3.3.1函数的单调性与导数PPT优秀课件
合集下载
数学:3.3《函数的单调性与导数》课件(新人教版A选修1-1)
上面是否可得下面一般性的结论:
1.回顾一下函数单调性的定义,利用导数的几何 意义,研究单调性的定义与其导数正负的关 系? 在某个区间(a,b)内, ①如果f’(x)>0, 那么函数y=f(x)在这个区间内单调 递增. ②如果f’(x)<0, 那么函数y=f(x)在这个区间内单调 递减.
1.如果在某个区间内恒有f’(x)=0,那么函数f(x) 有什么特性?
本题用到一个重要的转化:
m≥f(x)恒成立 m f (x)max m f (x)恒成立 m f (x )min
练习2 若f (x)在(0, 1]上是增函数,求a的取值范围。
已知函数f (x)= 2ax - x 3,x (0, 1],a 0,
解:f (x)=2ax - x3在( 0, 1]上是增函数, f '(x)=2a - 3x 0在( 0, 1]上恒成立, 3 2 即:a x 在(0, 1]上恒成立, 2 3 2 3 而g( x ) x 在(0, 1]上的最大值为 , 2 2 3 a 。 3 2 [ , )
练习: 已知 x 1 ,求证: x ln( x 1)
提示:运用导数判断单调性,
根据函数的单调性比较函数值大小
单调性的定义
一般地,设函数y=f(x)的定义域为I,如果对 于定义域 I 内的某个区间 D 内的任意两个自变量 x1 , x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x) 在区间D上是增函数.
对于函数y=f(x)在某个区间上单调递增或 单调递减的性质,叫做f(x)在这个区间上的 单调性,这个区间叫做f(x)的单调区间。
解: (3) 因为
, 所以
因此, 函数
在
2024版《函数的单调性》全市一等奖完整版PPT课件
利用单调性证明不等式
1 2
构造函数 根据不等式的特点,构造一个与不等式相关的函 数。
判断函数单调性 通过求导或差分等方法判断所构造函数的单调性。
3
利用单调性证明不等式 根据函数的单调性,结合不等式的性质,证明不 等式成立。
2024/1/29
18
利用单调性解决实际应用问题
要点一
建立数学模型
要点二
判断函数单调性
2024/1/29
21
导数与微分在函数单调性研究中的应用
导数大于零的区间内函数单调 增加,导数小于零的区间内函 数单调减少。
2024/1/29
导数等于零的点为函数的驻点, 需要进一步判断其左右两侧导 数的符号来确定该点的单调性。
微分的概念可以应用于函数单 调性的研究,通过微分可以分 析函数的局部变化率,进而判 断函数的单调性。
14
指数函数与对数函数
对数函数 $y = log_a x$($a > 0, a neq 1$)的单调 性
当 $0 < a < 1$ 时,函数在 $(0, +infty)$ 上单调递减。
当 $a > 1$ 时,函数在 $(0, +infty)$ 上单调递增。
指数函数与对数函数的图像关于直线 $y = x$ 对称,即 互为反函数。
2024/1/29
19
05
函数单调性与其他知识点关联
2024/1/29
20
函数奇偶性与周期性对单调性影响
奇函数在对称区间上的单调性相 同,偶函数在对称区间上的单调
性相反。
周期函数在一个周期内的单调性 与整体单调性一致,可以通过研 究一个周期内的单调性推断整体
的单调性。
3.3.1 函数的单调性与导数
活动与探究 1 (1)函数 y=xcos x-sin x 在下面哪个区间内是增函数( )
A.
π 2
,
3π 2
B.(π,2π)
C.
3π 2
,
5π 2
D.(2π,3π)
思路分析:只需判断在哪个区间上导函数的值大于零即可.
答案:B
解析:y'=cos x-xsin x-cos x=-xsin x,若 y=f(x)在某区间内是增
函数,只需在此区间内 y'恒大于零即可.
∴只有选项 B 符合题意,当 x∈(π,2π)时,y'>0 恒成立.
(2)求函数 f(x)=x2-ln x 的单调区间.
思路分析:求函数的单调区间,即求定义域上满足 f'(x)>0 或 f'(x)<0 的区间.
解:函数 f(x)的定义域为(0,+∞),
f'(x)=2x-1������ = (
∴当 t<0 时,f(x)的递增区间为
-∞,
������ 2
,(-t,+∞),递减区间为
������ 2
,-t
;
当 t>0 时,f(x)的递增区间为(-∞,-t),
������ 2
,
+
∞
,递减区间为
-������,
������ 2
.
迁移与应用 已知函数 f(x)=12ax2+ln x(a∈R),求 f(x)的单调区间.
则(-9,0)是 3x2-2mx<0 的解集,
∴3×(-9)2-2×(-9)×m=0,m=-227.
∴a≤(2x3)min.∵x∈[2,+∞),y=2x3 是增函数,
A.
π 2
,
3π 2
B.(π,2π)
C.
3π 2
,
5π 2
D.(2π,3π)
思路分析:只需判断在哪个区间上导函数的值大于零即可.
答案:B
解析:y'=cos x-xsin x-cos x=-xsin x,若 y=f(x)在某区间内是增
函数,只需在此区间内 y'恒大于零即可.
∴只有选项 B 符合题意,当 x∈(π,2π)时,y'>0 恒成立.
(2)求函数 f(x)=x2-ln x 的单调区间.
思路分析:求函数的单调区间,即求定义域上满足 f'(x)>0 或 f'(x)<0 的区间.
解:函数 f(x)的定义域为(0,+∞),
f'(x)=2x-1������ = (
∴当 t<0 时,f(x)的递增区间为
-∞,
������ 2
,(-t,+∞),递减区间为
������ 2
,-t
;
当 t>0 时,f(x)的递增区间为(-∞,-t),
������ 2
,
+
∞
,递减区间为
-������,
������ 2
.
迁移与应用 已知函数 f(x)=12ax2+ln x(a∈R),求 f(x)的单调区间.
则(-9,0)是 3x2-2mx<0 的解集,
∴3×(-9)2-2×(-9)×m=0,m=-227.
∴a≤(2x3)min.∵x∈[2,+∞),y=2x3 是增函数,
高二数学选修1、3-3-1函数的单调性与导数
人 教 A 版 数 学
决问题的熟练程度,达到优化解题思路、简化解题过程的
目的. 2.利用导数的符号判断函数单调性的解题过程中,只 能在函数的定义域内,通过讨论导数的符号,判断函数的 单调区间.
第三章
导数及其应用
人 教 A 版 数 学
第三章
导数及其应用
1.利用导数判断单调性,是比较好的解题思路其一般 步骤:(1)求导数f′(x);(2)在函数f(x)的定义域内解不等式 f′(x)>0或f′(x)<0;(3)据(2)的结果确定函数f(x)的单调区间.
第三章
导数及其应用
3.3 导数在研究函数中的应用
人 教 A 版 数 学
第三章
导数及其应用
人 教 A 版 数 学
第三章
导数及其应用
人 教 A 版 数 学
第三章
导数及其应用
1.知识与技能 结合实例,借助几何直观发现函数的单调性与导数的 关系. 2.过程与方法
人 教 A 版 数 学
能利用导数研究函数的单调性,会求不超过三次的多
人 教 A 版 数 学
∴函数f(x)=x-sinx在(0,+∞)上是单调增函数
又f(0)=0∴f(x)>0对x∈(0,+∞)恒成立 即:x>sinx (x>0).
第三章
导数及其应用
人 教 A 版 数 学
第三章
导数及其应用
[例 3]
1 3 1 2 若函数 f(x)=3x -2ax +(a-1)x+1 在区间
2.如果函数y=f(x)在x的某个开区间内,总有f′(x)>0,
则f(x)在这个区间上严格增加,这时该函数在这个区间为 严格增函数;如果函数当自变量x在某区间上,总有f′(x) <0,则f(x)在这个区间为 严格减函数 .
决问题的熟练程度,达到优化解题思路、简化解题过程的
目的. 2.利用导数的符号判断函数单调性的解题过程中,只 能在函数的定义域内,通过讨论导数的符号,判断函数的 单调区间.
第三章
导数及其应用
人 教 A 版 数 学
第三章
导数及其应用
1.利用导数判断单调性,是比较好的解题思路其一般 步骤:(1)求导数f′(x);(2)在函数f(x)的定义域内解不等式 f′(x)>0或f′(x)<0;(3)据(2)的结果确定函数f(x)的单调区间.
第三章
导数及其应用
3.3 导数在研究函数中的应用
人 教 A 版 数 学
第三章
导数及其应用
人 教 A 版 数 学
第三章
导数及其应用
人 教 A 版 数 学
第三章
导数及其应用
1.知识与技能 结合实例,借助几何直观发现函数的单调性与导数的 关系. 2.过程与方法
人 教 A 版 数 学
能利用导数研究函数的单调性,会求不超过三次的多
人 教 A 版 数 学
∴函数f(x)=x-sinx在(0,+∞)上是单调增函数
又f(0)=0∴f(x)>0对x∈(0,+∞)恒成立 即:x>sinx (x>0).
第三章
导数及其应用
人 教 A 版 数 学
第三章
导数及其应用
[例 3]
1 3 1 2 若函数 f(x)=3x -2ax +(a-1)x+1 在区间
2.如果函数y=f(x)在x的某个开区间内,总有f′(x)>0,
则f(x)在这个区间上严格增加,这时该函数在这个区间为 严格增函数;如果函数当自变量x在某区间上,总有f′(x) <0,则f(x)在这个区间为 严格减函数 .
函数的单调性与导数-图课件
单调减函数的性质
03
04
05
函数图像从左至右下降 。
若$f(x)$在区间$I$上单 调递减,且$a, b in I$, 且$a < b$,则有$f(a) geq f(b)$。
若函数$f(x)$在区间$I$ 上单调递减,则其反函 数在相应的区间上单调 递增。
单调性与导数的关系
01
导数与单调性的关系
如果函数在某区间的导数大于0,则该函数在此区间单调递增;如果导
数小于0,则函数在此区间单调递减。
02
导数不存在的点
对于使导数不存在的点,需要单独判断其单调性。
03
高阶导数与单调性的关系
高阶导数的符号可以提供关于函数单调性更精细的信息。例如,二阶导
数大于0表示函数在相应点处有拐点,即由单调递增变为单调递减或反
之。
02 导数在判断函数单调性中 的应用
导数大于0与函数单调性的关系
定义法判断单调性
• 定义法判断单调性是指通过比较函数在某区间内任意两点x1和x2的函数值f(x1)和f(x2),来判断函数在该区间内的单调性。 如果对于任意x1<x2,都有f(x1)<f(x2),则函数在该区间内单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则函数在该 区间内单调递减。
03 导数在实际问题中的应用
导数在经济学中的应用
边际分析
导数可以用来分析经济函数的边 际变化,例如边际成本、边际收 益等,帮助企业做出更好的经济
决策。
最优化问题
导数可以用来解决最优化问题,例 如最大利润、最小成本等,为企业 提供最优的资源配置方案。
需求弹性
导数可以用来分析需求弹性,例如 价格敏感度、需求变化等,帮助企 业制定更加精准的市场策略。
函数的单调性与导数优秀ppt课件
①当1<x<4时,f’(x)>0; ②当x>4,或x<1时,f’(x)<0; ③当x=4,或x=1时,f’(x) =0. 试画出函数f(x)图象的大致形状。
y y=f(x)
O1
4
x
7/20/2024
例2 求函数 f (x) 2x3 3x2 12x 1 的单调区间
解: f '(x) 6x2 6x 12
7/20/2024
例1
设 f '( x)是函数 f ( x) 的导函数,y f '( x)的图象如
c 右图所示,则 y f ( x) 的图象最有可能的是( )
y
y f (x)
y
y f (x)
y
y f '( x)
o 1 2x o 1 2x
(A)
y y f (x)
(B)
o
2x
y y f (x)
G=(a,b)
y
y
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数,
则 f(x) 在G上有单调性。
G 称为单调增(减少)区间
新授 画出下列函数的图像,并根据图像指出每个函数的单调区间
y x2
y x3
y1 x
y
y
y
ox
ox
o
x
(-∞,0) (0,+∞)
(- ∞ ,+∞) (-∞,0) (0,,+∞)
为增区间; (4)解不等式f’(x)<0,解集在定义域内的部分
为减区间.
7/20/2024
课堂练习 求下列函数的单调区间。
(1) f (x) x2 2x 3 (2) f (x) x3 3x
y y=f(x)
O1
4
x
7/20/2024
例2 求函数 f (x) 2x3 3x2 12x 1 的单调区间
解: f '(x) 6x2 6x 12
7/20/2024
例1
设 f '( x)是函数 f ( x) 的导函数,y f '( x)的图象如
c 右图所示,则 y f ( x) 的图象最有可能的是( )
y
y f (x)
y
y f (x)
y
y f '( x)
o 1 2x o 1 2x
(A)
y y f (x)
(B)
o
2x
y y f (x)
G=(a,b)
y
y
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数,
则 f(x) 在G上有单调性。
G 称为单调增(减少)区间
新授 画出下列函数的图像,并根据图像指出每个函数的单调区间
y x2
y x3
y1 x
y
y
y
ox
ox
o
x
(-∞,0) (0,+∞)
(- ∞ ,+∞) (-∞,0) (0,,+∞)
为增区间; (4)解不等式f’(x)<0,解集在定义域内的部分
为减区间.
7/20/2024
课堂练习 求下列函数的单调区间。
(1) f (x) x2 2x 3 (2) f (x) x3 3x
《函数单调性与导数》课件
导数在物理问题中的应用
速度与加速度
在运动学中,导数可以用来描述 物体的速度和加速度。例如,自 由落体运动中,物体的速度和加
速度可以通过求导得到。
热传导
在热力学中,导数可以用来描述 热量传递的过程。例如,通过求 导得到温度场的变化率,可以帮
助我们理解热传导的规律。
弹性力学
在弹性力学中,导数可以用来描 述物体的应力应变关系。例如, 通过求导得到物体的应力分布和 应变状态,可以帮助我们理解物
调性
利用导数的符号变化,确定函数 在某区间内的增减性
通过求解一阶导数的不等式,判 断函数的单调性
利用导数判断函数单调性的方法
直接求导
对于已知函数,直接求导并分 析导数的符号变化
利用导数的几何意义
通过导数的几何意义,绘制函 数图像,直观判断函数的单调 性
构造新函数
通过构造函数并求导,利用导 数判断新函数的单调性来研究 原函数的单调性
成本效益分析
导数可以用来分析企业的成本效益,从而制定最优的经营策略。例如,通过求导找到最小 化成本或最大化的利润点,可以帮助企业制定合理的价格和产量策略。
投资组合优化
在金融领域,导数可以用来优化投资组合,以实现最大的收益或最小的风险。例如,通过 求导找到最优的投资组合比例,可以帮助投资者实现资产配置的目标。
详细描述:导数的计算方法包括定义法、求导公式和法则、复合函数求导、隐函数求导、参数方程确定的函数求导等。
03
利用导数判断函数单调性
导数与函数单调性的关系
导数大于零,函数单 调递增
导数等于零,函数可 能为极值点或拐点
导数小于零,函数单 调递减
单调性判定定理的推导
基于极限的导数定义,通过分析 函数在某区间的变化率来判断单
函数的单调性与导数-图课件
函数的单调性与导数-图 课件
通过图示方式深入探讨函数的单调性单调性
定义
函数单调性是指函数在 定义域内逐渐增大或逐 渐减小的趋势。
单调递增的函数图像
函数图像由左下向右上 倾斜。
单调递减的函数图像
函数图像由左上向右下 倾斜。
如何判断函数的单调性
一阶导数与函数单调性的关系
当函数的一阶导数永远大于零时,函数递增; 当一阶导数永远小于零时,函数递减。
二阶导数与函数凹凸性的关系
当函数的二阶导数大于零时,函数凹;当二 阶导数小于零时,函数凸。
导数与函数单调性的应用
1 极值问题
利用导数找出函数的 极值点,从而解决实 际问题。
2 函数最大值最小
值问题
导数能够帮助我们判断函数的单调性和凹凸 性。
如何应用导数解决实际问题
导数不仅仅是理论工具,还可以解决许多实 际问题。
学习建议
1 深入理解导数的概念
掌握导数的定义和性质,加深对导数与函数关系的理解。
2 多做练习题
通过大量的练习题巩固导数与函数单调性的知识。
通过导数的性质,求 出函数的最大值和最 小值。
3 拐点问题
使用导数的变化来确 定函数的拐点。
实例分析
对给定函数F(x)进行单调性分析
通过分析函数F(x)的导数,确定函数F(x)在不同 区间的单调性。
利用导数求函数的最值
运用导数的概念和性质,求出函数的最大值和 最小值。
总结与思考
函数单调性与导数的关系
通过图示方式深入探讨函数的单调性单调性
定义
函数单调性是指函数在 定义域内逐渐增大或逐 渐减小的趋势。
单调递增的函数图像
函数图像由左下向右上 倾斜。
单调递减的函数图像
函数图像由左上向右下 倾斜。
如何判断函数的单调性
一阶导数与函数单调性的关系
当函数的一阶导数永远大于零时,函数递增; 当一阶导数永远小于零时,函数递减。
二阶导数与函数凹凸性的关系
当函数的二阶导数大于零时,函数凹;当二 阶导数小于零时,函数凸。
导数与函数单调性的应用
1 极值问题
利用导数找出函数的 极值点,从而解决实 际问题。
2 函数最大值最小
值问题
导数能够帮助我们判断函数的单调性和凹凸 性。
如何应用导数解决实际问题
导数不仅仅是理论工具,还可以解决许多实 际问题。
学习建议
1 深入理解导数的概念
掌握导数的定义和性质,加深对导数与函数关系的理解。
2 多做练习题
通过大量的练习题巩固导数与函数单调性的知识。
通过导数的性质,求 出函数的最大值和最 小值。
3 拐点问题
使用导数的变化来确 定函数的拐点。
实例分析
对给定函数F(x)进行单调性分析
通过分析函数F(x)的导数,确定函数F(x)在不同 区间的单调性。
利用导数求函数的最值
运用导数的概念和性质,求出函数的最大值和 最小值。
总结与思考
函数单调性与导数的关系
高中数学选修1课件1-3.3.1函数的单调性与导数
解析:方法一:f′(x)=x2-ax+a-1,由 f′(x)=0 得 x=1 或 x=a-1.
当 a-1≤1,即 a≤2 时,对于任意的 x∈(1,+∞),f′(x)>0, 即函数 f(x)在[1,+∞)上单调递增,不符合题意; 当 a-1>1,即 a>2 时,函数 f(x)在(-∞,1]和[a-1,+∞) 上单调递增,在[1,a-1]上单调递减, 依题意[1,4]⊆[1,a-1]且[6,+∞)⊆[a-1,+∞),从而 4≤a -1≤6,故 5≤a≤7. 综上,实数 a 的取值范围为[5,7].
(3)要特别注意函数的定义域.
跟踪训练 2 求下列函数的单调区间. (1)y=(1-x)ex; (2)y=x3-2x2+x;
(3)y=12x+sin x,x∈(0,π).
解析:(1)∵y=(1-x)ex, ∴y′=-xex,∴y′>0 时 x<0,y′<0 时 x>0, ∴函数 y=(1-x)ex 的增区间为(-∞,0),减区间为(0,+∞). (2)∵y=x3-2x2+x,∴y′=3x2-4x+1,x∈R, ①令 3x2-4x+1>0,得 x>1 或 x<13. ②令 3x2-4x+1<0,得13<x<1.
状元随笔
如图,函数 y=f(x)的图象在(0,a)内“陡峭”,在(a,+∞)内 “平缓”.
说明:通过函数图象,不仅可以看出函数的增减,还可以看出 函数增减的快慢.从导数的角度研究了函数的单调性及增减快慢 后,我们就能根据函数图象大致画出导函数的图象,反之也可行.
[小试身手]
1.已知函数 f(x)=x3-3x2-9x,则函数 f(x)的单调递增区间是
状元随笔 先求导数,再利用二次函数知识求 a.
3.函数 f(x)=2x-sin x 在(-∞,+∞)上( ) A.是增函数 B.是减函数 C.有最大值 D.有最小值
《函数的单调性与导数》人教版高中数学选修PPT精品课件
;
③解不等式 f ( x) 解不等式f ( x)
>0得f(x)的单调递增区间; <0得f(x)的单调递减区间.
人教版高中数学选修2-2
讲解人: 时间:
感谢你的聆听
第1章 导数及其应用
h(t) = -4.9t2 + 6.5t + 10
的图像.运动员从起跳到最高点,以及从最
高点到入水这两段时间内,随着时间的变化,运动员离水面的高度发生什么变化?
h
M
h f (t)
o
m
t
新知探究
通过观察图像,我们可以发现: (1)运动员从起跳到最高点,离水面高度h随时间t的增加而增加,即h(t)是增函数.相应的,
)
A.a 1 3
B.a 1
C.a 0
D.a 0
课堂练习
D 设函数f(x)在定义域内可导,y=f(x)的图象如右图所示,则导函数y=f’(x)的图象可能是(
(A)
(B)
(C)
(D)
课堂练习
已知函数f(x)=kx3-3(k+1)x2-k2+1(k>0),若f(x)的单调减区间为(0,4),1则k=____.
新知探究
例4 如图1.3-6,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器 中,试分别找出与各容器对应的高度h与时间t的函数关系图像.
1 h
2 h
3 h
o A t
o B t
o C t
图1.3 6
4 h
o D t
新知探究
解 1 → B, 2 → A, 3 → D, 4 → C.
课前导入
单调函数的图象特征
G=(a,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
x
令6x2-12x<0,解得,0<x<2
∴当x ∈(0,2)时,f(x)是减函数。
22.05.2019 江西省赣州一中刘利剑 整理 heishu800101@
首页
知识点:
定理:
一般地,函数y=f(x)在某个区间内可导: f’(x)>0 如果恒有 ,则 f(x)在是增函数。
如果恒有
如果恒有
练习:判断下列函数的单调性
• (1)f(x)=x3+3x; • (2)f(x)=sinx-x,x∈(0,π); • (3)f(x)=2x3+3x2-24x+1; • (4)f(x)=ex-x;
22.05.2019
江西省赣州一中刘利剑 整理 heishu800101@
作业布置:
书本P107
22.05.2019
在(- ∞ ,1)上是减 函数,在(1, +∞)上 是增函数。
在(- ∞,+∞) 上是增函数
江西省赣州一中刘利剑 整理 heishu800101@
概念回顾
单调性的概念
对于给定区间上的函数f(x):
1.如果对于这个区间上的任意两个自变量x1,x2,当x1<x2时, 都有 f(x1)<f(x2),那么就说f(x)在这个区间上是增函数. 2.如果对于这个区间上的任意两个自变量x1,x2,当x1<x2时, 都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数 对于函数y=f(x)在某个区间上单调递增或单调递减的性 质,叫做f(x)在这个区间上的单调性,这个区间叫做f(x) 的单调区间。 首页
是减函数
x ) 2 x 6 x 7 确定函数 f( ,在哪个区 间是增函数,那个区间是减函数。
3 2
y 解:函数f(x)的定义域是(- ∞,+∞)
f( x ) 6 x 12 x
' 2
令6x2-12x>0,解得x>2或x<0
∴当x ∈(2,+∞)时,f(x)是增函数; 当x ∈(-∞,0)时,f(x)也是增函数
A 1.(1)(2),2.(2)(4).
第二教材 A
22.05.2019
江西省赣州一中刘利剑 整理 heishu800101@
22.05.2019
江西省赣州一中刘利剑 整理 heishu800101@
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是��
22.05.2019
江西省赣州一中刘利剑 整理 heishu800101@
x ) x 4 x 5 例1.确定函数 f( 在哪个区 间是减函数?在哪个区间上是增函数?
2
解: (1)求函数的定义域
函数f (x)的定义域是(- ∞,+∞) (2)求函数的导数
y
f ' (x )2 x 4 f (x) 0以及
3.3.1函数的单调性与导数
情境设置 探索研究 演练反馈 创新升级 总结提炼 作业布置
22.05.2019
画出下列函数的图像,并根据图像指出每个函数的单调区间
1 y x
y
yx 2 x 1
2
y3
y
x
y
o
x
o
1xΒιβλιοθήκη 1 ox在(- ∞ ,0)和(0, + ∞)上分别是减函数。 但在定义域上不是减函数。
'
(3)令
f ' (x) 0
o
2 x
求自变量x的取值范围,也即函数的单调区间。 令2x-4>0,解得x>2 ∴x∈(2,+∞)时, f ( x ) 是增函数
令2x-4<0,解得x<2
22.05.2019
∴x∈(-∞,2)时,
f 江西省赣州一中刘利剑 ( x) 整理 heishu800101@
22.05.2019
江西省赣州一中刘利剑 整理 heishu800101@
22.05.2019
江西省赣州一中刘利剑 整理 heishu800101@
新课引入
y
1.在x=1的左边函数图像的单 调性如何?
1
o
2.在x=1的左边函数图像上的各 (锐角/ x 点切线的倾斜角为 钝角)?他的斜率有什么特征? 3.由导数的几何意义,你可以得 到什么结论? 4.在x=1的右边时,同时回答 上述问题。 首页
f’(x)<0 ,则 f(x)是减函数。 f’(x) =0 ,则 f(x)是常数。
步骤: (1)求函数的定义域
(2)求函数的导数
(3)令f’(x)>0以及f’(x)<0,求自变量x的取值范围,即 函数的单调区间。 22.05.2019 江西省赣州一中刘利剑 整理 heishu800101@
江西省赣州一中刘利剑 整理 heishu800101@
22.05.2019