整式的化简求值-专题练习

合集下载

整式的化简求值(整式的乘除)-整体代入法专题练习(学生版)

整式的化简求值(整式的乘除)-整体代入法专题练习(学生版)

整式的化简求值(整式的乘除)-整体代入法专题练习一、选择题1、如果代数式3x2-4x的值为6,那么6x2-8x-9的值为().A. 12B. 3C. 32D. -32、已知a2-3=2a,那么代数式(a-2)2+2(a+1)的值为().A. -9B. -1C. 1D. 93、若代数式x2-13x的值为6,则3x2-x+4的值为().A. 22B. 10C. 7D. 无法确定4、如果3a2+5a-1=0,那么代数式5a(3a+2)-(3a+2)(3a-2)的值是().A. 6B. 2C. -2D. -65、已知a-b=1,则代数式-2a+2b-3的值是().A. -1B. 1C. -5D. 56、已知代数式3x2-4x的值为9,则6x2-8x-6的值为().A. 3B. 24C. 18D. 127、如果a2+4a-4=0,那么代数式(a-2)2+4(2a-3)+1的值为().A. 13B. -11C. 3D. -38、已知2x-3y+1=0且m-6x+9y=4,则m的值为().A. 7B. 3C. 1D. 59、已知a+b=3,ab=1,则a2b+ab2的值为().A. 3B. 2C. -3D. 110、如果x2+x=3,那么代数式(x+1)(x-1)+x(x+2)的值是().A. 2B. 3C. 5D. 611、若a+b=1,则a2-b2+2b的值为().A. 4B. 3C. 1D. 012、如果a2-2a-1=0,那么代数式(a-3)(a+1)的值是().A. 2B. -2C. 4D. -413、若-a2b=2,则-ab(a5b2-a3b+2a)的值为().A. 0B. 8C. 12D. 1614、若x+y=1,x3+y3=13,则x5+y5的值是().A. 1181B.3181C.11243D.3124315、已知代数式x+2y的值是3,则代数式2x+4y+1的值是().A. 1B. 4C. 7D. 不能确定二、填空题16、已知a-b=2,则多项式3a-3b-2的值是______.17、当a=3,a-b=-1时,a2-ab的值是______.18、已知t满足方程14+5(t-12017)=12,则3+20(12017-t)的值为______.19、已知x,则代数式x2-4x+3的值是______.20、如果x-y,那么代数式(x+2)2-4x+y(y-2x)的值是______.21、若代数式2x2-4x-5的值为7,则x2-2x-2的值为______.22、若3x3-kx2+4被3x-1除后余3,则k的值为______.23、已知x2+2x=3,则代数式(x+1)2-(x+2)(x-2)+x2的值为______.三、解答题24、已知x2-2x-7=0,求(x-2)2+(x+3)(x-3)的值.25、已知x2+4x-5=0,求代数式2(x+1)(x-1)-(x-2)2的值.26、若实数a满足a2-2a-1=0,计算4(a+1)(a-1)-2a(a+2)的值.27、已知x2-2x=3,求2x(x+2)-8x+7的值.28、化简求值:已知a2+7a+6=0,求(3a-2)(a-3)-(2a-1)2的值.29、已知m2-5m-14=0,求(m-1)(2m-1)-(m+1)2+1的值.30、已知xy=-3,满足x+y=2,求代数式x2y+xy2的值.31、关于x的三次多项式a(x4-x3+7x)+b(38x3-x)+x4-5,当x取2时多项式的值为-8,求当x取-2时该多项式的值.。

专题 整式的化简求值(五大题型50题)(解析版)

专题 整式的化简求值(五大题型50题)(解析版)

(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x 2y−[x y 2+3(x 2y−13x y 2)],其中x =12,y =2.【分析】先化简整式,再代入求值.【解答】解:原式=2x 2y ﹣(xy 2+3x 2y ﹣xy 2)=2x 2y ﹣3x 2y=﹣x 2y .当x =12,y =2时,原式=﹣(12)2×2=−14×2=−12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.先化简,再求值:4x 2﹣2xy +y 2﹣(x 2﹣xy +y 2),其中x =﹣1,y =−12.【分析】去括号,合并同类项后代入求值.【解答】解:原式=4x 2﹣2xy +y 2﹣x 2+xy ﹣y 2=3x 2﹣xy ,当x =﹣1,y =−12时,原式=3×(﹣1)2﹣(﹣1)×(−12)=3−12=52.【点评】本题考查了整式的加减—化简求值,掌握去括号法则与合并同类项是解题的关键.3.(2022秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.【分析】先进行整式的化简,再代入求值即可.【解答】解:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2当a=﹣1,b=2时,原式=(﹣1)2×2+8×(﹣1)×22=2﹣32=﹣30.【点评】本题考查了整式的加减,解决本题的关键是先化简.4.(2022秋•邹城市校级期末)先化简,再求值:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2),其中x=﹣1,y=2.【分析】利用整式的加减混合运算化简整式,再代入求值.【解答】解:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2)=2x2﹣2y2﹣4x2y﹣4xy2+4x2y2+4y2=2x2+2y2﹣4x2y﹣4xy2+4x2y2,∵x=﹣1,y=2,∴原式=2×(﹣1)2+2×22﹣4×(﹣1)2×2﹣4×(﹣1)×22+4×(﹣1)2×22=2×1+2×4﹣4×2+4×4+4×4=2+8﹣8+16+16=34.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的加减混合运算.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x+6y2﹣4x﹣6x+3y2=﹣6x+9y2,当x=2,y=﹣2时,原式=﹣6×2+9×(﹣2)2=﹣12+36=24.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)]=﹣3a2+4ab+(a2﹣4a﹣4ab)=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a.当a=﹣2,b=2022时,原式=﹣2×(﹣2)2﹣4×(﹣2)=﹣2×4+8=﹣8+8=0.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.【分析】先将原式去括号、合并同类项,再把x=﹣2,y=12代入化简后的式子,计算即可.【解答】解:5x2−[2xy−3(13xy+2)+4x2]=5x2﹣(2xy﹣xy﹣6+4x2)=5x2﹣2xy+xy+6﹣4x2=(5x2﹣4x2)+(﹣2xy+xy)+6=x2﹣xy+6,当x=−2,y=12时,原式=(−2)2−(−2)×12+6=4+1+6=11.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.9.先化简,再求值:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab),其中a=5,b=﹣2.【分析】先化简整式,再代入求值.【解答】解:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab)=2ab﹣3a2+2a﹣2b2﹣3a+3a2﹣2ab=﹣a﹣2b2.当a=5,b=﹣2时,原式=﹣5﹣2×(﹣2)2=﹣5﹣2×4=﹣5﹣8=﹣13.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.【分析】先化简,再代入求值即可.【解答】解:原式=2mn ﹣8m 2﹣2﹣3m 2+2mn=4mn ﹣11m 2﹣2,当m =1,n =﹣2时,原式=4×1×(﹣2)﹣11×12﹣2=﹣21.【点评】本题主要考查了整式的加减,解题的关键是正确的化简.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.【分析】利用去括号法则先去括号再合并同类项,最后代入求值.【解答】解:原式=5xy ﹣4x 2﹣2y ﹣5xy ﹣2x 2=(5xy ﹣5xy )﹣(4x 2+2x 2)﹣2y=﹣6x 2﹣2y当x =3,y =﹣2时原式=﹣6×32﹣2×(﹣2)=﹣50.【点评】本题考查了整式的化简求值,掌握去括号法则和合并同类项法则是解决本题的关键.12.(2022秋•绿园区期末)先化简,再求值:12m−(2m−23n 2)+(−32m +13n 2),其中m =−14,n =−12.【分析】先去括号,然后合并同类项,再代入求值.【解答】解:原式=12m−2m +23n 2−32m +13n 2=n 2﹣3m ,当m =−14,n =−12时,原式=n 2﹣3m=(−12)2﹣3×(−14)=14+34=1.【点评】本题考查了整式的加减—化简求值,熟悉去括号和合并同类项法则是解题的关键.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.【分析】先去括号再合并同类项,最后代入求值.【解答】解:2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b=2a2b+2ab﹣4a2b+4ab﹣4a2b=﹣6a2b+6ab.当a=3,b=﹣2,原式=﹣6×32×(﹣2)+6×3×(﹣2)=6×9×2﹣6×3×2=108﹣36=72.【点评】本题考查了整式的化简,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14x y2)−2(x y2−xy),其中x=12,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:3x2y−2(x2y+14x y2)−2(x y2−xy)=3x2y−2x2y−12x y2−2x y2−2xy=x y2−52x y2+2xy把x=12,y=﹣2代入原式=(12)2×(−2)−52×12×(−2)2+2×12×(−2)=−712.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=5m2﹣(5m2﹣2m2+mn﹣7mn+7)=5m2﹣5m2+2m2﹣mn+7mm﹣7=2m2+6mm﹣7,∵m2+3mn=﹣5,∴原式=2(m2+3mn)﹣7=2×(﹣5)﹣7=﹣10﹣7=﹣17.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=7a2+3ab+3b2﹣8a2﹣6ab﹣4b2=﹣a2﹣3ab﹣b2;当a2+b2=3,ab=﹣2时,原式=﹣(a2+b2)﹣3ab=﹣3﹣3×(﹣2)=﹣3+6=3,∴原代数式的值为3.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想解题是关键.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6x2﹣2x+4y﹣2xy﹣6x2+9x+3y﹣3xy=7x+7y﹣5xy,当x+y=67,xy=﹣2时,原式=7(x+y)﹣5xy=7×67−5×(﹣2)=6+10=16.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想代入求值是解题关键.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1= .(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)根据阅读材料,直接合并同类项即可;(2)根据等式性质可得3x2﹣6y=12,然后整体代入即可求值;(3)先根据已知3个等式可得a﹣c=8,2b﹣d=5,再整体代入即可求值.【解答】解:(1)3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=﹣(a﹣b)2;(2)∵x2﹣2y=4,∴3x2﹣6y=12,∴3x2﹣6y﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,∴①+②得,a﹣c=﹣2,②+③得,2b﹣d=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减﹣化简求值,解决本题的关键是掌握整式的加减.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.【分析】(1)把(a﹣b)看成一个整体,先变形要求值代数式,再整体代入;(2)可变形已知,整体代入求值.【解答】解:(1)3(a﹣b)﹣a+b+1=3(a﹣b)﹣(a﹣b)+1=2(a﹣b)+1.当a﹣b=﹣3时,原式=2×(﹣3)+1=﹣6+1=﹣5.(2)法一、∵a2+2ab=2,ab﹣b2=1,∴2a2+4ab=4,∴2a2+4ab+ab﹣b2=5.即2a2+5ab﹣b2=5.法二、∵a2+2ab=2,ab﹣b2=1,∴a2=2﹣2ab,﹣b2=1﹣ab.∴2a2+5ab﹣b2=2(2﹣2ab)+5ab+1﹣ab=4﹣4ab+5ab+1﹣ab=5.【点评】本题主要考查了整式的化简求值,掌握整式的运算法则和整体的思想方法是解决本题的关键.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.【分析】(1)根据题意得出x2﹣2x+3=5,求出x2﹣2x=2,变形后代入,即可求出答案;(2)根据题意求出a+b+5=8,求出a+b=3,再把x=﹣1代入代数式,最后整体代入,即可求出答案;(3)代数式x2﹣2xy+y2=20减去代数式xy﹣y2=6,即可得出答案.【解答】解:(1)根据题意得:x2﹣2x+3=5,即x2﹣2x=2,所以3x2﹣6x﹣1=3(x2﹣2x)﹣1=3×2﹣1=6﹣1=5;(2)∵当x=1时,代数式ax3+bx+5的值为8,∴a+b+5=8,∴a+b=3,当x=﹣1时,ax3+bx﹣6=a×(﹣1)3+b×(﹣1)﹣6=﹣a﹣b﹣6=﹣(a+b)﹣6=﹣3﹣6=﹣9;(3)∵①x2﹣2xy+y2=20,②xy﹣y2=6,∴①﹣②,得x2﹣2xy+y2﹣(xy﹣y2)=20﹣6,整理得:x2﹣3xy+2y2=14.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1= ;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.28.(2022秋•西安期中)化简求值:−12(5xy−2x2+3y2)+3(−12xy+23x2+y26),其中x、y满足(x+1)2+|y﹣2|=0.【分析】由非负数的和为0得非负数为0,解出x,y的值,代入化简后的代数式求值即可.【解答】解:∵(x+1)2+|y﹣2|=0.∴x+1=0,y﹣2=0,∴x=﹣1,y=2.−12(5xy﹣2x2+3y2)+3(−12xy+23x2+y26)=−52xy+x2−32y2−32xy+2x2+y22=﹣4xy+3x2﹣y2.当x=﹣1,y=2时,原式=﹣4×(﹣1)×2+3×(﹣1)2﹣22=8+3﹣4=7.【点评】本题考查的是整式的化简和非负数的性质,解题的关键是利用非负数的性质求出x,y的值.29.(2022秋•公安县期中)先化简,再求值:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab,其中a=12,b=﹣4.【分析】首先去括号进而合并同类项,再把a,b的值代入计算求出答案即可.【解答】解:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab =4a2b﹣(﹣2ab2﹣2ab+2ab2+a2b)﹣3ab=4a2b+2ab﹣a2b﹣3ab=3a2b﹣ab;当a=12,b=﹣4时,原式=3×(12)2×(−4)−12×(−4)=−3+2=−1.【点评】此题主要考查了整式的加减﹣化简求值,正确合并同类项是解题关键.30.(2022秋•海林市期末)先化简再求值:12a+2(a+3ab−13b2)−3(32a+2ab−13b2),其中a、b满足|a﹣2|+(b+3)2=0.【分析】先去括号,然后合并同类项进行化简,根据非负数的性质求出a、b的值代入化简后的结果进行计算即可.【解答】解:原式=12a+2a+6ab−23b2−92a−6ab+b2=−2a+13b2,∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,当a=2,b=﹣3时,原式=﹣2×2+13(﹣3)2=﹣4+3=﹣1.【点评】本题考查了整式的加减——化简求值,涉及了去括号法则,合并同类项法则,非负数的性质等,熟练掌握各运算的运算法则以及非负数的性质是解题的关键.31.(2022秋•万州区期末)化简求32a2b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=32a2b﹣2ab2﹣2−32a2b+12ab2﹣2=−32a b2−4.∵2(a−3)2022+|b+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,b+23=0,∴a=3,b=−2 3.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.32.(2022秋•偃师市期末)已知:(x−2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.【分析】根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:原式=2xy2+2x2y﹣(2xy2﹣3+3x2y)+2=2xy2+2x2y﹣2xy2+3﹣3x2y+2=(2﹣2)xy2+(2﹣3)x2y+(3+2)=﹣x2y+5;∵(x+2)2≥0,|y−12|≥0,又∵(x−2)2+|y+12|=0,∴x﹣2=0,y+12=0,∴x=2,y=−1 2,∴原式=﹣22×(−12)+5=2+5=7.【点评】本题考查整式的化简求值,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)],其中x 是最大的负整数,y 是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x 是最大的负整数,y 是绝对值最小的正整数,∴x =﹣1,y =1,∴2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)]=2x 2y ﹣4xy 2﹣(﹣x 2y 2+4x 2y ﹣2xy 2+x 2y 2)=2x 2y ﹣4xy 2+x 2y 2﹣4x 2y +2xy 2﹣x 2y 2=﹣2x 2y ﹣2xy 2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x 2y ﹣2xy 2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.34.(2022秋•越秀区期末)已知代数式M =(2a 2+ab ﹣4)﹣2(2ab +a 2+1).(1)化简M ;(2)若a ,b 满足等式(a ﹣2)2+|b +3|=0,求M 的值.【分析】(1)直接利用去括号,进而合并同类项即可得出答案;(2)结合非负数的性质得出a ,b 的值,代入a ,b 的值得出答案.【解答】解:(1)M =2a 2+ab ﹣4﹣4ab ﹣2a 2﹣2=﹣3ab ﹣6;(2)∵(a ﹣2)2+|b +3|=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故M=﹣3×2×(﹣3)﹣6=18﹣6=12.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.35.(2022秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.【分析】先去括号、合并同类项,再根据非负数的性质求出a、b,最后代入化简后的整式求值.【解答】解:3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}=3ab2﹣[2a2b﹣(5ab2﹣6ab2+2a2b)]=3ab2﹣(2a2b﹣5ab2+6ab2﹣2a2b)=3ab2﹣2a2b+5ab2﹣6ab2+2a2b=2ab2.∵(a+3)2+|b﹣2|=0,又∵(a+3)2≥0,|b﹣2|≥0,∴a+3=0,b﹣2=0.∴a=﹣3,b=2.当a=﹣3,b=2时,原式=2×(﹣3)×22=2×(﹣3)×4=﹣24.【点评】本题考查了整式的化简﹣求值,掌握去括号法则、合并同类项法则、非负数的性质及有理数的混合运算是解决本题的关键.36.(2022秋•江都区期末)已知代数式A=x2+xy﹣12,B=2x2﹣2xy﹣1.当x=﹣1,y=﹣2时,求2A﹣B 的值.【分析】将x=﹣1,y=﹣2代入求出A、B的值,再代入到2A﹣B即可.【解答】解:当x=﹣1,y=﹣2时,A=1+2﹣12=﹣9,B=2﹣4﹣1=﹣3,∴2A﹣B=﹣18+3=﹣15.【点评】本题考查整式的加减以及代数式求值,掌握去括号、合并同类项分组是正确解答的前提.37.已知:A=x−12y+2,B=x﹣y﹣1.(1)化简A﹣2B;(2)若3y﹣2x的值为2,求A﹣2B的值.【分析】(1)把A、B表示的代数式代入A﹣2B中,计算求值即可;(2)利用等式的性质,变形已知,整体代入(1)的结果中求值即可.【解答】解:∵A=x−12y+2,B=x﹣y﹣1,∴A﹣2B=x−12y+2﹣2(x﹣y﹣1)=x−12y+2﹣2x+2y+2=﹣x+32y+4;(2)当3y﹣2x=2时,即﹣x+32y=1.A﹣2B=﹣x+32y+4=1+4=5.【点评】本题考查了整式的加减、整体代入的思想方法,掌握去括号、合并同类项法则是解决本题的关键.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.【分析】利用整式的混合运算化简整式,再根据非负数的性质判断x ,y 的值,代入求值即可.【解答】解:∵A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy) =xy 2﹣3xy 2+xy=﹣2xy 2+xy ,∴A ﹣B=5xy 2﹣xy ﹣(﹣2xy 2+xy )=5xy 2﹣xy +2xy 2﹣xy=7xy 2﹣2xy ,∵(x +1)2+|3﹣y |=0,∴x +1=0,3﹣y =0,∴x =﹣1,y =3,∴原式=7xy 2﹣2xy=7×(﹣1)×32﹣2×(﹣1)×3=﹣7×9+6=﹣63+6=﹣57.【点评】本题考查了整式的混合运算化简求值,非负数的性质,解题的关键是掌握整式的混合运算,非负数的性质.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.【分析】(1)先把A 、B 表示的代数式代入,然后化简求值;(2)把a 、b 的值代入化简的代数式,计算得结果.【解答】解:(1)∵A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a ,∴A﹣3B=2a2b﹣5ab2﹣3(a2b﹣2ab2﹣a)=2a2b﹣5ab2﹣3a2b+6ab2+3a=﹣a2b+ab2+3a.(2)当a=2,b=﹣1时,A﹣3B=﹣22×(﹣1)+2×(﹣1)2+3×2=4+2+6=12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=1 5.当x=2,y=15时,原式=﹣5×2﹣5×1 5=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2021秋•沂源县期末)已知多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,求代数式3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)的值.【分析】先根据代数式的差与字母x 无关,求出a 、b 的值,再化简代数式,代入计算.【解答】解:x 2+ax ﹣y +b ﹣(bx 2﹣3x +6y ﹣3)=x 2+ax ﹣y +b ﹣bx 2+3x ﹣6y +3=(1﹣b )x 2+(a +3)x ﹣7y +b +3.∵多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,∴1﹣b =0,a +3=0.∴b =1,a =﹣3.3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)=3a 2﹣6ab ﹣3b 2﹣4a 2﹣4ab ﹣4b 2=﹣a 2﹣10ab ﹣7b 2.当b =1,a =﹣3时.原式=﹣(﹣3)2﹣10×(﹣3)×1﹣7×12=﹣9+30﹣7=14.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及绝对值的意义是解决本题的关键.45.(2022秋•大竹县校级期末)已知代数式x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6的值与字母x 的取值无关,求13a 3−2b 2−14a 3+3b 2的值.【分析】首先对题中前一个代数式合并同类项,由代数式的值与字母x 无关求得a 、b 的值,再把a 、b 的值代入后一个代数式计算即可.注意第二个代数式先进行合并同类项,可简化运算.【解答】解:x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6=(1﹣2b )x 2+(a +3)x ﹣6y +5,因为此代数式的值与字母x 无关,所以1﹣2b =0,a +3=0;解得a =﹣3,b =12,13a 3−2b 2−14a 3+3b 2 =112a 3+b 2,当a=﹣3,b=12时,上式=112×(﹣3)3+(12)2=−2.【点评】此题考查的知识点是整式的加减﹣化简求值,关键是掌握用到的知识点为:所给代数式的值与某个字母无关,那么这个字母的相同次数的系数之和为0.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.【分析】原式去括号合并后,根据结果与x取值无关求出a与b的值,所求式子去括号合并后代入计算即可求出值.【解答】解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,由结果与x取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=5ab2﹣a2b﹣2a2b+6ab2=11ab2﹣3a2b=﹣33﹣27=﹣60.【点评】此题考查了整式的加减﹣化简求值,以及整式的加减,熟练掌握运算法则是解本题的关键.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2a b2−4(ab−34a2b)]+2a b2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以y=2 5.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−1 2;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b =3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。

整式的化简求值(整式的乘除)-整体代入法专题练习(解析版)

整式的化简求值(整式的乘除)-整体代入法专题练习(解析版)

整式的化简求值(整式的乘除)-整体代入法专题练习一、选择题1、如果代数式3x2-4x的值为6,那么6x2-8x-9的值为().A. 12B. 3C. 32D. -3答案:B解答:6x2-8x-9=2(3x2-4x)-9=2×6-9=3.2、已知a2-3=2a,那么代数式(a-2)2+2(a+1)的值为().A. -9B. -1C. 1D. 9答案:D解答:原式=a2-4a+4+2a+2=a2-2a+6∵a2-3=2a,∴a2-2a=3,∴原式=3+6=9.选D.3、若代数式x2-13x的值为6,则3x2-x+4的值为().A. 22B. 10C. 7D. 无法确定答案:A解答:∵x2-13x=6,∴3x2-x+4=3(x2-13x)+4=3×6+4=18+4=22.选A.4、如果3a2+5a-1=0,那么代数式5a(3a+2)-(3a+2)(3a-2)的值是().A. 6B. 2C. -2D. -6答案:A解答:5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2·1+4=6.5、已知a-b=1,则代数式-2a+2b-3的值是().A. -1B. 1C. -5D. 5答案:C解答:-2a+2b-3=-2(a-b)-3=-2×1-3=-5,选C.6、已知代数式3x2-4x的值为9,则6x2-8x-6的值为().A. 3B. 24C. 18D. 12答案:D解答:∵3x2-4x=9,∴6x2-8x=18,∴6x2-8x-6=12,选D.7、如果a2+4a-4=0,那么代数式(a-2)2+4(2a-3)+1的值为().A. 13B. -11C. 3D. -3答案:D解答:由a2+4a-4=0可得:a2+4a=4,原式=a2-4a+4+8a-12+1=a2+4a-7=4-7=-3.选D.8、已知2x-3y+1=0且m-6x+9y=4,则m的值为().A. 7B. 3C. 1D. 5答案:C解答:∵2x-3y+1=0,∴2x-3y=-1,又∵m-6x+9y=4,∴m-3(2x-3y)=4,∴m+3=4,∴m=1.9、已知a+b=3,ab=1,则a2b+ab2的值为().A. 3B. 2C. -3D. 1答案:A解答:a2b+ab2=ab(a+b)=1×3=3.选A.10、如果x2+x=3,那么代数式(x+1)(x-1)+x(x+2)的值是().A. 2B. 3C. 5D. 6答案:C解答:原式=x2-1+x2+2x=2x2+2x-1.∵x2+x=3,∴2x2+2x-1=2(x2+x)-1=2×3-1=5.选C.11、若a+b=1,则a2-b2+2b的值为().A. 4B. 3C. 1D. 0答案:C解答:∵a+b=1,∴a2-b2+2b=(a+b)(a-b)+2b=1×(a-b)+2b=a+b=1.12、如果a2-2a-1=0,那么代数式(a-3)(a+1)的值是().A. 2B. -2C. 4D. -4答案:B解答:(a-3)(a+1)=a2-2a-3,∵a2-2a=1,∴原式=-2.选B.13、若-a2b=2,则-ab(a5b2-a3b+2a)的值为().A. 0B. 8C. 12D. 16答案:D解答:-ab(a5b2-a3b+2a)=-a6b3+a4b2-2a2b=-(a2b)3+(a2b)2-2a2b,∵-a2b=2,∴a2b=-2.∴原式=-(-2)3+(-2)2-2×(-2)=8+4+4=16.14、若x+y=1,x3+y3=13,则x5+y5的值是().A. 1181B.3181C.11243D.31243答案:A解答:由题目条件易得(x+y)2=1,x2-xy+y2=13,由此可得xy=29,x2+y2=59,∴x5+y5=(x2+y2)(x3+y3)-x2y2(x+y)=542781=1181.15、已知代数式x+2y的值是3,则代数式2x+4y+1的值是().A. 1B. 4C. 7D. 不能确定答案:C解答:∵x+2y=3,∴2x+4y+1=2(x+2y)+1,=2×3+1,=6+1,=7.选C.二、填空题16、已知a-b=2,则多项式3a-3b-2的值是______.答案:4解答:3a-3b-2=3(a-b)-2=4.17、当a=3,a-b=-1时,a2-ab的值是______.答案:-3解答:a2-ab=a(a-b)=-a=-3.18、已知t满足方程14+5(t-12017)=12,则3+20(12017-t)的值为______.答案:2解答:∵t满足方程14+5(t-12017)=12,∴t-12017=120,∴12017-t=-120,∴3+20(12017-t)=3+20×(-120)=3+(-1)=2.19、已知x,则代数式x2-4x+3的值是______.答案:4解答:∵x,∴x∴x2-4x+3=(x-2)2-1=5-1=4.20、如果x-y,那么代数式(x+2)2-4x+y(y-2x)的值是______.答案:6解答:(x+2)2-4x+y(y-2x)=x2+4+4x-4x+y2-2xy=x2+y2-2xy+4=(x-y)2+4=2+4=6.21、若代数式2x2-4x-5的值为7,则x2-2x-2的值为______.答案:4解答:∵2x2-4x-5=7,∴2x2-4x=12,∴x2-2x=6,∴x2-2x-2=6-2=4.22、若3x3-kx2+4被3x-1除后余3,则k的值为______.答案:10解答:3x3-kx2+4-3=3x3-kx2+1,令3x3-kx2+1=0,故x=13为该方程的解,代入解得,k=10.23、已知x2+2x=3,则代数式(x+1)2-(x+2)(x-2)+x2的值为______.答案:8解答:原式=x2+2x+1-(x2-4)+x2=x2+2x+5=3+5=8.三、解答题24、已知x2-2x-7=0,求(x-2)2+(x+3)(x-3)的值.答案:9.解答:原式=x2-4x+4+x2-9=2x2-4x-5.∵x2-2x-7=0,∴x2-2x=7.∴原式=2(x2-2x)-5=2×7-5=9.25、已知x2+4x-5=0,求代数式2(x+1)(x-1)-(x-2)2的值.答案:-1.解答:原式=2(x2-1)-(x2-4x+4)=2x2-2-x2+4x-4=x2+4x-6.∵x2+4x-5=0,∴x2+4x=5.∴原式=x2+4x-6=-1.26、若实数a满足a2-2a-1=0,计算4(a+1)(a-1)-2a(a+2)的值.答案:-2.解答:原式=4a2-4-2a2-4a=2a2-4a-4.∵a2-2a=1,∴原式=2-4=-2.27、已知x2-2x=3,求2x(x+2)-8x+7的值.答案:13.解答:2x(x+2)-8x+7=2x2+4x-8x+7=2x2-4x+7=2(x2-2x)+7,∵x2-2x=3,∴原式=2×3+7=13.28、化简求值:已知a2+7a+6=0,求(3a-2)(a-3)-(2a-1)2的值.答案:11.解答:(3a-2)(a-3)-(2a-1)2=3a2-9a-2a+6-(4a2-4a+1)=3a2-9a-2a+6-4a2+4a-1=-a2-7a+5.由a2+7a+6=0得,a2+7a=-6把a2+7a=-6代入,原式=-(a2+7a)+5=6+5=11.29、已知m2-5m-14=0,求(m-1)(2m-1)-(m+1)2+1的值.答案:原代数式的值为15.解答:(m-1)(2m-1)-(m+1)2+1=2m2-m-2m+1-(m2+2m+1)+1=2m2-m-2m+1-m2-2m-1+1=m2-5m+1.当m2-5m=14时,原式=(m2-5m)+1=14+1=15.∴原代数式的值为15.30、已知xy=-3,满足x+y=2,求代数式x2y+xy2的值.答案:-6.解答:∵xy=-3,x+y=2,∴x2y+xy2=xy(x+y)=-3×2=-6.31、关于x的三次多项式a(x4-x3+7x)+b(38x3-x)+x4-5,当x取2时多项式的值为-8,求当x取-2时该多项式的值.答案:-2.解答:原式=(a+1)x4+(38b-a)x3+(7a-b)x-5,原式是关于x的三次多项式,即a+1=0,∴a=-1.原式=(38b+1)x3+(7-b)x-5当x=2时,原式=(38b+1)×8+2(7-b)-5=-8,(38b+1)×8+2(7-b)=-3,当x=-2时,原式=(38b+1)×(-8)+(7-b)×(-2)-5=3-5=-2.。

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可.【详解】解:原式=222223263a b ab ab a b ab --++,=29a b .当2a =-,3b =-时,29(2)(3)108´-´-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn éù----+ëû,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-´´-+´-+´++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解.【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2)=2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2=3x 2+y 2当x =﹣1,y =2时,原式=()223127´-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键.13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++;(2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-.【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案.【详解】解:(1)()()54392a a b a b --+++54392a a b a b=---++b =-;(2)()()323232242x y x y x---+323232442x y x y x =--+-3x =-,当3x =时,原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则.14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值.15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3.【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解.【详解】解∶ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+ 2222126312a b ab ab a b =-+-23ab =-当a =2,b =﹣3时,原式()232354=-´´-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-´´-+´´-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1.(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy æöæö--+--ç÷ç÷,其中2x =-,14y =.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y éù+---+ëû其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可.【详解】原式=222222321y x x y y éù+-+-+ëû=22321y y y +-+=221y y ++原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项.21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-.【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可.【详解】解:原式322324232x y x y x y x =--+-+-2223y x y=--+当3x =-,2y =-时,原式()()()22223328=-´--´-+´-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab=-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+´-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可.【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2=﹣9a 2+8a +4,当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4=﹣9×4﹣16+4=﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x æö+---+ç÷,其中4x =-,3y =.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|;(2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=.当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b æö-+-+ç÷的值.。

专题4整式的化简求值 同步练习 2024—2025学年人教版数学七年级上册

专题4整式的化简求值 同步练习 2024—2025学年人教版数学七年级上册

专题4整式的化简求值类型1化繁为简再求值(1[2024 黑龙江绥化期末,中]先化简,再求值:−3a²b+(4ab²−a²b)−2(2ab²−a²b),其中a=1,b=-1.2[中]先化简,再求值:2x2−[3(−53x2+23xy)−(xy−3x²)]+2xy,其中x是最小的正整数,y是2的相反数.3[中]已知A=4ab−2b²−a²,B=3b²−2a²+5ab,当a=1.5,b=−12时,求3B-4A 的值.类型2整体代入求值4[中]阅读:小颖同学善于总结反思,她发现在代数式求值问题中整体思想的运用非常广泛.如:已知5a+3b=-4,求代数式2(a+b)+4(2a+b)的值.小颖同学提出了一种解法如下:原式=2a+2b+8a+4b=10a+6b,把式子5a+3b=-4两边同时乘2,得10a+6b=-8.仿照小颖同学的解题方法,完成下面的问题:(1)若a+b=2,则a+b+1= ;(2)已知a-b=-2,求3(a-b)-2a+2b+5的值;(3)已知a²+2ab=−2,ab−b²=−4,求4a²+7ab+b²的值.5[中]【阅读理解】若代数式x²+x+3的值为7,求代数式2x²+2x−3的值.小明采用的方法如下:由题意得x²+x+3=7,则有x²+x=4,2x²+2x−3=2(x²+x)−3=2×4-3=5.所以代数式2x²+2x−3的值为5.【方法运用】(1)若代数式x²+x+1的值为10,求代数式−2x²−2x+3的值.(2)当x=2时,代数式ax³+bx+4的值为9,当x=-2时,求代数式ax³+bx+3的值.【拓展应用】若a²−ab=26,ab−b²=−16,则代数式a²−2ab+b²的值为.类型3整式化简中的“无关”问题6[2023安徽合肥包河区期中,中]如图,长为a,宽为b的长方形被分割成7部分,除阴影图形P,Q外,其余5部分为形状和大小完全相同的小长方形O,其中小长方形O的宽为3.(1)求小长方形O 的长(用含a 的代数式表示).(2)小明发现阴影图形P 与阴影图形Q 的周长之和与a值无关,他的判断是否正确,请说明理由.7[中]已知A=2x²+mx−y,B=nx²−x+6y是关于x,y的多项式,其中m,n为常数.(1)若m=1,n=-2,化简A+B;(2)若A-2B 的值与x的取值无关,求代数式m²n²⁰²¹的值.类型4利用数形结合求值(●[中]有理数a,b,c所对应的点在数轴上的位置如图所示,化简代数式la-cl-|b|-|b-a|+|b+a|.9[2024广东广州期中,中]已知a,b,c三个数在数轴上对应点的位置如图所示.(1)在数轴上标出-a,-b,-c这三个数所对应的点,并将a,b,c,-a,-b,-c这6个数按从小到大的顺序用“<”连接;(2)化简式子|-a-bl+|b-c|-|c-a|;(3)若a+b+c=0,且表示数a的点向左运动1个单位长度后在数轴上对应的数恰好与c互为相反数,求-3(a-b)-(c+5) -2(c+4b)的值.专题4 整式的化简求值刷难关1.【解】 −3a²b +(4ab²−a²b )−2(2ab²−a²b )= −3a²b +4ab²−a²b −4ab²+2a²b =−2a²b.当 a =1, b =−1时,原式= =−2×1×(−1)=2.2.【解】因为x 是最小的正整数,y 是2 的相反数,所 以 x =1,y =−2,所 以 2x²− [3(−53x 2+23xy)−(xy −3x 2)]+2xy =2x 2− (−5x²+2xy −xy +3x²)+2xy =2x²+5x²−2xy +xy − 3x²+2xy =4x²+xy =4+(−2)=2.3.【角 4)3B −4A =3(3b²−2a²+5ab )−4(4ab −2b²− a²)=9b²−6a²+15ab −16ab +8b²+4a²=17b²− 2a²−ab.当 a =1.5,b =−12时,原式 =17×(−12)2−2× 1.52−1.5×(−12)=17×14−92+34=12.4.【解】(1)因为( a +b +1=(a +b )+1,所以当 a + b =2时,原式 =2+1=3..故答案为3.(2)因为 3(a −b )−2a +2b +5=3(a −b )−2(a − b)+5,所以当 a −b =−2时,原式 =3×(−2)−2×(−2)+5=−6+4+5=3.(3)因为 4a²+7ab +b²=(4a²+8ab )+(−ab + b²)=4(a²+2ab )−(ab −b²),所以当 a²+2ab =−2,ab −b²=−4时,原式 =4× (−2)−(−4)=−8+4=−4.5.【解】【方法运用】(1)由题意,得 x²+x +1=10,则 x²+x =9,所以 −2x²−2x +3=−2(x²+x )+3= −2×9+3=−15.(2)当 x =2时, ax³+bx +4=9,所以 8a +2b +4=9,所以 8a +2b =5.当 x =−2时, ax³+bx +3=(−2)³a −2b +3=−8a − 2b +3=−(8a +2b )+3=−5+3=−2.【拓展应用】因为 a²−ab =26,ab −b²=−16,所以 a²−2ab +b²=(a²−ab )−(ab −b²)=26− (−16)=42..故答案为42.6.【解】(1)因为小长方形O 的宽为3,所以小长方形O 的长为( a −3×3=a −9.答:小长方形O 的长为( a −9.(2)判断正确.理由如下:由题图可得阴影图形P 的长为a−9,宽为b−6,阴影图形Q的长为9,宽为b−(a−9)=b−a+9,阴影图形P和阴影图形Q 的周长之和为2(a−9+b−6)+2(9+b−a+9)=2a−18+2b−12+18+2b−2a+18 =4b+6,,所以阴影图形P与阴影图形Q的周长之和与a值无关,小明的判断正确.7.【解】(1)当m=1,n=−2时, A=2x²+x−y,B=−2x²−x+6y,所以A+B=2x²+x−y+(−2x²−x+ 6y)=2x²+x−y−2x²−x+6y=5y.(2)A−2B=2x²+mx−y−2(nx²−x+6y)=(2−2n)x²+(m+2)x−13y.由题意可得2-2n=0,m+2=0,解得m=-2,n=1,所以m²n²⁰²¹=(−2)²×1²⁰²¹=4×1=4.8.【解】由数轴可得a-c<0,b>0,b-a>0,a+b<0,所以原式=c-a-b-b+a-b-a=-a-3b+c.9.【解】(1)在数轴上标出-a,-b,-c这三个数所对应的点,如下图.将a,b,c,-a,-b,-c这6个数按从小到大的顺序用“<”连接如下:-c<a<b<-b<-a<c.(2)由题意得a<b<0<c,所以-a>0,-b>0,-c<0,所以-a-b>0,b-c<0,c-a>0,所以l-a-bl+|b-cl-|c-a|=-a-b+(c-b)-(c-a)=-a-b+c-b-c +a=-2b.(3)因为表示数a的点向左运动l个单位长度后在数轴上对应的数恰好与c互为相反数,所以a−1+c=0,所以a+c=1.因为a+b+c=0,所以b=−1.−3(a−b)−(c+5)−2(c+4b)=−3a+3b−c−5−2c−8b=−3a−5b−3c−5=−3(a十c)−5b−5=−3×1−5×(−1)−5=−3+5−5=−3.。

整式的化简专项练习

整式的化简专项练习

整式的化简专项练习一、整式的化简专项练基础练:1.化简:1)$-2a^2+5a-3$2)$-8a^2+4ab+4a-4b$3)$-a^2-18ab-6a+6b$4)$3x^2+6x+9$5)$3x^3+17x^2-12x-16$6)$a^2+b^2+6ab-9$7)$-8a^2b^2+12ab-1$8)$-2x+2$2.已知$x=\frac{1}{6}$,求$(-3x-1)(3x+1)+(-3x-1)(1-3x)$的值。

解:将$x=\frac{1}{6}$代入原式,得到$-\frac{25}{72}$。

3.化简求值:$x^3+x^2-x^3-x^2+(4x+6)-5x$,其中$x=-1$。

解:将$x=-1$代入原式,得到$3$。

4.化简求值:$2(a^2b+2b^3-ab^3)+3a^3-(2ba^2-3ab^2+3a^3)-4b^3$,其中$a=-3$,$b=2$。

解:将$a=-3$,$b=2$代入原式,得到$-232$。

能力提高:1.已知$2(a+b)=(a-b)+m$,则$m$为()$1$、$4ab$、$-4ab$、$2ab$。

解:将$a=1$,$b=0$代入原式,得到$m=2$。

2.若不论$x$为何值,恒成立,则常数$a$为()$1$、$-1$、$2$、$-2$。

解:将$x=0$代入$222(x-a)=x^2-a^2$,得到$a=0$。

3.要使$4a+2a^2$为一个完全平方式,则需加上的常数是()$1$、$-1$、$4$、$-4$。

解:将$4a+2a^2+k$表示成$(a+\frac{1}{2})^2+m$的形式,得到$k=-\frac{1}{4}$。

4.已知$2^2(x-1)(x+1)(x+1)$,求$x^4-1$。

解:将$x^4-1$表示成$(x-1)(x+1)(x^2+1)$的形式,得到$x^4-1=2^2(x-1)(x+1)(x+1)(x^2+1)$。

5.已知$a^2-3a+1=0$,求$(a+1)-5a$的值。

七年级化简求值题50道

七年级化简求值题50道

七年级化简求值题50道一、整式化简求值题(30道)1. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据完全平方公式公式,可得公式。

- 根据平方差公式公式,可得公式。

- 则原式公式。

- 再代入求值:- 当公式,公式时,公式。

2. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据平方差公式公式。

- 根据完全平方公式公式。

- 则原式公式。

- 再代入求值:- 当公式,公式时,公式。

3. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:- 当公式,公式时,公式。

4. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:- 当公式,公式时,公式。

5. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据完全平方公式展开得:公式。

- 再代入求值:- 当公式,公式时,公式。

6. 化简求值:公式,其中公式。

- 解析:- 先化简式子:- 根据完全平方公式公式。

- 根据平方差公式公式。

- 根据单项式乘多项式公式。

- 则原式公式。

- 再代入求值:- 当公式时,公式。

7. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:。

8. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:- 当公式,公式时,公式。

9. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:。

10. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据平方差公式公式,这里公式,公式,则原式公式。

- 再代入求值:- 当公式,公式时,公式。

11. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据平方差公式公式。

- 根据完全平方公式公式。

- 则原式公式。

专题训练(四) 整式的化简求值

专题训练(四) 整式的化简求值

专题训练(四) 整式的化简求值1.计算:(1)8a +7b -12a -5b ; (2)2x 2-3x +4x 2-6x -5; (3)3xy +4x 2y -3xy 2-5x 2y ;(4)(5mn -2m +3n )-(7m -7mn ); (5)a 2+(5a 2-2a )-2(a 2-3a ); (6)3a -[-2b +2(a -3b )-4a ].2.先化简,再求值:(1)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12,y =-3; (2)(4a +3a 2)-3-3a 3-(-a +4a 3),其中a =-2;(3)4x -[3x -2x -(x -3)],其中x =12; (4)3x 2y -[2xy 2-2(xy -32x 2y )+xy ]+3xy 2,其中x =3,y =-13.3.若|x +2|+(y -12)2=0,求代数式13x 3-2x 2y +23x 3+3x 2y +5xy 2+7-5xy 2的值.4.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.5.已知x =-2,y =23,求kx -2(x -13y 2)+(-32x +13y 2)的值.一位同学在做题时把x =-2看成x =2,但结果也正确,已知计算过程无误,求k 的值.6.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.7.一位同学做一道题:“已知两个多项式A 、B ,计算2A +B ”.他误将“2A +B ”看成“A +2B ”,求得的结果为9x 2-2x +7.已知B =x 2+3x -2,请求出正确答案.参考答案1.(1)原式=(8-12)a +(7-5)b =-4a +2b. (2)原式=6x 2-9x -5. (3)原式=3xy -x 2y -3xy 2. (4)原式=5mn -2m +3n -7m +7mn =12mn -9m +3n. (5)原式=a 2+5a 2-2a -2a 2+6a =4a 2+4a. (6)原式=3a -(-2b +2a -6b -4a )=3a +2b -2a +6b +4a =5a +8b. 2.(1)原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时,原式=-2×14-1-(-3)=32. (2)原式=-7a 3+3a 2+5a -3.当a =-2时,原式=55. (3)原式=4x -3.当x =12时,原式=-1. (4)原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy 2+xy.当x =3,y =-13时,原式=-23. 3.由题意,得x =-2,y =12.原式=x 3+x 2y +7=1. 4.原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10. 5.原式=(k -72)x +y 2.由题意知:代数式的值与x 无关,所以k -72=0.解得k =72. 6.12m 2n +2mn -3nm 2-3nm +4m 2n =32m 2n -mn.由题意知:m =1,n =±1.当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12. 7.由题意,得A +2(x 2+3x -2)=9x 2-2x +7,A =9x 2-2x +7-2(x 2+3x -2)=9x 2-2x +7-2x 2-6x +4=7x 2-8x +11.所以正确答案为:2A +B =2(7x 2-8x +11)+(x 2+3x -2)=14x 2-16x +22+x 2+3x -2=15x 2-13x +20.。

新人教版七年级数学上册专题训练:整式的化简求值(含答案).优选

新人教版七年级数学上册专题训练:整式的化简求值(含答案).优选

专题训练整式的化简求值类型1化简后直接代入求值2221.(柳州期中)先化简,再求值:5x +4-3x -5x -2x -5+6x ,其中x =-3.2解:原式=(5-3-2)x +(-5+6)x +(4-5)=x -1.当x =-3时,原式=-3-1=-4.22222.(北流期中)先化简,再求值:(3a b -2ab )-2(ab -2a b),其中a =2,b =-1.2222解:原式=3a b -2ab -2ab +4a b22=7a b -4ab .当a =2,b =-1时,原式=-28-8=-36.223223.先化简,再求值:2(x +x y)-(3x y +x)-y ,其中x =1,y =-3.32解:原式=2x +2x y -2x y -x -y 2=x -y .当x =1,y =-3时,原式=1-9=-8.122224.(钦南期末)先化简,再求值:2x y -[2xy -2(-x y +4xy )],其中x =,y =-2.2解:原式=2x y -2xy -2x y +8xy 2=6xy .11当x =,y =-2时,原式=6××4=12.222225.(南宁四十七中月考)先化简,再求值:2(x y +xy)-3(x y -xy)-4x y ,其中x ,y 满足|x +1|+(y 12-)=0.2解:原式=2x y +2xy -3x y +3xy -4x y2=-5x y +5xy.222222222212因为|x +1|+(y -)=0,21所以x =-1,y =.255故原式=--=-5.22类型2整体代入求值2222226.若a +2b =5,求多项式(3a -2ab +b )-(a -2ab -3b )的值.2222解:原式=3a -2ab +b -a +2ab +3b 22=2a +4b .22当a +2b =5时,22原式=2(a +2b )=10.7.已知|m +n -2|+(mn +3)=0,求2(m +n)-2[mn +(m +n)]-3[2(m +n)-3mn]的值.解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n)-2mn -2(m +n)-6(m +n)+9mn=-6(m +n)+7mn=-12-21=-33.2专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.解:(1)因为∠AOB与∠BOC互补,所以∠AOB+∠BOC=180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=70°.2(2)因为∠AOB与∠BOC互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=25°.2类型3利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.25.一个角的余角比它的补角的还少40°,求这个角的度数.3解:设这个角的度数为x°,根据题意,得290-x=(180-x)-40.3解得x=30.所以这个角的度数是30°.6.如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC的度数.解:设∠COD=2x°,则∠BOC=3x°.因为OB平分∠AOC,所以∠AOB=3x°.所以2x+3x+3x+20=180.解得x=20.所以∠BOC=3×20°=60°.17.如图,已知∠AOB=∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.2解:设∠AOB=x°,则∠COD=∠AOD=3∠AOB=3x°.1因为∠AOB=∠BOC,2所以∠BOC=2x°.所以3x+3x+2x+x=360.解得x=40.所以∠AOB=40°,∠COD=120°.类型4利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.28.已知∠AOB=75°,∠AOC=∠AOB,OD平分∠AOC,求∠BOD的大小.32解:因为∠AOB=75°,∠AOC=∠AOB,32所以∠AOC=×75°=50°.3因为O D平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD=75°+25°=100°;如图2,∠BOD=75°-25°=50°.9.已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,∠EOC=90°,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α时,∠EOC=90°,直接写出∠AOE的度数.(用含α的代数式表示)解:(1)因为OC是∠AOB的平分线,1所以∠AOC=∠AOB.2因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE=∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE=∠EOC-∠AOC=90°-30°=60°.αα(3)90°+或90°-.22专题训练整式的加减运算计算:222(1)(钦南期末)a b +3ab -a b ;2解:原式=3ab .(2)2(a -1)-(2a -3)+3;解:原式=4.22(3)2(2a +9b)+3(-5a -4b);2解:原式=-11a +6b.3232(4)3(x +2x -1)-(3x +4x -2);2解:原式=2x -1.1122(5)(钦南期末)(2x -+3x)-4(x -x +);22122解:原式=2x -+3x -4x +4x -2252=6x -x -.2222222(6)3(x -x y -2x y )-2(-x +2x y -3);解:原式=3x -3x y -6x y +2x -4x y +62222=5x -7x y -6x y +6.22(7)-(2x +3xy -1)+(3x -3xy +x -3);22解:原式=-2x -3xy +1+3x -3xy +x -32=x -6xy +x -2.222(8)(4ab -b )-2(a +2ab -b );222解:原式=4ab -b -2a -4ab +2b 22=-2a +b .22(9)-3(2x -xy)+4(x +xy -6);22解:原式=-6x +3xy +4x +4xy -242=-2x +7xy -24.22(10)(钦州期中)2a -[-5ab +(ab -a )]-2ab.22解:原式=2a +5ab -ab +a -2ab 2=3a +2ab.222222。

专题01整式的化简与求值(教师版) 2024-2025学年七年级数学上册考试满分全攻略同步备课备考系

专题01整式的化简与求值(教师版) 2024-2025学年七年级数学上册考试满分全攻略同步备课备考系

专题01整式的化简与求值题型01先化简在直接代入求值【典例分析】【例1-1】(23-24七年级上·山西晋城·阶段练习)当1x =-时,多项式2245413x x x x x -+---的值为( )A .2-B .2C .1-D .0【答案】D【分析】本题考查了整式加减中的化简求值,先利用整式的加减运算法则进行化简,再将1x =-代入原式即可求解,熟练掌握其运算法则是解题的关键.【详解】解:2245413x x x x x -+---2551x x x =+--21x =-,将1x =-代入原式得:()221110x -=--=,故选D .【例1-2】(22-23七年级上·上海闵行·周测)若2x =-,则多项式()()2234532x x x x -+-+-+的值是 .【答案】2【分析】根据整式加减混合运算法则进行化简,然后代入数据进行计算即可.【详解】解:()()2234532x x x x -+-+-+2234532x x x x =-+-+-+2x x =+,把2x =-代入得:原式()()2222=-+-=.【点睛】本题主要考查了整式加减的化简求值,解题的关键是熟练掌握整式加减运算法则,准确计算.【例1-3】(22-23七年级上·宁夏中卫·期末)先化简,再代入求值.()()()42224x y x y x y x éù----++-ëû,其中0,3x y ==- ;【答案】15【分析】本题考查整式加减中的化简求值,去括号,合并同类项,化简后代值计算.【详解】解:原式()422224x y x y x y x=---+++-4234x y y x =---5y =-;当0,3x y ==-时,原式()5315=-´-=.【变式演练】【变式1-1】(22-23七年级上·天津南开·期中)若12x =,则代数式22225432x x x x x -++--的值为( )A .52B .12C .12-D .52-【点睛】本题考查了整式的加减-化简求值,熟练掌握整式的加减运算法则是解本题的关键.【变式1-2】(22-23七年级上·黑龙江佳木斯·期中)若2022a =-,12022b =,则多项式2223232a ab a ab a +---= .【点睛】本题考查了整式的化简求值;熟练掌握合并同类项的法则是解题的关键【变式1-3】(23-24七年级上·福建泉州·阶段练习)先化简再求值∶ ()2222261a a a a ---+,其中 12a =-.题型02利用整体思想化简求值【典例分析】【例2-1】(23-24七年级上·河南安阳·期末)“整体思想”是数学中的一种重要的思想方法,它广泛应用于数学运算中.例如:已知2a b +=,3ab =-,则()22238a b ab +-=-´-=,利用上述思想方法计算:已知22a b -=,1ab =-,则()()2=a b ab b --- .【答案】3【分析】本题考查了整式的化简求值,熟练掌握“整体代入法求代数式的值”是解题的关键.先将()()2a b ab b ---化简,然后将22a b -=,1ab =-,代入计算即可.【详解】解:()()2a b ab b ---22a b ab b=--+2a b ab =--;∵22a b -=,1ab =-,∴()221213a b ab --=--=+=.故答案为:3.【例2-2】(23-24七年级上·甘肃兰州·期末)阅读材料:我们知道,()232314x x x x x +-=+-=,类似的,我们把()a b +看成一个整体,则()()()()()()232314a b a b a b a b a b +++-++-+=+=.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把()2x y -看成一个整体,求将()()()22224x y x y x y ---+-合并的结果.(2)已知2348m n -=-,求代数式23n m -的值.拓广探索:(3)已知22a b -=,2b c -=-,36c d +=,求()()()32a c b c b d ++++-的值.【答案】(1)()2x y --;(2)8;(3)6【分析】本题考查了整式的加减运算与化简求值,熟练掌握整体代入思想是解题的关键.(1)根据合并同类项法则合并即可.(2)将代数式变形,然后把已知条件的值代入计算即可.(3)把原式去括号整理后,变为()()()23-+-++a b b c c d ,然后整体代入求值可.【详解】(1)解:()()()22224x y x y x y ---+-()()2241x y -+-=()2x y =--(2)解:2348m n -=-Q ,【例2-3】(23-24七年级上·广西南宁·期中)探究与应用【阅读材料】“整体思想”是一种重要的数学思想,在多项式的化简求值中应用极为广泛.在()424213a a a a a -+=-+=中,字母a 是一个整体,类似的,可以把()x y +看成一个整体,则()()()()()()424213x y x y x y x y x y +-+++=-++=+.【尝试应用】(1)把2()x y +看成一个整体,化简2223()6()2()+-+++=x y x y x y ________;(2)已知222a b -=-,求23621a b --的值.【拓展探索】(3)已知3a b -=,5b c +=-,10c d +=,求()()()a c b d b c -----的值.【答案】(1)2()x y -+;(2)27-;(3)18【分析】本题主要考查代数式的值及合并同类项,熟练掌握利用整体思想进行求解是解题的关键.(1)把()2x y +看作一个整体,合并即可得到结果;(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)根据已知条件进行整理,然后将已知等式代入计算即可求出值.【详解】解:(1)2223()6()2()x y x y x y +-+++()2362()x y =-++2()x y =-+;(2)222a b -=-Q 23621a b \--()23221a b =--3(2)21=´--621=--27=-;(3)3a b -=Q ,5b c +=-,10c d +=()()()\-----a c b d b c =--+-+a c b d b c()()()=--+++a b b c c d 3(5)10=--+3510=++18=.【变式演练】【变式2-1】(22-23七年级上·河南南阳·期末)“整体思想”是数学中的一种重要的思想方法,它在数学运算、推理中有广泛的应用,如:已知2m n +=-,3=-mn ,则()()22234m n mn +-=--´-=.利用上述思想方法计算:已知343m n -=-,1mn =-.则()()62m n n mn ---=.【答案】8-【分析】将原式通过去括号、合并同类项化简后,再将343m n -=-,1mn =-整体代入即可.【详解】解:∵343m n -=-,1mn =-,∴()()62m n n mn ---6622m n n mn =--+682m n mn=-+()2342m n mn=-+()()2321=´-+´-8=-故答案为:8-.【点睛】本题考查整式的加减—化简求值,掌握去括号、合并同类项法则以及整体思想的体现是正确解答的前提.【变式2-2】(23-24七年级上·河南安阳·期末)阅读材料:“整体思想”是中学数学的重要思想方法,在解题中会经常用到.我们知道,合并同类项:()5325324x x x x x -+=-+=,类似地,我们把()m n +看成一个整体,则()()()()()()5325324m n m n m n m n m n +-+++=-++=+.尝试应用:()1把()2m n +看成一个整体,合并()()()222453m n m n m n +-+++的结果是______.()2已知229x y +=-,求24818x y ++的值.拓展探索:()3已知2a b -=,24b c -=,21c d -=-,求()()()22a c b c b d ---+-的值.【答案】()1()22m n +;()218-;()35.【分析】本题考查的知识点是合并同类项、整式的化简求值、根据已知式子的值求代数式的值,解题关键是结合已知条件将原式进行正确变形,采用整体代入的思想进行计算.()1将原式合并即可;()2将22x y +看成一个整体,对原式进行变形,再代入求值即可;()3将原式变形后代入已知整式值计算即可.【详解】()1解:原式()()2453m n =-++,()22m n =+.故答案为:()22m n +.()2解:229x y +=-Q ,24818x y \++,()24218x y =++,()4918=´-+,18=-.()3解:2a b -=Q ,24b c -=,21c d -=-,()()()22a c b c b d \---+-,22a c b c b d =--++-,()()()22a b b c c d =-+-+-,()241=++-,5=.【变式2-3】(23-24七年级上·内蒙古鄂尔多斯·期中)阅读材料:“整体思想”是中学数学中重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()a b +看成一个整体,4()2()((421)()3())a b a b a b a b a b =+-+++-++=+.尝试应用:(1)把2()a b -看成一个整体,合并2227()9()3()a b a b a b ---+-的结果是__________.(2)已知222x y -=,则2482023x y --的值=__________.拓广探索:(3)若2m n -=,5mn =-,则3()(3)mn n mn m ---的值为__________.(4)已知23a b -=,6c d -=,求()(2)a c b d ---的值=_________.【答案】(1)2()a b -;(2)2015-;(3)4-;(4)3-【分析】本题考查了利用整体思想求代数式的值,将代数式进行适当变形是解题关键.(1)将各项系数加减即可求解;(2)2482023x y --()2422023x y --=,据此即可求解;(3)()3()(3)23mn n mn m mn m n ---=+-,然后整体代入求值;(4)()()2a c b d ---()()2a b c d =---,据此即可求解.【详解】解:(1)()222227)7()9()3(()(3)9a b a b a b a b a b =----+=+---故答案为:2()a b -;(2)因为222x y -=,所以2482023x y --()2422023x y --=422023=´-82023=-2015=-,故答案为:2015-;(3)3()(3)mn n mn m ---=333mn n mn m--+=()23mn m n +-,当2m n -=,5mn =-时,原式=()25321064´-+´=-+=-,故答案为:4-;(4)当23a b -=,6c d -=时,()()2a c b d ---2a c b d=--+()()2a b c d =---36=-3=-故答案为:3-题型03复合型代数式的化简求值问题【典例分析】【例3-1】(22-23七年级上·广东惠州·期中)已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为( )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z +-【答案】B【分析】由题意得222222=()3)24(2C x y z z A y B x +--+-+=---,进行计算即可得.【详解】解:由于多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则222222=()3)24(2C x y z z A y B x +--+-+=---=2222222432x y z x y z ++----=22235x y z --,故选:B .【点睛】本题考查了整式的加减,解题的关键是掌握整式加减的步骤【例3-2】(23-24七年级上·贵州遵义·期末)已知两个整式A 和B ,237A a ab =-+,2447B a ab =-++.(1)请化简A B -;(2)若1a =-,2b =,则A B -的值为多少?【答案】(1)275a ab-(2)17【分析】本题考查的是整式的加减运算中的化简求值;熟记去括号,合并同类项的法则是解本题的关键.(1)先去括号,再合并同类项,即可得到答案;(2)把1a =-,2b =代入化简后的代数式进行计算即可.【详解】(1)∵237A a ab =-+,2447B a ab =-++∴A B-()2244737a a b ab a -+-+-+=2244737a a a a b b =--+-+275a ab =-;(2)∵1a =-,2b =,∴()()22757151217A B a ab -=-=´--´-´=【例3-3】(22-23七年级上·云南文山·期末)已知22235A x y xy xy =+-,22234B xy xy x y =-+.(1)求2A B -;(2)当3x =,13y =-时,求2A B -的值.【答案】(1)2912xy xy -【变式演练】【变式3-1】(21-22七年级上·广东湛江·期中)已知22321A x xy x =++-,232B x xy x =++-.先化简2A B -,且当2x y ==时,求2A B -的值;【答案】243A B xy x -=-+,2A B -的值为1-;【分析】先求出243A B xy x -=-+,再将2x y ==代入求值即可;本题考查了整式的加减,熟练掌握整式的加减运算法则,并能准确计算是解题的关键.【详解】2A B-()()222321232x xy x x xy x ++=+--+-2222321264x xy x x xy x =-+--+-+43xy x =-+,当2x y ==时,原式4831=-+=-【变式3-2】(23-24七年级上·江苏苏州·阶段练习)已知,224532A x y B x y =-=--,,求2A B -的值, 其中21x y =-=,.【答案】36【分析】本题考查了整式的化简求值.熟练掌握整式的化简求值是解题的关键.先去括号,然后合并同类项可得化简结果,最后代值计算求解即可.【详解】解:由题意知,()()22224532A B x y x y -=----2281032=-++x y x y2118=-x y ,将21x y =-=,代入得,原式()21128144836=´--´=-=.【变式3-3】(21-22七年级上·河北保定·期中)化简与求值:(1)已知25A x xy =-,26B xy x =-+,求2A B -;(2)先化简,再求值:()()2222272234x y x y xy x y xy -----,其中2x =-,1y =.【答案】(1)24x xy -;(2)2277x y xy +,14.【分析】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给代数式化简.(1)去括号合并同类项即可;(2)先去括号合并同类项,再把2x =-,1y =代入计算.【详解】(1)()()222256A B x xy xy x -=---+222106x xy xy x =-+-24x xy =-.(2)()()2222272234x y x y xy x y xy -----222227464x y x y xy x y xy =-+++2277x y xy =+.当2x =-,1y =时,原式()227(2)1721281441=´-´+´--=´=题型04绝对值的化简求值【典例分析】【例4-1】(22-23七年级上·四川绵阳·期中)若23a <<时,化简32a a -+-( )A .1B .25a -C .1-D .52a-【例4-2】(21-22七年级上·广东湛江·期中)已知a a =-,||1b b=-,c c =,化简a b a c b c ++---= .【例4-3】(23-24七年级上·江苏苏州·阶段练习)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c +______0,a b -______0,b a -______0;(2)化简:b c a b b a ++---.【答案】(1),,><>(2)b c+【变式演练】【变式4-1】(23-24七年级上·甘肃庆阳·期末)若0b <,0ab <,则1b a a b ---+的值为( )A .2-B .1-C .1D .2【变式4-2】(22-23七年级上·广西贺州·期中)有理数a b 、表示的点在数轴上如图所示.化简:()||||a b a b a b -+++--= .【答案】3a b--【分析】本题考查了数轴和绝对值,整式的加减,根据数轴得出,0b <,0a >,||||b a >,去掉绝对值符号,再合并即可.【变式4-3】(23-24七年级上·江苏·周测)如图,在一条不完整的数轴上,从左到右的点A、B、C把数轴分ab<.成①②③④四部分,点A、B、C对应的数分别是a、b、c,且0(1)原点在第部分(填序号);----;(2)化简式子:a b c a a=+-a b c题型05利用“不含与无关”求值【典例分析】【例5-1】(23-24七年级上·海南海口·期中)若多项式22266x kxy y xy -++-不含xy 的项,则k 的值是( )A .0B .3-C .6D .3【答案】D【分析】本题考查了多项式的不含有项的问题,熟练掌握合并同类项,令系数为零是解题的关键.先合并同类项,令xy 的系数为零,求解即可.【详解】解:多项式()2222266626x kxy y xy x k xy y -+=+-+-+-不含xy 的项,∴620k -=,∴3k =,故选:D【例5-2】(23-24七年级上·山东日照·期末)若多项式()22331x mx x nx ++-+-的值与x 的取值无关,则2m n -+的值为 .【答案】7-【分析】本题考查了整式的加减中的无关题型、求代数式的值,将原式括号去掉、合并同类项后得到()()2132n x m x ++-+,再由其值与x 的取值无关,可求出m n 、的值,最后代入计算即可得出答案,求出m n 、的值是解此题的关键.【详解】解:()()()22222331331132x mx x nx x mx x nx n x m x ++-+-=++--+=++-+,Q 多项式()22331x mx x nx ++-+-的值与x 的取值无关,10n \+=,30m -=,解得:3m =,1n =-,()22317m n \-+=-´+-=-,故答案为:7-【例5-3】(23-24七年级上·江苏苏州·阶段练习)已知22573A x xy y =--+,21B x xy =-+.(1)求4(2)A A B -+的值;(2)若2A B -的值与y 的取值无关,求x 的值.【答案】(1)239145x xy y --+73x \=-【变式演练】【变式5-1】(22-23七年级上·广东湛江·期中)若关于x 的多项式3222673x mx x x +--+不含二次项,则m 等于( )A .2B .2-C .3D .3-【答案】C【分析】本题主要考查了整式加减中的无关项问题.先合并同类项,然后根据多项式中不含二次项,可得260m -=,即可求解.【详解】解:()3223226732673x mx x x x m x x +--+=+--+,∵多项式中不含二次项,∴260m -=,解得:3m =.故选:C【变式5-2】(23-24七年级上·江苏扬州·期末)已知M ,N 为两个整式,其中23761M a ab a =-+--,2342N a ab =-+,若+M N 的值与a 的取值无关,则b = .【答案】2【分析】本题考查整式的加减混合运算,熟练掌握运算技巧与合并同类项的方法是解题的关键,同时需注意代数式的值与a 无关,说明含a 项的系数为0.先把已知条件中的M ,N 代入+M N 进行化简,然后根据+M N的值与a 的取值无关,列出关于b 的方程,解方程即可.【详解】解:∵23761M a ab a =-+--,2342N a ab =-+,∴M N+()()223761342a ab a a ab =-+--+-+223761342a ab a a ab =-+--+-+223374621a a ab ab a =-+--+-361ab a =-+()321a b =-+,∵+M N 的值与a 的取值无关,∴20b -=,\2b =,故答案为:2.【变式5-3】(23-24七年级上·安徽六安·期末)已知代数式22573A x xy y =+--,22B x xy -=+.(1)求()323A A B -+.(2)若2A B -的值与y 的取值无关,求x 的值.【答案】(1)2879x xy y -+--(2)x =1【分析】本题考查整式的运算,熟练掌握整式的运算法则是解答本题的关键.(1)根据整式的运算法则即可求出答案;(2)根据题意将2A B -化简,然后令含y 的项的系数为0即可求出x 的值.【详解】(1)解:()3233233A A B A A B A B -+=--=-22573A x xy y =+--Q ,22B x xy =-+3A B\-()()22257332x xy y x xy =+----+222573336x xy y x xy =+---+- 2879x xy y =-+--;(2)2A B-()()22257322x xy y x xy =+----+777xy y =-- 7(1)7y x =--2A B -Q 的值与y 的取值无关,∴10x -=,1x \=。

专题05整式化简求值的七种常用方法2024-2025学年七年级数学上册同步精品课堂「含答案」

专题05整式化简求值的七种常用方法2024-2025学年七年级数学上册同步精品课堂「含答案」

专题05整式化简求值的七种常用方法题型01直接代入法【典例分析】【例1-1】(2024·七年级上海南省·)1.当1m =-时, 代数式3m +的值为( )A .2B .2-C .4D .4-【例1-2】(23-24七年级上·四川成都·阶段练习)2.设a 为最小的正整数,b 和a 互为相反数,c 是绝对值最小的有理数,则a b c -+的值为 .【例1-3】(23-24七年级上·甘肃天水·阶段练习)3.当2a =,1b =-,3c =-时,求下列各代数式的值:(1)24b ac -;(2)222a ab b -+.【变式演练】【变式1-1】(22-23七年级上·浙江温州·期中)4.若43x =,则代数式43x -的值为( )A .1-B .0C .1D .2【变式1-2】(23-24七年级上·内蒙古乌兰察布·期中)5.已知1m =-,则21m --的值为 .【变式1-3】(22-23七年级上·海南海口·期中)6.当2,3a b ==-时,求下列代数式的值:(1) ()2a b -;(2)222a ab b -+.题型02化繁为简法【典例分析】【例2-1】(23-24七年级上·江苏无锡·期中)7.已知223m mn +=,2235n mn +=,则代数式222136m mn n ++的值是( )A .18B .19C .20D .21【例2-2】(23-24七年级上·四川遂宁·期末)8.当12024x =-,2024y =时,代数式()()225820324xy x x xy ---+的值为 .【例2-3】(23-24七年级上·浙江·期末)9.先化简,再求值:()2242333a ab a ab æö+--ç÷èø,其中3a =,16b =-.【变式演练】【变式2-1】(23-24七年级上·辽宁鞍山·期中)10.当1a =,1b =-时,代数式()2221a b a b ++++的值为( )A .3B .1C .0D .2-【变式2-2】(23-24七年级上·山东菏泽·期末)11.当 23a =-时,代数式()()32326522a a a a a -+--的值为 .【变式2-3】(23-24七年级上·宁夏银川·阶段练习)12.已知代数式2232A x xy y =++,2B x xy x =-+.(1)求2A B -;(2)当1x =-,2y =时,求2A B -的值;题型03定义法【典例分析】【例3-1】(22-23七年级上·云南·期中)13.若单项式23y m n 和单项式32x m n -是同类项,则x y +的值是( )A .5B .6C .7D .8【例3-2】(23-24七年级上·云南曲靖·阶段练习)14.已知多项式31231362m x y xy x +-+-+是六次四项式,单项式523n m x y -的次数与这个多项式的数相同,则m n +的值为 .【例3-3】(22-23七年级上·四川眉山·期中)15.已知单项式134a x y +与单项式225b x y --是同类项,c 等于多项式253mn m n ---的次数.(1)a =_____,b =______,c =______;(2)若关于x 的二次三项式2ax bx c ++的值是3,求代数式22x 6x 2020++的值.【变式演练】【变式3-1】(23-24七年级上·山西大同·阶段练习)16.若122n a b +与337m a b +-的和是单项式,则m n -的值是( )A .1-B .5C .3-D .1【变式3-2】(23-24七年级上·陕西榆林·期末)17.若关于x ,y 的多项式313222m x x y nx y +++的次数与关于a ,b 的单项式434a b -的次数相同,且单项式的系数与多项式中次数为4的项的系数相同,则mn 的值为 .【变式3-3】(23-24七年级上·陕西咸阳·阶段练习)18.已知多项式:2244A x xy y =-+,22313112A B x xy y -=--.(1)求多项式B ;(2)若x 是单项式26m n -的系数,y 是12-的倒数,求B 的值.题型04非负性法【典例分析】【例4】(23-24七年级上·四川泸州·阶段练习)19.已知()2350a b ++-=,求()20232a b +的值.【变式演练】【变式4-1】(23-24七年级上·湖南湘西·期中)20.若()2120x y ++-=,则x y +等于( )A .1B .1-C .3D .3-【变式4-2】(23-24七年级上·重庆长寿·期中)21.如果()2120a b -++=,则()2a b +的值是 .【变式4-3】(22-23七年级上·内蒙古巴彦淖尔·阶段练习)22.若 |2||3||5|0x y z -+++-=.计算:(1)x ,y ,z 的值;(2)x y z ++ 的值.题型05整体代入法1、直接整体代入法【典例分析】【例5】(23-24七年级上·江苏徐州·阶段练习)23.已知2023a c +=-,()2022b d +-=,则()a b c d +++-= .【变式演练】【变式5-1】(23-24七年级上·安徽合肥·期末)24.已知1m n -=,2p q -=-,则()()m p n q ---的值是 .【变式5-2】(23-24七年级上·贵州黔南·期末)25.已知2440a a -+=,则()21462a a -+= .2、变形后整体代入【典例分析】【例6】(23-24七年级上·浙江宁波·期末)26.已知2a b -=,则202433a b -+的值为 .【变式演练】【变式6】(23-24七年级上·重庆綦江·期末)27.已知210a a +-=,则代数式2442024a a ++的值是 .3、化简后整体代入【例7】(23-24七年级上·浙江金华·期末)28.求值:(1)()()226924 4.5a ab a ab --++++,其中2,63a b =-=.(2)已知214a bc +=,226b bc -=-,求22345a b bc +-的值.【变式演练】【变式7-1】(23-24七年级上·四川成都·期中)29.已知4a b +=,2ab =,求()()()21932124332a ab ab a ab b -++--+值.【变式7-2】(23-24七年级上·甘肃兰州·期中)30.已知34723,A x xy y B y xy x =-+=+-.(1)化简:A B -;(2)当12x y +=,2xy =-时,求A B -的值.4、特殊值法整体代入【例8-1】(22-23七年级上·四川成都·期末)31.赋值法是给代数式中的某些字母赋予一定的特殊值,从而解决问题的一种方法,已知()2223x ax bx c -=++.例如:给x 赋值使0x =﹐则可求得9c =;给x 赋值使1x =,则可求得1a b c ++=;给x 赋值使=1x -,则可以求得代数式a b -的值为 .【例8-2】(23-24七年级上·福建福州·期中)32.赋值法是给代数式中的某些字母赋予一定的特殊值,从而解决问题的一种方法.已知等式()4432012341x m x m x m x m x m -=++++对x 取任意有理数都成立,例如给x 赋值0x =时,可求得41m =.请再尝试给x 赋其它的值并结合学过的知识,求得024m m m ++的值为 .【例8-3】(24-25七年级上·全国·假期作业)33.赋值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则:(1)取0x =时,直接可以得到00a =;(2)取1x =时,可得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-.(4)把(2),(3)的结论相加,就可以得到4202220a a a ++=,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【变式演练】【变式8-1】(23-24七年级上·安徽滁州·期末)34.给等式中的某些字母赋予一定的特殊值,可以解决一些问题.比如对于等式()223x ax bx c +=++,当0x =时,可得23c =,计算得9c =;请你再给x 赋不同的值,可计算得42a b += .【变式8-2】(2023七年级上·全国·专题练习)35.赋值法是给代数式中的某些字母赋予一定的特殊值.从而解决问题的一种方法,已知()66543221x ax bx cx dx ex fx g -=++++++,给x 赋值使0x =.得到()61g -=,则1g =;尝试给x 赋不同的值,则可得b d f g ----= .题型06取值“无关”法【典例分析】【例9-1】(23-24七年级上·安徽宣城·期末)36.已知:2253A a ab b =-+,2468B a ab a =++,若代数式的2A B -的值与a 无关,则此时b 的值为( )A .12-B .0C .2-D .38-【例9-2】(23-24七年级上·江苏泰州·阶段练习)37.已知关于x 的方程2262kx m x nk +=-+的解与k 无关,则63m n +的值是 .【例9-3】(23-24七年级上·湖北省直辖县级单位·阶段练习)38.已知22221,A x xy y B x xy =++-=+.(1)当1,2x y =-=时,求2A B -的值;(2)若24A B -的值与y 无关,求x 的值.【变式演练】【变式9-1】(23-24七年级上·山东烟台·期末)39.若多项式233x bx y --与2231ax x y -+-的差与x 的取值无关,则a b -的值为( )A .3-B .1-C .3D .2【变式9-2】(22-23七年级上·浙江·期末)40.若多项式()()22262351x ax y bx x y +-+--+-的值与字母x 的取值无关,则a = ;b = .【变式9-3】(23-24七年级上·贵州黔东南·阶段练习)41.已知: 22221A a ab a =+--,21B a ab =-+-.(1)化简:A B -;(2)若2A B +的值与a 的取值无关,求b 的值.题型07数轴法【典例分析】【例10-1】(23-24七年级上·湖南长沙·期中)42.(1)已知有理数a ,b ,c 在数轴上对应的点如图所示,化简:||||||b a a c c b -+---;(2)已知325A x x =-,2116B x x =-+,求当1x =时,求A B -的值.【例10-2】(23-24七年级上·宁夏吴忠·阶段练习)43.如图,点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB a b =-,解答下列问题:(1)数轴上表示3和7的两点之间的距离是______,数轴上表示2和1-的两点之间的距离是______;(2)数轴上表示x 和1的两点之间的距离是______.(用含x 的式子表示)(3)若1x =,求13x x -+-的值.【例10-3】(23-24七年级上·安徽亳州·期末)44.已知有理数a ,b ,c ,d 在数轴上的位置如图所示.(1)化简:d b c c a +--+;(2)若a ,b 互为相反数,c ,d 互为倒数,有理数m 在数轴上对应的点M 到原点的距离等于1,求()202313a b mcd ++-的值.【变式演练】【变式10-1】(23-24七年级上·四川成都·期中)45.如图,A ,B 两点在数轴上对应的数分别为a ,b ,且点A 在点B 的左边,14120a a b ab -=+=<,,.(1)求出a ,b 的值;(2)已知22222233A a ab b B a ab b +=--=+,,求()()432A A B A B +--+éùëû的值.【变式10-2】(22-23七年级上·贵州黔西·期中)46.已知有理数a ,b ,c 在数轴上对应的点的位置如图所示,且a c =,b 的倒数等于它本身.(1)求552c a c b a+-+的值.(2)求2a b a b c b -++--的值.【变式10-3】(22-23七年级上·辽宁抚顺·期中)47.(1)已知a ,b ,c 三个数在数轴上对应的点如图所示,化简:2b a a b a c c---+--(2)先化简,再求值:()()()22222345x y xy x xy x xy ----+++,其中=1x -,2y =.1.A【分析】本题主要考查了代数式求值,正确计算是解题的关键.【详解】解:把1m =-代入3m +中得3132m +=-+=,故选:A .2.2【分析】本题主要考查有理数,相反数,绝对值等知识点,由a 为最小的正整数,b 和a 互为相反数,c 是绝对值最小的有理数,可分别得出a 、b 、c 的值,代入计算可得结果,能正确判断有关概念是解题的关键.【详解】∵a 为最小的正整数,∴1a =,∵b 和a 互为相反数,∴1b =-,∵c 是绝对值最小的有理数,∴0c =,∴()1101102a b c -+=--+=++=,故答案为:2.3.(1)25;(2)9.【分析】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.(1)把2a =,1b =-,3c =-代入24b ac -计算即可;(2)把2a =,1b =-代入222a ab b -+计算即可.【详解】(1)当2a =,1b =-,3c =-时,原式()()2142312425=--´´-=+=;(2)当2a =,1b =-时,原式()()22144221219=-´´-+=++=-.4.B【分析】本题考查了代数式求值,掌握有理数的运算是解题的关键.把x 的值代入代数式求解.【详解】解:当43x =,43x -4433=-´44=-0=,故选:B5.1【分析】本题考查求代数式值,直接把m 值代入计算即可.【详解】解:当1m =-时,()()21211211m --=-´--=-=,故答案为:1.6.(1)25(2)25【分析】本题考查了代数式的值,根据已知,代入计算即可.(1)代入计算即可.(2)代入计算即可.【详解】(1)当2,3a b ==-时,()()22223525a b -=--==éùëû.(2)当2,3a b ==-时,()()2222222233412925a ab b -+=-´´-+-=++=.7.D【分析】本题考查了整式的加减和用代数式求值,关键将整式变形为含有所给数值的代数式.用提取公因式的方法将代数式进行变形,再将数值代入求值.【详解】解:222136m mn n ++222496m mn mn n =+++()()2222323m mn n mn =+++,把223m mn +=,2235n mn +=代入,则:()()2222323m mn n mn +++2335=´+´21=,故选:D .8.20232024-【分析】此题考查了整式加减的化简求值,先去括号并合并同类项后,把字母的值代入化简结果计算即可.【详解】解:()()225820324xy x x xy ---+225820324xy x x xy-=-+22024xy x =+当12024x =-,2024y =时,原式2112024202420242024æö=-´+´-ç÷èø112024=-+20232024=-故答案为:20232024-9.210ab a -;14-【分析】先去括号,合并同类项化简,后代入求值即可,本题考查了整式的化简求值,熟练掌握整式加减运算法则是解题的关键.【详解】()2242333a ab a ab æö+--ç÷èø222634a ab a ab=+-+210ab a =-,当3a =,16b =-,原式2110336æö=´´--ç÷èø59=--14=-.10.D【分析】本题考查了整式加减的化简求值,先将式子去括号,再合并同类项,最后将a ,b 的值代入求解即可.【详解】解:()2221a b a b ++++2241a b a b =++++361a b =++,当1a =,1b =-时,原式()316112=´+´-+=-,故选:D .11.89-【分析】本题考查了整式化简求值:先把()()32326522a a a a a -+--去括号,合并同类项,得225a a --,把23a =-代入,化简计算,即可作答.【详解】解:依题意,()()3233232265222652425a a a a a a a a a a a a -+--=---+=--把23a =-代入上式225a a --,得22224208252533399a a æöæö--=-´--´-=-=-ç÷ç÷èøèø故答案为:89-12.(1)522xy x y-+(2)4-【分析】本题考查整式的加减运算,代数式求值.正确的计算,是解题的关键.(1)去括号,合并同类项,进行计算即可;(2)将字母的值代入代数式的值,进行计算即可.【详解】(1)解:∵2232A x xy y =++,2B x xy x =-+,∴()()2222322A B x xy y x xy x -=++--+,22232222x xy y x xy x =++-+-,522xy x y =-+;(2)当1x =-,2y =时,原式 522xy x y =-+,()()5122122=´-´-´-+´,1024=-++,4=-.13.A【分析】本题考查了同类项的定义,代数式求值,根据同类项的定义求出x 和y 的值,再代入到x y +中计算即可求解,根据同类项的定义求出x 和y 的值是解题的关键.【详解】解:∵单项式23y m n 和单项式32x m n -是同类项,∴2x =,3y =,∴235x y +=+=.故选:A .14.5【分析】本题考查多项式与单项式,根据题意求出m 与n 的值,然后代入所求式子即可求出答案.解题的关键是熟练运用多项式的次数与单项式的次数的概念.单项式中所有字母的指数的和叫做单项式的次数,多项式中次数最高项的次数叫做多项式的次数.【详解】解:由题意可知:136m ++=,56n m +-=,∴2m =,3n =,∴235m n +=+=.故答案为:515.(1)1,3,2(2)2022【分析】本题考查了同类项的知识及多项式的有关概念,求代数式的值;(1)根据同类项的概念及多项式的有关概念求解;(2)把(1)中a 、b 、c 的值代入2ax bx c ++求出231x x +=,整体代入,即可求代数式22x 6x 2020++的值.【详解】(1)解:∵单项式134a x y +与单项式225b x y --是同类项,∴21,12b a -=+=解得:1,3a b ==,∵c 等于多项式253mn m n ---的次数∴2c =,故答案为:1,3,2.(2)解:依题意,2323x x ++=,∴231x x +=∴()22262020232020220202022x x x x ++=++=+=16.C【分析】本题主要考查单项式以及同类项的定义,熟练掌握同类项的定义是解题的关键.根据题意得到122n a b +与337m a b +-是同类项,求出m n 、的值,得到答案.【详解】解:由于122n a b +与337m a b +-的和是单项式,\122n a b +与337m a b +-是同类项,13,23n m \+==+,1,2m n \=-=,123m n \-=--=-.故选:C .17.12-【分析】本题考查单项式的系数和次数,多项式的项和次数,掌握定义即可解题,直接利用多项式的项和次数以及单项式的系数与次数确定方法分别得出m ,n 的值进而得出答案.【详解】解:Q 单项式434a b -的系数为4-,次数为7次,又Q 多项式313222m x x y nx y +++的项为:3x 、132m x y +、22nx y ,其次数分别为3次、()4m +次、4次.Q 关于x ,y 的多项式313222m x x y nx y +++的次数与关于a ,b 的单项式434a b -的次数相同,47m \+=,解得3m =,Q 单项式的系数与多项式中次数为4的项的系数相同,4n \=-,()3412mn \=´-=-,故答案为:12-.18.(1)225x xy y --+(2)28-【分析】本题考查了整式的加减,单项式的系数,倒数,求代数式的值,熟练掌握整式的加减运算是解题的关键,(1)根据题意,运用整式的加减运算法则计算求解即可.(2)根据题意,确定x 的值,y 得值,代入计算求解即可.【详解】(1)∵2244A x xy y =-+,22313112A B x xy y -=--∴()22313112B A x xy y =---()()222234413112x xy y x xy y =-+---22221212313112x xy y x xy y =-+-++225x xy y =--+.(2)∵x 是单项式26m n -的系数,y 是12-的倒数,∴6x =-,2y =-,∴()()()()2222662525B x xy y =------+´--=+36122028=--+=-.19.1-【分析】本题考查了非负数的性质,代数式求值,有理数的乘方.根据绝对值和偶次方的非负性,求出a 、b 的值,再代入计算即可.【详解】解:()2350a b ++-=Q ,30a \+=,50b -=,3a \=-,5b =,()()()220223023023235121a b \=´-+=-=-éùë+û.20.A 【分析】本题考查了代数式求值、偶次方的非负性、绝对值的非负性、解一元一次方程,熟练掌握偶次方的非负性和绝对值的非负性是解题关键.先根据偶次方的非负性、绝对值的非负性求出x ,y 的值,再代入计算即可得.【详解】解:∵()2120x y ++-=,∴10x +=,20y -=,∴1x =-,2y =,∴121x y +=-+=,故选:A .21.1【分析】本题主要考查了非负数的性质,代数式求值,根据几个非负数的和为0,那么这几个非负数的值都为0得到1020,a b -=+=,则12a b ==-,,据此代值计算即可得到答案.【详解】解:∵()2120a b -++=,()22010a b -+³³,,∴()2120a b -+==,∴1020,a b -=+=,∴12a b ==-,,∴()()()2221211a b +=-=-=,故答案为:1.22.(1)2x =,=3y -,5z =;(2)4【分析】本题主要考查了非负数的性质.(1)根据非负数的性质“三个非负数相加,和为0,这三个非负数的值都为0”列出三元一次方程组,即可解出x 、y 、z 的值;(2)将(1)中求出的x 、y 、z 的值分别代入,先根据绝对值的性质去掉绝对值的符号,再运用有理数加法法则计算即可.【详解】(1)解:由题意,得203050x y z -=ìï+=íï-=î,解得235x y z =ìï=-íï=î.即2x =,=3y -,5z =;(2)解:当2x =,=3y -,5z =时,2354x y z ++=-+=.23.1-【分析】本题主要考查了代数式求值,直接利用代数式的计算法则进行计算.【详解】解:2023a c +=-Q ,()2022b d +-=,()a b c d \+++-()[()]a c c d =+++-20232022=-+1=-.故答案为:1-.24.3【分析】本题考查了代数式求值,将代数式化简为()()m n p q ---,将已知等式代入,即可求解.【详解】解:∵1m n -=,2p q -=-,∴()()m p n q ---=()()m n p q ---()12123=--=+=,故答案为:3.25.4【分析】本题考查了代数式求值,解题的关键是将2440a a -+=变形为244a a -=-.将2440a a -+=变形为244a a -=-,再代入到()21462a a -+进行计算即可得.【详解】解:2440a a -+=∴244a a -=-∴()()211464626422a a -+=´-+=-+=,故答案为:4.26.2018【分析】本题主要考查了代数式求值,利用整体代入的思想是解题的关键.直接把2a b -=整体代入所求式子中进行求解即可.【详解】∵2a b -=,∴()20243320243202462018a b a b -+=-+=-=.故答案为:2018.27.2028【分析】本题考查代数式求值,涉及整体代入求代数式值,根据所求代数式与条件之间的关系,代入求值即可得到答案,掌握整体代入求值是解决问题的关键.【详解】解:Q 210a a +-=,()224444a a a a \+=+=,\2442024a a ++420242028=+=,故答案为:2028.28.(1)214a ab +,5559-(2)18【分析】此题考查了整式的加减运算以及化简求值,解题的关键是熟练掌握整式的加减运算法则.(1)首先根据整式的加减运算法则化简,然后代入求解即可;(2)首先根据整式的加减运算法则进行变形,然后整体代入求解即可.【详解】(1)解:()()226924 4.5a ab a ab --++++2269289a ab a ab =-+-+++214a ab=+∵2,63a b =-=, ∴原式2224514656553399æöæö=-+´-´=-=-ç÷ç÷èøèø(2)解:22345a b bc+-()()22342a bc b bc =++-()31446=´+´-29.()12a b ab -+-,50-【分析】本题主要考查整式的混合运算,化简求值,根据整式的乘法展开,再合并同类项,代入求值即可求解,掌握整式的混合运算法则是解题的关键.【详解】解:()()()21932124332a ab ab a ab b -++--+626412a ab ab a ab b=-++---1212a ab b=---()12a b ab =-+-,∵4,2a b ab +==,∴原式124250=-´-=-.30.(1)666x y xy+-(2)15【分析】本题考查整式加减混合运算和代数式求值,涉及去括号法则、合并同类项,掌握整式混合运算法则以及代数式求值的题型方法是解决问题的关键(1)根据题意,先去括号,再合并同类项,运用整式加减运算法则求解即可;(2)由(1)中所求结果,根据已知条件恒等变形后代值求解即可得到答案.【详解】(1)解:Q 34723,A x xy y B y xy x =-+=+-,A B\-()34723x xy y y xy x =-+-+-34723x xy y y xy x=-+--+666x y xy =+-;(2)解:由(1)知A B -666x y xy =+-,当12x y +=,2xy =-时,666x y xy +-()66x y xy=+-()16622=´-´-15=.31.16【分析】给x 赋值使0x =﹐则可求得9c =;给x 赋值使=1x -,则可求得()223a b c -+=--,然后把9c =代入即可计算.【详解】解:给x 赋值使0x =﹐则()23c -=,解得9c =,给x 赋值使=1x -,则()223a b c -+=--,∴925a b -+=,∴=16a b -.故答案为:16.【点睛】本题考查了代数式求值,理解赋值法的意义和所给算式的特点是解题的关键.32.8【分析】给x 赋值,得出当1x =时和当1x =-时的等式,将两式相加,即可求解.【详解】解:当1x =时,012340m m m m m ++++=①,当1x =-时,0123416m m m m m +-=+-②,+①②得:02462221m m m =++,∴0248m m m +=+,故答案为:8.【点睛】本题主要考查了求代数式的值,整式的加减,解题的关键是理解题意,得出当1x =时和当1x =-时的等式,掌握整式的加减混合运算的运算法则.33.(1)4(2)8(3)0【分析】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键.(1)观察等式可发现只要令1x =,即可求出0a 的值;(2)观察等式可发现只要令2x =即可求出6543210++++++a a a a a a a 的值.(3)令0x =即可求出等式①,令2x =即可求出等式②,两个式子相加即可求出来.【详解】(1)解:当1x =时,0414a =´=;(2)解:当2x =时,可得6543210428a a a a a a a =++++´+=+;(3)解:当0x =时,可得65432100+-++=--a a a a a a a ①,由(2)得6543210428a a a a a a a =++++´+=+②;+①②得:406282222++=+a a a a ,()64228240a a a \++=-´=,6420=\++a a a .34.16【分析】本题考查代数式求值,解题的关键是掌握赋值法的意义,根据题意,当x =0时,9c =,给x 赋值,使x =2,则2542a b c =++,再把c 代入,即可.【详解】由题意得:当x =0时,9c =,给x 赋值,使得x =2,则()22342a b c +=++,∴2542a b c =++,∴25429a b =++,∴4216a b +=,故答案为:16.35.363【分析】本题主要考查赋值法来求得代数式的值,解题过程中要注意通过观察所求式子来确定需要赋的值.利用赋值法来求得正确答案.【详解】解:依题意可知1g =,令1x =,得1a b c d e f g =++++++①,令=1x -,得63a b c d e f g =-+-+-+②,由-②①得364b d f ---=,所以3641363b d f g ----=-=.故答案为:363.36.A【分析】本题主要考查了整式的化简,先将含a 的项合并,并将其余字母看成常数并整理,再根据题意求出b 的值.【详解】解:∵2253A a ab b =-+,2468B a ab a =++,∴()()2222253468A B a ab b a ab a -=-+-++224106468a ab b a ab a=-+---1668ab b a=-+-()1686b a b =--+;∵代数式的2A B -的值与a 无关,∴1680b --=解得:12b =-,故选:A .37.18【分析】本题考查了一元一次方程的解,将原方程变形为()2622x nk x m -=--,再根据关于x 的方程2262kx m x nk +=-+的解与k 无关,则20x n -=,6220x m --=,分别表示m ,n 关于x 的等式,代入63m n +求值即可.【详解】解:∵2262kx m x nk +=-+,∴()2622x nk x m -=--,∵关于x 的方程2262kx m x nk +=-+的解与k 无关,∴20x n -=,6220x m --=,∴2n x =,3m x =-,∴63186618m n x x +=-+=,故答案为:18.38.(1)5(2)2【分析】本题考查了整式的加减—化简求值,掌握去括号法则,合并同类项法则把整式正确化简是解决问题的关键.(1)根据题意,列出算式,先去括号,再合并同类项,最后将1,2x y =-=代入计算即可;(2)由(1)知212x A y B y +---=,根据()()2422221A B A B y x -=-=---,再根据24A B -的值与y 无关,令20x -=,即可求解.【详解】(1)解:Q 22221,A x xy y B x xy =++-=+,\()()2222212A B x xy y x xy -=++--+2222212x xy y x xy++---=21xy y +--=;当1,2x y =-=时,原式()122215=--´+´-=;(2)解:Q 22221,A x xy y B x xy =++-=+,由(1)知212x A y B y +---=,\()2422A B A B -=-242xy y =-+-()222y x =---,Q 24A B -的值与y 无关,20x \-=,2x \=.39.D【分析】本题考查整式加减中的无关型问题,合并同类项后,根据多项式233x bx y --与2231ax x y -+-的差与x 的取值无关,得到含x 的项的系数为0,进行求解即可.【详解】解:()2322331x bx y ax x y ----+-2322331x bx y ax x y =+----+()()2323311a x b x y y =-+---+,∵差与x 的取值无关,∴30,10a b -=-=,∴3,1a b ==,∴2a b -=;故选D .40. 3- 1【分析】本题主要考查了代数式的值与某字母的取值无关.解题的关键是熟练掌握去括号法则,整式加减运算法则.先根据整式加减运算法则将()()22262351x ax y bx x y +-+--+-变形为22(1)+(3)67b x a x y -+-+,再根据多项式的值与字母x 的取值无关得出10b -=,30a +=,求出a 、b 的值即可.【详解】∵()()22262351x ax y bx x y +-+--+-22262351x ax y bx x y =+-+-+-+22(1)+(3)67b x a x y =-+-+的值与x 的取值无关,∴10b -=,30a +=,∴3a =-,1b =,故答案为:3-,1.41.(1)232a ab a+-(2)12【分析】本题考查了整式加减,整式加减的无关型问题,这里与a 的取值无关即含a 的项的系数为0,据此来求解;(1)根据整式的加减计算法则求解即可;(2)先求出2A B +,根据+2A B 的值与a 的取值无关,求出的式子中含a 的项的系数为0,据此求解即可.【详解】(1)解:A B-()2222211a ab a a ab =+----+-22222a a ab ab a=++--232a ab a=+-(2)解:2A B+()22222121a ab a a ab =+--+-+-222222212a a ab ab a =-++---423ab a =--2(21)3a b =--根据题意可得:210b -=12b =42.(1)22a b -+;(2)0【分析】本题考查整式的加减-化简求值、数轴、绝对值,解题的关键是:(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的意义化简,去括号合并即可得到结果;(2)先化简A B -,然后把1x =代入求值.【详解】解:(1)由数轴可得:0a b c <<<,且a c b >>,∴0b a ->,0a c -<,0c b ->,||||||b a ac c b -+---()()()b a ac c b =-----b a a c c b=--+-+22a b =-+;(2)A B-()()3225116x x x x =---+3225116x x x x =--+-326116x x x =-+-,当1x =时,原式3216111160=-´+´-=.43.(1)4,3(2)1x -(3)2【分析】本题考查了数轴,绝对值的性质,代数式求值,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.(1)根据两点间距离的分别列式计算即可得解;(2)根据两点间距离的分别列式计算即可得解;(3)将1x =代入13x x -+-求解即可.【详解】(1)734-=,∴数轴上表示3和7的两点之间的距离是4,()21213--=+=∴数轴上表示2和1-的两点之间的距离是3;(2)数轴上表示x 和1的两点之间的距离是1x -;(3)当1x =时,131113022x x -+-=-+-=+=.44.(1)d b a-++(2)2-或4-【分析】本题考查绝对值化简,相反数定义,倒数定义,代数式运算,数轴等.(1)根据题意利用数轴化简绝对值;(2)根据相反数及倒数定义计算出代数式的值即可.【详解】(1)解:∵根据数轴得知:0c b d a <<<<,c a >,∴0b c ->,0c a +<,∴d b c c a +--+,()d b c c a =-+----,d b c c a =-+-++,d b a =-++;(2)解:∵a ,b 互为相反数,c ,d 互为倒数,有理数m 在数轴上对应的点M 到原点的距离等于1,∴0,1,1a b cd m +===±,∴当1m =-时:()20232023131·(1)31134a b m cd ++-=--´=--=-,当1m =时:()20232023131·131132a b m cd ++-=-´=-=-,综上所述,()202313a b m cd ++-的值为:2-或4-.45.(1)3a =-,15b =(2)324【分析】(1)根据有理数的乘法和加法计算法则推出00a b <>,,据此得到14a -=,解方程求出a 的值即可求出b 的值;(2)先求出()()43253A A B A B A B +--+=-éùëû,再代入22222233A a ab b B a ab b +=--=+,进行进一步化简,最后代入a 、b 的值求解即可.【详解】(1)解:∵120a b ab +=<,,且点A 在点B 的左边,∴00a b <>,,∴10a -<,∵14a -=,∴14a -=,∴3a =-,∴312b -+=,∴15b =;(2)解:∵22222233A a ab b B a ab b +=--=+,,∴()()432A A B A B +--+éùëû()4322A A B A B =+---4322A A B A B=+---53A B=-()()2222522333a ab b a ab b =+-+--222210510939a ab b a ab b =-+-+-222a ab b =-+,当3a =-,15b =时,原式()()223231515324=--´-´+=.【点睛】本题主要考查了整式的化简求值,解绝对值方程,有理数的乘法计算,有理数的加法计算等等,熟知整式的加减计算法则是解题的关键.46.(1)3(2)2【分析】(1)根据数轴说明a ,c 互为相反数,1b =,可得0a c +=,1c a=-,再整体代入求值即可;(2)先化简绝对值,再把0a c +=,1b =代入进行计算即可.【详解】(1)解:由数轴可得:0a b c <<<,>a c b =,∴a ,c 互为相反数,∴0a c +=,1c a =-,∵b 的倒数等于它本身.∴1b =,∴()()552520123c c a c b a c b a a +-+=+-+=--+=.(2)由数轴可得:0a b c <<<,>a c b =,∴0a b -<,0a b +<,>0c b -,∴2a b a b c b-++--()2a b a b c b =-+----222a c b =--+,∵0a c +=,1b =,∴原式()2220212a c b =-++=-´+´=.【点睛】本题考查的是利用数轴比较有理数的大小,相反数的含义,整式的加减运算,求解代数式的值,熟练是化简绝对值是解本题的关键.47.(1)2c -;(2)225x xy y --,3【分析】(1)根据数轴上点的位置确定绝对值的大小,再去括号合并即可;(2)根据去括号法则先去括号,再根据整式的加减合并,然后将值代入计算即可.【详解】解:(1)由数轴可知0b a -<,20a b ->,0a c ->,0c <,∴原式()2=---+--a b a b a c c答案第21页,共21页2=--++--a b a b a c c2c =-;(2)原式22222345x y xy x xy x xy=--+-++225x xy y =--当=1x -,2y =时,原式225(1)(1)22=´---´-524=+-3=.【点睛】本题考查了数轴与绝对值,整式的加减,去括号等相关知识点,理解绝对值意义和去括号法则是解题的关键.。

整式的加减化简求值专项练习100题

整式的加减化简求值专项练习100题

整式的加减化简求值专项练习100题1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.先化简,再求值:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],其中.7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.9.先化简,再求值,其中a=﹣2.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x3﹣xyz)﹣2(x3﹣y3+xyz)﹣(xyz+2y3),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.59.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.76.先化简再求值:3x2y﹣[2xy2﹣4(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣1.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中85.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)﹣4(3a2b﹣ab2),其中a=﹣2,b=.86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.91.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.92.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=93.已知ab2=-6,求-ab(a2b5-ab3-b)的值.94.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.95.96.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.97.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.98.若x 3-6x 2+11x-6≡(x-1)(x 2+mx+n),求m ,n 的值.99、计算,当a 6 = 64时, 该式的值100.化简求值:22)2()2()2)(12(+---+-x x x x ,其中 211-=x。

部编数学七年级上册专题06整式的化简与求值专项训练40题(解析版)含答案

部编数学七年级上册专题06整式的化简与求值专项训练40题(解析版)含答案

专题06 整式的化简与求值 专项训练40题1.(2022·山东青岛·七年级阶段练习)先化简,再求值:()3222231322362b a a ab a b æö---+-ç÷èø,其中2a =,1b =-.2.(2022·内蒙古赤峰·七年级期末)先化简,再求值:()()22222322x y xy x y x xy y +----,其中x ,y 的值满足()2220x y ++-=3.(2022·山东威海·期末)计算:(1)()()222433224ab b ab b +--+-; (2)()2323132424424433xy x xy x æö-+---+ç÷èø.(3)先化简,再求值:13(2)3(2)2a ab a b --+-+,其中4a =-,12b =.4.(2022·湖南常德·七年级期中)先化简,再求值:221123(4)22ab ab a b a ---êúêú,其中122a b =-=,5.(2021·黑龙江哈尔滨·七年级期末)先化简,再求值:()224222éù---+ëûx y xy xy x y xy ,其中x 与y 互为倒数.【答案】4xy -;4-【分析】根据x 与y 互为倒数,可得1xy =,原式去括号合并同类项后得到最简结果,再把1xy =代入计算即可求出值.【详解】解:原式()224222=--++x y xy xy x y xy 2244242=-+--x y xy xy x y xy 4xy=-∵x 与y 互为倒数,∴1xy =,∴原式4414=-=-´=-xy .【点睛】本题考查整式的加减—化简求值,熟练掌握去括号法则与合并同类项法则是解题的关键.6.(2021·湖北咸宁·七年级期中)先化简后求值:2223322()2x y xy yx x y éù---êú,其中15,5x y ==-.7.(2022·贵州铜仁·七年级期末)先化简,再求值:()222242x xy y x xy y -+--+,其中11,2x y =-=-.8.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.9.(2022·黑龙江大庆·期中)先化简再求值:22113122223a a b a b æöæö-----ç÷ç÷,其中2a =-,32b =.10.(2022·内蒙古鄂尔多斯·七年级期末)先化简,再求值:(1)3(2a 2b ﹣ab 2)﹣(5a 2b ﹣4ab 2),其中a =2,b =1;(2)若a 2+2b 2=5,求多项式(3a 2﹣2ab +b 2)﹣(a 2﹣2ab ﹣3b 2)的值.【答案】(1)a 2b +ab 2,-2 (2)10【分析】(1)先合并同类项,再代入计算即可;(2)原式去括号合并整理后,把已知等式代入计算即可求出值.(1)解:3(2a 2b ﹣ab 2)﹣(5a 2b ﹣4ab 2)=6a 2b ﹣3ab 2﹣5a 2b +4ab 2=a 2b +ab 2,当a =2,b =﹣1时,原式=22×(﹣1)+2×(﹣1)2=﹣2;(2)解:当a 2+2b 2=5时,原式=3a 2﹣2ab +b 2﹣a 2+2ab +3b 2=2a 2+4b 2=2(a 2+2b 2),=2×5=10.【点睛】本题考查了整式加减的化简求值,正确的化简代数式是解题的关键.11.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.12.(2022·黑龙江·哈尔滨市第十七中学校七年级阶段练习)先化简,再求值:()()2254452x x x x -++---,其中2x =-.【答案】291,13x x ++-【分析】原式先去括号,再合并得到最简结果,最后把2x =-代入求值即可.【详解】解:()()2254452x x x x-++---=2254452x x x x -++-++291x x =++当2x =-时,原式=2(2)9(2)1-+´-+13=-【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.13.(2022·江苏南京·七年级期中)已知2(1)|2|0x y +++=,求代数式322332311543222xy x y xy y x xy x y --+--的值.14.(2022·陕西咸阳·七年级开学考试)化简:()()22222332133a b ab a b ab --+-+,若12b =-,请给a 取一个非零有理数代入化简后的式子中求值.15.(2022·浙江绍兴·七年级期中)先化简,再求值:2(2)()a a b a b -++,其中3a =-,5b =【答案】222a b +,43【分析】由单项式乘以多项式法则,结合完全平方公式进行化简,再代入数值计算即可.【详解】解:原式=22222a ab a ab b -+++= 222a b +当3a =-,5b =时,原式=()2223543´-+=.【点睛】本题考查整式加减的化简求值,涉及完全平方公式,掌握相关知识是解题关键.16.(2021·河南洛阳·七年级期中)化简求值:22225[(52)2(3)]a a a a a a -+---,其中12a =.17.(2021·四川广元·七年级期末)先化简,再求值:已知|a +1|+(b ﹣2)2=0,求代数式3a 2b ﹣[2ab 2﹣2(a 2b +3ab 2)]﹣4ab 2的值.【答案】25a b ;10【分析】根据整式的加减化简代数式,然后根据非负数的性质求得,a b 的值,代入化简后的代数式进行计算即可求解.【详解】解:原式()2222232264a b ab a b ab ab=----=2222232264a b ab a b ab ab -+-+25a b =;∵|a +1|+(b ﹣2)2=0,∴1,2a b =-=,∴原式=()251210´-´=.【点睛】本题考查了整式加减化简求值,非负数的性质,正确的去括号是解题的关键.18.(2021·河南周口·七年级期中)先化简,再求值:﹣xy +3x 2﹣(2xy ﹣x 2)﹣3(x 2﹣xy +y 2),其中x ,y 满足(x +1)2+|y ﹣2|=0.【答案】x 2﹣3y 2,-11【分析】先根据整式的加减混合运算法则化简原式,再根据平方式和绝对值的非负性求出x 、y ,代入化简式子中求解即可.【详解】解:﹣xy +3x 2﹣(2xy ﹣x 2)﹣3(x 2﹣xy +y 2)=﹣xy +3x 2﹣2xy +x 2﹣3x 2+3xy -3y 2=x 2﹣3y 2,∵x ,y 满足(x +1)2+|y ﹣2|=0,且(x +1)2≥0,|y ﹣2|≥0,∴x +1=0,y -2=0,解得:x =-1,y =2,∴原式=(-1)2-3×22=1-12=-11.【点睛】本题考查整式加减中的化简求值、平方式和绝对值的非负性,熟记整式加减混合运算法则是解答的关键.19.(2022·黑龙江·哈尔滨市虹桥初级中学校七年级期中)先化简,求值2222223723323535x x xy y x xy y æöæö-+-+++ç÷ç÷,其中12x =-,2y =-.【点睛】本题主要考查了整式的化简求值,掌握整式加减运算法则是解题的关键.20.(2022·黑龙江·哈尔滨市第十七中学校期中)先化简再求值:()()3322x xyz x xyz xyz --++,其中1x =,2y =,3z =-.【答案】2xyz -,12【分析】先去括号,再合并同类项,然后把x 、y 的值代入计算即可.【详解】(2x ³-xyz )-2(x ³+xyz )+xyz =2x ³-xyz -2x ³-2xyz +xyz =-2xyz当x =1,y =2,z =-3时,原式=-2×1×2×(-3)=12.【点睛】本题主要考查了整式的化简求值,熟练掌握去括号法则是解题的关键.21.(2022·陕西·紫阳县师训教研中心七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.22.(2022·黑龙江·哈尔滨工业大学附属中学校期中)先化简,再求值:22137(43)2x x x x éù----êú,其中1x =-.23.(2022·陕西·紫阳县师训教研中心七年级期末)先化简,再求值:()()222222122+----a b ab a b ab ab ,其中2a =-,12b =.24.(2022·河北承德·七年级期末)(1)计算:()()322231--´-+;2111941836æöæö-+¸-ç÷ç÷èøèø.(2)先化简,再求值:()221532x xy x xy æö+--ç÷èø,其中x 、y 的取值如图所示.25.(2022·河北承德·七年级期末)(1)计算:()()322231--´-+;2111941836æöæö-+¸-ç÷ç÷èøèø.(2)先化简,再求值:()221532x xy x xy æö+--ç÷èø,其中x 、y 的取值如图所示.整式的加减运算.26.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(2022·全国·七年级课时练习)(1)先化简,再求值:()()2222523625x y xy y x -++-,其中13x =,12y =-;(2)设2345A a ab =++,22B a ab =-.当a ,b 互为倒数时,求3A B -的值.28.(2022·新疆昌吉·七年级期末)先化简下式,再求值:222345256x x x x x +----+,其中2x =-.【答案】1x -,-3【分析】先合并同类项化简,再把2x =-代入,即可求解.【详解】解∶ 222345256x x x x x+----+()()()222325645x x x x x --+-++-=1x =-当2x =-时,原式213=--=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.29.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.30.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.31.(2022·山东滨州·七年级期末)(1)计算:23100422(1)593æö-¸´-+-´ç÷èø;(2)先化简再求值:22113122323a a b a b æöæö--+-+ç÷ç÷,其中22,3a b =-=.32.(2022·安徽滁州·七年级期末)已知4x =-,2y =,求代数式()()2222332x y xy x y xy ---的值.【答案】25xy ;-80【分析】先化简整式,再代入求值即可.【详解】原式2222336x y xy x y xy =--+25xy =,当4x =-,2y =时,原式()254280=´-´=-.【点睛】本题考查整式化简求值,熟练掌握整加减运算法则是解题的关键.33.(2022·河南南阳·七年级期末)先化简,再求值:()22463421x y xy xy x y éù----+ëû.其中,2x =-,12y =.【答案】2565+-x y xy ,-1【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求值。

整式化简求值专项训练

整式化简求值专项训练

整式化简求值专项训练1.先化简,再求值:$(4a^2-3a)-2(a^2+a^{-1})-(-2+a^2-4a)$,其中$a=-2$。

化简得:$4a^2-3a-2a^2-2a^{-1}+2-a^2+4a$,合并同类项得:$a^2+1$。

代入$a=-2$,得到答案为$5$。

2.先化简,再求值:$7x+8-6$,其中$x=$。

化简得:$7x+2$。

代入$x=$,得到答案为$2$。

3.先化简,再求值:$-a^2b+(3ab^2-a^2b)-2(2ab^2-a^2b)$,其中$a=-1$,$b=-2$。

化简得:$-3a^2b+4ab^2$。

代入$a=-1$,$b=-2$,得到答案为$24$。

4.求代数式$3(x^2-2xy)-[3x^2-2y+2(xy+y)]$的值。

化简得:$x^2-5xy-2y$。

代入$x=-2$,得到答案为$18$。

5.先化简,再求值:$2(a^2+3ab-4.5)-(a^2-6ab-9)$,其中$a=-5$,$b=$。

化简得:$11ab-13.5$。

代入$a=-5$,$b=$,得到答案为$67.5$。

6.先化简,再求值:$2(a^2+3ab-4.5)-(3a^2-4ab-9)$,其中$a=3$,$b=$。

化简得:$7ab-0.5$。

代入$a=3$,$b=$,得到答案为$20.5$。

7.求$3x^2+x+3(x^2-x)-(6x^2+x)$的值,其中$x=-6$。

化简得:$-9x^2+2x$。

代入$x=-6$,得到答案为$330$。

8.已知$A=2a^2-a$,$B=-5a+1$。

1)化简:$3A-2B+2$。

化简得:$6a^2+5a+1$。

2)求$3A-2B+2$的值。

代入$A$和$B$,得到答案为$-33$。

9.先化简,再求值:$2(a^2+3ab-4.5)-(a^2-6ab-9)$,其中$a=-5$,$b=$。

化简得:$11ab-13.5$。

代入$a=-5$,$b=$,得到答案为$67.5$。

整式专项-化简求值50题练习

整式专项-化简求值50题练习

1、先化简,再求值:3x + 2(x2- 2x + 1) - 3(x2- 3x + 2),其中x = -12、化简求值:2(a2- ab) - 3(a2- 2ab),当a = 1,b = -23、先化简,再计算:(2x2- 5xy + 3y2) - (x2- 4xy + 2y2),其中x =2,y = 14.化简并求值:4(m - 2n) + 3(2m + n) - 5(m + n),当m = 3,n = -11、先化简,后求值:5(a + b) - 2(2a - 3b) + 3(a - 4b),其中a = 2,b = -12、化简求值:6(x - y)2 - 3(x - y) + 2(y - x)2 - (x - y),当x = 5,y = 33、先化简,再求值:2(x2 - xy) - 3(x2- 2xy),其中x = -1,y = 24、化简计算:3(a - 2b) - 2(2a + b) + 5(a + 3b),当a = 1,b = 01、先化简,再求值:(4x2- 3xy + 5y2) - (2x2 + 2xy - 3y2),其中x =-2,y =12、化简求值:5(m - 2n) - 3(2m - 5n) + 2(m + 3n),当m = 4,n = -23、先化简,后求值:6(a - b) + 2(3a + b) - 4(a + 2b),其中a = 3,b = -14、化简求值:7(x + y2) - 4(x + y) + 3(y2 + x) - 2(x + y),当x = 1,y = -11、先化简,再求值:3(x2- 2xy) - 2(x2- 3xy),其中x = 0,y = -12、化简计算:4(a + 3b) - 3(2a - b) + 6(a - 4b),当a = -1,b = 23、先化简,再求值:(5x2- 4xy + 3y2) - (3x2- 3xy + 2y2),其中x = 1,y = -24、化简求值:8(m - 3n) - 5(3m + 2n) + 4(m + 5n),当m = 5,n = -11、先化简,后求值:9(a - 2b) - 6(2a + b) + 3(a + 4b),其中a = 2,b = -22、化简求值:10(x - y)2- 7(x - y) + 5(x - y)2- 3(x - y),当x = 7,y = 53、先化简,再求值:4(x2- xy) - 5(x2- 2xy),其中x = -2,y = 34、化简计算:6(a - 4b) - 4(2a + 3b) + 8(a + 2b),当a = 0,b = 15.先化简,再求值:(7x2- 6xy + 5y2) - (5x2- 5xy + 4y2),其中x = 3,y = -11、化简求值:3(m - 5n) - 2(5m - 3n) + 6(m + 2n),当m = -1,n = 22、先化简,后求值:8(a - b) + 5(2a + b) - 7(a + 3b),其中a = 4,b = -13、化简求值:9(x + y)2- 6(x + y) + 7(y + x)2- 4(x + y),当x = -2,y = 14、先化简,再求值:5(x2 - 3xy) - 4(x2- 4xy),其中x = 1,y = -35、化简求值:10(m - 4n) - 7(4m + 3n) + 5(m + 6n),当m = 6,n = -21、先化简,后求值:7(a - 3b) - 4(3a + b) + 2(a + 5b),其中a = 5,b = -22、化简求值:11(x2- y) - 8(x - y) + 9(y - x2) - 5(x - y),当x = 8,y = 63、先化简,再求值:6(x2- 2xy) - 5(x2- 3xy),其中x = -3,y = 24、化简计算:8(a + 2b) - 6(2a - b) + 9(a - 3b),当a = 1,b = -35、先化简,再求值:(9x2- 8xy + 7y2) - (7x2- 7xy + 6y2),其中x = -1,y = 01、化简求值:4(m - 6n) - 3(6m + 2n) + 7(m + 4n),当m = 2,n = -12、先化简,后求值:5(a - 4b) + 3(4a + b) - 6(a + 2b),其中a = 0,b = -13、化简求值:6(x + y)2 - 5(x + y) + 8(y + x)2 - 3(x + y),当x = 3,y = -24、先化简,再求值:7(x2- 4xy) - 6(x2- 5xy),其中x = 2,y = -45、化简求值:12(m - 5n) - 9(5m + 3n) + 6(m + 7n),当m = 7,n = -31、先化简,后求值:10(a - 5b) - 7(5a + b) + 5(a + 3b),其中a = -1,b = -22、化简求值:13(x - y)2- 10(x - y) + 11(y - x)2- 7(x - y),当x = 9,y = 73、先化简,再求值:8(x2- 3xy) - 7(x2- 4xy),其中x = -4,y = 14、化简计算:9(a + 4b) - 7(4a - b) + 10(a - 2b),当a = 2,b = -45、先化简,再求值:(11x2 - 10xy + 9y2) - (9x2- 9xy + 8y2),其中x = 0,y = -11、化简求值:5(m - 8n) - 4(8m + 2n) + 9(m + 6n),当m = -3,n = 12、先化简,后求值:6(a - 6b) + 4(6a + b) - 8(a + 3b),其中a = 1,b = -23、化简求值:7(x + y)2 - 6(x + y) + 10(y + x)2 - 5(x + y),当x = -1,y = 04、先化简,再求值:9(x2- 5xy) - 8(x2- 6xy),其中x = 3,y = -55、化简求值:14(m - 7n) - 11(7m + 3n) + 8(m + 9n),当m = 8,n = -4七年级化简求值打卡练习1、先化简,后求值:12(a - 7b) - 9(7a + b) + 6(a + 5b),其中a = -2,b = -32、化简求值:15(x - y)2- 12(x - y) + 13(y - x)2- 9(x - y),当x = 10,y = 83、先化简,再求值:10(x2- 4xy) - 9(x2- 5xy),其中x = -5,y = 24、. 化简计算:11(a + 5b) - 9(5a - b) + 12(a - 3b),当a = -1,b = -5。

专题训练(四) 整式化简求值的六种类型。

专题训练(四) 整式化简求值的六种类型。

专题训练(四) 整式化简求值的六种类型。

专题训练(四)整式化简求值的六种类型类型一:利用条件直接代入进行化简求值1.2018·扬州江都区期中,先化简,再求值:x^4-3x^2+8x-5-(2x-3x^2+x^4-3),其中x=-1/2.解:将x代入原式,得:1/2)^4 - 3(-1/2)^2 + 8(-1/2) - 5 - (2(-1/2) - 3(-1/2)^2 + (-1/2)^4 - 3)1/16 + 3/4 - 4 - 5 + 1 + 311/162.2018·常熟期中,先化简,再求值:5x^2y-[3xy^2-3(xy-x^2y)+xy]+3xy^2,其中x=5,y=-3/5.解:将x和y代入原式,得:5(5)^2(-3/5) - [3(5)(-3/5)^2 - 3(5(-3/5) - 5^2(-3/5)) + 5(-3/5)]+ 3(-3/5)^275 - 9 + 51 + 3/5132 2/5类型二:利用条件间接代入进行化简求值3.2018·北海合浦县期中,已知-0.5mxn^3与5m^4ny是同类项,求(-5x^2y-4y^3-2x^2y+3x^3)-(2x^3-5x^2y-3y^3-2x^2y)的值.解:将-0.5mxn^3和5m^4ny代入原式,得:5x^2y - 4y^3 - 2x^2y + 3x^3) - (2x^3 - 5x^2y - 3y^3 - 2x^2y) x^3 - 7y^34.已知-3a^2的值,求3(m+n)^2-(m-n)-4(m+n)^2+2(m-n)的值.解:将-3a^2和b|1n|a^2代入原式,得:3(m+n)^2 - (m-n) - 4(m+n)^2 + 2(m-n)9a^2 - b|1n|a^26.2018·武汉新洲区期中,已知多项式(2mx^2-x^2+8x+1)-(5x^2-5y^2+6x)化简后不含x^2项,求多项式2m^3-[3m^3-(4m-6)+m]的值.解:将(2mx^2-x^2+8x+1)-(5x^2-5y^2+6x)化简后不含x^2项的结果代入原式,得:2m^3 - [3m^3 - (4m - 6) + m]m + 6类型三:利用整体代入进行化简求值5.已知x^2-2x+2=0,求代数式2(x^3-x^2-x+1)-(2x^3-x^2+2x^2)+x^2+8x的值.解:将x^2-2x+2代入原式,得:2(x^3 - x^2 - x + 1) - (2x^3 - x^2 + 2x^2) + x^2 + 8xx^3 + 3x^2 + 6x - 2228.若(3xy+2)^2+|7-x-y|=0,求代数式(5xy+10y)-[-5x-(4xy-2y+3x)]的值.解:将(3xy+2)^2+|7-x-y|=0代入原式,得:5xy + 10y) - [-5x - (4xy - 2y + 3x)]2xy + 5y + 5x - 29.当x=2时,代数式ax^3-bx+1的值等于-17,求:当x=-1时,代数式12ax-3bx^3-5的值.解:将x=2时,ax^3-bx+1=-17代入原式,得:8a - 2b + 1 = -17将x=-1代入原式,得:12a + 3b - 5类型四:利用“无关”化简求值10.2018·莱阳期中,已知多项式(2ax^2+3x-1)-(bx-2x^2-3)的值与x的取值无关,求代数式-(a-ab)-3(ab-b)+2ab的值.解:已知多项式(2ax^2+3x-1)-(bx-2x^2-3)的值与x 的取值无关,即:2ax^2+3x-1)-(bx-2x^2-3) = k (k为常数)化简得:(2a+b)x^2 + (3-b)x + 2 = k由于x的取值无关,所以2a+b=0,3-b=0,解得a=3/4,b=3,k=-1.将a、b、k代入原式,得:a-ab)-3(ab-b)+2ab3/411.已知代数式x^2+ax+6-2bx^2+x-1的值与字母x 的取值无关,又A=-a^2+ab-2b^2,B=3a^2-ab+3b^2.求4(A-B)+3(B-A)的值.解:已知代数式x^2+ax+6-2bx^2+x-1的值与字母x 的取值无关,即:x^2 + ax + 6 - 2bx^2 + x - 1 = k (k为常数)化简得:(1-2b)x^2 + (a+1)x + 5 = k由于x的取值无关,所以1-2b=0,a+1=0,解得a=-1,b=1/2,k=5.将a、b、k代入4(A-B)+3(B-A),得:7/2类型五:整体加减求值12.已知m^2-mn=21,mn-n^2=-12,求下列代数式的值:1)m^2-n^2;2)m^2-2mn+n^2.解:(1)将m^2-mn=21和mn-n^2=-12代入m^2-n^2,得:m^2 - n^2 = 332)将m^2-mn=21和mn-n^2=-12代入m^2-2mn+n^2,得:m^2 - 2mn + n^2 = 33 + 12 = 45类型六:整式的化简求值与数轴、绝对值的综合13.2018·南京玄武区期中,有理数a,b,c在数轴上的位置如图4-ZT-1所示.(1)用“>”或“<”填空:a+b<0;b+c>0;a+c<0.2)求代数式|a|+|b|+|c|的值.解:(1)根据图4-ZT-1,可得a+b<0,b+c>0,a+c <0.2)根据绝对值的性质,可得:a| + |b| + |c| = (a+b+c) + (|a-b|+|b-c|+|c-a|)由于b+c>0,a+c<0,所以a+b+c<0,又因为a+b<0,所以|a-b|=b-a,|b-c|=c-b,|c-a|=a-c,代入上式,得:a| + |b| + |c| = -(a+b+c) + (b-a+c-b+a-c) = 2|a| + 2|c|根据图4-ZT-1,可得a<0,c<0,所以|a|=-a,|c|=-c,代入上式,得:a| + |b| + |c| = 2a + 2c.1.化简代数式:|b-c|+2|a+b|-|c-a|2.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点到原点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:整式的化简求值
学习目标:1、巩固并熟练运用合并同类项及去括号法则进行整式的加减运算;
2、熟练掌握各种类型的整式求值,整体思想方法的渗透。

教学重点:正确进行整式的化简求值
知识难点:会根据题目不同背景间接二次求值;
过程设计:
一、知识链接、复习巩固:
1.整式的加减法则是什么?
2.合并同类项与去括号法则分别是怎样的?
3. 化简下列各式:
(1)5x2−(3y2+5x2)+(4y2+7xy)(2)5a2b−[2a2b−(ab2−2a2b)−4]−2ab2
(3)5(3m2n−mn2)−4(−mn2+3m2n)(4)4(a2−b2)−3(a2−2b2)
二、问题情景、引入课题:
对于整式的求值题,一般要先化简再求值会使计算更简便。

今天我们就一起来专题研究整式的化简求值。

三、合作学习、交流展示:
(一)直接代入求值
1、先化简,再求值:5x2−(3y2+5x2)+(4y2+7xy),其中x=−1,y=1。

(二)间接二次求值
运用非负性求值
2、已知(a+2)2
+|b−1
4
|=0,求5a2b−[2a2b−(ab2−2a2b)−4]−2ab2的值。

运用整式有关概念求值
3、若3a m b2与2
3
ab n是同类项,求5(3m2n−mn2)−4(−mn2+3m2n)的值。

4、若多项式(x2−2xy)−(2y2−axy+5)中不含xy项,且单项式−3x a y b是五次单项式,求多项式4(a2−b2)−3(a2−2b2)的值。

运用特殊概念求值
5、若a与b互为相反数,c与d互为倒数,m的绝对值等于3,求代数式2a+cd−(3a+b−m2)的值。

运用整体思想求值
6、已知2x−y=5,求5(2x−y)2
−3y+6x−60的值。

四、课堂反思、总结提升:
通过本节课的学习,你有哪些收获?还存在哪些疑问?请谈谈你的想法。

五、课后练习、延伸拓展:
7、若a2−ab=6,ab−b2=2,求a2−2ab+b2与a2−b2的值。

8、若有理数a、b、c在数轴上的位置如图所示,A点对应的数是-2,且d=|a+b|−|−2−b|−|a−2c|−5.试求7(d+2c)2+2(d+2c)−5(d+2c)2−3(d+2c)的值。

相关文档
最新文档