半导体制造工艺_11刻蚀

合集下载

半导体工艺光刻+蚀刻 ppt课件

半导体工艺光刻+蚀刻  ppt课件
芯片制造技术中的 光刻刻蚀工艺
ppt课件
1
▪ 芯片制造工艺 ▪ 光刻工艺
▪ 刻蚀工艺
ppt课件
2
精品资料
ppt课件
4
光刻+蚀刻
最重要
决定着芯片的最小尺寸 制造时间的40-50% 制造成本的30%
ppt课件
5
玻璃模版 光刻胶膜
硅片
光刻 光化学反应
蚀刻
腐蚀
ppt课件
6
ppt课件
7
光刻原理
模版上的铬岛
紫外光
光刻胶的曝光区
光p刻ho胶tor层esist 氧化ox层ide
sil硅ico衬n 底substrate
使光衰弱的被曝光区
光刻胶上的阴影

光刻胶层
窗口
氧化层 硅衬底
光刻胶显影后的最终图形
ppt课件
8
▪ 使用光敏材料(光刻胶)和可控制的曝 光在光刻胶膜层形成三维图形
▪ 在后续工艺(蚀刻)中,保护下面的材料
ppt课件
9
HMDS
清洗+喷涂粘附剂
光刻工艺步骤
紫外光
光刻胶
模版
旋转涂胶
软烘
对准和曝光
曝光后烘焙
显影
坚膜烘焙
显影检查
ppt课件
10
涂胶
模板 曝光
显影
ppt课件
11
Normal under
Incomplete
over
ppt课件
12
光刻工艺 —— 显影后
ppt课件
13
蚀刻工艺
▪ 光刻胶上的IC设计图形
晶圆表面
▪ 腐蚀作用,从Si片表面去除不需要的材料, 如Si、SiO2,金属、光刻胶等

光刻与刻蚀工艺

光刻与刻蚀工艺

涂胶/显影技术
01
02
03
涂胶
在晶圆表面涂上一层光敏 胶,以保护非曝光区域并 提高图像对比度。
显影
用适当的溶剂去除曝光区 域的光敏胶,以形成所需 的图案。
控制胶厚
保持胶厚均匀,以避免图 像的扭曲和失真。
烘烤与曝光技术
烘烤
通过加热去除晶圆表面的湿气,以提高光敏胶的灵敏度和图像质 量。
曝光
将掩模图像投影到光敏胶上,通过光化学反应将图像转移到晶圆 上。
非接触式光刻
投影式非接触
利用光学系统将掩膜板上的图像投影到光刻胶涂层上,优点是无需直接接触,缺点是难度较高,需要精确的控 制系统。
电子束光刻
利用电子束在光刻胶上直接曝光,优点是分辨率高、无需掩膜板,缺点是生产效率低。
投影式光刻
接触式投影
掩膜板与光刻胶涂层之间保持接触,通过投影系统将图像投影到光刻胶上,优点是操作简单、高效, 缺点是图像质量可能受到掩膜板损伤和光刻胶污染的影响。
要点二
损伤控制
是指在刻蚀过程中避免对材料产生损伤。对于某些特殊 材料,如脆性材料,损伤控制尤为重要。如果刻蚀过程 中产生过多损伤,可能会导致材料性能下降甚至破裂。
感谢您的观看
THANKS
光刻工艺的基本步骤
涂胶
将光刻胶涂敷在硅片表面,以形成 光刻胶层。
烘烤
通过烘烤使光刻胶层干燥并固化。
曝光
将掩膜版上的图形对准硅片上的光 刻胶层,并使用曝光设备将图形转 移到光刻胶上。
显影
使用显影液将曝光后的光刻胶进行 化学处理,使图形更加清晰地展现 出来。
光刻工艺的重要性
光刻工艺是半导体制造中的关键环节,直接影响芯片的制造 质量和性能。

集成电路工艺:刻蚀

集成电路工艺:刻蚀
集成电路工艺:刻蚀
1. 引 言
1.1刻蚀的概念
刻蚀:它是半导体制造工艺,微电子IC制造工 艺以及微纳制造工艺中的一种相当重要的步骤。 是与光刻相联系的图形化(pattern)处理的一 种主要工艺。所谓刻蚀,实际上狭义理解就是 光刻腐蚀,先通过光刻将光刻胶进行光刻曝光 处理,然后通过其它方式实现腐蚀处理掉所需 除去的部分。随着微制造工艺的发展;广义上 来讲,刻蚀成了通过溶液、反应离子其它机 械方式来剥离、去除材料的一种统称,成为微 加工制造的一种普适叫法。
4.2常用材料的湿法刻蚀
1.二氧化硅湿法刻蚀 采用氢氟酸溶液加以进行。因为二氧化硅可与室
温的氢氟酸溶液进行反应,但却不会蚀刻硅基材 及多晶硅。反应式如下:
SiO2 + 6HF= H2[SiF6] + 2H2O 由于氢氟酸对二氧化硅的蚀刻速率相当高,在制
程上很难控制,因此在实际应用上都是使用稀释 后的氢氟酸溶液,或是添加氟化铵(NH4F)作 为缓冲剂的混合液,来进行二氧化硅的蚀刻。
下层的Ti ➢ 金属铝的刻蚀步骤多,工艺复杂
4. 湿法刻蚀
4.1 湿法刻蚀的原理
湿法刻蚀是将被刻蚀材料浸泡在腐蚀液内进行腐蚀 的技术
这是各向同性的刻蚀方法,利用化学反应过程去除 待刻蚀区域的薄膜材料
湿法刻蚀,又称湿化学腐蚀法。半导体制造业一开 始,湿法腐蚀就与硅片制造联系在一起。现在湿法 腐蚀大部分被干法刻蚀代替,但在漂去氧化硅、除 去残留物、表层剥离以及大尺寸的图形腐蚀应用方 面起着重要作用。尤其适合将多晶硅、氧化物、氮 化物、金属与Ⅲ-Ⅴ族化合物等作整片的腐蚀。
干法刻蚀是各向异性刻蚀,用物理和化学方法, 能实现图形的精确转移,是集成电路刻蚀工艺的 主流技术。
各向同性刻蚀:侧向与纵向腐蚀速度相同 各向异性刻蚀:侧向腐蚀速度远远小于纵向腐蚀

半导体行业之刻蚀工艺

半导体行业之刻蚀工艺

1.负载效应等离子体图形化刻蚀过程中,刻蚀图形将影响刻蚀速率和刻蚀轮廓,称为负载效应。

负载效应有两种:宏观负载效应和微观负载效应。

宏观负载效应具有较大开口面积的晶圆刻蚀速率与较小开口面积的晶圆刻蚀速率不同,这种晶圆对晶圆的刻蚀速率差异就是宏观负载效应,这主要影响批量刻蚀,但对单片晶圆影响不大。

微观负载效应对于接触窗和金属层间接触窗孔的刻蚀,较小窗孔的刻蚀速率比大窗孔慢。

这就是微观负载效应(见下图(a)),产生该效应的原因是刻蚀等离子体气体难以穿过较小的窗孔,而且刻蚀的副产品也难以扩散出去。

减少工艺压力可以降低微观负载效应。

当压力较低时,平均自由程较长,刻蚀气体较易穿过微小的窗孔而接触到要被刻蚀的薄膜,从而比较容易从微小的窗孔中把刻蚀副产品去除。

由于光刻胶会溅镀沉积在侧壁上,所以图形隔离区域的刻蚀轮廓比密集区域宽,这是由于隔离图形区域缺少由邻近图形散射离子造成的侧壁离子轰击。

下图(b)说明了微观负载效应轮廓。

2.过刻蚀效应当刻蚀薄膜时(包括多晶硅、电介质以及金属刻蚀),晶圆内的刻蚀速率和薄膜厚度并不完全均匀。

因此当大部分薄膜被刻蚀移除后,留下的少部分薄膜必须移除。

移除剩余薄膜的过程称为过刻蚀,过刻蚀前的过程称为主刻蚀。

在过刻蚀中,被刻蚀薄膜和衬底材料之间的选择性要足够高才能避免损失过多的衬底材料。

在主刻蚀中,如果主刻蚀与过刻蚀使用不同的刻蚀条件,则能够改善过刻蚀中被刻薄膜和衬底材料之间的选择性,等离子体刻蚀中的光学终点侦测器可以自动停止主刻蚀而引发过刻蚀,这是因为当主刻蚀中的刻蚀剂开始刻蚀衬底薄膜时,等离子体中的成分就会发生变化。

如在多晶硅栅刻蚀中(见下图),主刻蚀不需要考虑二氧化硅的选择性。

当某些区域的多晶硅被刻蚀时,氯等离子体开始刻蚀二氧化硅,氧的辐射信号强度就会增强,从而发出一个停止主刻蚀而切换到过刻蚀的信号。

下图说明了主刻蚀和过刻蚀过程。

问题:对于一个IC芯片,多晶硅的厚度为3000A,薄膜的非均匀性为1.5%。

半导体制造工艺刻蚀

半导体制造工艺刻蚀

半导体制造工艺刻蚀引言半导体制造工艺中的刻蚀是一项重要的工序。

在集成电路的制造过程中,刻蚀被广泛应用于制作电路各个层次的结构,包括电极、孔洞、互连线等。

刻蚀的目的是去除或改变材料表面的一部分,用于形成特定的结构,从而实现电路功能。

本文将介绍半导体制造工艺刻蚀的基本原理、常见的刻蚀方法以及一些刻蚀过程中的注意事项。

刻蚀的基本原理刻蚀是通过化学或物理方法将材料表面的一部分或全部去除,实现对材料的精确控制。

刻蚀的基本原理是在材料表面形成反应产物并将其移除。

化学刻蚀是利用化学反应溶解材料的表面。

通常使用的刻蚀液是一种含有特定化学成分的溶液,可以选择性地溶解掉被刻蚀材料的一部分。

化学刻蚀主要用于刻蚀金属材料,如铝、铜等。

物理刻蚀是通过物理方法去除材料表面的一部分。

物理刻蚀的常见方法有电子束刻蚀、离子束刻蚀和等离子体刻蚀等。

电子束刻蚀利用高速电子束的能量将材料表面的原子击碎并移除;离子束刻蚀则是利用离子束的能量将材料表面的原子击碎并移除;等离子体刻蚀则是通过在气体放电的等离子体中产生活跃化学物质,来溶解或腐蚀材料表面。

常见的刻蚀方法半导体制造过程中,常见的刻蚀方法包括湿法刻蚀和干法刻蚀。

湿法刻蚀湿法刻蚀是指使用刻蚀液对材料表面进行腐蚀或溶解的方法。

湿法刻蚀的优点是刻蚀速度快、刻蚀效果好;缺点是刻蚀过程中可能会产生有害气体,需要做好通风措施。

湿法刻蚀的常见方法有浸没刻蚀、喷雾刻蚀和旋转刻蚀等。

浸没刻蚀是将材料浸没在刻蚀液中,通过溶解蚀刻掉表面的材料。

喷雾刻蚀是将刻蚀液喷洒在材料表面,通过飞溅和冲击的方式刻蚀掉材料。

旋转刻蚀是将刻蚀液注入到旋转的容器中,利用旋转力使刻蚀液喷洒到材料表面,实现刻蚀作用。

干法刻蚀干法刻蚀是指利用气体等离子体或物理方法对材料表面进行刻蚀的方法。

干法刻蚀的优点是刻蚀过程中不产生液体,可以避免污染问题;缺点是刻蚀速度较慢。

干法刻蚀的常见方法有等离子体刻蚀、离子束刻蚀和电子束刻蚀等。

等离子体刻蚀是通过在气体放电的等离子体中产生活跃化学物质,来溶解或腐蚀材料表面。

半导体制程培训CMP和蚀刻

半导体制程培训CMP和蚀刻
Your site here
LOGO
半导体制造工艺流程
干法刻蚀
优点:各向异性好,选择比高,可控性、灵活性、重复性好, 细线条操作安全,易实现自动化,无化学废液,处理过程未引 入污染,洁净度高。
缺点:成本高,设备复杂。
干法刻蚀方式:①溅射与离子束铣蚀 ②等离子刻蚀(Plasma Etching) ③③高压等离子刻蚀 ④高密度等离子体(HDP)刻蚀 ⑤反应离子刻蚀(RIE)
Your site here
LOGO
半导体制造工艺流程
单层金属IC的表面起伏剖面
顶层
氮化硅
Poly
n+
金属化前氧化层 侧墙氧化层 栅氧化层
垫氧 ILD
n+
场氧化层
氧化硅
Metal
氧化硅 Poly Metal
p+
p+
pห้องสมุดไป่ตู้ 外延层
n-阱 Metal
p+ 硅衬底
Your site here
LOGO
半导体制造工艺流程
Your site here
LOGO
半导体制造工艺流程
应用
化学机械抛光主要用于以下几个方面: ①深槽填充的平面化
②接触孔和过孔中的金属接头的平面化
③生产中间步骤中氧化层和金属间电介层的平面化
Your site here
LOGO
半导体制造工艺流程
CMP技术的优点:
1.能获得全局平坦化; 2.各种各样的硅片表面能被平坦化; 3.在同一次抛光过程中对平坦化多层材料有用; 4.允许制造中采用更严格的设计规则并采用更多的互连层; 5.提供制作金属图形的一种方法。 6. 由于减小了表面起伏,从而能改善金属台阶覆盖; 7.能提高亚0.5微米器件和电路的可靠性、速度和成品率; 8.CMP是一种减薄表层材料的工艺并能去除表面缺陷; 9.不使用在干法刻蚀工艺中常用的危险气体。

半导体器件工艺学之刻蚀

半导体器件工艺学之刻蚀

下游式刻蚀系统
离子束铣( Ion Milling) 是近年来发展较快的一种离 子剥离技术。该技术主要利用携带能量的离子轰 击靶材料所产生的物理溅射刻蚀效应
离子刻蚀速率表示如下: dh( H) / dt = R( H) / cos(H) = R( H) [ 1 + tan2( H) ]1/2
当离子束入射的角度较大时, 材料表面反射的离子束也增 多。因此, 随着角度H的增大 , 越来越少的离子渗入到材 料的有效表面。为保证离子 的有效渗入, 定义临界角Hc 。 离子束的溅射场与靶材料的 原子数Z 有关, 材料的原子数 Z 越高, 刻蚀速率越高; 反之 则越低。
本产品通过物理与化学相结合的方法,对很细的线条(亚微米以下)进行刻 蚀以形成精细的图形。 主要用于微电子、光电子、通讯、微机械、新材料、能源等领域的器件 研发和制造。
深层反应离子刻蚀(DRIE)
系统己经足以刻蚀深宽比超过50 的深槽硅结构,对于光阻的刻蚀 选择比己超过100:1,刻蚀深度均 匀度也可以控制在±3%以内。
中微发布Primo D-RIE刻蚀设备,面向22 纳米及以下工艺

中微半导体设备(上海)有限公司(以下简称“ 中微”)日前发布面向22纳米及以下芯片生产 的第二代300毫米甚高频去耦合反应离子刻 蚀设备--Primo AD-RIE。 2011年7月

Primo AD-RIE在促进中微第一代刻蚀设备技术创 新的同时,又大大扩大了其自身的加工领域。 该设备的主要部分是一组创新的少量反应台反应 器的簇架构,可以灵活地装置多达三个双反应台 反应器,以达到最佳芯片加工输出量。每个反应 器都可以实现单芯片或双芯片加工。独特的反应 器腔体设计融合了中微专有的等离子体聚焦和喷 淋头技术,确保了芯片加工的质量。Primo ADRIE的一些基本特征使其更具备28纳米以下关键刻 蚀加工的能力

半导体工艺原理--刻蚀工艺

半导体工艺原理--刻蚀工艺

注释
对硅有选择性,对硅腐蚀速率很慢,腐蚀速率依赖于 膜的密度,掺杂等因素
是纯HF腐蚀速率的1/20,腐蚀速率依赖于膜的密度, 掺杂等因素,不像纯HF那样使胶剥离
Si3N4
HF(49%) HPO:HO(沸点:130-150℃)
Al
H3PO4:H2O:HNO3:CH3COOH(16:2:1:
1)
多晶硅 单晶硅
2021/3/14
34
其刻蚀分为两步,首先是要除去未被光刻胶保护 的硅化金属,可以采用CF4、SF6、Cl2、HCl2等都 可以用来作为硅化金属的RIE的反应气体。
对多晶硅的刻蚀采用氟化物将导致等方向性的刻 蚀,而Polycide 的刻蚀必须采用各向异性,因此采 用氯化物较好,有 Si, HCL2, SiCl4等。
2 A l 6 H 3 P O 4 2 A l( H 2 P O 4 ) 3 3 H 2
高锰酸钾腐蚀液的配方为:
K M n O 4 :N a O H :H 2 O 6 g :1 0 g :9 0 m l
高锰酸钾与铝的反应式
N a O H
K M n O 4A l K A lO 2M n O 2
22
湿法刻蚀剖面
2021/3/14
23
SiO2 的腐蚀
SiO24HFSiF42H2O SiF42HFH2(SiF6)
氟化铵在SiO2 腐蚀液中起缓冲剂的作用。这种加有氟化铵 的氢氟酸溶液,习惯上称为HF缓冲液。 常用的配方为:
HF:NH4F:H2O = 3ml:6g:10ml
2021/3/14
24
HNO3:H2O:HF(CH3COOH)(50:20:1)
HNO3:H2O:HF(CH3COOH)(50:20:1) KOH:HO:IPA(23wt%KOH,13wt%IP

半导体刻蚀 去胶工艺流程

半导体刻蚀 去胶工艺流程

半导体刻蚀去胶工艺流程
半导体刻蚀去胶工艺流程是半导体制造过程中的重要环节之一。

半导体器件的制造通常需要在硅片表面进行图案化处理,而去除胶
层是其中的关键步骤之一。

下面将介绍半导体刻蚀去胶工艺流程的
一般步骤。

1. 初始准备,首先,需要准备一块待处理的硅片。

在进行刻蚀
去胶工艺之前,通常需要对硅片表面进行清洁处理,以确保去胶工
艺的顺利进行。

2. 胶层涂覆,在准备好的硅片上涂覆一层胶层。

这一步骤通常
使用旋涂机或者其他涂覆设备进行,以确保胶层的均匀覆盖。

3. 曝光和显影,接下来,将经过涂覆的硅片放置在曝光机中,
使用光刻胶进行曝光,形成所需的图案。

然后进行显影处理,去除
暴露在光下的胶层部分,留下所需的图案。

4. 刻蚀去胶,将经过曝光和显影处理的硅片放入刻蚀机中,使
用化学溶液或者等离子刻蚀技术,将未被光刻胶保护的区域进行刻蚀,去除胶层。

5. 清洗和检查,最后,对刻蚀去胶后的硅片进行清洗,去除残留的胶层和刻蚀产物。

然后进行表面检查,确保刻蚀去胶工艺的质量和准确度。

总的来说,半导体刻蚀去胶工艺流程是半导体制造中的重要步骤之一,它决定了后续工艺步骤的顺利进行和器件质量的好坏。

因此,精确控制每一个步骤,确保工艺流程的稳定性和可靠性,对于半导体器件制造具有重要意义。

半导体制程培训CMP和蚀刻pptx

半导体制程培训CMP和蚀刻pptx
半导体制程培训CMP和蚀刻pptx
半导体制造工艺流程
化学机械平坦化原理图
磨头 硅片 转盘
向下施加力
抛光垫 磨料喷头
磨料
半导体制程培训CMP和蚀刻pptx
半导体制造工艺流程
研磨液
磨料是平坦化工艺中研磨材料和化学添加剂的混合物,研磨 材料主要是石英,二氧化铝和氧化铈,其中的化学添加剂则 要根据实际情况加以选择,这些化学添加剂和要被除去的材 料进行反应,弱化其和硅分子联结,这样使得机械抛光更加 容易。在应用中的通常有氧化物磨料、金属钨磨料、金属铜 磨料以及一些特殊应用磨料
半导体制程培训CMP和蚀刻pptx
半导体制造工艺流程
干法刻蚀
优点:各向异性好,选择比高,可控性、灵活性、重复性好, 细线条操作安全,易实现自动化,无化学废液,处理过程未引 入污染,洁净度高。
缺点:成本高,设备复杂。
干法刻蚀方式:①溅射与离子束铣蚀 ②等离子刻蚀(Plasma Etching) ③③高压等离子刻蚀 ④高密度等离子体(HDP)刻蚀 ⑤反应离子刻蚀(RIE)
SOG
1)
ILD-1
烘烤后的SOG
2)
ILD-1
ILD-2淀积
3)
ILD-1
半导体制程培训CMP和蚀刻pptx
半导体制造工艺流程
化学机械平坦化机理
有两种CMP机理可以解释是如何来进行硅片表面 平坦化的:
1) 表面材料与磨料发生化学反应生成一层相对 容易去除的表面层;
2)这一反应生成的硅片表面层通过磨料中研磨 机和研磨压力与抛光垫的相对运动被机械地磨 去。
半导体制程培训CMP和蚀刻pptx
半导体制造工艺流程
应用
化学机械抛光主要用于以下几个方面: ①深槽填充的平面化

半导体前端工艺之刻蚀工艺

半导体前端工艺之刻蚀工艺

半导体前端工艺之刻蚀工艺目录前言 (1)1 .光“堆叠”可不行 (2)2 .刻蚀工艺的特性 (3)3 .工艺流程 (4)3.1.概述 (4)3.2.刻蚀工艺的特性 (4)3.3.刻蚀偏差 (6)3.4.刻蚀材料 (6)1.5, 刻蚀形状 (6)4 .刻蚀的种类 (7)4. 1.湿刻蚀(WetEtChing)与干刻蚀(DryEtChing) (7)5. 2.按去除材料的方法划分 (8)5 .刻蚀气体与附加气体 (11)6 .刻蚀工艺中的等离子体 (13)6.1.生成机理 (13)1.2. 离子体电势 (14)7 .反应离子刻蚀RIE (14)7. 1.结构 (14)8. 2.刻蚀机理 (14)9. 3.优缺点 (15)8 .电感耦合等离子体刻蚀ICP (15)8. 1.刻蚀机理 (15)9. 2.结构 (16)10. 3.优势 (16)9 .侧壁保护 (17)9. 1.各向异性参数 (17)10. .方法 (17)10 .结论:提高密度的另一个抓手 (17)前言在半导体制程工艺中,有很多不同名称的用于移除多余材料的工艺,如“清洗”、“刻蚀”等。

如果说“清洗”工艺是把整张晶圆上多余的不纯物去除掉,“刻蚀”工艺则是在光刻胶的帮助下有选择性地移除不需要的材料,从而创建所需的微细图案。

半导体“刻蚀”工艺所采用的气体和设备,在其他类似工艺中也很常见。

1.光“堆叠”可不行在半导体前端工艺第三篇中,我们了解了如何制作“饼干模具”。

本期,我们就来讲讲如何采用这个“饼干模具”印出我们想要的“饼干”。

这一步骤的重点,在于如何移除不需要的材料,即“亥IJ蚀(EtChing)工艺”。

饼干剖面图普力胱刻胶采用特殊溶液移除去除挖出的饼干屑添加巧克力糖浆清理多余的巧克力糖浆不受光刻胶保护的部分图1移除饼干中间部分,再倒入巧克力糖浆让我们再来回想一下上一篇内容中制作饼干的过程。

如果想在“幸福之翼”造型饼干中加一层巧克力夹心,要怎么做呢?最简单的方法就是把饼干中间部分挖出来,再倒入巧克力糖浆。

半导体图案化工艺流程之:刻蚀

半导体图案化工艺流程之:刻蚀

半导体图案化工艺流程之:刻蚀图案化工艺包括曝光(Exposure)、显影(Develope)、刻蚀(Etching)和离子注入等流程。

其中,刻蚀工艺是光刻(Photo)工艺的下一步,用于去除光刻胶(Photo Resist,PR)未覆盖的底部区域,仅留下所需的图案。

这一工艺流程旨在将掩模(Mask)图案固定到涂有光刻胶的晶圆上(曝光→显影)并将光刻胶图案转印回光刻胶下方膜层。

随着电路的关键尺寸(Critical Dimension, CD)小型化(2D视角),刻蚀工艺从湿法刻蚀转为干法刻蚀,因此所需的设备和工艺更加复杂。

由于积极采用3D单元堆叠方法,刻蚀工艺的核心性能指数出现波动,从而刻蚀工艺与光刻工艺成为半导体制造的重要工艺流程之一。

一、沉积和刻蚀技术的发展趋势在晶圆上形成“层(Layer)”的过程称为沉积(化学气相沉积(CVD)、原子层沉积(ALD)和物理气相沉积(PVD)),在所形成的“层”上绘制电路图案的过程称为曝光。

刻蚀是沉积和曝光工艺之后在晶圆上根据图案刻化的过程。

光刻工艺的作用类似于画一张草图,真正使晶圆发生明显变化的是沉积和刻蚀工艺。

自从半导体出现以来,刻蚀和沉积技术都有了显著发展。

而沉积技术最引人注目的创新是从沟槽法(Trench)转向堆叠法(Stack),这与20世纪90年代初装置容量从1兆位(Mb)DRAM发展成4兆位(Mb)DRAM相契合。

刻蚀技术的一个关键节点是在2010年代初,当时3D NAND闪存单元堆叠层数超过了24层。

随着堆叠层数增加到128层、256层和512层,刻蚀工艺已成为技术难度最大的工艺之一。

二、刻蚀方法的变化在2D(平面结构)半导体小型化和3D(空间结构)半导体堆叠技术的发展过程中,刻蚀工艺也在不断发展变化。

在20世纪70年代,2D半导体为主流,电路关键尺寸(CD)从100微米(㎛)迅速下降到10微米(㎛),甚至更低。

在此期间,半导体制造流程中的大部分重点工艺技术已经成熟,同时刻蚀技术已经从湿法刻蚀过渡到干法刻蚀。

半导体刻蚀工艺简介

半导体刻蚀工艺简介

半导体刻蚀⼯艺简介此保护膜可保护多晶硅的侧壁,进⽽形成⾮等向性刻蚀。

使⽤Cl2等离⼦体对多晶硅的刻蚀速率⽐使⽤F原⼦团慢很多,为兼顾刻蚀速率与选择⽐,有⼈使⽤SF6⽓体中添加SiCl4或CHCl3。

SF6的⽐例越⾼,刻蚀速率越快;⽽SiCl4或CHCl3的⽐例越⾼,多晶硅/SiO2的刻蚀选择⽐越⾼,刻蚀越趋向⾮等向性刻蚀。

除了Cl和F的⽓体外,溴化氢(HBr)也是⼀种常⽤的⽓体,因为在⼩于0.5µm的制程中,栅极氧化层的厚度将⼩于10nm,⽤HBr等离⼦体时多晶硅/SiO2的刻蚀选择⽐⾼于以Cl为主的等离⼦体。

4.⾦属的⼲法刻蚀⾦属刻蚀主要是互连线及多层⾦属布线的刻蚀,⾦属刻蚀有以下⼏个要求:⾼刻蚀速率(⼤于1000nm/min);⾼选择⽐,对掩蔽层⼤于4:1,对层间介质⼤于20:1;⾼的刻蚀均匀性;关键尺⼨控制好;⽆等离⼦体损伤:残留污染物少;不会腐蚀⾦属。

①铝的刻蚀。

铝是半导体制备中最主要的导线材料,具有电阻低、易于淀积和刻蚀等优点。

铝刻蚀通常采⽤加⼊卤化物的氯基⽓体,最常⽤的是BCl3。

因为铝在常温下表⾯极易氧化⽣成氧化铝,氧化铝阻碍了刻蚀的正常进⾏,⽽BCl3可将⾃然氧化层还原、保证刻蚀的进⾏,⽽且BCl3还容易与氧⽓和⽔反应,可吸收反应腔内的⽔汽和氧⽓,从⽽降低氧化铝的⽣成速率。

1.4质量评价⼀、⼲法刻蚀的终点监测近⼏年发展起来的⼲法刻蚀⼯艺,为了提⾼刻蚀精度,深⼊研究刻蚀机理,实现刻蚀设备的⾃动化,需要解决⼯艺过程的监控问题,特别是精确控制刻蚀终点。

因为⼲法刻蚀的选择性不如湿法,终点监控不当极易造成过腐蚀,甚⾄破坏下层图形。

早期的监控⽅法是计时法。

假设被刻蚀材料的膜厚已知,先通过实验确定刻蚀速率,然后在⼯艺过程中,由计时确定终点。

但由于影响刻蚀速率的因素太多(如压⼒、温度、流量、⽓体配⽐等),刻蚀速率难于重复(如前所述,对铝的等离⼦体刻蚀更是如此),不能满⾜⼯艺要求。

表1-1⼏种等离⼦体刻蚀终点检测⽅法⼆、⼲法刻蚀的质量检测刻蚀⼯艺的最后⼀步是进⾏检查以确保刻蚀的质量,通常都是⽤⾃动检测系统进⾏的。

半导体材料制备工艺中的刻蚀原理

半导体材料制备工艺中的刻蚀原理

半导体材料制备工艺中的刻蚀原理半导体制造是现代电子工业中的重要分支之一,而半导体制造过程中最关键的一步就是刻蚀。

刻蚀是指将半导体材料表面的一部分物质除去的加工技术,其目的是在半导体材料的表面形成特定形状的结构,并精确地控制其尺寸和形状,以实现半导体元件的制造。

本文将重点介绍半导体材料制备工艺中的刻蚀原理。

一、刻蚀的分类刻蚀可分为物理刻蚀和化学刻蚀两种。

物理刻蚀是利用物理作用去除半导体表层物质的过程,如金属离子聚焦束刻蚀、反应离子束刻蚀、等离子体刻蚀等;而化学刻蚀则是利用化学反应去除半导体表层物质的过程,如湿法刻蚀、干法刻蚀等。

其中湿法刻蚀是半导体制造的基础工艺之一,而干法刻蚀则被广泛应用于制造高密度的、微观结构复杂的半导体材料。

二、湿法刻蚀原理湿法刻蚀是一种化学刻蚀方法,通俗来说就是利用溶液中的化学成分和外界的刺激物质对半导体表面进行刻蚀。

常用的湿法刻蚀方法有自催化刻蚀法、掩膜刻蚀法、电化学刻蚀法等。

自催化刻蚀法是将半导体材料浸泡在含有化学成分的溶液中,并在溶液中加入一定量的电解质,每一微观结构之间的电势差越大,对应的物质离子在反应中的速度就越快。

在该法中,当半导体表层的一部分被刻蚀后,其剩余部分的电势差就会改变,因而这部分表层会对后续的刻蚀产生加速作用,容易导致过刻蚀。

这种自我加速的刻蚀过程,就是自催化刻蚀法。

掩膜刻蚀法则是将某些部位的半导体表面涂上掩膜,然后将未被掩膜覆盖的部分进行刻蚀,从而在半导体表面形成特定的结构。

掩模的选择很重要,因为掩模必须比半导体材料更耐刻蚀,而同时却不能对待刻蚀的半导体材料产生伤害。

通常,二氧化硅是最常用的掩膜材料,而在某些特殊情况下,可以选择金属、氮化硅、氧化铝等。

电化学刻蚀法则是利用电化学反应法将选定的半导体材料表面进行刻蚀。

在电化学刻蚀过程中产生的刻蚀速度与带电离子的浓度成正比,因而可以根据需要精确地控制刻蚀速度和深度。

电化学刻蚀是微电子工业中最常用的刻蚀方法之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r1 S 选择性 r2
rlat 方向性 A 1 rvert
干法刻蚀 纯物 理刻 蚀
反应离子刻蚀RIE 增加方向性、选择 性的方法CF4/O2
纯化 学刻 蚀
SiO2——HF
MEMS
半导体制造工艺基础
第五章 刻蚀原理
32
反应等离子体刻蚀技术与设备
一个反应等离子体刻蚀反应器包括一个真空腔、抽气泵系统、电源供应 产生器、压力探测器、流量控制器与终点探测器等。
10%O2可获得最大的Si/SiO2刻蚀比
半导体制造工艺基础
第五入少量H2, 可使CFx:F*的浓度比 增加。 从而使SiO2:Si 及Si3N4:Si的腐蚀速 率比增大
半导体制造工艺基础
第五章 刻蚀原理
29
增加F/C比(加氧气),可以增加刻蚀速率 减少F/C比(加氢气),刻蚀过程倾向于形成高分子膜
20
终点控制
干法刻蚀必须配备一个用来探测刻蚀工艺结束点的监视器,即终点探 测系统。激光干涉度量法用来持续控制晶片表面的刻蚀速率与终止点。 在刻蚀过程中,从晶片表面反射的激光会来回振荡,这个振荡的发生是 因为刻蚀层界面的上界面与下界面的反射光的相位干涉。因此这一层材 料必须透光或半透光才能观测到振荡现象。振荡周期与薄膜厚度的变化 关系为:
半导体制造工艺基础
第五章 刻蚀原理 刻蚀方向性的增加
增加离子轰击(物理刻蚀分量) 侧壁增加抑制物(inhibitor) DRIE
30
半导体制造工艺基础
第五章 刻蚀原理
本节课主要内容 什么是图形转移技术? 刻蚀的两个关键问题? 湿法腐蚀:
Si——HNA各向同性 ——KOH各向异性
31
光刻+刻蚀
半导体制造工艺基础
第五章 刻蚀原理
21
反射系数(任意单位)
硅化物
多晶硅
硅化物/多晶硅刻蚀实验曲线 刻蚀时间(任意单位)
半导体制造工艺基础
第五章 刻蚀原理
22
Sputtering mode:硅 片置于右侧电极,该 电极接地(反应腔体 通常也接地,则增大 该电极有效面积); 右侧暗区电压差小, 通过离子轰击的物理 刻蚀很弱
反应的实质,打破C-F、Si-Si键,形成挥发性的Si-F硅卤化物。
CΘF +Si ΘSi = Si-F + 17kcal/mol
反应需要一个净正能量,CF4本身不会直接刻蚀硅。等离子体高能量
的电子碰撞会使CF4分子分裂生产自由的氟原子和分子团,使得形成 SiF是能量有利的。
等离子刻蚀基本原理 半导体制造工艺基础
半导体制造工艺基础
第五章 刻蚀原理
14
化学刻蚀
物理刻蚀
半导体制造工艺基础
第五章 刻蚀原理
离子增强刻蚀-Ion Enhanced etching
15
无离子,XeF2对Si不刻蚀 纯Ar离子,对Si不刻蚀 Ar离子和XeF2相互作用, 刻蚀速率很快
物理过程(如离子轰 击造成的断键/晶格 损伤、辅助挥发性反 应产物的生成、表面 等离子体刻蚀的化学和物理过 抑制物的去除等)将 有助于表面化学过程 程并不是两个相互独立的过程, /化学反应的进行 而且相互有增强作用
23
SiCl4
TiCl4
等离子刻蚀基本原理 半导体制造工艺基础
第五章 刻蚀原理
刻蚀方程式 为何处在等离子体环境下进行刻蚀
在我们的工艺中,是用CF4和O2来刻蚀扩散后的硅片,其刻蚀原理如下:
24
CF4 = CFx* + (4-x) F* (x≤3) Si + 4 F* = SiF4 ↑
SiO2 + 4 F* = SiF4 + O2↑
半导体制造工艺基础
第五章 刻蚀原理
18
刻蚀机制、等离子体探测与终点的控制
刻蚀机制
刻蚀工艺包括5个步骤: 1、刻蚀过程开始与等离子体刻蚀反应物的产生; 2、反应物通过扩散的方式穿过滞留气体层到达表面; 3、反应物被表面吸收; 4、通过化学反应产生挥发性化合物; 5、化合物离开表面回到等离子体气流中,接着被抽气泵抽出。 基本刻蚀方式为: 物理方式:溅射刻蚀,正离子高速轰击表面; 化学方式:等离子体产生的中性反应物与物质表面相互作用产生挥发性产物。 化学方式有高腐蚀速率、高的选择比与低的离子轰击导致的缺陷,但有各向 同性的刻蚀轮廓。物理方式可以产生各向同性的轮廓,但伴随低的选择比与 高的离子轰击导致的缺陷。将二者结合,如反应离子刻蚀(RIE)。
刻蚀速率R (etch rate) 刻蚀均匀性 (etch uniformity) 选择性S (Selectivity) 各项异性度A (Anisotropy) 掩膜层下刻蚀 (Undercut) 单位时间刻蚀的薄膜厚度。对产 率有较大影响 一个硅片或多个硅片或多批硅片 上刻蚀速率的变化 不同材料之间的刻蚀速率比 刻蚀的方向性 A=0, 各项同性;A=1, 各项异性 横向单边的过腐蚀量
半导体制造工艺基础
第五章 刻蚀原理
例1:SiO2采用HF腐蚀
7
实 BOE:buffered oxide etching 际 用 或BHF: buffered HF 例2:Si采用HNO3和HF腐蚀(HNA)
加入NH4F缓冲液:弥补 F和降低对胶的刻蚀
例3:Si3N4采用热磷酸腐蚀
各 向 同 性
半导体制造工艺基础
第五章 刻蚀原理
氧气的作用
在CF4进气中加入少量氧气会提高硅和二氧化硅的刻蚀 速率。人们认为氧气与碳原子反应生成 CO2 ,这样从等离 子体中去掉一些碳,从而增加F的浓度,这些成为富氟等离 子体。往CF4等离子体中每增加 12%的氧气,F浓度会增加 一个数量级,对硅的刻蚀速率增加一个数量级。
25
半导体制造工艺基础
(2)干法腐蚀能达到高的分辨率,湿法腐蚀较差
(3)湿法腐蚀需大量的腐蚀性化学试剂,对人体 和环境有害 (4)湿法腐蚀需大量的化学试剂去冲洗腐蚀剂剩 余物,不经济
半导体制造工艺基础
第五章 刻蚀原理
13
干法刻蚀
化学刻蚀(各项同性,选择性好) ——等离子体激活的化学反应(等离子体刻蚀)
物理刻蚀(各向异性,选择性差) ——高能离子的轰击 (溅射刻蚀) 离子增强刻蚀(各向异性,选择性较好) ——反应离子刻蚀
半导体制造工艺基础
第五章 刻蚀原理
19
半导体制造工艺基础
第五章 刻蚀原理
等离子体探测
大多数的等离子体工艺中发出的射线范围在红外光到紫外光之间,一 个简单的缝隙方法是利用光学发射光谱仪(OES)来测量这些发射光谱 的强度与波长的关系。利用观测到的光谱波峰与已知的发射光谱比较, 通过可以决定出中性或离子物质的存在。物质相对的密度,也可以通过 观察等离子体参数改变时光强度的改变而得到。这些由主要刻蚀剂或副 产物所引起的发射信号在刻蚀终点开始上升或下降。
大多数的等离子体抗蚀机,除了三极RIE外,都无法提供独立控制等离子 体参数的能力。导致轰击损伤的严重问题。ECR结合微波电源与静电场 来驱使电子沿磁场线作一定角频率的回旋。当此频率等于外加微波频率 时,电子能量与外加磁场产生共振耦合,造成大量的分解与电离。
半导体制造工艺基础
第五章 刻蚀原理
36
其他高密度等离子体刻蚀机
半导体制造工艺基础
第五章 刻蚀原理
HNA各向同性腐蚀
10
自终止
半导体制造工艺基础
第五章 刻蚀原理
利用Si的各向异性湿法腐蚀制作的MEMS (MicroElectroMechanical Systems)结构
11
半导体制造工艺基础
第五章 刻蚀原理
12
湿法腐蚀的缺点
在大规模集成电路制造中,湿法腐蚀正被干法刻蚀 所替代: (1)湿法腐蚀是各向同性,干法可以是各向异性
由于ULSI的线宽持续缩小,逼近传统的RIE系统极限,除了ECR系统外, 其他形式的高密度等离子体源(HDP),如电感耦合等离子体源 (ICP)、变压器耦合等离子体源(TCP)、表面波耦合等离子体源 (SWP)也已开始发展。这些设备拥有高等离子体密度与低工艺压强。 另外,HDP等离子体源对衬底的损伤较小(因为衬底有独立的偏压源与 侧电极电势),并有高的的各向异性(因为在低压下工作但有高活性的 等离子体密度)。 然而,由于其复杂且成本较高,这些系统可能不会使用于非关键性的工 艺,如侧壁间隔与平坦化工艺。
半导体制造工艺基础
第五章 刻蚀原理
33
1000 低压整批RIE 100 单片晶片RIE
10
低于高密度 ECR,ICP
桶状等离 子体刻机
1
1
10
100
1000
半导体制造工艺基础
第五章 刻蚀原理
34
反应离子刻蚀(RIE)
平行板系统
RF
RF
半导体制造工艺基础
第五章 刻蚀原理
35
电子回旋共振(ECR)等离子体刻蚀机
6. 清洁、经济、安全
半导体制造工艺基础
第五章 刻蚀原理
5
刻蚀过程包括三个步骤:
– 反应物质量输运(Mass transport)到要被刻 蚀的表面 – 在反应物和要被刻蚀的膜表面之间的反应 – 反应产物从表面向外扩散的过程
半导体制造工艺基础
第五章 刻蚀原理 湿法刻蚀
6
反应产物必 须溶于水或 是气相
半导体制造工艺基础
第五章 刻蚀原理
介电板 RF
37
等离子体
RF
变压器耦合等离子体反应设备示意图
半导体制造工艺基础
第五章 刻蚀原理
38
集成等离子体工艺
半导体晶片都是在洁净室里加工制作,以减少大气中的尘埃污染。当器 件尺寸缩小,尘埃的污染成为一个严重的问题。为了减少尘粒的污染, 集成等离子体设备利用晶片操作机将晶片置于高真空环境中从一个反应 腔移到另一个反应腔。同时可以增加产率。
相关文档
最新文档