 1:2
B. 2:3
D. 1:3
2、如图所示,物体A的质量为m,置于水平地面上,A的上端连一 轻弹簧,原长为L,劲度系数为k,现将弹簧上端B缓慢地竖直向上 提起,使B点上移距离L为,此时物体A也已经离开地面,则下列论 述中正确的是( C ) A.提弹簧的力对系统做的功为mgL B.物体A的重力势能增加mgL C.系统增加的机械能小于mgL
Q
1 2 mgH mv 0 2
高中物理功能关系知识点和习题总结
高中物理功能关系专题定位本专题主要用功能的观点解决物体的运动和带电体、带电粒子、导体棒在电场或磁场中的运动问题.考查的重点有以下几方面:①重力、摩擦力、静电力和洛伦兹力的做功特点和求解;②与功、功率相关的分析与计算;③几个重要的功能关系的应用;④动能定理的综合应用;⑤综合应用机械能守恒定律和能量守恒定律分析问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.应考策略深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场带电粒子运动或电磁感应问题.1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为能.转化为能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.(5)一对滑动摩擦力做的功等于系统中能的变化,即Q=F f·l相对.1.动能定理的应用(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(2)应用动能定理解题的基本思路①选取研究对象,明确它的运动过程.②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.③明确物体在运动过程始、末状态的动能E k1和E k2.④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.2.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系统.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始、末状态时的机械能.④根据机械能守恒定律列方程,进行求解.题型1 力学中的几个重要功能关系的应用例1 如图1所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A 静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B相连.开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度.下列有关该过程的分析正确的是 ( )A.B物体的机械能一直减小B.B物体的动能的增加量等于它所受重力与拉力做的功之和C.B物体机械能的减少量等于弹簧的弹性势能的增加量D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量以题说法 1.本题要注意几个功能关系:重力做的功等于重力势能的变化量;弹簧弹力做的功等于弹性势能的变化量;重力以外的其他力做的功等于机械能的变化量;合力做的功等于动能的变化量.2.本题在应用动能定理时,应特别注意研究过程的选取.并且要弄清楚每个过程各力做功的情况.如图2所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功题型2 动力学方法和动能定理的综合应用例2 (15分)如图3所示,上表面光滑、长度为3 m、质量M=10 kg的木板,在F=50 N 的水平拉力作用下,以v0=5 m/s的速度沿水平地面向右匀速运动.现将一个质量为m =3 kg的小铁块(可视为质点)无初速度地放在木板最右端,当木板运动了L=1 m时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1 m就在其最右端无初速度地放上一个同样的小铁块.(g取10 m/s2)求:(1)木板与地面间的动摩擦因数;(2)刚放第三个小铁块时木板的速度;(3)从放第三个小铁块开始到木板停止的过程,木板运动的距离.以题说法 1.在应用动能定理解题时首先要弄清物体的受力情况和做功情况.此题特别要注意每放一个小铁块都会使滑动摩擦力增加μmg.2.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.如图4所示,倾角为37°的粗糙斜面AB底端与半径R=0.4 m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1 kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C点,求滑块从A点沿斜面滑下时的初速度v0的最小值;(3)若滑块离开C点的速度大小为4 m/s,求滑块从C点飞出至落到斜面上所经历的时间t.题型3 动力学方法和机械能守恒定律的应用例3 (14分)如图5,质量为M=2 kg的顶部有竖直壁的容器A,置于倾角为θ=30°的固定光滑斜面上,底部与斜面啮合,容器顶面恰好处于水平状态,容器有质量为m=1 kg 的光滑小球B与右壁接触.让A、B系统从斜面上端由静止开始下滑L后刚好到达斜面底端,已知L=2 m,取重力加速度g=10 m/s2.求:(1)小球到达斜面底端的速度大小;(2)下滑过程中,A的水平顶面对B的支持力大小;(3)下滑过程中,A对B所做的功.以题说法若判断多个物体组成的系统机械能是否守恒,最简单有效的方法是看能量是否向机械能之外的其他能量转化.比如,此题中各个接触面都是光滑的,不会产生能,也没有其他能量参与转移或转化,所以A、B组成的系统机械能守恒.如图所示,轮半径r=10 cm的传送带,水平部分AB的长度L=1.5 m,与一圆心在O点、半径R=1 m的竖直光滑圆轨道的末端相切于A点,AB高出水平地面H=1.25 m,一质量m=0.1 kg的小滑块(可视为质点),由圆轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,滑块与传送带间的动摩擦因数μ=0.1,不计空气阻力.(1)求滑块对圆轨道末端的压力;(2)若传送带一直保持静止,求滑块的落地点与B间的水平距离;(3)若传送带以v0=0.5 m/s的速度沿逆时针方向运行(传送带上部分由B到A运动),求滑块在传送带上滑行过程中产生的能.6.综合应用动力学和能量观点分析多过程问题汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为0.02 (sin α=0.02)的长直公路上时,如图所示,所受摩擦阻力为车重的0.1倍(g=10 m/s2),求:(1)汽车所能达到的最大速度v m;(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车匀加速行驶的速度达到最大值时,汽车做功多少?如图8所示,将一质量m=0.1 kg的小球自水平平台顶端O 点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A 并沿斜面下滑,斜面底端B 与光滑水平轨道平滑连接,小球以不变的速率过B 点后进入BC 部分,再进入竖直圆轨道侧运动.已知斜面顶端与平台的高度差h =3.2 m ,斜面高H =15 m ,竖直圆轨道半径R =5 m .取sin 53°=0.8,cos 53°=0.6,g =10 m/s 2,试求:(1)小球水平抛出的初速度v 0及斜面顶端与平台边缘的水平距离x ;(2)小球从平台顶端O 点抛出至落到斜面底端B 点所用的时间;(3)若竖直圆轨道光滑,小球运动到圆轨道最高点D 时对轨道的压力.专题突破一、单项选择题1.质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( ) A .GMm ⎝ ⎛⎭⎪⎫1R 2-1R 1 B .GMm ⎝ ⎛⎭⎪⎫1R 1-1R 2 C.GMm 2⎝ ⎛⎭⎪⎫1R 2-1R 1 D.GMm 2⎝ ⎛⎭⎪⎫1R 1-1R 2 2. 如图1所示,质量为m 的物体(可视为质点)以某一初速度从A 点冲上倾角为30°的固定斜面,其运动的加速度大小为34g ,沿斜面上升的最大高度为h ,则物体沿斜面上升的过程中 ( )A .物体的重力势能增加了34mgh B .物体的重力势能增加了mghC .物体的机械能损失了14mgh D .物体的动能减少了mgh3. 用电梯将货物从六楼送到一楼的过程中,货物的v -t 图象如图2所示.下列说确的是( )A .前2 s 货物处于超重状态B .最后1 s 货物只受重力作用C .货物在10 s 的平均速度是1.7 m/sD .货物在2 s ~9 s 机械能守恒4. 质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图3所示,其中OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为F f ,以下说确的是 ( )A .0~t 1时间,汽车牵引力的数值为m v 1t 1B .t 1~t 2时间,汽车的功率等于(m v 1t 1+F f )v 2C .t 1~t 2时间,汽车的平均速率小于v 1+v 22 D .汽车运动的最大速率v 2=(mv 1F f t 1+1)v 1 二、多项选择题5.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上.现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( )A .小球P 的速度先增大后减小B .小球P 和弹簧的机械能守恒,且P 速度最大时所受弹力与库仑力的合力最大C .小球P 的动能、重力势能、电势能与弹簧的弹性势能的总和不变D .系统的机械能守恒6. 一物体静止在水平地面上,在竖直向上的拉力F 的作用下开始向上运动,如图5甲所示.在物体运动过程中,空气阻力不计,其机械能E 与位移x 的关系图象如图乙所示,其中曲线上点A 处的切线的斜率最大.则( ) A .在x 1处物体所受拉力最大B .在x 2处物体的速度最大C .在x 1~x 3过程中,物体的动能先增大后减小D .在0~x 2过程中,物体的加速度先增大后减小7. 被誉为“豪小子”的纽约尼克斯队17号华裔球员林书豪在美国职业篮球(NBA)赛场上大放光彩.现假设林书豪准备投二分球前先屈腿下蹲再竖直向上跃起,已知林书豪的质量为m ,双脚离开地面时的速度为v ,从开始下蹲至跃起过程中重心上升的高度为h ,则下列说确的是 ( ) A .从地面跃起过程中,地面支持力对他所做的功为0B .从地面跃起过程中,地面支持力对他所做的功为12mv 2+mgh C .离开地面后,他在上升过程和下落过程中都处于失重状态D .从下蹲到离开地面上升过程中,他的机械能守恒三、非选择题8. 水上滑梯可简化成如图6所示的模型,光滑斜槽AB 和粗糙水平槽BC 平滑连接,斜槽AB 的竖直高度H =6.0 m ,倾角θ=37°,水平槽BC 长d =2.5 m ,BC 面与水面的距离h =0.80 m ,人与BC 间的动摩擦因数为μ=0.40.一游戏者从滑梯顶端A 点无初速度地自由滑下,求:(取重力加速度g =10 m/s2,cos 37°=0.8,sin 37°=0.6)(1)游戏者沿斜槽AB 下滑时加速度的大小;(2)游戏者滑到C 点时速度的大小;(3)在从C 点滑出至落到水面的过程中,游戏者在水平方向上的位移的大小.9. 如图所示,倾角为θ的光滑斜面上放有两个质量均为m 的小球A 和B ,两球之间用一根长为L 的轻杆相连,下面的小球B 离斜面底端的高度为h .两球从静止开始下滑,不计球与地面碰撞时的机械能损失,且地面光滑,求:(1)两球都进入光滑水平面时两小球运动的速度大小;(2)此过程中杆对B 球所做的功.10. 如图7所示,质量为m =1 kg 的小物块轻轻地放在水平匀速运动的传送带上的P 点,随传送带运动到A 点后水平抛出,小物块恰好无碰撞地沿圆弧切线从B 点进入竖直光滑的圆弧轨道.B 、C 为圆弧轨道的两端点,其连线水平,已知圆弧轨道的半径R =1.0 m ,圆弧轨道对应的圆心角θ=106°,轨道最低点为O ,A 点距水平面的高度h =0.8 m ,小物块离开C 点后恰能无碰撞地沿固定斜面向上运动,0.8 s 后经过D 点,小物块与斜面间的动摩擦因数为μ1=13.(g =10 m/s2,sin 37°=0.6,cos 37 °=0.8) (1)求小物块离开A 点时的水平初速度v 1的大小;(2)求小物块经过O 点时对轨道的压力;(3)假设小物块与传送带间的动摩擦因数为μ2=0.3,传送带的速度为5 m/s ,求P 、A 间的距离;(4)求斜面上C 、D 间的距离.11.如图8所示是一皮带传输装载机械示意图.井下挖掘工将矿物无初速度地放置于沿图示方向运行的传送带A端,被传输到末端B处,再沿一段圆形轨道到达轨道的最高点C处,然后水平抛到货台上.已知半径为R=0.4 m的圆形轨道与传送带在B点相切,O点为半圆的圆心,BO、CO分别为圆形轨道的半径,矿物m可视为质点,传送带与水平面间的夹角θ=37°,矿物与传送带间的动摩擦因数μ=0.8,传送带匀速运行的速率为v0=8 m/s,传送带A、B点间的长度s AB=45 m.若矿物落到点D处离最高点C点的水平距离为s CD=2 m,竖直距离为h CD=1.25 m,矿物质量m=50 kg,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,不计空气阻力.求:(1)矿物到达B点时的速度大小;(2)矿物到达C点时对轨道的压力大小;(3)矿物由B点到达C点的过程中,克服阻力所做的功.。
高考物理总复习功能关系 能量守恒定律
2023:山东T4;
题是高考的热点.预计2025年高考题
2022:江苏T10;
出题可能性较大,有可能会结合体
2019:全国ⅡT18
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.
返回目录
第4讲
功能关系
能量守恒定律
核心考点
五年考情
命题分析预测
功能关系在选择题中考查的频率比
2 570
车牵引力大小F2= =
2
2
N=285 N,从P到Q,小车匀速行驶,小车牵引力F2=f2+
mg sin 30°,解得f2=F2-mg sin 30°=285
1
N-50×10×
2
N=35 N;从P到Q,小车克服
摩擦力做的功Wf2=f2·PQ=35×20 J=700 J,故D正确.从P到Q,小车上升的高度h=
动能定理得mgh-μmgs cos θ=Ek-0,h=xtan
θ,s=
,解得Ek=mgx(tan
cos
θ-μ),木块
在水平面上运动时,设初动能为Ek0,根据动能定理得-μmg(x-x1)=Ek-Ek0,解得Ek=
Ek0-μmg(x-x1),B正确.木块克服摩擦力做功转化为内能,木块在斜面上时,Q=μmgs
2023:浙江6月T18;
能量守恒定律的应用
2022:河北T9;
2021:山东T18;
2019:江苏T8
较高,特别是功能关系中的图像问
题是高考的热点.预计2025年高考题
出题可能性较大,有可能会结合体
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.
高中物理二轮专题复习4功能关系(新人教版)
专题四 功能关系知识梳理一、功和功率 1、功〔1〕恒力的功:W=Fscosθ 〔2〕变力的功W=Pt 2、功率:tWP=Fvcos θ 〔1〕当v 为即时速度时,对应的P 为即时功率; 〔2〕当v 为平均速度时,对应的P 为平均功率 二、 动能定理1、 定义:合外力所做的总功等于物体动能的变化量.2、 表达式:三、 机械能守恒定律 1、条件:〔1〕对单个物体,只有重力或弹力做功.〔2〕对某一系统,物体间只有动能和重力势能及弹性势能相互转化,系统跟外界没有发生机械能的传递, 机械能也没有转变成其它形式的能(如没有内能产生),那么系统的机械能守恒. 2、 表达式 四、 能量守恒定律专题测试一、选择题(每题4分,共44分)1.用水平力F 拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t 1时刻撤去拉力F ,物体做匀减速直线运动,到t 2时刻停止,其速度—时间图象如图1所示,且α>β,假设拉力F 做的功为W 1,平均功率为P 1;物体克服摩擦阻力F f 做的功为W 2,平均功率为P 2,那么以下选项正确的选项是 ( ) A .W 1>W 2;F =2F f B .W 1=W 2;F>2F f C .P 1>P 2;F>2F fD .P 1=P 2;F =2F f2.如图2所示,滑块A 、B 的质量均为m ,A 套在固定竖直杆上,A 、B 通过转轴用长度为L 的刚性轻杆连接,B 放在水平面上并靠着竖直杆,A 、B 均静止.由于微小的扰动,B 开始沿水平面向右运动.不计一切摩擦,滑块A 、B 视为质点.在A 下滑的过程中,以下说法中正确的选图1项是( )A .A 、B 组成的系统机械能守恒 B .在A 落地之前轻杆对B 一直做正功C .A 运动到最低点时的速度的大小为2gLD .当A 的机械能最小时,B 对水平面的压力大小为2mg3.如图3所示,足够长的传送带以恒定速率沿顺时针方向运转.现将一个物体轻轻放在传送带底端,物体第一阶段被加速到与传送带具有相同的速度,第二阶段匀速运动到传送带顶端.那么以下说法中正确的选项是( )A .第一阶段和第二阶段摩擦力对物体都做正功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C .第二阶段摩擦力对物体做的功等于第二阶段物体机械能的增加量D .两个阶段摩擦力对物体所做的功等于物体机械能的减少量4.如图4所示,均匀带正电的圆环水平放置,AB 为过圆心O 的竖直轴线.一带正电的微粒(可视为点电荷),从圆心O 正上方某处由静止释放向下运动,不计空气阻力.在运动的整个过程中,以下说法中正确的选项是 ( ) A .带电微粒的加速度可能一直增大 B .带电微粒的电势能可能一直减小 C .带电微粒的动能可能一直增大 D .带电微粒的运动轨迹可能关于O 点对称5.如图5所示为测定运发动体能的装置,轻绳拴在腰间沿水平线跨过定滑轮(不计滑轮的质量与摩擦),轻绳的另一端悬重为G 的物体.设人的重心相对地面不动,人用力向后蹬传送带,使水平传送带以速率v 逆时针转动.那么 ( ) A .人对重物做功,功率为GvB .人对传送带的摩擦力大小等于G ,方向水平向左C .在时间t 内人对传送带做功消耗的能量为GvtD .假设增大传送带的速度,人对传送带做功的功率不变6.如图6所示,有一光滑的半径可变的14圆形轨道处于竖直平面内,圆心O 点离地高度为H .现调节轨道半径,让一可视为质点的小球a 从与O 点等高的轨道最高点由静止沿轨道下落,使小球离开轨道后运动的水平位移S 最大,那么小球脱离轨道最低点时的速度大小应为( ) A. gHB. gH3C.2gH3D.4gH 37.一辆质量为m 的卡车在平直的公路上,以初速度v 0开始加速行驶,经过一段时间t ,卡图3图4 图5图6车前进的距离为s 时,恰好到达最大速度v m .在这段时间内,卡车发动机的输出功率恒为P ,卡车运动中受到的阻力大小恒为F ,那么这段时间内发动机对卡车做的功为( ) A .Pt B .FsC .Fv m tD. 12mv m 2+Fs -12mv02 8.如图7所示,处于真空中的匀强电场与水平方向成15°角,AB 直线与匀强电场E 垂直,在A 点以大小为v 0的初速度水平抛出一质量为m 、电荷量为+q 的小球,经时间t ,小球下落一段距离过C 点(图中未画出)时速度大小仍为v 0,在小球由A 点运动到C 点的过程中,以下说法正确的选项是( )A .电场力对小球做功为零B .小球的电势能减小C .小球的电势能增量大于mg 2t 2/2 D .C 可能位于AB 直线的左侧9.如图8所示,一形状为抛物线的光滑曲面轨道置于竖直平面内,轨道的下半部处在一个垂直纸面向外的磁场中,磁场的上边界是y =a 的直线(图中虚线所示),一个小金属环从抛物线上y =b (b >a )处以速度v 沿抛物线下滑.假设抛物线足够长,且不计空气阻力,那么金属环沿抛物线运动的整个过程中损失的机械能的总量ΔE 为 ( ) A .假设磁场为匀强磁场,ΔE =mg (b -a )+12mv 2B .假设磁场为匀强磁场,ΔE =mg (b -a )C .假设磁场为非匀强磁场,ΔE =12mv 2D .假设磁场为非匀强磁场,ΔE =mgb +12mv 210.如图9所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上.质量为m 的金属杆ab 以初速度v 0从轨道底端向上滑行,滑行到某高度h 后又返回到底端.假设运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计.那么以下说法正确的选项是( ) A .金属杆ab 上滑过程与下滑过程通过电阻R 的电量一样多B .金属杆ab 上滑过程中克服重力、安培力与摩擦力所做功之和等于12mv 2C .金属杆ab 上滑过程与下滑过程因摩擦而产生的内能不一定相等D .金属杆ab 在整个过程中损失的机械能等于装置产生的热量 11.如图10所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场.在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球.O图7图8图9点为圆环的圆心,a、b、c、d为圆环上的四个点,a点为最高点,c点为最低点,bd沿水平方向.小球所受电场力与重力大小相等.现将小球从环的顶端a点由静止释放.以下判断正确的选项是( )A.小球能越过与O等高的d点并继续沿环向上运动B.当小球运动到c点时,洛伦兹力最大C.小球从a点到b点,重力势能减小,电势能增大D.小球从b点运动到c点,电势能增大,动能先增大后减小二、实验题(12、13题各6分,共12分)12.(6分)“探究功与物体速度变化的关系〞的实验如图11所示,当小车在一条橡皮筋作用下弹出时,橡皮筋对小车做的功记为W.当用2条、3条……完全相同的橡皮筋并在一起进行第2次、第3次……实验时,使每次实验中橡皮筋伸长的长度都保持一致.每次实验中小车获得的速度由打点计时器所打的纸带测出.图11(1)(2分)除了图中已有的实验器材外,还需要导线、开关、__________(填测量工具)和________电源(填“交流〞或“直流〞).(2)(2分)假设木板水平放置,小车在两条橡皮筋作用下运动,当小车的速度最大时,关于橡皮筋所处的状态与小车所在的位置,以下说法正确的选项是________.A.橡皮筋处于原长状态B.橡皮筋仍处于伸长状态C.小车在两个铁钉的连线处D.小车已过两个铁钉的连线(3)(2分)在正确操作情况下,打在纸带上的点并不都是均匀的,如图12所示.为了测量小车获得的速度,应选用纸带的________局部进行测量(根据下面所示的纸带答复,并用字母表示).图1213.(6分)用如图13所示的实验装置验证机械能守恒定律.重锤由静止开始落下,重锤上拖着的纸带通过打点计时器打出一系列的点,对纸带上的点进行测量,即可验证机械能守恒定律.(1)下面列举了该实验的几个操作步骤:A.按照图示装置安装好器材B.将打点计时器接到直流电源上C.先松开悬挂纸带的夹子,后接通电源打出一条纸带D.根据测量的结果计算重锤下落过程中减少的重力势能是否等于增加的动能图13 指出其中没有必要进行的或者操作不恰当的步骤,将其选项对应的字母填写在下面的空行内.________________________________________________________________________ (2)利用这个装置可以测量重锤下落的加速度的数值.如图14所示,根据打出的纸带,选取纸带上打出的连续五个点A 、B 、C 、D 、E ,测量出A 点距打下的第一个点O 距离为x 0,点A 、C 间的距离为x 1、点C 、E 间的距离为x 2,使用交流电的频率为f ,那么根据这些条件计算重锤下落的加速度的表达式为a =________,打C 点时重锤的速度v =________.图14三、解答题(14题11分,15题14分,16题18分,共44分)14.(上海卷第31题).(12 分)如图,质量2m kg =的物体静止于水平地面的A 处,A 、B 间距L =20m 。
高三物理复习课件 功能关系复习
基础知识梳理
能量守恒定律应从下面两方面去 理解:
1.某种形式的能减少,一定存在 其他形式的能增加,且减少量和增加 量一定相等;
2.某个物体的能量减少,一定存 在其他物体的能量增加,且减少量和 增加量一定相等.
这也是我们列能量守恒定律方程 式的两条基本思路.
4
课堂互动讲练
一、常见的几种功与能量的关系 1.合外力对物体所做的功等于物 体动能的增量,W合=ΔEk=Ek2-Ek1, 即动能定理. 2.重力做功等于重力势能的减少 量. WG=-ΔEp=Ep1-Ep2
功,绳索的机械能增加,而动能又不变,
故重力势能增大,重心上升.
24
高频考点例析
题型二 功能关系在传送带问题中的应用
例2 如图5-4-3所示,
5
课堂互动讲练
3.弹簧弹力做功等于弹性势能的减 少量.
WF=-ΔEp=Ep1-Ep2 4.除重力或弹簧的弹力以外的其他 力做多少功与物体机械能的增量相对应, 即W其他=ΔE. (1)除重力或弹簧的弹力以外的其他力 做多少正功,物体的机械能就增加多少. (2)除重力或弹簧的弹力以外的其他力 做多少负功,物体的机械能就减少多少.
第四节 功能关系 能量守恒
1
基础知识梳理
一、功能关系 1.功是能量转化的量度,即做了多少功 就有多少能量发生了转化. 2.做功的过程一定伴随着 能量转化 , 而且能量转化必通过做功来实现.
2
基础知识梳理
二、能量守恒定律 能量既不能凭空产生,也不能凭空
消失,它只能从一种形式的能转化为另一 种形式的能,或者从一个物体转移到另一 个物体,而在转化和转移的过程中,能量 的总量保持不变 .
8
课堂互动讲练
即时应用
高三高考物理知识点总复习精讲课件功能关系
题型三:能量守恒定律的应用 例3 如图所示,质量为m的滑块从斜 面底端以平行于斜面的初速度v0冲上 固定斜面,沿斜面上升的最大高度为
H.已知斜面倾角为α,斜面与滑块间的摩擦因数为μ, 且μ<tanα,最大静摩擦力等于滑动摩擦力,取斜面底 端为零势能面,则能表示滑块在斜面上运动的机械能 E、动能Ek、势能Ep与上升高度h之间关系的图象是 ( )
静摩擦力
滑动摩擦力
一对静摩擦力 一对摩擦力 所做功的代数 做功方面 总和等于零
一对相互作用的滑动摩 擦力对物体系统所做的 总功,等于摩擦力与相 对路程的乘积,即Wf= -Ff·S相,表示物体克 服摩擦力做功,系统损 失的机械能转变成内能
解题时还应注意以下两点: (1)摩擦力对单个物体做功应是摩擦力与物体对地位移 的乘积,对应单个物体机械能的变化; (2)摩擦生热转化的内能多少应是摩擦力与两物体间相 对滑动的路程的乘积,对应系统机械能的减少.
(4)系统产生的热量.
【思路点拨】画出AB两物体的运动示意图,确定两 物体相对地的位移,分别对两物体列动能定理方程.
【解析】在此过程中摩擦力做功的情况:A 和 B 所受摩擦力分别为 F、F′,且 F=μmg,A 在 F 的 作用下减速,B 在 F′的作用下加速;当 A 滑动到 B 的右端时,A、B 达到一样的速度 v,就正好不掉下. 1 2 (1)对木板根据动能定理有:μmg· s= Mv -0① 2 从上式可知 ΔEkB=μmgs
【答案】C
【方法与知识感悟】解答功能关系问题时,一般步骤 如下:
(1)明确研究对象及其运动过程;
(2)对研究对象进行受力分析,明确其所受的每一个力 的大小、方向;
(3)计算各个力所做的功;
(4)明确能量转化的关系,找出对应力所做的功.
2024年高考物理总复习第一部分知识点梳理第六章机械能第4讲功能关系 能量守恒定律
第4讲功能关系能量守恒定律整合教材·夯实必备知识一、功能关系(必修二第八章第4节)1.(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
2.摩擦力做功的特点(1)一对静摩擦力所做功的代数和总等于零。
(2)一对滑动摩擦力做功的代数和总是负值,差值为机械能转化为内能的部分,也就是系统机械能的损失量。
二、能量守恒定律(必修三第十二章第4节)【质疑辨析】角度1功能关系(1)力对物体做了多少功,物体就具有多少能。
()(2)滑动摩擦力做功时,一定会引起机械能的转化。
( ) 角度2 能量守恒定律(3)既然能量在转移或转化过程中是守恒的,故没有必要节约能源。
( ) (4)一个物体的能量增加,必定有别的物体的能量减少。
( ) 提示:(1)× (2)√ (3)× (4)√精研考点·提升关键能力考点一 功能关系的理解和应用 (核心共研)【核心要点】几种常见的功能关系及其表达式【典例剖析】角度1 由能量变化分析力做功[典例1](2023·新课标全国卷)无风时,雨滴受空气阻力的作用在地面附近会以恒定的速率竖直下落。
一质量为m 的雨滴在地面附近以速率v 下落高度h 的过程中,克服空气阻力做的功为(重力加速度大小为g ) ( ) A .0 B .mgh C .12mv 2-mgh D .12mv 2+mgh【解析】选B 。
在地面附近雨滴做匀速运动,根据动能定理得mgh -W 克=0,故雨滴克服空气阻力做功为mgh 。
故选B 。
角度2 由力做功分析能量变化[典例2](多选)(2023·石家庄模拟)如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 与水平面的夹角为60°,光滑斜面bc与水平面的夹角为30°,顶角b处安装一定滑轮。
高考物理功能关系复习资料
高考物理功能关系复习资料高考物理功能关系复习资料一、功能关系知识详细总结功能关系:功和能的关系:功是能量转化的量度。
有两层含义:(1)做功的过程就是能量转化的过程,(2)做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。
两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。
做功的过程是物体能量的转化过程,做了多少功,就有多少能量发生了变化,功是能量转化的量度.(1)动能定理合外力对物体做的总功等于物体动能的增量.即(2)与势能相关力做功导致与之相关的势能变化重力重力做正功,重力势能减少;重力做负功,重力势能增加.重力对物体所做的功等于物体重力势能增量的负值.即WG=EP1—EP2= —ΔEP弹簧弹力弹力做正功,弹性势能减少;弹力做负功,弹性势能增加.弹力对物体所做的功等于物体弹性势能增量的负值.即W弹力=EP1—EP2= —ΔEP分子力分子力对分子所做的功=分子势能增量的负值电场力电场力做正功,电势能减少;电场力做负功,电势能增加。
注意:电荷的正负及移动方向电场力对电荷所做的功=电荷电势能增量的负值(3)机械能变化原因除重力(弹簧弹力)以外的的其它力对物体所做的功=物体机械能的增量即WF=E2—E1=ΔE当除重力(或弹簧弹力)以外的力对物体所做的功为零时,即机械能守恒(4)机械能守恒定律在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持不变.即EK2+EP2 = EK1+EP1,或ΔEK = —ΔEP(5)静摩擦力做功的特点(1)静摩擦力可以做正功,也可以做负功,还可以不做功;(2)在静摩擦力做功的过程中,只有机械能的互相转移,而没有机械能与其他形式的能的转化,静摩擦力只起着传递机械能的作用;(3)相互摩擦的系统内,一对静摩擦力对系统所做功的和总是等于零.(6)滑动摩擦力做功特点“摩擦所产生的热”(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功;=滑动摩擦力跟物体间相对路程的乘积,即一对滑动摩擦力所做的功(2)相互摩擦的系统内,一对滑动摩擦力对系统所做功的和总表现为负功,其大小为:W= —fS相对=Q 对系统做功的过程中,系统的机械能转化为其他形式的能,(S相对为相互摩擦的物体间的相对位移;若相对运动有往复性,则S相对为相对运动的路程)(7)一对作用力与反作用力做功的特点(1)作用力做正功时,反作用力可以做正功,也可以做负功,还可以不做功;作用力做负功、不做功时,反作用力亦同样如此.(2)一对作用力与反作用力对系统所做功的总和可以是正功,也可以是负功,还可以零.(8)热学外界对气体做功外界对气体所做的功W与气体从外界所吸收的热量Q的和=气体内能的变化W+Q=△U (热力学第一定律,能的转化守恒定律)(9)电场力做功W=qu=qEd=F电SE (与路径无关)(10)电流做功(1)在纯电阻电路中(电流所做的功率=电阻发热功率)(2) 在电解槽电路中,电流所做的功率=电阻发热功率+转化为化学能的的功率(3) 在电动机电路中,电流所做的功率=电阻发热功率与输出的机械功率之和P电源t =uIt= +E其它;W=IUt >(11)安培力做功安培力所做的功对应着电能与其它形式的能的相互转化,即W 安=△E电,安培力做正功,对应着电能转化为其他形式的能(如电动机模型);克服安培力做功,对应着其它形式的能转化为电能(如发电机模型);且安培力作功的绝对值,等于电能转化的量值,W=F安d=BILd 内能(发热)(12)洛仑兹力永不做功洛仑兹力只改变速度的方向(13)光学光子的能量: E光子=hγ;一束光能量E光=N×hγ(N指光子数目) 在光电效应中,光子的能量hγ=W+(14)原子物理原子辐射光子的能量hγ=E初—E末,原子吸收光子的能量hγ= E 末—E初爱因斯坦质能方程:E=mc2(15)能量转化和守恒定律对于所有参与相互作用的物体所组成的系统,其中每一个物体的能量的数值及形式都可能发生变化,但系统内所有物体的各种形式能量的总合保持不变二、常见的几种力做功能量关系数量关系式力的种类做功的正负对应的能量变化情况①重力mg重力势能EP减小mgh=–ΔEP–增加②弹簧的弹力kx弹性势能E弹性减小W弹=–ΔE弹性–增加③分子力F分子分子势能E分子减小W分子力=–ΔE分子–增加④电场力Eq电势能E电势减小qU =–ΔE电势–增加⑤滑动摩擦力f–内能Q增加fs相对= Q⑥感应电流的安培力F安培–电能E电增加W安培力=ΔE电⑦合力F合动能Ek增加W合=ΔEk–减小⑧重力以外的力F机械能E机械增加WF=ΔE机械看过"高考物理功能关系复习资料"的还看了:1.2019高考物理复习知识点2.高考物理必修一复习资料3.2019年高考物理知识点总结复习。
XX届高考物理功能关系综合应用单元知识学习总结要点专题考试复习学习要点
XX届高考物理功能关系综合应用单元知识点专题复习本资料为woRD文档,请点击下载地址下载全文下载地址第九课时功能关系综合应用考纲要求.理解功是能量转化的量度,知道力学中常见的功能关系2.学会应用功能关系及能量守恒定律解决实际问题【知识梳理与重难点分析】一.功能关系.功是能的转化的量度:做功的过程就是能量转化的过程,做功的数值就是能量转化的数值.不同形式的能的转化又与不同形式的功相联系.2.力学领域中功能关系的几种主要表现形式:⑴合外力的功等于动能的增量,即:w合=⑵重力的功等于重力势能增量的负值:即:wG=⑶弹簧弹力的功等于弹性势能增量的负值:即:wF=(4)除重力和弹簧弹力以外的其它力做的总功于.二.能的转化和守恒定律:能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或从一个物体转移到另一个物体.正确理解:⑴某种形式的能减少,一定存在其它形式的能增加,且减少量和增加量一定相等.⑵某个物体的能量减少,一定存在其它物体的能量增加,且减少量和增加量一定相等.三.摩擦力做功的特点.摩擦力可以做正功,可以做负功,还可以不做功.2.一对静摩擦力的功的代数和总是等于.静摩擦力做功只实现系统内不同物体间机械能的转移,而不存在机械能与其他形式能之间的转化.3.一对滑动摩擦力的功的代数和总为负值-fs相对,其绝对值等于系统损失的机械能.【典型例题】类型一:功能关系的灵活应用例1、一滑块放在如图所示的凹形斜面上,斜面固定于水平地面,用拉力F沿斜面向下拉小滑块,小滑块沿斜面运动了一段距离.若已知在这过程中,拉力F所做的功为A,斜面对滑块的作用力所做的功为B,重力所做的功为c,空气阻力所做的功为D,则小滑块的动能的增量为,重力势能的增量为,机械能的增量为.针对训练1:如图,卷扬机的绳索通过定滑轮用力F拉位于粗糙面上的木箱,使之沿斜面加速向上移动。
在移动过程中,下列说法正确的是()A.F对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和B.F对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和C.木箱克服重力所做的功等于木箱增加的重力势能D.F对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和针对训练2:在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于()类型二:滑动摩擦力的功与内能的关系例2、在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可大大提高工作效率.如图所示,水平传送带以恒定速率v=2m/s,运送质量为m=0.5kg的工件,工件都是以v0=1m/s的初速度从A位置滑上传送带.工件与传送带之间的动摩擦因数为=0.2,每当前一个工件在传送带上停止相对滑动后,后一个工件立即滑上传送带.取g=10m/s2.求: 传送带摩擦力对每个工件做的功.每个工件与传送带之间因摩擦而产生的热量.传送每个工件电动机做的功.针对训练3:一足够长的水平传送带以恒定的速度运动,现将质量为m2.0kg的小物块抛上传送带,如图a 所示.地面观察者记录了小物块抛上传送带后0~6s内的速度随时间变化的关系,如图b所示(取向右运动的方向为正方向),g取10m/s2.指出传送带速度的大小和方向;计算物块与传送带间的动摩擦因数μ计算0-6s内传送带对小物块做的功.计算0-6s内由于物块与传送带摩擦产生的热量.类型三:能的转化与守恒例3、、如图甲所示,质量mB=1kg的平板小车B在光滑水平面上以v1=1m/s的速度向左匀速运动.当t=0时,质量mA=2kg的小铁块A以v2=2m/s的速度水平向右滑上小车,A与小车间的动摩擦因数为μ=0.2。
高一物理必修二课件模块复习课专题三功能关系及应用
量子力学在现代科技中有着广泛的应用,如电子显微镜、 扫描隧道显微镜等高精度测量仪器,以及量子计算、量子 通信等前沿技术领域。
量子力学发展前景
随着科技的不断发展,量子力学将在更多领域发挥重要作 用,如量子计算机、量子密码学、量子隐形传态等,有望 带来革命性的技术突破。
06 实验探究:验证 功能关系正确性
能量转化过程
在电磁感应现象中,机械能转化为电 能,电能再转化为其他形式的能量( 如内能、光能等)。
交流电和电磁波在传媒中作用
交流电
交流电的产生和传输遵循电磁感应原理和电路规律,能够实现电能的远距离传 输和分配。
电磁波
电磁波是一种横波,可以在真空中传播,具有能量和动量,可以传递信息和能 量。在传媒中,电磁波扮演着信息传递的重要角色。
有用功与无用功
有用功是指对系统有贡献 的功,无用功是指对系统 无贡献的功。
能量转化与守恒定律
能量转化
功能原理
不同形式能量之间可以相互转化,如 机械能、热能、电能等。
对于质点系,外力和内力做功之和等 于质点系动能的增量。
能量守恒定律
在一个孤立系统中,总能量保持不变 ,即能量不能凭空产生或消失,只能 从一种形式转化为另一种形式。
01
万有引力定律
理解万有引力定律的内容和表达式,掌握引力常量的测量方法和意义。
02
航天技术基础
了解航天技术的基本原理和发展历程,理解宇宙速度的概念和意义。
03
万有引力与航天技术的结合
探讨万有引力在航天技术中的应用,如卫星轨道计算、太空探测等。同
时分析航天技术中的功能关系,如火箭发射过程中的能量转化等。
03 电学中功能关系 探讨
静电场和恒定电流中功能特点
教科版高中物理总复习知识讲解 功能关系和能的转化与守恒定律(基础)
物理总复习:功能关系和能的转化与守恒定律: :【考纲要求】1、理解力做功与能量转化的关系;2、理解能量守恒定律;3、掌握用能量守恒解题的思路、步骤和方法。
【考点梳理】考点一、功能关系1、常见力做功与能量转化的对应关系(1)重力做功:重力势能和其它形式能相互转化; (2)弹簧弹力做功:动能和弹性势能相互转化; (3)滑动摩擦力做功:机械能转化为内能; (4)分子力做功:动能和分子势能相互转化; (5)电场力做功:电势能和其它形式能相互转化; (6)安培力做功:电能和机械能相互转化. 2、功能关系做功的过程就是能量转化的过程,做多少功就有多少某种形式的能转化为其它形式的能。
功是能量转化的量度,这就是功能关系的普遍意义。
要点诠释:功能关系的主要形式有以下几种:(1)合外力做功等于物体动能的增加量(动能定理),即=k W E ∆合。
(2)重力做功对应重力势能的改变,12G p p p W E E E =-=- 重力做正功,重力势能减少;重力做负功,重力势能增加。
(3)弹簧弹力做正功,弹性势能减少;弹力做负功,弹性势能增加。
(4)除重力以外的其它力做的功与物体机械能的增量相对应,即=W E ∆ ①除重力以外的其它力做多少正功,物体的机械能就增加多少; ②除重力以外的其它力做多少负功,物体的机械能就减少多少;③除重力以外的其它力不做功,物体的机械能守恒。
(5)电场力做功与电势能的关系,=AB p W E ∆电场力做正功,电势能减少;电场力做负功,电势能增加。
(6)安培力做正功,电能转化为其它形式的能;克服安培力做功,其它形式的能转化为电能。
另外,在应用功能关系时应注意,搞清力对“谁”做功的问题,对“谁”做功就对应“谁”的位移,引起“谁”的能量变化。
如子弹物块模型中,摩擦力对子弹的功必须用子弹的位移去解。
功引起子弹动能的变化,但不能说功就是能,也不能说“功变成能”。
功是能量转化的量度,可以说在能量转化的过程中功扮演着重要角色。
高考物理复习 专题四 功能关系课件
的变化.W其它=ΔE. (5)一对滑动摩擦力的功等于系统中内能 的变化.Q=
F·s相对. (6)分子力的功等于 分子势能 的变化.
精选ppt
3
思路方法
1.
解决问题的关键是明确所研究的问题是处在哪个阶
段上.以及匀加速过程的最大速度v1和全程的最大
速度vm的区别和求解方法.
P
(1)求v1:由F-f=ma,可求v1= F .
ΔEk=(mg-F)h,A错;因下降h,重力势能减少了mgh, B错;由于阻力做功为Fh,所以系统机械能减少了Fh,
C错,D正确.
精选ppt
10
预测演练2 如图4-1-1所示,滑块静止于光滑水平面
上,与之相连的轻质弹簧处于自然伸直状态,现用恒定
的水平外力F作用于弹簧右端,在向右移动一段距离的
过程中,拉力F做了10 J的功.上述过程中
的最大速度为20 m/s,汽车的质量为2.0 t.若汽车 从静止开始做匀加速直线运动,加速度大小为2m/s2, 运动过程中阻力不变,则: (1)汽车受到的恒定阻力是多大? (2)3 s末汽车的瞬时功率是多大? (3)匀加速直线运动的时间是多长? (4)在匀加速直线运动中,汽车牵引力做的功是多少?
精选ppt
专题四 功能关系
第1课时 功能关系在力学中的应用
基础回扣
1.做功的两个重要因素是:有力作用在物体上且使物
体在力的方向上 发生了位移 .功的求解可利用
W=Fscosθ求,但F为 恒力 ;也可以利用F—s图象
来求;变力的功一般应用 Байду номын сангаас能定理 间接求解.
2.功率是指单位时间内做的功,求解公式有:平均功率
PWFvcos;瞬时功率P=F·vcosθ,当θ=0,即F
高一下学期物理必修二 功能关系专题复习.doc
七、功能关系知识复习:1、功能关系:功是能量转化的量度2、常见力做功与能量转化的对应关系: (1)重力做功等于重力势能的减少量。
表达式:21mgh mgh E w p G -=∆-= (2)弹簧弹力做功等于弹性势能的减少量。
表达式:22212121kx kx E w P F -=∆-= (3)合力做功等于动能变化量。
表达式:21222121mv mv E w k -=∆=(4)除系统内的重力和弹簧的弹力外,其他力做的总功等于系统机械能的变化量。
表达式:E w ∆=非(5)一对滑动摩擦力对系统做功的代数和等于因摩擦而产生的内能,也即等于系统动能的减少量。
表达式:x f Q ∆⋅=, x ∆为物体间相对滑动的距离(相对位移) 练习:一、功能关系:1、已知货物的质量为m,在某段时间内起重机将货物以a 的加速度加速升高h,则在这段时间内叙述正确的是(重力加速度为g)( ) A.货物的动能一定增加mah-mgh B.货物的机械能一定增加mah C.货物的重力势能一定增加mah D.货物的机械能一定增加mah+mgh2、如图所示,某段滑雪道倾角为30°,总质量为m (包括雪具在内)的滑雪运动员从雪道上距底端高为h 处由静止开始匀加速下滑,加速度大小为13g ,他沿雪道滑到底端的过程中,下列说法正确的是( ) A .运动员减少的重力势能全部转化为动能B .运动员获得的动能为23mghC .运动员克服摩擦力做功为23mghD .下滑过程中系统减少的机械能为13mgh3、“神舟三号”顺利发射升空后,在离地面340km 的圆轨道上运行了108圈。
运行中需要进行多次“轨道维持”。
所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小、方向,使飞船能保持在预定轨道上稳定运行。
如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低。
在不进行轨道维持的情况下飞船的动能、重力势能和机械能变化情况是 ( )A. 动能、重力势能和机械能都逐渐减小B. 重力势能逐渐减小,动能逐渐增大,机械能不变C. 重力势能逐渐增大,动能逐渐减小,机械能不变D. 重力势能逐渐减小,动能逐渐增大,机械能逐渐减小4、一物体放在升降机底板上,随同升降机由静止开始竖直向下运动,运动过程中物体的机械能与物体位移关系的图象如图所示,其中0—s 1过程的图线为曲线,s 1—s 2过程的图线为直线.根据该图象,下列判断正确的是 ( )A .0—s 1过程中物体所受合力一定是变力B .s 1—s 2过程中物体可能在做匀速直线运动C .s 1—s 2过程中物体可能在做变加速直线运动D .0—s 2过程中物体的动能可能在不断增大5、如图所示,质量为m 的物体用细绳经过光滑小孔牵引在光滑水平面上做 匀速圆周运动,拉力为某个值F 时,转动半径为B ,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R ,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零二、弹簧类问题:(弹簧类问题一定要注意分析弹性势能的变化情况,形变量相等,弹性势能相等)6、如图所示,物体A的质量为m,置于水平地面上,A 的上端连一轻弹簧,原长为L,劲度系数为k,现将弹簧上端B缓慢地竖直向上提起,使B点上移距离为L,此时物体A也已经离开地面,则下列论述中正确的是( )A.提弹簧的力对系统做功为mgLB.物体A的重力势能增加mgLC.系统增加的机械能小于mgLD.以上说法都不正确7、如图所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上P点,已知物体的质量为m=2.0kg,物体与水平面间的动摩擦因数μ=0.4,弹簧的劲度系数k=200N/m.现用力F拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10cm,这时弹簧具有弹性势能E P=1.0J,物体处于静止状态.若取g=10m/s2,则撤去外力F后 ( )A .物体向右滑动的距离可以达到12.5cmB .物体向右滑动的距离一定小于12.5cmC. 物体回到O点时速度最大D. 物体到达最右端时动能为0,系统机械能不为08、如图,两根相同的轻质弹簧,沿足够长的光滑斜面放置,下端固定在斜面底部挡板上,斜面固定不动.质量不同、形状相同的两物块分别置于两弹簧上端.现用外力作用在物块上,使两弹簧具有相同的压缩量,若撤去外力后,两物块由静止沿斜面向上弹出并离开弹簧,则从撤去外力到物块速度第一次减为零的过程,两物块( )最大速度相同B.最大加速度相同C.上升的最大高度不同D.重力势能的变化量不同三、系统功能关系:9、如图a、b两物块质量分别为m、2m,用不计质量的细绳相连接,悬挂在定滑轮的两侧,不计滑轮质量和一切摩擦.开始时,a、b两物块距离地面高度相同,用手托住物块b,然后突然由静止释放,直至a、b物块间高度差为h.在此过程中,下列说法正确的是( ) A.物块a的机械能逐渐增加B.物块b 机械能减少了23mghC.物块b重力势能的减少量等于细绳拉力对它所做的功D.物块a重力势能的增加量小于其动能增加10、如图所示,一直角斜面固定在地面上,A、B两质量相同的物块系于一根跨过定滑轮的轻绳两端,分别置于动摩擦因数相同的两斜面上,两物块可以看成质点,且位于同一高度并处于静止状态.绳子均与斜面平行.若剪断绳,让两物块从静止开始沿斜面下滑,下列叙述正确的是( )A.两物块沿斜面下滑的时间可能相同B.落地时A物块的动能大于B物块的动能C.落地时A物块的机械能等于B物块的机械能D.落地时两物块重力的功率可能相同11、如图,置于足够长斜面上的盒子A内放有光滑球B,B恰与盒子前、后壁接触,斜面光滑且固定于水平地面上.一轻质弹簧的一端与固定在斜面上的木板P拴接,另一端与A相连.今用外力推A使弹簧处于压缩状态,然后由静止释放,则从释放盒子直至其获得最大速度的过程中( )A.弹簧的弹性势能一直减小直至为零B .A 对B 做的功等于B 机械能的增加量C .弹簧弹性势能的减小量等于A 和B 机械能的增加量D .A 所受重力和弹簧弹力做功的代数和小于A 动能的增加量12、如图,轻质弹簧的一端与固定的竖直板P 栓接,另一端与物体A 相连,物体A 静止于光滑水平桌面上,A 右端连接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时用手托住B ,让细线恰好伸直,然后由静止释放B ,直至B 获得最大速度.下列有关该过程的分析正确的是( )A .B 物体受到绳的拉力保持不变 B .B 物体机械能的减少量小于弹簧弹性势能的增加量C .A 物体动能的增加量等于B 物体重力做功与弹簧对A 的弹力做功之和D .A 物体与弹簧所组成的系统机械能的增加量等于细线拉力对A 做的功13、放在粗糙水平地面上的物体受到水平拉力的作用,在0~6 s 内其速度与时间的图象和该拉力的功率与时间的图象分别如图所示.下列说法正确的是( ) A .0~6 s 内物体的位移大小为30 m B .0~6 s 内拉力做的功为70JC .合外力在0~6 s 内做的功与0~2 s 内做的功相等D .滑动摩擦力的大小为5 N14、静止在地面上的一小物体,在竖直向上的拉力作用下开始运动,在向上运动的过程中,物体的机械能与位移的关系图象如图所示,其中0~x 1过程的图线是曲线,x 1~x 2过程的图线为平行于横轴的直线.关于物体上升过程(不计空气阻力)的下列说法正确的是( ) A .0~x 1过程中物体所受的拉力是变力,且不断减小B .x 1~x 2过程中物体做匀速直线运动C .0~x 2过程中物体的动能先增大后减小D .0~x 2过程中物体的加速度先减小再反向增大,最后不变且等于重力加速度15、 一物块以150J 的初动能由地面沿一个很长的斜面往上滑行,当它到达最高点时,重力势能等于120J ,而后物块开始沿斜面往下滑行,设物块与斜面的动摩擦因数处处相同,则当物块下滑到离地高度等于最高度的三分之一时( 取斜面最低点为重力势能为零),物块的( )A 、 机械能等于110JB 、 机械能等于100JC 、 动能等于60JD 动能等于30J四、摩擦力做功问题: (1)静摩擦力做功的特点是可以做正功、负功、不做功;相互作用的一对静摩擦力做功的代数和总等于零,无热量生成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理功能关系专题定位本专题主要用功能的观点解决物体的运动和带电体、带电粒子、导体棒在电场或磁场中的运动问题.考查的重点有以下几方面:①重力、摩擦力、静电力和洛伦兹力的做功特点和求解;②与功、功率相关的分析与计算;③几个重要的功能关系的应用;④动能定理的综合应用;⑤综合应用机械能守恒定律和能量守恒定律分析问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.应考策略深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题.1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.《(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.<(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.(5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F f·l相对.1.动能定理的应用(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(2)应用动能定理解题的基本思路①选取研究对象,明确它的运动过程.②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.¥③明确物体在运动过程始、末状态的动能E k1和E k2.④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.2.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路>①选取研究对象——物体系统.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始、末状态时的机械能.④根据机械能守恒定律列方程,进行求解.题型1力学中的几个重要功能关系的应用例1如图1所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B相连.开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度.下列有关该过程的分析正确的是()A.B物体的机械能一直减小)B.B物体的动能的增加量等于它所受重力与拉力做的功之和C.B物体机械能的减少量等于弹簧的弹性势能的增加量D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量以题说法 1.本题要注意几个功能关系:重力做的功等于重力势能的变化量;弹簧弹力做的功等于弹性势能的变化量;重力以外的其他力做的功等于机械能的变化量;合力做的功等于动能的变化量.2.本题在应用动能定理时,应特别注意研究过程的选取.并且要弄清楚每个过程各力做功的情况.如图2所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加【C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功题型2动力学方法和动能定理的综合应用例2(15分)如图3所示,上表面光滑、长度为3 m、质量M=10 kg的木板,在F=50 N 的水平拉力作用下,以v0=5 m/s的速度沿水平地面向右匀速运动.现将一个质量为m =3 kg的小铁块(可视为质点)无初速度地放在木板最右端,当木板运动了L=1 m时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1 m就在其最右端无初速度地放上一个同样的小铁块.(g取10 m/s2)求:(1)木板与地面间的动摩擦因数;(2)刚放第三个小铁块时木板的速度;(3)从放第三个小铁块开始到木板停止的过程,木板运动的距离.(以题说法 1.在应用动能定理解题时首先要弄清物体的受力情况和做功情况.此题特别要注意每放一个小铁块都会使滑动摩擦力增加μmg.2.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.|如图4所示,倾角为37°的粗糙斜面AB底端与半径R=0.4 m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1 kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10 m/s2,sin 37°=,cos 37°=.(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C点,求滑块从A点沿斜面滑下时的初速度v0的最小值;(3)若滑块离开C点的速度大小为4 m/s,求滑块从C点飞出至落到斜面上所经历的时间t.题型3动力学方法和机械能守恒定律的应用/例3(14分)如图5,质量为M=2 kg的顶部有竖直壁的容器A,置于倾角为θ=30°的固定光滑斜面上,底部与斜面啮合,容器顶面恰好处于水平状态,容器内有质量为m=1 kg 的光滑小球B与右壁接触.让A、B系统从斜面上端由静止开始下滑L后刚好到达斜面底端,已知L=2 m,取重力加速度g=10 m/s2.求:(1)小球到达斜面底端的速度大小;(2)下滑过程中,A的水平顶面对B的支持力大小;(3)下滑过程中,A对B所做的功.…以题说法若判断多个物体组成的系统机械能是否守恒,最简单有效的方法是看能量是否向机械能之外的其他能量转化.比如,此题中各个接触面都是光滑的,不会产生内能,也没有其他能量参与转移或转化,所以A、B组成的系统机械能守恒.如图所示,轮半径r=10 cm的传送带,水平部分AB的长度L=1.5 m,与一圆心在O点、半径R=1 m的竖直光滑圆轨道的末端相切于A点,AB高出水平地面H=1.25 m,一质量m=0.1 kg的小滑块(可视为质点),由圆轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin 37°=,cos 37°=,g=10 m/s2,滑块与传送带间的动摩擦因数μ=,不计空气阻力.(1)求滑块对圆轨道末端的压力;(2)若传送带一直保持静止,求滑块的落地点与B间的水平距离;(3)若传送带以v0=0.5 m/s的速度沿逆时针方向运行(传送带上部分由B到A运动),求滑块在传送带上滑行过程中产生的内能%~.6. 综合应用动力学和能量观点分析多过程问题汽车发动机的功率为60 kW ,汽车的质量为4 t ,当它行驶在坡度为 (sin α=的长直公路上时,如图所示,所受摩擦阻力为车重的倍(g =10 m/s 2),求:(1)汽车所能达到的最大速度v m ;(2)若汽车从静止开始以0.6 m/s 2的加速度做匀加速直线运动,则此过程能维持多长时间(3)当汽车匀加速行驶的速度达到最大值时,汽车做功多少'如图8所示,将一质量m =0.1 kg 的小球自水平平台顶端O 点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A 并沿斜面下滑,斜面底端B 与光滑水平轨道平滑连接,小球以不变的速率过B 点后进入BC 部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h =3.2 m ,斜面高H =15 m ,竖直圆轨道半径R =5 m .取sin 53°=,cos 53°=,g =10 m/s 2,试求:((1)小球水平抛出的初速度v 0及斜面顶端与平台边缘的水平距离x ;(2)小球从平台顶端O 点抛出至落到斜面底端B 点所用的时间;(3)若竖直圆轨道光滑,小球运动到圆轨道最高点D 时对轨道的压力.\专题突破一、单项选择题1.质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r ,其中G为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝⎛⎭⎫1R 2-1R 1B .GMm ⎝⎛⎭⎫1R 1-1R 2 ⎝⎛⎭⎫1R 2-1R 1 ⎝⎛⎭⎫1R 1-1R 2 2. 如图1所示,质量为m 的物体(可视为质点)以某一初速度从A 点冲上倾角为30°的固定斜面,其运动的加速度大小为34g ,沿斜面上升的最大高度为h ,则物体沿斜面上升的过程中 ( )A .物体的重力势能增加了34mgh^B .物体的重力势能增加了mghC .物体的机械能损失了14mghD .物体的动能减少了mgh3. 用电梯将货物从六楼送到一楼的过程中,货物的v -t 图象如图2所示.下列说法正确的是 ( )A .前2 s 内货物处于超重状态B .最后1 s 内货物只受重力作用C .货物在10 s 内的平均速度是1.7 m/sD .货物在2 s ~9 s 内机械能守恒#4. 质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图3所示,其中OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为F f ,以下说法正确的是 ( )A .0~t 1时间内,汽车牵引力的数值为m v 1t 1B .t 1~t 2时间内,汽车的功率等于(m v 1t 1+F f )v 2 C .t 1~t 2时间内,汽车的平均速率小于v 1+v 22D .汽车运动的最大速率v 2=(mv 1F f t 1+1)v 1 二、多项选择题5.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上.现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( )A .小球P 的速度先增大后减小#B .小球P 和弹簧的机械能守恒,且P 速度最大时所受弹力与库仑力的合力最大C .小球P 的动能、重力势能、电势能与弹簧的弹性势能的总和不变D .系统的机械能守恒6. 一物体静止在水平地面上,在竖直向上的拉力F 的作用下开始向上运动,如图5甲所示.在物体运动过程中,空气阻力不计,其机械能E 与位移x 的关系图象如图乙所示,其中曲线上点A 处的切线的斜率最大.则( )A .在x 1处物体所受拉力最大B .在x 2处物体的速度最大C .在x 1~x 3过程中,物体的动能先增大后减小D .在0~x 2过程中,物体的加速度先增大后减小#7. 被誉为“豪小子”的纽约尼克斯队17号华裔球员林书豪在美国职业篮球(NBA)赛场上大放光彩.现假设林书豪准备投二分球前先屈腿下蹲再竖直向上跃起,已知林书豪的质量为m ,双脚离开地面时的速度为v ,从开始下蹲至跃起过程中重心上升的高度为h ,则下列说法正确的是 ( )A .从地面跃起过程中,地面支持力对他所做的功为0B .从地面跃起过程中,地面支持力对他所做的功为12mv 2+mghC .离开地面后,他在上升过程和下落过程中都处于失重状态D .从下蹲到离开地面上升过程中,他的机械能守恒三、非选择题8. 水上滑梯可简化成如图6所示的模型,光滑斜槽AB 和粗糙水平槽BC 平滑连接,斜槽AB 的竖直高度H =6.0 m ,倾角θ=37°,水平槽BC 长d =2.5 m ,BC 面与水面的距离h =0.80 m ,人与BC 间的动摩擦因数为μ=0.40.一游戏者从滑梯顶端A 点无初速度地自由滑下,求:(取重力加速度g =10 m/s2,cos 37°=,sin 37°=(1)游戏者沿斜槽AB 下滑时加速度的大小;-(2)游戏者滑到C 点时速度的大小;(3)在从C 点滑出至落到水面的过程中,游戏者在水平方向上的位移的大小.:9. 如图所示,倾角为θ的光滑斜面上放有两个质量均为m 的小球A 和B ,两球之间用一根长为L 的轻杆相连,下面的小球B 离斜面底端的高度为h .两球从静止开始下滑,不计球与地面碰撞时的机械能损失,且地面光滑,求:(1)两球都进入光滑水平面时两小球运动的速度大小;(2)此过程中杆对B球所做的功.10.如图7所示,质量为m=1 kg的小物块轻轻地放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞地沿圆弧切线从B点进入竖直光滑的圆弧轨道.B、C为圆弧轨道的两端点,其连线水平,已知圆弧轨道的半径R=1.0 m,圆弧轨道对应的圆心角θ=106°,轨道最低点为O,A点距水平面的高度h=0.8 m,小物块离开C点后恰能无碰撞地沿固定斜面向上运动,s后经过D点,小物块与斜面间的动摩擦因数为μ1=13.(g=10 m/s2,sin 37°=,cos 37 °=(1)求小物块离开A点时的水平初速度v1的大小;(2)求小物块经过O点时对轨道的压力;(3)假设小物块与传送带间的动摩擦因数为μ2=,传送带的速度为5 m/s,求P、A间的距离;(4)求斜面上C、D间的距离.11.如图8所示是一皮带传输装载机械示意图.井下挖掘工将矿物无初速度地放置于沿图示方向运行的传送带A端,被传输到末端B处,再沿一段圆形轨道到达轨道的最高点C 处,然后水平抛到货台上.已知半径为R=0.4 m的圆形轨道与传送带在B点相切,O 点为半圆的圆心,BO、CO分别为圆形轨道的半径,矿物m可视为质点,传送带与水平面间的夹角θ=37°,矿物与传送带间的动摩擦因数μ=,传送带匀速运行的速率为v0=8 m/s,传送带A、B点间的长度s AB=45 m.若矿物落到点D处离最高点C点的水平距离为s CD=2 m,竖直距离为h CD=1.25 m,矿物质量m=50 kg,sin 37°=,cos 37°=,g=10 m/s2,不计空气阻力.求:(1)矿物到达B点时的速度大小;(2)矿物到达C点时对轨道的压力大小;(3)矿物由B点到达C点的过程中,克服阻力所做的功.。