有理数加、减、乘、除中的简便运算

合集下载

1.类比归纳专题:有理数加、减、乘、除中的简便运算

1.类比归纳专题:有理数加、减、乘、除中的简便运算

类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三◆类型一 加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】(1)114-(+6)-358+(-1.25)-⎝ ⎛⎭⎪⎫-358;(2)2.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】(1)(-6.82)+3.78+(-3.18)-3.78;(2)1918+⎝ ⎛⎭⎪⎫-534+⎝ ⎛⎭⎪⎫-918-1.25.*三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是( ) A .0 B .-1 C .2016 D .-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时,|a|=a ;当a<0时,|a|=-a.根据以上阅读完成下列问题:(1)|3.14-π|=________;(2)计算:⎪⎪⎪⎪⎪⎪12-1+⎪⎪⎪⎪⎪⎪13-12+⎪⎪⎪⎪⎪⎪14-13+…+⎪⎪⎪⎪⎪⎪19-18+⎪⎪⎪⎪⎪⎪110-19.◆类型二 运用分配律解题的技巧一、正用分配律5.计算.(1)⎝ ⎛⎭⎪⎫12-34+18×(-24);(2)391314×(-14).二、逆用分配律6.计算:4×⎝ ⎛⎭⎪⎫-367-3×⎝ ⎛⎭⎪⎫-367-6×367.三、除法变乘法,再利用分配律7.计算:⎝ ⎛⎭⎪⎫16-27+23÷⎝ ⎛⎭⎪⎫-542.参考答案与解析1.解:(1)原式=114+(-1.25)-6+⎝ ⎛⎭⎪⎫358-358=-6. (2)原式=2.3+6.2-(1.7+2.2+1.1)=8.5-5=3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)=-10.(2)原式=1918+⎝ ⎛⎭⎪⎫-918+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-534-1.25=10-7=3. 3.D4.解:(1)π-3.14(2)原式=1-12+12-13+13-14+…+18-19+19-110=1-110=910. 5.解:(1)原式=-12+18-3=3.(2)原式=⎝⎛⎭⎪⎫40-114×(-14)=40×(-14)-114×(-14)=-560+1=-559. 6.解:原式=-367×(4-3+6)=-27. 7.解:原式=⎝ ⎛⎭⎪⎫16-27+23×⎝ ⎛⎭⎪⎫-425=-75+125-285=-235.。

有理数加减乘除乘方混合运算相关法则知识整理汇总

有理数加减乘除乘方混合运算相关法则知识整理汇总

有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。

(2)如有括号,先进行括号里的运算。

1.先算乘方,再算乘除,最后算加减。

2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。

有理数的基本运算

有理数的基本运算

老师:耿宏雷学生:科目: 数学 时间:2011年内容 基本要求略高要求较高要求有理数运算 理解乘方的意义掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)能运用有理数的运算解决简单问题有理数的运算律理解有理数的运算律能用有理数的运算律简化运算板块一、有理数基本加、减混合运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差. 有理数加法的运算律:例题精讲中考要求宇光教育个性化辅导教案提纲有理数基本运算①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b-=+-有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.例如:()(3)(0.15)9(5)(11)30.159511++-+-+++-=--+-,它的含义是正3,负0.15,负9,正5,负11的和.【例1】计算:⑴5116( 2.39)( 1.57)(3)(5)(2)(7.61)(32)( 1.57)6767-+-+++-+-+-+-++⑵11(0.75)0.375(2) 84 +-++-⑶()()()()3133514--++---⑷312 12 1.753 463--+⑸4134.5727⎛⎫⎛⎫---+⎪ ⎪⎝⎭⎝⎭⑹110.5 2.50.336⎡⎤⎛⎫---+-⎪⎢⎥⎝⎭⎣⎦【例2】计算:⑴112.75(3)(0.5)(7)42---+-+;⑵1111|||0|||()||2394---+-----【巩固】 ⑴21(4)(3)33-+- ⑵21(6)(9)|3|7.49.2(4)55-+-+-+++-⑶17(14)(5)( 1.25)88-+++- ⑷111(8.5)3(6)11332-++-+⑸5317(9)15(3)(22.5)(15)124412-++-+-+-⑹434(18)(53)(53.6)(18)(100)555-+++-+++-⑺1132|1()|3553----- ⑻ 4.7( 3.3)( 5.6)( 2.1)--+----⑼1111(3)[(3)3](3)4444⎡⎤-------⎢⎥⎣⎦【巩固】 ⑴若0a >,0b <,则a b - 0⑵若0a <,0b >,则a b - 0 ⑶若0a <,0b <,则()a b -- 0;⑷若0a <,0b <,且||||a b <,则a b - 0.【例3】 (第14届希望杯)有一串数:2003-,1999-,1995-,1991-,…,按一定的规律排列,那么这串数中前 个数的和最小.【例4】 设三个互不相等的有理数,既可分别表示为1a b a +,,的形式,又可分别表示为0bb a,,的形式,则20042001a b +=【例5】 给出一连串连续整数:203202...20032004--,,,,,这串连续整数共有 个;它们的和是【例6】 1997个不全相等的有理数之和为0,则这1997个有理数中( )A .至少有一个是零B .至少有998个正数C .至少有一个是负数D .至多有995个是负数【巩固】 若0a b c d <<<<,则以下四个结论中,正确的是( )A .a b c d +++一定是正数.B .d c a b +--可能是负数.C .d c b a ---一定是正数.D .c d b a ---一定是正数.【例7】 北京市2007年5月份某一周的日最高气温(单位:ºC )分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值为( )A . 28ºCB . 29ºC C . 30ºCD . 31ºC【例8】 出租车司机小李某天下午的营运全都是在东西方向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程表示如下:15+,2-,5+,1-,10+,3-,2-,12+,4+,5-,6+,⑴将最后一名乘客送到目的地时,小李距离下午出车时的出发点多远? ⑵如果汽车耗油量为0.5升/千米,这天下午小李共耗油多少升?【巩固】 A 市的出租车无起步价,每公里收费2元,不足1公里的按1公里计价,9月4号上午A市 某出租司机在南北大道上载人,其承载乘客的里程记录为:2.3、7.2-、6.1-、8、9.3、1.8-(单位:公里,向北行驶记为正,向南行驶记为负),车每公里耗油0.1升,每升油4元,那么他这一上午的净收入是多少元?他最后距离出发点多远?【例9】 数轴的原点O 上有一个蜗牛,第1次向正方向爬1个单位长度,紧接着第2次反向爬2个单位长度,第3次向正方向爬3个单位长度,第4次反向爬4个单位长度……,依次规律爬下去,当它爬完第100次处在B 点.① 求O 、B 两点之间的距离(用单位长度表示).② 若点C 与原点相距50个单位长度,蜗牛的速度为每分钟2个单位长度,需要多少时间才能到达?③ 若蜗牛的速度为每分钟2个单位长度,经过1小时蜗牛离O 点多远?【巩固】 电子跳蚤在数轴上的某一点0K ,第一步0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步有点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,...... ,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94. 求电子跳蚤的初始位置点0K 所表示的数.【巩固】 在1,3,5,…,101这51个奇数中的每个数的前面任意添加一个正号或一个负号,则其代数式的绝对值最小为多少?【巩固】 在数1,2,3,……,1998前添符号“+”或“-”,并依次运算,所得结果中最小的非负数是多少?【例10】 试利用正方形的面积,计算以下无穷个数的和: 1111111 (248163264128)+++++++【例11】 在数学活动中,小明为了求23411111 (22222)n +++++的值(结果用n 表示),设计了如图所示的几何图形图2图1⑴请你用这个几何图形求23411111 (22222)n +++++的值 ⑵请你用图2,再设计一个能求231111 (2222)n ++++的值的几何图形【例12】 (4级)(芜湖市课改实验区中考试题)小王上周五在股市以收盘价每股25元买进某公司股票1000股,在接下来的一周交易日内,⑴星期二收盘时,该股票每股多少元?⑵本周内该股票收盘时的最高价,最低价分别是多少?⑶已知买入股票与卖出股票均需要支付成交金额的千分之五的交易费,若小王在本周五以收盘价将全部股票卖出,他的受益情况如何?板块二、有理数基本乘法、除法有理数乘、除法 Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 有理数乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba =(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc =(乘法结合律) ③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. ()a b c ab ac +=+(乘法分配律) 有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数. 【例13】 看谁算的又对又快:⑴()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦;⑵4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑶1571(8)16-⨯-;⑷()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑸111112211142612⎛⎫-⨯-+- ⎪⎝⎭【巩固】 计算下列各题:⑴()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭;⑵()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭⑶735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦⑷111(0.25)(5)( 3.5)()2244-⨯-+⨯-+-⨯⑸114()1()16845-⨯⨯-⨯⑹11171113()71113⨯⨯⨯++【例14】 计算:()()()71000.01999011⎛⎫-⨯⨯-⨯⨯- ⎪⎝⎭【巩固】 计算:11111(1)(1)(1)(1)(1)4916252500-⨯-⨯-⨯-⨯⨯-【例15】 积11111111...111324359810099101⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪ ⎪⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值的整数部分是【例16】 设()2n n ≥个正整数123...n a a a a ,,,,,任意改变他们的顺序后,记作123...n b b b b ,,,,,若()()()()112233...n n P a b a b a b a b =----,则( )A .P 一定是奇数B .P 一定是偶数C .当n 是奇数时,P 是偶数D .当n 是偶数时,P 是奇数【例17】 若a ,b ,c ,d 是互不相等的整数,且9abcd =则a b c d +++的值为( )A .0B .4C .8D .无法确定.【巩固】 如果4个不同的正整数m ,n ,p ,q 满足(7)(7)(7)(7)4m n p q ----=,那么m n p q +++的值是多少?【例18】 如果a b c ,,均为正数,且()()()152162170a b c b a c c a b +=+=+=,,,那么abc 的值等于【例19】 若19980a b +=,则ab 是( )A . 正数B . 非正数C . 负数D . 非负数【巩固】 奇数个负数相乘,积的符号为 , 个负数相乘,积的符号为正.【巩固】 如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数【巩固】 a 、b 、c 为非零有理数,它们的积必为正数的是( )A .0a >,b 、c 同号B .0b >,a 、c 异号C .0c >,a 、b 异号D .a 、b 、c 同号【巩固】 若a b c ,,三个数互不相等,则在a b b c c ab c c a a b------,,中,正数一定有( ) A .0个 B .1个 C .2个 D .3个Ⅱ:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b a b÷=⋅,(0b ≠)两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例20】 计算:⑴111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;⑵()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭⑶231(4)()324+÷⨯÷-; ⑷71()2(3)93-÷⨯+⑸11111()()234560-+-÷-;⑹44192()77÷-【例21】 如果0acb>,0bc <,且()0a b c ->,试确定a 、b 、c 的符号.【例22】 用“>”或“<”填空⑴如果0abc >,0ac <那么b 0 ;⑵如果0a b>,0bc <那么ac 0 .【巩固】 如果0a b<,0bc <,试确定ac 的符号.【例23】 观察下面的式子:224224;31313434;222241414545;3333515156564444⨯=+=⨯=+=⨯=+=⨯=+=,,,,⑴小明归纳了上面各式得出一个猜想:两个有理数的积等于这两个有理数的和,小明的猜想正确吗?为什么?⑵请你观察上面各式的结构特点,归纳出一个猜想,并证明你的猜想【例24】 已知a 、b 互为相反数,c 、d 互为负倒数,x 的绝对值等于它相反数的2倍.求3x abcdx a bcd ++- 的值.板块三、有理数常考经典计算题型一、应用定律 【例25】 计算:131711010 5.2149 5.2 5.43 4.61255102⎡⎤⎛⎫-÷⨯-⨯+⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦二、应用公式 【例26】 计算:1039710009⨯⨯三、整体代换【例27】 计算:1111111111...1...1 (23)20042200322004232003⎛⎫⎛⎫⎛⎫⎛⎫++++++-++++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭四、裂项【例28】 计算:11111111()1288244880120168224288+++++++⨯= .【例29】 已知2(1)|2|a a b -+-=,试求111(1)(1)(a b a b a b +++++++ 1(2004a b +++ 的值.五、分离法【例30】 计算:133121583132642586538-+---+1. 计算:⑴23132[(12)()]273424273---+--+⑵212(738)(78.36)(53)(13.64)(43)2323+-+--+---课后练习⑶11110()()()()3462-----+-- ⑷9.3712.84 6.24 3.12--+-⑸18961713142114735++---2. 超市新进了10箱橙子,每箱标准重量为50kg ,到货后超市复秤结果如下(超市标准重量的千克数记为正数,不足的千克数记为负数):+0.5,+0.3,-0.9,+0.1,+0.4,-0.2,-0.7,+0.8, +0.3,+0.1.那么超市购进的橙子共多少千克?3. 在整数1,3,5,7,…,21k -,…,2005之间填入符号“+”和“-”号,依此运算,所有可能的代数和中最小的非负数是多少?4. 计算:()()()()18120.1250.23⎛⎫-⨯-⨯-⨯-⨯- ⎪⎝⎭5. 1111(1)(1)(1).....(1)_______1998199719961000----=宇光教育-----您值得信赖的专业化个性化辅导学校 6. 计算:1111111111(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)246810357911+⨯+⨯+⨯+⨯+⨯-⨯-⨯-⨯-⨯-7.计算:567678433322678433322567⨯+⨯+⨯+⨯8.计算:()()()()()()2481632212121212121++++++。

001.1.类比归纳专题:有理数加、减、乘、除中的简便运算

001.1.类比归纳专题:有理数加、减、乘、除中的简便运算

类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三◆类型一 加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】(1)114-(+6)-358+(-1.25)-⎝⎛⎭⎫-358;(2)2.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】(1)(-6.82)+3.78+(-3.18)-3.78;(2)1918+⎝⎛⎭⎫-534+⎝⎛⎭⎫-918-1.25.*三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是( )A .0B .-1C .2016D .-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a ≥0时,|a|=a ;当a<0时,|a|=-a.根据以上阅读完成下列问题:(1)|3.14-π|=________;(2)计算:⎪⎪⎪⎪12-1+⎪⎪⎪⎪13-12+⎪⎪⎪⎪14-13+…+⎪⎪⎪⎪19-18+⎪⎪⎪⎪110-19.◆类型二 运用分配律解题的技巧一、正用分配律5.计算.(1)⎝⎛⎭⎫12-34+18×(-24);(2)391314×(-14).二、逆用分配律6.计算:4×⎝⎛⎭⎫-367-3×⎝⎛⎭⎫-367-6×367.三、除法变乘法,再利用分配律7.计算:⎝⎛⎭⎫16-27+23÷⎝⎛⎭⎫-542.参考答案与解析1.解:(1)原式=114+(-1.25)-6+⎝⎛⎭⎫358-358=-6. (2)原式=2.3+6.2-(1.7+2.2+1.1)=8.5-5=3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)=-10.(2)原式=1918+⎝⎛⎭⎫-918+⎣⎡⎦⎤⎝⎛⎭⎫-534-1.25=10-7=3. 3.D4.解:(1)π-3.14(2)原式=1-12+12-13+13-14+…+18-19+19-110=1-110=910. 5.解:(1)原式=-12+18-3=3.(2)原式=⎝⎛⎭⎫40-114×(-14)=40×(-14)-114×(-14)=-560+1=-559. 6.解:原式=-367×(4-3+6)=-27. 7.解:原式=⎝⎛⎭⎫16-27+23×⎝⎛⎭⎫-425=-75+125-285=-235.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。

有理数加减乘除四则混合运算

有理数加减乘除四则混合运算

复习回顾,引出新课
有理数的减法法则: 减去一个数,等于加上它的相反数.
复习回顾,引出新课
有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝 对值相乘. 任何数与0相乘,都得0.
复习回顾,引出新课
有理数除法法则:
①两数相除,同号得正,异号得负,并把 绝对值相除. 0除以任何一个不等于0数,都得0.
(a、b、c表示任意有理数)
复习回顾,引出新课
(3)乘法交换律: 两个数相乘,交换因数的位置,积不变.
字母表示:ab ba (a、b表示任意有理数)
(4)乘法结合律: 三个数相乘,先把前两个数相乘,或者先把 后两个数相乘,积不变.
字母表示:(ab)c a(bc) (a、b、c表示任意有理数)
复习回顾,引出新课
(5)分配律:
一个数同两个数的和相乘,等于把这个数 分别同这两个数相乘,再把积相加. 字母表示:
(a+b)c=ac+bc (a、b、c表示任意有理数)
复习回顾,引出新课
有理数的运算顺序 (1)先乘除,再加减. (2)同级运算,按从左到右的顺序进行. (3)如有括号,先做括号内的运算,按小括 号、中括号、大括号依次进行.
有理数的混合运算
问题1 计算: 2.5 5 ( 1 ) 84
Hale Waihona Puke 有理数的加减乘除混合运算问题2 计算:
(1)-8+4÷(-2) ; (2)(-7)×(-5)- 90÷(-15) ;
有理数的加减乘除混合运算
问题3 计算:
(1)(125 5) (5) 7
(2)15 ( 1 1) 32
巩固应用
例1 计算:
(1)(12) (4) (11) 5
(2)( 2) ( 8) (0.25) 35

有理数的加减乘除混合运算

有理数的加减乘除混合运算

有理数的加减乘除混合运算有理数是指能够表示为两个整数的比值的数,包括正整数、负整数、零以及分数。

在数学中,有理数的加减乘除混合运算是一个基础而重要的概念。

本文将对有理数的加减乘除混合运算进行详细介绍。

1. 加法运算有理数的加法运算是指在两个有理数之间进行相加操作。

当两个有理数的符号相同时,只需要将它们的绝对值相加,并保留相同的符号。

例如,(-3) + (-2) = -5。

当两个有理数的符号不同时,我们需要进行减法操作。

即将绝对值较大的数减去较小的数,并保留绝对值较大数的符号。

例如,(-3) + 2 = -1。

2. 减法运算有理数的减法运算是指在两个有理数之间进行相减操作。

可以将减法转化为加法,即将减数取相反数,然后进行加法运算。

例如,5 - 3可以转化为 5 + (-3)。

3. 乘法运算有理数的乘法运算是指在两个有理数之间进行相乘操作。

正数与正数相乘或负数与负数相乘,结果为正数;正数与负数相乘或负数与正数相乘,结果为负数。

即符号相同为正,符号不同为负。

例如,(-2) ×5 = -10,(-3) × (-4) = 12。

4. 除法运算有理数的除法运算是指将两个有理数进行相除操作。

除法可以通过乘法的倒数得到,即将除数的倒数与被除数相乘。

例如,(-10) ÷ 2可以转化为 (-10) × (1/2) = -5。

5. 混合运算有理数的混合运算是指在一个表达式中同时包含加减乘除这四种运算。

在进行混合运算时,需要按照运算符的优先级进行计算,并使用括号来改变运算顺序。

通常,括号中的运算先于乘除法的运算,乘除法的运算先于加减法的运算。

例如,计算表达式:(-3) + 4 × (-2) - 6 ÷ 3。

首先进行乘法和除法运算:4 × (-2) = -8;6 ÷ 3 = 2。

然后进行加法和减法运算:(-3) + (-8) - 2 = -13。

有理数简便运算方法

有理数简便运算方法

有理数简便运算方法理数是可以表示为整数或者有限小数的数。

有理数的运算可以通过将有理数转化为分数来进行简化。

以下是有理数的简便运算方法。

一.有理数的加法和减法运算1.同号有理数相加:若两个有理数同为正数或同为负数,则只需将它们的绝对值相加,然后给结果加上相同的符号。

例如:2+3=5,(-2)+(-3)=-52.异号有理数相加:若两个有理数一个为正数,一个为负数,则只需将它们的绝对值相减,然后给结果取两个数绝对值较大的符号。

例如:3+(-2)=3-2=1,(-3)+2=2-3=-13.有理数的减法:有理数的减法可以转化为加法运算,即将减数变为其相反数,然后进行加法运算。

例如:2-3=2+(-3)=-1二.有理数的乘法运算1.同号有理数相乘:若两个有理数同为正数或同为负数,则只需将它们的绝对值相乘,然后给结果加上相同的符号。

例如:2×3=6,(-2)×(-3)=62.异号有理数相乘:若两个有理数一个为正数,一个为负数,则只需将它们的绝对值相乘,然后给结果加上负号。

例如:2×(-3)=-(2×3)=-6,(-2)×3=-(2×3)=-6三.有理数的除法运算有理数的除法可以转化为乘法运算,即将被除数乘以除数的倒数,即除数的倒数是除数分子与分母交换位置得到的分数。

例如:2÷3=2×(1/3)=2/3,(-2)÷(-3)=(-2)×(1/(-3))=2/3四.有理数的混合运算有理数的混合运算可以按照四则运算的顺序进行:先进行括号内的运算,然后进行乘除法运算,最后进行加减法运算。

例如:2+(3×4)=2+12=14,3-(2+1)×4=3-3×4=3-12=-9以上是有理数的简便运算方法,通过将有理数转化为分数进行运算,可以简化计算的步骤,方便快捷地进行有理数的加减乘除运算。

有理数的加减乘除的混合运算技巧

有理数的加减乘除的混合运算技巧

有理数的加减乘除是数学中非常基础的运算,它们在解决实际问题和其他数学运算中起着重要的作用。

它们的混合运算在解决复杂问题时尤为重要。

下面将介绍有理数的加减乘除的混合运算技巧。

一、有理数的加法运算1.1 正数加正数:两个正数相加的结果仍然是正数,例如3+5=8。

1.2 负数加负数:两个负数相加的结果仍然是负数,例如-4+(-6)=-10。

1.3 正数加负数:两个数符不其绝对值相减,结果的符号取较大绝对值的符号,例如5+(-3)=2。

二、有理数的减法运算2.1 减去一个数相当于加上这个数的相反数,即a-b=a+(-b)。

2.2 减法运算可以看作加法运算,例如5-3=5+(-3)=2。

2.3 减法运算中,正数减去一个较大的负数,结果为正数,例如7-(-4)=7+4=11。

三、有理数的乘法运算3.1 同号相乘:两个数符相它们的积为正数,例如3×4=12。

3.2 异号相乘:两个数符不它们的积为负数,例如-5×6=-30。

3.3 有理数乘法的结合律和交换律:对有理数a、b、c来说,a×(b×c)=(a×b)×c,a×b=b×a。

四、有理数的除法运算4.1 有理数的除法运算可以看作是乘法运算的倒数,即a÷b=a×(1/b)。

4.2 除法运算中,同号相除结果为正数,异号相除结果为负数。

4.3 有理数除法的分配率:对有理数a、b、c来说,a÷(b÷c)=(a×c)÷b。

五、有理数的混合运算5.1 有理数的混合运算要遵循先乘除后加减的原则,进行括号内的运算。

5.2 混合运算中,可以通过加减号的顺序调整运算的优先级,例如先进行加法运算,再进行减法运算。

5.3 在进行混合运算时,可以通过绝对值大小或符号来判断计算的顺序,避免混合运算时出现混淆。

六、总结有理数的加减乘除的混合运算需要熟练掌握各种运算规则,尤其是混合运算的顺序和优先级。

(完整版)类比归纳专题:有理数加、减、乘、除中的简便运算

(完整版)类比归纳专题:有理数加、减、乘、除中的简便运算

类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三◆类型一 加减混合运算的技巧一、相反数相结合1.计算:10-24-28+18+24.二、同分母相结合2.计算:1918+⎝⎛⎭⎫-534+⎝⎛⎭⎫-918-1.25.三、计算结果成规律的数相结合3.(唐山校极期中)计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016=( )A .0B .-1C .2016D .-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a ≥0时,|a |=a ;当a <0时,|a |=-a .根据以上阅读完成:(1)|3.14-π|=________;(2)计算:⎪⎪⎪⎪12-1+⎪⎪⎪⎪13-12+⎪⎪⎪⎪14-13+…+⎪⎪⎪⎪19-18+⎪⎪⎪⎪110-19.【易错4】◆类型二 乘法分配律的解题技巧一、正用分配律5.计算⎝⎛⎭⎫-56-14×(-12)的结果为( ) A .-7 B .7 C .-13 D .136.利用分配律计算⎝⎛⎭⎫-1009899×99时,较简便的方法是( )A .-(100+9899)×99B .-(100-9899)×99 C .(100-9899)×99 D .(-101-199)×99 7.计算:-45×⎝⎛⎭⎫19+113-0.4.二、逆用分配律8.(烟台期中)-1317×19-1317×15=________. 9.计算:4×⎝⎛⎭⎫-367-3×⎝⎛⎭⎫-367-6×367.三、除法变乘法,再利用分配律10.计算:⎝⎛⎭⎫16-27+23÷⎝⎛⎭⎫-542.【方法5】参考答案与解析1.解:原式=[(-24)+24]+(18+10-28)=0.2.解:原式=1918+⎝⎛⎭⎫-918+⎣⎡⎦⎤⎝⎛⎭⎫-534-1.25=10-7=3. 3.D4.解:(1)π-3.14(2)原式=1-12+12-13+13-14+…+18-19+19-110=1-110=910. 5.D 6.A7.解:原式=-5-60+18=-47.8.-269.解:原式=-367×(4-3+6)=-27. 10.解:原式=⎝⎛⎭⎫16-27+23×⎝⎛⎭⎫-425=-75+125-285=-235.。

有理数加减乘除混合运算法则小结5.10

有理数加减乘除混合运算法则小结5.10

有理数的加减乘除知识梳理一、有理数的加法法则:①同号两数相加,和取相同的符号并把绝对值相加;如:-2+(-3)=-5②绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; 如: 2+(-3)=-(3-2)=-1 ③一个数与零相加仍得这个数; 如: 0+(-3)=-3④两个互为相反数的数相加和为零; 如: 3+(-3)=0二、有理数的减法法则:减去一个数等于加上这个数的相反数 如: 5-(-3)=5+3=8三、有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;如:(-2)×(-5)=+(2×5)=10 2×(-5)=-(2×5)=-10②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正。

如:(-4)×(-2)×1×(-3)=-(4×2×1×3)=-24④几个有理数相乘若其中有一个为零积就为零四、有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数等于乘以这个数的倒数六、运算律:① 加法交换律:a +b =b +a 。

② 加法结合律:(a +b )+c =a +(b +c )。

③ 乘法交换律:ab =ba 。

④ 乘法结合律:(ab )c =a (bc )。

⑤ 乘法分配律:a (b +c )=ab +ac 。

七、运算顺序:有理数的混合运算法则大体与整数混合运算相同:先算乘方或开方,再算乘法或除法,后算加法或减法,有括号时、先算小括号里面的运算、再算中括号、然后算大括号。

有理数计算题1、(1)2+(-3) (2)(-5)+(-8) (3)6+(-4)(4)5+(-5) (5)0+(-2) (6))43(31-+(7)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121 (8)()⎪⎭⎫ ⎝⎛++-5112.1 2、(1)9-(-5) (2)(-3)-1 (3)(-3)-(-5)(4)0-8 (5)0-(-74) (6)(-6)-(-6) (7)(-52)-(-53) (8)(-32)-52; 3、(1) )127()65()411()310(-++-+ (2))539()518()23()52()21(++++-+-;(3)(-72)-(-37)-(-22)-17; (4)(-32)-21-(-65)-(-31);(5)(-8)-(-15)+(-9)-(-12) (6)0.5+(-41)-(-2.75)+21;(6)(-32)+(-61)-(-41)-21 (8)21+(-32)-(-54)+(-21)4、(1)(-9)×32 (2)(-132)×(-0.26)(3)(74)×56 (4)(-132)×(-0.26) 5、(1)18÷(-3) (2) (-57)÷(-3) (3) (-53)÷526、(1)(-4)×(-10)×0.5×(-3) (2) (-83)×34×(-1.8)(3)-36÷(-131)÷(-32) (4)(-1)÷(-4)÷74(5)3÷(-76)×(-97) (6)131÷(-3)×(-31)7、 (1)(65―43―97)×36 (2) 3×(–9)+7×(–9)(3)-3÷(31-41) (4)56×(-31-21)÷45。

湘教版 初一七年级数学 上册第一学期(期末考试总复习)1.类比归纳专题:有理数加、减、乘、除中的简便运算

湘教版 初一七年级数学 上册第一学期(期末考试总复习)1.类比归纳专题:有理数加、减、乘、除中的简便运算

类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三◆类型一 加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】(1)114-(+6)-358+(-1.25)-⎝⎛⎭⎫-358;(2)2.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】(1)(-6.82)+3.78+(-3.18)-3.78;(2)1918+⎝⎛⎭⎫-534+⎝⎛⎭⎫-918-1.25.*三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是( )A .0B .-1C .2016D .-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a ≥0时,|a|=a ;当a<0时,|a|=-a.根据以上阅读完成下列问题:(1)|3.14-π|=________;(2)计算:⎪⎪⎪⎪12-1+⎪⎪⎪⎪13-12+⎪⎪⎪⎪14-13+…+⎪⎪⎪⎪19-18+⎪⎪⎪⎪110-19.◆类型二 运用分配律解题的技巧一、正用分配律5.计算.(1)⎝⎛⎭⎫12-34+18×(-24);(2)391314×(-14).二、逆用分配律6.计算:4×⎝⎛⎭⎫-367-3×⎝⎛⎭⎫-367-6×367.三、除法变乘法,再利用分配律7.计算:⎝⎛⎭⎫16-27+23÷⎝⎛⎭⎫-542.参考答案与解析1.解:(1)原式=114+(-1.25)-6+⎝⎛⎭⎫358-358=-6.(2)原式=2.3+6.2-(1.7+2.2+1.1)=8.5-5=3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)=-10.(2)原式=1918+⎝⎛⎭⎫-918+⎣⎡⎦⎤⎝⎛⎭⎫-534-1.25=10-7=3. 3.D4.解:(1)π-3.14(2)原式=1-12+12-13+13-14+…+18-19+19-110=1-110=910. 5.解:(1)原式=-12+18-3=3.(2)原式=⎝⎛⎭⎫40-114×(-14)=40×(-14)-114×(-14)=-560+1=-559. 6.解:原式=-367×(4-3+6)=-27. 7.解:原式=⎝⎛⎭⎫16-27+23×⎝⎛⎭⎫-425=-75+125-285=-235.。

有理数的加减乘除、幂运算

有理数的加减乘除、幂运算

有理数的加减乘除运算重点:有理数的加法法则、减法法则、乘法法则、除法法则。

有理数的加法结合律、交换律;乘法交换律、结合律、乘法分配律。

混合运算的顺序。

难点:有理数运算法则的理解,尤其是有理数加法和减法法则的理解;有理数运算中的符号问题;运用运算律进行简算问题;运算的准确性问题等。

二、知识要点梳理知识点一:有理数的加法把两个有理数合成一个有理数的运算叫做有理数的加法。

要点诠释:相加的两个有理数有以下几种情况:(1)两数都是正数;(2)两数都是负数;(3)两数异号,即一个是正数,一个是负数;(4)一个是正数,一个是0;(5)一个是负数,一个是0;(6)两个都是0。

知识点二:有理数加法法则根据有理数的加法法则,两数相加,先弄清这两个加数是同号还是异号,根据法则确定和的符号,然后根据法则求出和的绝对值。

要点诠释:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

知识点三:有理数加法的运算定律要点诠释:(1)加法交换律:。

(2)加法结合律:。

知识点四:有理数减法法则要点诠释:减去一个数,等于加上这个数的相反数,即知识点六:有理数加减法统一成加法的意义要点诠释:对于有理数的加减混合运算中的减法,可以根据有理数减法法则将减法转化为加法。

这样一来,就将原来的混合运算统一为加法运算。

统一成加法以后的式子是几个正数或负数的和的形式,有时,我们把这样的式子叫做代数和。

知识点七:有理数加减混合运算的方法要点诠释:(1)运用减法法则将有理数混合运算中的减法转化为加法。

(2)运用加法法则、加法交换律、加法结合律简便运算。

知识点八:有理数乘法法则要点诠释:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

知识点九:有理数乘法法则的推广要点诠释:(1)几个不等于0的数相乘,积的符号由负因数的个数决定。

有理数加、减、乘、除中的简便运算(最新)

有理数加、减、乘、除中的简便运算(最新)

类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三◆类型一 加减混合运算的技巧一、相反数相结合1.计算:(1)10-24-28+18+24;(2)134-(+6)-358+(-1.75)-⎝⎛⎭⎫-358.二、同分母或凑整结合2.计算:(1)(-6.82)+3.78+(-3.18)-3.78;(2)1918+⎝⎛⎭⎫-534+⎝⎛⎭⎫-918-1.25;(3)0-2123+⎝⎛⎭⎫+314-⎝⎛⎭⎫-23-(+0.25).三、同号相结合3.计算:2.3+(-1.7)+6.2+(-2.2)-1.1.*四、计算结果成规律的数相结合4.计算1+2-3-4+5+6-7-8+…+2017+2018-2019-2020的结果为( )A .0B .-1C .2020D .-20205.阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a ≥0时,|a |=a ;当a <0时,|a |=-a .根据以上阅读完成:(1)|3.14-π|=________;(2)计算:⎪⎪⎪⎪12-1+⎪⎪⎪⎪13-12+⎪⎪⎪⎪14-13+…+⎪⎪⎪⎪19-18+⎪⎪⎪⎪110-19.◆类型二 分配律的解题技巧一、正用分配律6.计算⎝⎛⎭⎫-56-14×(-12)的结果为( ) A .-7 B .7C .-13D .137.利用分配律计算⎝⎛⎭⎫-1009899×99时,较简便的方法是( ) A .-⎝⎛⎭⎫100+9899×99B .-⎝⎛⎭⎫100-9899×99 C.⎝⎛⎭⎫100-9899×99 D.⎝⎛⎭⎫-101-199×99 8.计算:(1)⎝⎛⎭⎫12-34+18×(-24);(2)-45×⎝⎛⎭⎫19+113-0.4;(3)391314×(-14).二、逆用分配律9.计算:-1317×19-1317×15=________. 10.计算:(1)25×34-(-25)×12+25×14;(2)4×⎝⎛⎭⎫-367-3×⎝⎛⎭⎫-367-6×367.三、除法变乘法,再利用分配律11.计算:⎝⎛⎭⎫16-27+23÷⎝⎛⎭⎫-542.12.利用原式的倒数进行简便运算:⎝⎛⎭⎫-130÷⎝⎛⎭⎫23-110+16-25.参考答案与解析1.解:(1)原式=[(-24)+24]+(18+10-28)=0.(2)原式=134+(-1.75)-6+⎝⎛⎭⎫358-358=-6. 2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)=-10.(2)原式=1918+⎝⎛⎭⎫-918+⎣⎡⎦⎤⎝⎛⎭⎫-534-1.25=10-7=3. (3)原式=⎝⎛⎭⎫-2123+23+⎝⎛⎭⎫314-0.25=-21+3=-18. 3.解:原式=2.3+6.2-(1.7+2.2+1.1)=8.5-5=3.5.4.D5.解:(1)π-3.14(2)原式=1-12+12-13+13-14+…+18-19+19-110=1-110=910. 6.D 7.A8.解:(1)原式=-12+18-3=3.(2)原式=-5-60+18=-47.(3)原式=⎝⎛⎭⎫40-114×(-14)=-560+1=-559. 9.-2610.解:(1)原式=25×⎝⎛⎭⎫34+12+14=25×32=752. (2)原式=-367×(4-3+6)=-277×7=-27. 11.解:原式=⎝⎛⎭⎫16-27+23×⎝⎛⎭⎫-425=-75+125-285=-235. 12.解:原式的倒数为(23-110+16-25)÷(-130)=⎝⎛⎭⎫23-110+16-25×(-30)=-20+3-5+12=-10.故原式=-110.。

有理数加减法法则(含乘除法法则)

有理数加减法法则(含乘除法法则)

有理数加减法法则
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
一个数同零相加,仍得这个数。

有理数减法法则:减去一个数,等于加上这个数的相反数。

其中:两变:减法运算变加法运算,减数变成它的相反数。

一不变:被减数不变。

可以表示成:a-b=a+(-b)。

乘法:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得零。

几个不为零的有理数相乘,负因数有偶数个时积为正,负因数有奇数个时积为负,如果有一个因数为零,积就为零。

除法:除以一个不为零的数,等于乘以这个数的倒数;两数相除,同号得正,异号为负;零除以任意非零的数都得零。

13有理数的加减乘除混合运算知识讲解

13有理数的加减乘除混合运算知识讲解

13有理数的加减乘除混合运算有理数的加减乘除混合运算主讲:黄冈中学优秀数学教师余燕一、有理数的加减乘除混合运算1、在带有括号的运算中,先算小括号,再算中括号,最后算大括号.2、在没有括号的不同级运算中,先算乘方再算乘除,最后算加减,注意运算律.3、合理运用运算律合理运用运算律是提高有理数运算能力的基本保证,在运用时,首先要搞清楚各种运算律的名称和使用的方法.(1)加法交换律和结合律通常在加、减运算中同时使用,交换的目的在于结合,结合时一般是按正负结合,按相反数结合,总之,将容易计算的数进行结合.(2)乘法交换律和结合律通常在乘、除运算中使用,交换的目的同样是为了结合,结合时一般将能约分的数结合.(3)分配律是乘法对加法的分配,它既可以正用(即a(b+c)=ab+ac),也可以逆用(即ab+ac=a(b+c)),要特别注意除法对加法没有分配律,不要出现12÷(4+3)=12÷4+12÷3=3+4=7的错误.4、含多重括号时,要注意灵活去括号,没必要墨守成规,总是先去小括号,再去中括号,最后去大括号,也可以先去大括号,再去小括号.有理数的加减乘除混合运算,应按照“先乘除,后加减”的顺序进行.若有括号,则应先计算括号内的数.二、例题讲解例1、(1)若x·(-4)=,则x=__________;(2)已知a=-3,b=-2,c=5,则=__________;(3)等式[(-8)-△]÷(-2)=4中,△表示的数是_______.答案:(1);(2);(3)0例2、当a>b>0时,则__________0.答案:<例3、下列计算正确的是()A.(-1)÷(-7)×=1÷7×=1÷1=1B.12÷(3+4)=12÷3+12÷4=4+3=7C.()÷3=-66÷3-÷3=D.0÷(5-2+3-6)=0÷0=0答案:C例4、阅读下面解题过程:计算.解:原式=.回答:(1)上面解题过程有两个错误,第一处是第二步,错误的原因是运算顺序错了,第二处是第三步,错误的原因是结果错了.(2)求出正确的结果.解:原式=.例5、计算:答案:例6、在如图所示的运算流程中,若输出的数y=3,则输入的数x=_________.答案:6或5例7、小强在自学了简单的电脑编程后,设计了如图所示的程序,他若输入的数为-1,那么执行程序后输出的数是多少?答案:-105例8、计算:答案:(1);(2)1例9、某市质量监督局从某食品厂生产的罐头中,随意抽取20听进行检查,超过标准质量的用正数表示,不足标准质量的用负数表示,抽查的结果如下表:与标准质量的偏-10 -5 0 +5 +10 +15 差(单位:克)听数 2 5 4 6 2 1试问:这批样品的平均质量比标准质量多或者少多少克?解:[-10×2+(-5)×5+0×4+5×6+10×2+15×1]÷20=20÷20=1所以这批样品的平均质量比标准质量多1克.- 返回 -同步测试2、计算:__________,(-10)÷[(-2)-3]=__________.3、计算:5×(-3)+6÷(-2)=__________.4、受金融危机的影响,小明的爸爸返乡做生意,一次性投入资金4000元,最初两个月每月开支2000元,收入1000元.接着后三个月每月开支1000元,收入4000元.五个月后小明的爸爸是亏损还是盈利?__________,是__________元.5、要使等式[(-27)-□]÷3=-2成立,则“□”中应填的数是__________.隐藏答案答案:1、-16;-27;-92、-32;23、-184、盈利;30005、-216、下列正确的是()7、若a+b<0,,那么()A.a>0,b>0B.a<0,b<0C.a、b同号D.a、b异号且负数的绝对值较大8、若ab≠0,则的值是()A.0B.±1 C.±2D.±2,0 9、计算:(1)(-8)÷25×1.25×(-8)隐藏答案9、(1)3.2;(2);(3);(4);(5)5;(6)10、冷库的室温为-2℃,现存入一批食品,必须使室温为-20℃,若冷冻机每小时可使室温下降6℃,则要使冷库室温达到所需温度,需要多长时间?(列式解答)隐藏答案10、(小时)-END-课外拓展例、如果规定“⊙”为一种新的运算:a⊙b=a×b-a2+b2.例如:3⊙4=3×4-32+42=12-9+16=19,仿照例题计算:(1)(-2)⊙6;(2)(-2)⊙[(-3)⊙4].分析:根据规定的新运算,a⊙b等于两个数的乘积减去第一个的平方再加上第二个数的平方,(1)根据新运算的含义化简(-2)⊙6,然后根据有理数混合运算的顺序,先算乘方,计算出(-2)2和62的结果,然后算乘法计算出-2×6的结果,再根据减去一个数等于加上这个数的相反数,把减法运算化为加法运算后,利用同号两数相加的法则:取相同的符号,并把绝对值相加计算出-12+(-4)的结果,最后利用异号两数相加的法则:取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值计算出最后结果;(2)根据新运算的含义先化简中括号里面的(-3)⊙4,然后根据有理数混合运算的顺序,先算乘方,计算出(-3)2和42的结果,然后算乘法计算出-3×4的结果,再根据减去一个数等于加上这个数的相反数,把减法运算化为加法运算后,利用加法法则计算出中括号里面的结果为-5,然后再根据新运算的含义化简(-2)⊙(-5),同理也根据有理数混合运算的顺序以及法则进行正确的计算得出最后的结果.解:(1)(-2)⊙6=-2×6-(-2)2+62=-12-4+36=-12+(-4)+36=-16+36=20;(2)(-2)⊙[(-3)⊙4]=(-2)⊙[(-3)×4-(-3)2+42]=(-2)⊙(-12-9+16)=(-2)⊙(-21+16)=(-2)⊙(-5)=(-2)×(-5)-(-2)2+(-5)2=10-4+25=6+25=31.点评:此题根据定义的新运算间接的考查了有理数的混合运算,解此类题的关键是搞清新运算的含义,从而根据新运算表示的含义化简要求的式子,同时也要求学生掌握有理数混合运算的运算顺序以及各种运算法则.例2、某市有一块土地共100亩,某房地产商以每亩80万元的价格购得此地,准备修建“和谐花园”住宅区.计划在该住宅区内建造八个小区(A区,B 区,C区…H区),其中A区,B区各修建一栋24层的楼房;C区,D区,E区各修建一栋18层的楼房;F区,G区,H区各修建一栋16层的楼房.为了满足市民不同的购房需求,开发商准备将A区,B区两个小区都修建成高档,每层800m2,初步核算成本为800元/m2;将C区,D区,E区三个小区都修建成中档住宅,每层800m2,初步核算成本为700元/m2;将F区,G区,H区三个小区都修建成经济适用房,每层750m2,初步核算成本为600元/m2.整个小区内其他空余部分土地用于修建小区公路通道,植树造林,建花园,运动场和居民生活商店等,这些所需费用加上物业管理费,设置安装楼层电梯等费用共计需要9900万元.开发商打算在修建完工后,将高档,中档和经济适用房以平均价格分别为3000元/m2,2600元/m2和2100元/m2的价格销售.若房屋精品资料全部出售完,请你帮忙计算出房地产开发商的赢利预计是多少元?分析:计算出开发商的总销售额和总投资,二者之差即为盈利.解:开发商共投资:100×800000+24×800×800×2+18×800×700×3+16×750×600×3+99000000=26156(万元),房屋全部出售完可得:(2×24×800×3000+3×18×800×2600+3×16×750×2100)÷10000=30312(万元),房地产开发商的赢利预计:30312-26156=4156万元.所以房地产开发商的赢利预计是4156万元.点评:此题计算量不大,思维含量也较小,但是有很大的阅读量.从大量的信息中找到和解题相关的条件,去掉无关的条件是解答此题的关键.-END-仅供学习与交流,如有侵权请联系网站删除谢谢11。

有理数混合运算简便算法与技巧

有理数混合运算简便算法与技巧

有理数的计算方法与技巧有理数运算是代数入门的重点,又是难点,是中学数学中一切运算的基础,怎样突破这一难点,除了要正确理解概念和掌握运算法则外,还必须熟练有理数运算的一些技巧和方法,一定要正确运用有理数的运算法则和运算律,从而使复杂问题变得较简单。

一、四个原则:①整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。

②简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。

③口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。

④分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。

二、运算技巧①归类组合:运用交换律、结合律归类加减,将同类数(如正数或负数)归类计算,如整数与整数结合、如分数与分数结合、同分母与同分母结合等。

例:计算:-(0.5)-(-341) + 2.75-(721) 解法一:-(0.5)-(-341) + 2.75-(721) = (-0.5 + 2.75) + (341-721) = 2.25-441 =-2解法二:-(0.5)-(-341) + 2.75-(721) =-0.5 + 341+ 2.75-721 = (3 + 2-7 ) + (-0.5 + 41+ 0.75 -21)=-2 评析:解法一是小数与小数相结合,解法二整数与整数结合,这样解决了既含分数又含小数的有理数加减运算问题.同学们遇到类似问题时,应学会灵活选择解题方法.②凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。

将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率.例:计算:--+-+-11622344551311638. 分析:本题六个数中有两个是同分母的分数,有两个互为相反数,有两个相加和为整数,故可用“凑整”法。

华师版 初一七年级数学 上册第一学期(期末考试总复习)1.类比归纳专题:有理数加、减、乘、除中的简便运算

华师版 初一七年级数学 上册第一学期(期末考试总复习)1.类比归纳专题:有理数加、减、乘、除中的简便运算

类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三◆类型一 加减混合运算的技巧一、相反数相结合1.计算:10-24-28+18+24.二、同分母相结合2.计算:1918+⎝⎛⎭⎫-534+⎝⎛⎭⎫-918-1.25.三、计算结果成规律的数相结合3.(唐山校级期中)计算:1+2-3-4+5+6-7-8+…+2013+2014-2015-2016=【方法4】( )A .0B .-1C .2016D .-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a ≥0时,|a |=a ;当a <0时,|a |=-a .根据以上阅读完成:(1)|3.14-π|=________;(2)计算:⎪⎪⎪⎪12-1+⎪⎪⎪⎪13-12+⎪⎪⎪⎪14-13+…+⎪⎪⎪⎪19-18+⎪⎪⎪⎪110-19.◆类型二 乘法分配律的解题技巧一、正用分配律5.计算⎝⎛⎭⎫-56-14×(-12)的结果为( ) A .-7 B .7 C .-13 D .136.利用分配律计算⎝⎛⎭⎫-1009899×99时,较简便的方法是( ) A .-⎝⎛⎭⎫100+9899×99 B .-⎝⎛⎭⎫100-9899×99 C.⎝⎛⎭⎫100-9899×99 D.⎝⎛⎭⎫-101-199×99 7.计算:-45×⎝⎛⎭⎫19+113-0.4.二、逆用分配律8.(烟台期中)-1317×19-1317×15=________. 9.计算:4×⎝⎛⎭⎫-367-3×⎝⎛⎭⎫-367-6×367.三、除法变乘法,再利用分配律10.计算:⎝⎛⎭⎫16-27+23÷⎝⎛⎭⎫-542.参考答案与解析1.解:原式=(10+18-28)+(24-24)=0.2.解:原式=⎝⎛⎭⎫1918-918-⎝⎛⎭⎫534+114=10-7=3. 3.D 解析:原式=(1-3)+(2-4)+(5-7)+(6-8)+…+(2013-2015)+(2014-2016)=-2×1008=-2016.故选D.4.解:(1)π-3.14(2)原式=1-12+12-13+13-14+…+18-19+19-110=1-110=910. 5.D 6.A7.解:原式=-45×19-45×43+45×25=-5-60+18=-47. 8.-269.解:原式=367×(-4+3-6)=-277×7=-27. 10.解:原式=⎝⎛⎭⎫16-27+23×⎝⎛⎭⎫-425=-16×425+27×425-23×425=-75+125-285=-235.。

有理数的加法运算

有理数的加法运算

有理数的加法运算同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。

有理数的减法运算减正等于加负,减负等于加正。

有理数的乘法运算符号法则同号得正异号负,一项为零积是零。

合并同类项说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。

去、添括号法则去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

小学初中公式,法则三角形的面积=底×高÷2。

公式 S= a×h÷2正方形的面积=边长×边长公式 S= a×a长方形的面积=长×宽公式 S= a×b平行四边形的面积=底×高公式 S= a×h梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh圆锥的体积=1/3底面×积高。

公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

有理数加减乘除、乘方、科学计数法

有理数加减乘除、乘方、科学计数法

一、(一)有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加,如:(3)(9)(________)_______+++=+= (2)(5)(________)_______-+-=-=2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,如:(5)(7)__________________-++== (10)(8)__________________-++==3、互为相反的两个数相加得零。

如:(4)(4)_______-++=4、一个数与零相加,仍得这个数。

如:(6)0_______-+=(二)有理数加法仍然可以灵活运用加法运算律进行简化运算。

1、加法交换律:可用字母表示为:a +b =b +a 。

如:由(5)(7)______-+-=,(7)(5)______-+-=, 所以:(5)(7)____(7)(5)-+--+-2、加法结合律:可用字母表示为:(a +b )+c =a +(b +c )。

如:[][](2)(4)(9)(2)(4)(9)(2)(4)(9)__________-+-++=-+-++=-+-++=二、经典归纳考点一 有理数加法【例1】计算:(1))12()1(+++(2))19()4(-+-(3))9()4(++-【例2】41-的相反数与绝对值等于41的数的和应等于( )。

A .21B .0C .21-D .21或0【例3】若x 是-3的相反数,y =5,求x +y 的值。

【例4】若320a b ++-=,则a+b 的值为( ) A .5B .-1C .1D . -5考点二 简便计算【例1】利用运算律,用简便方法计算下列各题:(1)(6)539(4)(7)+++++---解:原式=[])935()7()4()6(+++-+-+-(2)4)5.0()5.2()7.3()5.2(+-+++-+-解:原式=考点三 实际应用【例】出租车司机小张某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,向西为负,这天下午行车里程如下:(单位:千米)+11, -2, +15, -12, +10, -11, +5, -15, +18, -16 (1)当最后一名乘客送到目的地时,距出车地点的距离为多少千米?(2)若每千米的收费标准为7元,这天下午的营业额为多少?(与路程有关,与方向无关)(3)若成本为1.5元/千米,这天下午他盈利为多少元?有理数减法和加减混合运算一、知识清单(一)探索新知在上一讲中,同学们已经学习了有理数的加法。

七年级上册数学有理数混合(简便)运算含详解

七年级上册数学有理数混合(简便)运算含详解

七年级上册数学有理数混合(简便)运算一、解答题1.(1)()1314864⎛⎫-+⨯- ⎪⎝⎭(2)()()1031224-⨯+-÷(3)()()22131524043543⎡⎤⎛⎫-⨯-⨯--÷-⨯ ⎪⎢⎥⎝⎭⎣⎦- (4)()()241110.5233⎡⎤---⨯⨯--⎣⎦2.计算(1)45554559696⎛⎫⎛⎫⎛⎫--++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)()33312121315137474⎛⎫⎛⎫⨯--⨯+-⨯+⨯- ⎪ ⎪⎝⎭⎝⎭(4)()()3311624 2.52⎛⎫÷---⨯-+ ⎪⎝⎭ (4)()()2019211112424248⎛⎫-+-+--+⨯- ⎪⎝⎭3.计算: (1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦;(3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭; (4)2711150(6)9126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2.4.计算题(1)32215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭(2)17-8-24-3÷+⨯()()(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭ (4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦(4)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭5.计算:(1)8(10)2---- (2)121123357373⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭(3)13124243⎛⎫-⨯-+- ⎪⎝⎭(4)24491025-⨯(简便运算)(4)124-÷1753812⎛⎫-+ ⎪⎝⎭ (6)55533843838111111⎛⎫⎛⎫⨯--⨯-- ⎪ ⎪⎝⎭⎝⎭(7)()()220123210.25-⨯---÷ (8)()21.250.485⎛⎫-⨯÷-⨯- ⎪⎝⎭6.阅读第(1)小题的计算方法,再计算第(2)小题.(1)5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭; 解:原式5231(5)(9)1736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭114=-. 上述这种方法叫做拆项法.灵活运用加法的交换律、结合律可使运算简便.(2)仿照(1)中的方法计算:251201920204038362⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.7.计算:(1)15(8)(11)12-+---- (2)524312(4)()12(152)2-÷-⨯-⨯-+(3)71993672-⨯ (4)201221.6(32)150( 2.16) 2.7216(1)⨯--⨯-+⨯⨯-(用简便运算方法)8.简便运算:(1)7581285⨯-÷ (2)157353691246⎛⎫⎛⎫-÷-++- ⎪ ⎪⎝⎭⎝⎭(4)52311492576342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(4)34567891067686970--++--++⋅⋅⋅+--+9.(1)计算:①()()1581112-+----; ②()()⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭2354124121522.(2)简便运算: ①()71993672⨯-; ②()17.4837174.8 1.98.7488⨯--⨯-⨯.10.简便运算:(1)110.53 2.75742⎛⎫⎛⎫---+-+ ⎪ ⎪⎝⎭⎝⎭ (2)()11825 3.794067411⨯⨯⨯-⨯(3)357241468⎛⎫-⨯-+- ⎪⎝⎭(4)()11175250.1255088⎛⎫⨯+-⨯--⨯ ⎪⎝⎭参考答案1.(1)-76;(2)0;(3)-9;(4)16【分析】(1)利用乘法分配律解答;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方、乘除法,再去括号计算加减法;(4)先计算乘方和小括号,再计算乘法,加减法.【详解】解:(1)()1314864⎛⎫-+⨯- ⎪⎝⎭=()()()13148484864⨯--⨯-+⨯-=-48+8-36=-76;(2)()()1031224-⨯+-÷=()1284⨯+-÷=2-2=0;(3)()()22131524043543⎡⎤⎛⎫-⨯-⨯--÷-⨯ ⎪⎢⎥⎝⎭⎣⎦- =132515359⎡⎤⎛⎫-⨯⨯-+ ⎪⎢⎥⎝⎭⎣⎦- =()1151539-⨯-+-=-9;(4)()()241110.5233⎡⎤---⨯⨯--⎣⎦ =111(7)23--⨯⨯- =716-+ =16.【点睛】此题考查了有理数的计算,正确掌握有理数的乘法分配律、含乘方的有理数的混合运算法则是解题的关键.2.(1)15-,(2)-49,(3)0,(4)8【分析】(1)利用减法法则把加减法统一成加法,相加即可得到结果;(2)运用加法交换律和结合律,把含有相同因数的两个式子相加;再用乘法分配律的逆运算,进行简便运算即可;(3)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)按照乘方、绝对值、乘法分配律进行运算即可.【详解】(1)45554559696⎛⎫⎛⎫⎛⎫--++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=45554559696---+ =4555(45)(5)9966--+-+ =105--=15-(2)()33312121315137474⎛⎫⎛⎫⨯--⨯+-⨯+⨯- ⎪ ⎪⎝⎭⎝⎭=[][()33312115213137744⎛⎫⎛⎫⎤⨯-+-⨯+-⨯+⨯- ⎪ ⎪⎦⎝⎭⎝⎭=3311(52)13(2)744⎛⎫-⨯++⨯-- ⎪⎝⎭=-10-39=-49(3)()()3311624 2.52⎛⎫÷---⨯-+ ⎪⎝⎭ =()()11684 2.58⎛⎫÷---⨯-+ ⎪⎝⎭=12 2.52--+ =0(4)()()2019211112424248⎛⎫-+-+--+⨯- ⎪⎝⎭=()()()11110242424248⎡⎤-+-⨯--⨯-+⨯-⎢⎥⎣⎦=11263-+-+=8【点睛】此题考查了有理数的混合运算,熟练掌握运算法则及恰当的运用运算律是解本题的关键. 3.(1)-12;(2) 11425;(3) 323;(4)1.【分析】根据有理数混合运算法则即可解题.【详解】解:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =53167×÷81456⎛⎫⎛⎫⎛⎫-⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =12-;(2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦ =-3-2215252-+⨯()=-3-(-5+1125) =-3+5-1125 =2-1125 =14125;(3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭=(13732-)×(-2)823-⨯-() =53-+163 =113 =323;(4)()271115069126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2 =[50-(79)36⨯+(1112)36⨯-(16)36⨯]÷49 =(50-28+33-6)÷49 =49÷49=1.【点睛】本题考查了有理数的混合运算,属于简单题,熟悉有理数运算法则和运算优先级是解题关键. 4.(1)4;(2)9;(3)16(4)4(5)22;(6)25【解析】试题分析:(1)根据有理数的加法法则计算即可;(2)根据有理数的加减乘除运算法则计算即可;(3)根据有理数的混合运算法则和运算律计算即可,解题时注意预算符号的变换 (4)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可; (5)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可 (6)根据乘法分配律计算即可.试题解析:(1)532215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭=(535+425)+(-523-13) =10-6=4;(2)17-8-24-3÷+⨯()() =17+4-12=9;(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭=60×34+60×56-60×1115-60×712=45+50-44-35=16.(4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦=-9÷(-94) =9×49=4;(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭=43×(-24)+18×(-24)-2.75×(-24)-1-23 =-32-3+66-1-8=22;(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭=25×34+25×12-25×14=25×(34+12-14) =25×1=25.5.(1)16;(2)10-;(3)2;(4)34995-;(5)13;(6)0;(7)16-;(8)10- 【分析】(1)根据绝对值的性质以及有理数的加减运算法则求解即可;(2)将同分母的项先合并计算,然后求解即可;(3)利用乘法分配律进行求解即可;(4)对244925-进行变形处理,然后结合乘法分配律求解即可; (5)先计算括号内,然后根据有理数除法运算法则求解即可;(6)先提取公因数,利用乘法分配律的逆运算求解即可;(7)直接根据含有理数乘方运算的混合运算法则求解即可;(8)根据有理数乘除混合运算法则求解即可.【详解】解:(1)原式8102=+-16=;(2)原式112123357733⎛⎫⎛⎫⎛⎫=+-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()19=-+-10=-;(3)原式()()131242424243⎛⎫=-⨯-+-⨯--⨯ ⎪⎝⎭()12188=+-+ 2=;(4)原式1501025⎛⎫=-⨯ ⎪⎝⎭110501025=⨯-⨯ 25005=-34995=-;(5)原式01242482112424⎛⎫=-÷-+ ⎪⎝⎭11248⎛⎫=-÷- ⎪⎝⎭()1824=-⨯-13=;(6)原式()53834111=-⨯-+538011-⨯=0=;(7)原式3410.25=-⨯-÷ 124=--16=-;(8)原式()5228455⎛⎫=-⨯÷-⨯- ⎪⎝⎭()5258452⎛⎫=-⨯⨯-⨯- ⎪⎝⎭10=-.【点睛】本题考查有理数的混合运算,掌握有理数的混合运算法则,注意运算顺序是解题关键. 6.(2)3-.【分析】(2)根据题中所给的方法,就是把带分数的整数部分和分数部分拆开分别利用加法结合律进行计算即可得到答案.【详解】(2)原式251201920204038362⎛⎫⎛⎫⎛⎫=--+--++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭[]25132019(2020)240386⎡⎤⎛⎫⎛⎫⎛⎫=+-+-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣+-+⎦- (1)(2)=-+-3=-.【点睛】本题主要考查了有理数的加法计算,解题的关键在于能够熟练掌握有理数加法计算的计算法则.7.(1)-24;(2)-10;(3)135992-;(4)216 【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)根据有理数的乘方、乘除法和加减法可解答本题;(3)先变形,再根据有理数的乘法分配律可解答本题;(4)根据乘法分配律的逆运算可以解答本题.【详解】解:(1)15(8)(11)12-+----(15)(8)11(12)=-+-++-24=-;(2)524312(4)()12(152)2-÷-⨯-⨯-+ ()3113212151644⎛⎫=-⨯-⨯-⨯-+ ⎪⎝⎭ 2121=-⨯10=-(3)71993672-⨯ 1(100)3672=-+⨯ 136002=-+ 135992=-; (4)201221.6(32)150( 2.16) 2.7216(1)⨯--⨯-+⨯⨯-21.6(321527)=⨯-++21.610=⨯216=.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.解题关键是掌握有理数的混合运算的计算方法.8.(1)2516;(2)12;(3)5512- ;(4)0. 【分析】(1)分别计算乘法与除法,最后计算减法可得答案;(2)先计算括号内的分数的加减,再把除法转化为乘法,从而可得答案;(3)先把每个带分数化为整数与分数的和,再把整数,分数分别相加减,从而可得答案; (4)观察发现每四个数的和为0,从而把四个数作为一组,利用加法的结合律,从而可得答案.【详解】解:(1)原式7551288=⨯-⨯ 57182⎛⎫=⨯- ⎪⎝⎭ 5582=⨯ 2516=. (2)原式1202127303636363636⎛⎫⎛⎫=-÷-++- ⎪ ⎪⎝⎭⎝⎭113618⎛⎫⎛⎫=-÷- ⎪ ⎪⎝⎭⎝⎭ 1(18)36=-⨯- 12=. (3)原式5231(149257)6342⎛⎫=--+-+-+- ⎪⎝⎭ 10896512121212⎛⎫=-+-+- ⎪⎝⎭5512=-+ 5512=-. (4)原式()()()34567891067686970=--++--++⋅⋅⋅+--+000=++⋅⋅⋅+0=.【点睛】本题考查的是有理数的加减乘除混合运算,加法的运算律,乘法的运算律,掌握以上知识是解题的关键.9.(1)①-24;②-10;(2)①-359912;②-1748.【分析】(1)①根据有理数加减法法则计算即可;②根据有理数混合运算法则计算即可得答案;(2)①根据有理数混合运算法则,利用乘法分配率计算即可;②根据有理数混合运算法则,利用乘法结合律和分配律计算即可.【详解】(1)①()()1581112-+----=-15-8+11-12=-24.②()()⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭2354124121522 =-32×(14-)×14-12×(-15+16)3=2-12×1=-10.(2)①()71993672⨯- =(100-172)×(-36) =-3600+12 =-359912. ②()17.4837174.8 1.98.7488⨯--⨯-⨯=17.48×(-37)-17.48×10×1.9-8.74×2×44 =17.48×(-37)-17.48×19-17.48×44 =17.48×(-37-19-44)=17.48×(-100)=-1748.【点睛】本题考查有理数的混合运算及乘法运算律,熟练掌握运算法则及运算律是解题关键. 10.(1)﹣2;(2)﹣3790;(3)﹣5;(4)25【分析】(1)先将分数化为小数,再去括号进行加减运算即可;(2)先将小数化为分数、带分数化为假分数,再利用乘法运算律进行计算即可; (3)利用乘法分配律简便计算即可;(4)先将小数化为分数,再利用乘法分配律的逆运算计算即可.【详解】解:(1)110.53 2.75742⎛⎫⎛⎫---+-+ ⎪ ⎪⎝⎭⎝⎭ =()()0.5 3.25 2.757.5---+-+=0.5 3.25 2.757.5-++-=86-+=2-;(2)()11825 3.794067411⨯⨯⨯-⨯=()113797425407410011⨯⨯⨯-⨯ =1174379(2540)()7411100-⨯⨯⨯⨯ =3791000100-⨯ =3790-;(3)357241468⎛⎫-⨯-+- ⎪⎝⎭=3117242424468⨯-⨯+⨯ =184421-+=5-;(4)()11175250.1255088⎛⎫⨯+-⨯--⨯ ⎪⎝⎭=()1111752550888⎛⎫⨯+-⨯--⨯ ⎪⎝⎭=1(1752550)8⨯-+ =12008⨯ =25.【点睛】本题考查有理数的加减乘除混合运算,解答的关键是熟练掌握运算法则,适当运用运算律进行简便运算.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 3 1 1 计算:⑴ 3 0.5 7 5 3 7.75 6 4 2 6 1 2 ⑵ 4.4 6 3 3 2.4 3 3
5 3 1 1 计算:⑴ 3 0.5 7 5 3 7.75 6 4 2 6 1 2 ⑵ 4.4 6 3 3 2.4 3 3 5 1 3 1 ⑴ 解:原式= (3 3 ) ( 7 7.75) ( 0.5 5 ) 6 6 4 2
= (370 24.5 5.5) = 400 =100
1 4
1 4
变式题
49 24 1 25 5
24 5 25
原式= 49

= ቤተ መጻሕፍቲ ባይዱ0
1 5 25
=-250+ = 249
1 5
4 5
方法总结 进行有理数四则混合运算时,先观察算式特征,再思考其是否可以运用 乘法分配律简化计算. 特别要注意,有些计算逆用乘法分配律后可以简化计算,还有些除法运 算转化为乘法运算后也可以用乘法分配律简化计算.

优翼 微课
初中数学知识点精讲课程
有理数加、减、乘、除中的简便运算
如何提高有理数计算能力呢?
5 3 1 1 计算:⑴ 3 0.5 7 5 3 7.75 6 4 2 6 1 2 ⑵ 4.4 6 3 3 2.4 3 3
典例精解
类型一:加减混合运算的技巧 一、相反数相结合、同分母结合、凑整结合或同号结合
计算:⑴ 12 1 4 6 2
1 1 1 1 1 ⑵ 370 0.25 24.5 5 25% 2 4
4 6 2
1 1 1 解:⑴原式= 12 12 12 12 1
1008组
典例精解
类型二:乘法分配律的解题技巧 正用分配律、逆用分配律或除法变为乘法,再利用分配律
计算:⑴ 12 1 4 6 2
1 1 1 1 1 ⑵ 370 0.25 24.5 5 25% 2 4
方法总结 进行有理数加减混合运算时,如遇相反数、同分母、可以凑整的,可以 优先考虑运用加法交换律和结合律,将具有以上关系的项结合后计算,最后 将同号的结合计算,这样可以使计算变得简单.
典例精解
二、计算结果成规律的相结合
计算:1-2+3-4+5-6+……+2015-2016
解:原式=(1-2)+(3-4)+(5-6)+……+(2015-2016) =-1× (2016÷ 2) =-1008
=7+0-6 =1
5 3 1 1 计算:⑴ 3 0.5 7 5 3 7.75 6 4 2 6 1 2 ⑵ 4.4 6 3 3 2.4 3 3
1 2 ⑵解:原式= ( 4.4 2.4) ( 3 ) (3 6) 3 3
=-2-4+9 =(-6)+9 =3
=-3+2-6+12 =(-3-6)+(2+12) =-9+14 =5
计算:⑴ 12 1 4 6 2
1 1 1 1 1 ⑵ 370 0.25 24.5 5 25% 2 4 1 1 1 解:⑵原式= 370 24.5 5.5 4 4 4
相关文档
最新文档