第29章视图与投影单元精品测试题检测人教新课标九级下

合集下载

最新人教新版九年级下册《第29章投影与视图》单元测试卷(含答案)

最新人教新版九年级下册《第29章投影与视图》单元测试卷(含答案)

《第29章投影与视图》单元测试卷一.选择题1.下列说法正确的是()①平行四边形既是中心对称图形,又是轴对称图形;②同一物体的三视图中,俯视图与左视图的宽相等;③线段的正投影是一条线段;④主视图是正三角形的圆锥的侧面展开图一定是半圆;⑤图形平移的方向总是水平的,图形旋转后的效果总是不同的.A.①③B.②④C.③⑤D.②⑤2.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律3.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③4.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234 B.4312 C.3421 D.42315.小华在上午8时,上午9时,上午10时,上午12时四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时C.上午10时D.上午12时6.下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.7.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.线段D.以上都有可能8.若线段CD是线段AB的正投影,则AB与CD的大小关系为()A.AB>CD B.AB<CD C.AB=CD D.AB≥CD9.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化10.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近11.下图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),根据图中所示,可判断形成该影子的光线为()A.太阳光线B.灯光光线C.可能为太阳光线或灯光光线D.该影子实际不可能存在12.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,()A.小刚的影子比小红的长B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长D.不能够确定谁的影子长13.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定14.如图,一只小猴顺着一根斜放的竹竿往上爬,眼睛一直盯着挂在上端的帽子,在小猴爬行的过程中,视线与水平方向所成角()A.逐渐变大B.逐渐变小C.不变D.无法确定15.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个16.如图,几何体的左视图是()A.B.C.D.17.如图所示左边是用八块完全相同的小正方体搭成的几何体,从上面看该几何体得到的图形是()A.B.C.D.18.长方体的主视图与左视图如图所示,则这个长方体的表面积是()A.27cm2B.54cm2C.94cm2D.120cm219.一个几何体是由一些大小相同的小立方块摆成的,如图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是()A.7 B.8 C.9 D.10二.填空题20.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为.21.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于米.22.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为m.三.解答题23.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)24.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.请你确定灯泡所在的位置,并画出表示小亮在灯光下形成的影子线段.25.如图1,在平整的地面上,用若干个棱长完全相同的小正方体堆成一个几何体(1)请在图2的网格中依次画出这个几何体从正面、左面、和上面看到的几何体的形状图.(2)如果现在你手头还有一些相同的小正方体,要求保持俯视图和左视图不变,最多可以再添加个小正方体.26.如图是一个几何体的俯视图(数字表示该位置小立方方体的个数),请画出它的正视图、左视图.参考答案一.选择题1.解:①平行四边形是中心对称图形,不是轴对称图形,故错误;②同一物体的三视图中,俯视图与左视图的宽相等,故正确;③线段的正投影是一条线段或一个点,故错误;④设底面圆的半径为r,则圆锥的母线长为2r,底面周长=2πr,侧面展开图是个扇形,弧长=2πr=,所以n=180°.所以主视图是正三角形的圆锥的侧面展开图一定是半圆,故正确;⑤图形平移的方向不一定是水平的,图形旋转后的效果不一定是不同的,故错误.故选:B.2.解:在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为逐渐变短,故选:B.3.解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.4.解:时间由早到晚的顺序为4312.故选:B.5.解:在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.故选:A.6.解:太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.故选:C.7.解:根据题意:同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.故选:D.8.解:若线段AB平行于投影面,则AB=CD,若线段AB不平行于投影面,则AB>CD,则AB≥CD,故选:D.9.解:由图易得AB<CD,那么离路灯越近,它的影子越短,故选:B.10.解:因为小阳和小明两人从远处沿直线走到路灯下这一过程中离光源是由远到近的过程,所以他在地上的影子会变短,所以他们两人之间的距离越来越近.故选D.11.解:若形成的影子是由太阳光照射形成的影子,则两直线一定平行;若形成的影子是由灯光照射而形成的影子,则两直线一定相交.所以可判断形成该影子的光线为灯光光线.故选B.12.解:在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选:D.13.解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.14.解:∵在小猴爬行的过程中,视线与水平方向所成角等于,竹竿与地面的夹角,∴视线与水平方向所成角不变,故选:C.15.解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选:B.16.解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.17.解:从上面看易得上面一层有3个正方形,下面一层有2个正方形.故选:D.18.解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可得这个长方体的表面积为:2×(5×4+5×3+4×3)=94(cm2).故选:C.19.解:由俯视图易得最底层小正方体的个数为6,由其他视图可知第二行第2列和第三列第二层各有一个正方体,那么共有6+2=8个正方体.故选:B.二.填空题(共3小题)20.解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=64,DC=8;故答案为:8m.21.解:作DH⊥AB于H,如图,则DH=BC=8m,CD=BH=2m,根据题意得∠ADH=45°,所以△ADH为等腰直角三角形,所以AH=DH=8m,所以AB=AH+BH=8m+2m=10m.故答案为10.22.解:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴=,∵AE=5m,∴=,解得:EF=7.5m.故答案为:7.5.三.解答题(共4小题)23.解:在Rt△ABD中,∵tan∠ADB=,∴BD==,在Rt△ACB中,∵tan∠ACB=,∴BC===,∵BC﹣BD=8,∴﹣=8,∴AB=4(m).答:树高AB为4米.24.解:如图所示,点O即为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.25.解:(1)如图所示:;(2)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个).故最多可再添加4个小正方体.故答案为:4.26.解:如图所示;。

2022-2023学年人教新版九年级数学下学期《第29章 投影与视图》测试卷及答案解析

2022-2023学年人教新版九年级数学下学期《第29章 投影与视图》测试卷及答案解析

2022-2023学年人教新版九年级数学下学期《第29章投影与视图》测试卷参考答案与试题解析一.选择题(共16小题)1.如图所示的主视图和俯视图对应的几何体(阴影所示为右)是()A.B.C.D.【分析】根据几何体的主视图确定A、B、D选项,然后根据俯视图确定B选项即可.【解答】解:A、B、D选项的主视图符合题意;B选项的俯视图符合题意,综上:对应的几何体为B选项中的几何体.故选:B.【点评】考查由视图判断几何体;由俯视图得到底层正方体的个数及形状是解决本题的突破点.2.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】先细心观察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有1竖列,右边是2竖列,结合四个选项选出答案.【解答】解:从正面看去,一共三列,左边有1竖列,中间有1竖列,右边是2竖列.故选:A.【点评】本题考查了由三视图判断几何体及简单组合体的三视图,重点考查几何体的三视图及空间想象能力.3.如图所示几何体的俯视图是()A.B.C.D.【分析】注意几何体的特征,主视图与左视图的高相同,主视图与俯视图的长相等,左视图与俯视图的宽相同.【解答】解:根据俯视图的特征,应选B.故选:B.【点评】本题考查了几何体的三视图,正确理解主视图与左视图以及俯视图的特征是解题的关键.4.如图,这是由7个相同的小正方体搭成的几何体,则这个几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左面看第一层是三个小正方形,第二层左边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.如图所示几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的图形是:故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,俯视图为:故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形即可解答.【解答】解:根据主视图的概念可知,从物体的正面看得到的视图是选项A.故选:A.【点评】本题考查了简单几何体的主视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.8.如图所示,几何体的左视图是()A.B.C.D.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:如图所示,几何体的左视图是:.故选:A.【点评】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.9.展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体()块.A.7B.8.C.9D.10【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:综合主视图,俯视图,左视图,底层有3+1+2=6个正方体,第二层有2个正方体,第三层有2个正方体,所以搭成这个几何体所用的小立方块的个数是6+2+2=10个.故选:D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【解答】解:观察图形可知,这块西瓜的三视图是.故选:B.【点评】此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.11.下列立体图形中,俯视图是三角形的是()A.B.C.D.【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【解答】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.12.小丽在两张6×10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.60【分析】补全几何体左角,可见左角的体积是长宽高分别为4、2、1的小长方体体积的一半,大长方体长宽高分别为8、2、4,用大长方体体积减去小长方体体积就是物体体积.【解答】解:如图,补全几何体左角,根据左视图与俯视图标记几何体的尺寸.这个物体的体积:8×2×4﹣×4×1×2=64﹣4=60,故选:D.【点评】本题考查了几何体的三视图,熟练根据三视图数据标示几何体尺寸是解题的关键.13.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D 错误;根据几何体的三视图,三棱柱符合要求.故选:A.【点评】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.14.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能【分析】根据在平行投影中,投影线垂直于投影面产生的投影叫做正投影解答即可.【解答】解:圆形的纸片在平行投影下的正投影可能是圆形、椭圆形、线段,故选:D.【点评】此题考查平行投影,关键是根据平行投影的有关概念解答.15.如图分别是某校体育运动会的颁奖台和它的主视图,则其俯视图是()A.B.C.D.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个矩形被分为3部分,中面的两条分线是实线.故选:A.【点评】本题考查简单组合体的三视图,从上边看得到的图形是左视图,注意能看到的线用实线画,看不到的线用虚线画.16.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.二.填空题(共19小题)17.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有3种.【分析】由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.根据俯视图即可解决问题.【解答】解:由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.∵由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,∴A为1,B为2,C为2或A为2,B为2,C为1或A为2,B为1,C为2,共三种情形,故答案为3.【点评】本题考查三视图判定几何体,解题的关键是理解题意,灵活运用所学知识解决问题.18.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有7种.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而得出答案.【解答】解:该几何体中小正方体的分布情况有如下7种可能结果,故答案为:7.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.19.如图所示,太阳光线AC和A′C′是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.(注:太阳光线可看成是平行的)【分析】根据已知同一时刻两个建筑物在太阳下的影子一样长,即可得出BC=B′C′,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.【解答】解:建筑物一样高.证明:∵AB⊥BC,A′B′⊥B′C′,∴∠ABC=∠A′B′C′=90°,∵AC∥A′C′,∴∠ACB=∠A′C′B′,在△ABC和△A′B′C′中,∵,∴△ABC≌△A′B′C′(ASA)∴AB=A′B′.即建筑物一样高.【点评】此题考查了全等三角形的应用以及平行投影的性质.在实际生活中,常常通过证明两个三角形得出线段相等.20.如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成矩形影子A′B′C′D′.现测得OA=20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为500cm2.【分析】易得对应点到对应中心的比值,那么面积比为对应点到对应中心的比值的平方,据此求解可得.【解答】解:∵OA:OA′=2:5,可知OB:OB′=2:5,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=2:5,∴矩形ABCD的面积:矩形A′B′C′D′的面积为4:25,又矩形ABCD的面积为80cm2,则矩形A′B′C′D′的面积为500cm2.故答案为:500cm2.【点评】本题考查中心投影与位似图形的性质,用到的知识点为:位似比为对应点到对应中心的比值,面积比为位似比的平方.21.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为7.【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【解答】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.如图是某个几何体的三视图,请写出这个几何体的名称是圆锥.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故答案为:圆锥.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.23.已知一个几何体的三视图如图所示,则这个几何体的侧面展开图的面积为65πcm2.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,结合图形可得出母线及底面半径,继而可求出圆锥侧面积.【解答】解:依题意知高线=12,底面半径r=5,由勾股定理求得母线长为:13cm,则由圆锥的侧面积公式得S=πrl=π•5•13=65πcm2.故答案为:65πcm2.【点评】本题主要考查三视图的知识和圆锥侧面面积的计算,学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,易造成错误.24.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.25.按《航空障碍灯(MH/T6012﹣1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达7秒.【分析】观察者所处的位置定为一点,叫视点.当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒.【解答】解:根据题意,当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为:亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒,故答案为7.【点评】本题考查了视点,正确理解图示是解题的关键.26.在正方体,圆柱,圆锥,球中,三视图均一样的几何体是球体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:正方体只有一个面正对时主视图、俯视图、左视图都是正方形;圆柱主视图和左视图是矩形,俯视图是圆;圆锥主视图和左视图是等腰三角形,俯视图是圆;球体主视图、俯视图、左视图都是圆;因此三视图都完全相同的几何体是球体.故答案为:球体.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.27.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:从左面观察这个立体图形,分别是2个正方形,1个正方形,1个正方形,如图所示:【点评】本题考查了简单组合体的三视图,关键是把握好三视图所看的方向,从左面看得到的图形是左视图.28.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC 的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.29.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,同时考查了面积的计算.30.用若干个相同的小立方块搭一个几何体,使它主视图、俯视图都如图所示,则这样的几何体至少需要9个小立方块.【分析】由于主视图第一列为3层,故俯视图中第一列至少有一个是3层的,其余可是1~3层,同时可分析第2列和第三列,进而得到答案.【解答】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第第一列3块,第二列2块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为6+2+1=9块.故答案为:9.【点评】本题考查简单空间图形的三视图,考查空间想象能力,是基础题,难度中等.31.正放的圆柱形水杯的正视图为长方形,俯视图为圆.【分析】依据圆柱体的三视图进行判断即可.【解答】解:正放的圆柱形水杯的正视图为长方形,俯视图为圆,故答案为:长方形,圆.【点评】本题主要考查了简单几何体的三视图,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.32.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是S1=S<S2(用“=、>或<”连起来)【分析】根据长方体的概念得到S1=S,根据矩形的面积公式得到S<S2,得到答案.【解答】解:∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.【点评】本题考查的是平行投影和立体图形,平行投影:由平行光线形成的投影是平行投影.33.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是5.【分析】根据所给的图形可得,几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此小正方体的个数有5个.【解答】解:根据三视图的知识,几何体的底面有4个小正方体,该几何体有两层,第二层有1个小正方体,共有5个;故答案为5.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就能容易得到答案了.34.一个长方体的主视图和左视图如图所示(单位:cm),其表面积是6cm2.【分析】根据给出的长方体的主视图和左视图可得,俯视图的长方形的长与主视图的长方形的宽相等为3,俯视图的长方形的宽与左视图的长方形的宽相等为2.因此俯视图的面积是6cm2.进而可求出其表面积.【解答】解:俯视图是边长分别为3和2的长方形,因而该长方体的面积为6×2=12cm2.所以其表面积=3×4×2+2×4×2+12=52cm2,故答案为52.【点评】考查立体图形的三视图和学生的空间想象能力.35.一个几何体从正面、左面、上面看都是同样大小的圆,这个几何体是球体.【分析】从正面、左面、上面看得到的图形是几何体的主视图,左视图,俯视图,三视图都是圆的几何体是球.【解答】解:只有球的三视图都是圆,故这个几何体是球体.故答案为:球.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图相同的几何体有正方体和球体;球的三视图是全等的圆.2022-2023学年人教新版九年级数学下学期《第29章投影与视图》测试卷一.选择题(共16小题)1.如图所示的主视图和俯视图对应的几何体(阴影所示为右)是()A.B.C.D.2.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.如图,这是由7个相同的小正方体搭成的几何体,则这个几何体的左视图是()A.B.C.D.5.如图所示几何体的主视图是()A.B.C.D.6.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.7.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.8.如图所示,几何体的左视图是()A.B.C.D.9.展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体()块.A.7B.8.C.9D.1010.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.11.下列立体图形中,俯视图是三角形的是()A.B.C.D.12.小丽在两张6×10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.6013.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体14.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能15.如图分别是某校体育运动会的颁奖台和它的主视图,则其俯视图是()A.B.C.D.16.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③二.填空题(共19小题)17.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有种.18.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有种.19.如图所示,太阳光线AC和A′C′是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.(注:太阳光线可看成是平行的)20.如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成矩形影子A′B′C′D′.现测得OA=20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为cm2.21.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为.22.如图是某个几何体的三视图,请写出这个几何体的名称是.23.已知一个几何体的三视图如图所示,则这个几何体的侧面展开图的面积为.24.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)25.按《航空障碍灯(MH/T6012﹣1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达秒.26.在正方体,圆柱,圆锥,球中,三视图均一样的几何体是.27.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.28.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.。

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。

人教版九年级下册数学《第29章 投影与视图》单元测试卷(解析版)

人教版九年级下册数学《第29章  投影与视图》单元测试卷(解析版)

人教版九年级下册数学《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题)1.如图,下列图形从正面看是三角形的是()A.B.C.D.2.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③3.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.4.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.5.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.76.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.9.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.10.木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m二.填空题(共5小题)11.请写出一个三视图都相同的几何体:.12.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.13.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要个小立方块.14.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.15.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为.三.解答题(共4小题)16.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形.17.已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.18.(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.19.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)2019年人教版九年级下册数学《第29章投影与视图》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,下列图形从正面看是三角形的是()A.B.C.D.【分析】分别写出各选项中几何体的从正面看到的图形,进一步选择答案即可.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握简单几何体的特征.2.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.【分析】根据由已知条件可知,左视图有2列,每列小正方形数目分别为3,1,据此即可判断.【解答】解:已知条件可知,左视图有2列,每列小正方形数目分别为3,1.故选:C.【点评】本题主要考查了画实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.4.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.由图示可得左视图有3列,每列小正方形数目分别为3,2,1.【解答】解:从左面看易得第一层有3个正方形,第二层最左边有2个正方形,第三层左边有1个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.7【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【解答】解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故选:B.【点评】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.6.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.8.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.9.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选:A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.10.木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m【分析】投影线垂直于投影底幕面时,称正投影,根据木棒的不同位置可得不同的线段长度.【解答】解:正投影的长度与木棒的摆放角度有关系,但无论怎样摆都不会超过1.2 m.故选:D.【点评】考查正投影的定义,注意同一物体的所处的位置不同得到正投影也不同.二.填空题(共5小题)11.请写出一个三视图都相同的几何体:球(或正方体).【分析】三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.【解答】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为:球(或正方体).【点评】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.12.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,同时考查了面积的计算.13.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要14个小立方块.【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【解答】解:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.14.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体略.【分析】由左视图可以知道,左边应该为三个小立方体,且在正前方,添加即可.【解答】解:【点评】此题主要考查三视图的画图、学生的观察能力和空间想象能力.15.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为8m.【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得=;即DC2=ED•FD,代入数据可得答案.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=64,DC=8;故答案为:8m.【点评】本题考查了平行投影,通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.三.解答题(共4小题)16.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3,左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【解答】解:【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.17.已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为直三棱柱;(2)应该会出现三个长方形,两个三角形;(3)侧面积为3个长方形,它的长和宽分别为10厘米,4厘米,计算出一个长方形的面积,乘3即可.【解答】解:(1)直三棱柱;(2)如图所示:;(3)3×10×4=120cm2.【点评】用到的知识点为:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.18.(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要5个小立方块,最多要7个小立方块.【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.【解答】解:(1)作图如下:;(2)解:由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块;第二层最多有3个小立方块,所以最多有7个小立方块.故答案是:5;7.【点评】考查了作图﹣三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.19.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)【分析】(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.【解答】解:(1)AB=AC tan30°=12×=4(米).答:树高约为4米.(2)如图(2),B1N=AN=AB1sin45°=4×=2(米).NC1=NB1tan60°=2×=6(米).AC1=AN+NC1=2+6.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB 的⊙A相切时影长最大)AC2=2AB2=;【点评】此题考查了平行投影;通过作高线转化为直角三角形的问题,当太阳光线与圆弧相切时树影最长,是解题的关键.人教版九年级下册数学第29章投影与视图单元提优一、选择题1.如图,是一个正方体的平面展开图,原正方体中“祝”的对面是()A. 考B. 试C. 顺D. 利2.下列图形不是图中几何体的三视图的是()A. B. C. D.3.如图,它是由5个完全相同的小正方体搭建的几何体,若将最右边的小正方体拿走,则下列结论正确的是()A. 主视图不变B. 左视图不变C. 俯视图不变D. 三视图都不变4.一个正方体的平面展开图如图,每一个面都有一个汉字,则在该正方体中和“实”字相对的汉字是()A. 我B. 的C. 梦D. 想5.一个几何体的展开图如图所示,这个几何体是()A. 圆锥B. 圆柱C. 四棱柱D. 四棱锥6. 如图由7个小正方体组合而成的几何体,它的主视图是()A. B. C. D.7.下列几何体中,主视图和俯视图都为矩形的是()A. B. C. D.8.下列说法错误的是()A. 长方体和正方体都是四棱柱B. 棱柱的侧面都是四边形C. 柱体的上下底面形状相同D. 圆柱只有底面为圆的两个面9.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A. B. C. D.10.视线与下列哪种光线不同()A. 太阳光线B. 灯光C. 探照灯光D. 台灯二、填空题11.如图所示的几何体的三视图,这三种视图中画图不符合规定的是________ .12.一个正方体的表面展开如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是 ________.13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________.14.由一些大小相同的小正方体搭成的几何体的从正面看和从上面看,如图所示,则搭成该几何体的小正方体最多是________ 个.15.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为________ cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.16.如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是________ .17.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是________个.18.如图是一个正方体纸盒的展开图,当折成纸盒时,与点1重合的点是________三、解答题19.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)20.在图①、②中分别添加一个或两个小正方形,使该图形经过折叠后能围成一个以这些小正方形为面的立方体.21.如图是由几个小立方块所搭成几何体从正面和从上面看的形状图:这样搭建的几何体,最少、最多各需要多少个小立方块?22. 回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.23.如图是无盖长方体盒子的表面展开图.(1)求表面展开图的周长(粗实线的长);(2)求盒子底面的面积.24.如图,边长为acm的正方体其上下底面的对角线AC、A1C1与平面H垂直.(1)指出正方体六个面在平面H上的正投影图形;(2)计算投影MNPQ的面积.参考答案一、选择题1.C2.C3.B4.B5.A6.A7.B8.D9.C 10.A二、填空题11.俯视图12.功13.48π 14.7 15.2.5 16.④③①② 17.11 18.7和11三、解答题19.解:只写出一种答案即可.(4分)20.解:(1)图①,添加后如图所示:(2)图②,添加后如图所示:21.解:搭这样的几何体最少需要8+2+1=11个小正方体,最多需要8+6+3=17个小正方体;故最多需要17个小正方体,最少需要11个小正方体.22.解:(1)图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x,则x+x+8﹣50=2解得x=22.23.解:(1)如图所示:表面展开图的周长为:2a+2b+4c;(2)盒子的底面长为:a﹣(b﹣c)=a﹣b+c.盒子底面的宽为:b﹣c.盒子底面的面积为:(a﹣b+c)(b﹣c)=ab﹣b2+2bc﹣ac﹣c224.解:(1)正方体六个面在平面H上的正投影图形是矩形;(2)∵正方体边长为acm,∴BD==a(cm),∴投影MNPQ的面积为a×a=a2(cm2).新人教版九年级数学下册《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题,满分30分,每小题3分)1.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化3.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42314.下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.5.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是()A.与窗户全等的矩形B.平行四边形C.比窗户略小的矩形D.比窗户略大的矩形6.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近7.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D8.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.9.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.10.下图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),根据图中所示,可判断形成该影子的光线为()A.太阳光线B.灯光光线C.可能为太阳光线或灯光光线D.该影子实际不可能存在二.填空题(共6小题,满分18分,每小题3分)11.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.12.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC等于8米,则树高AB等于米.13.请写出一个主视图、左视图和俯视图完全一样的几何体.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=.15.如图是由若干个大小相同的小正方体摆成的几何体.那么,其三种视图中,面积最小的是.16.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.三.解答题(共8小题,满分72分)17.(8分)有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.18.(8分)一个几何体由几块相同的小正方体叠成,它的三视图如下图所示.请回答下列问题:(1)填空:①该物体有层高;②该物体由个小正方体搭成;(2)该物体的最高部分位于俯视图的什么地方?(注:在俯视图上标注,并有相应的文字说明)19.(8分)下列物体是由六个棱长为1cm的正方体组成如图的几何体.(1)该几何体的体积是,表面积是;(2)分别画出从正面、左面、上面看到的立体图形的形状.20.(8分)根据如图视图(单位:mm),求该物体的体积.21.(8分)一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.22.(10分)已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.23.(10分)如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.24.(12分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?2019年春新人教版九年级数学下册《第29章投影与视图》单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,。

2022年人教版初中数学九年级下册 第29章《 投影与视图(共12页)》单元检测题附答案

2022年人教版初中数学九年级下册 第29章《 投影与视图(共12页)》单元检测题附答案
2.能根据三视图描述根本几何体或实物原型.
课堂学习检测
一、填空题
1.我们常说的三种视图分别是指______、______、______.
2.请将六棱柱的三视图名称填在相应的横线上.
3.某同学把以下图所示的几何体的三种视图画出如下(不考虑尺寸);其中错误的选项是哪个视图?答:是__________________.
拓展、探究、思考
17.太阳光线与地面成45°角,一棵倾斜的树与地面的夹角为60°,假设树高10m,那么树影的长为______.
18.如下图,现有m、n两堵墙,两个同学分别站在A和B处,请问在哪个区域内活动才不会被两个同学发现(用阴影表示该区域).
测试2三视图(一)
学习要求
1.会画根本几何体的三视图,会判断简单物体的三视图.
那么这个函数的解析式可以为____________.
5.如图,点A在反比例函数的图象上,AB⊥x轴于点B,点C(0,1),假设△ABC的面积是3,那么反比例函数的解析式为____________.
6.反比例函数 (k为常数,k≠0)的图象经过P(3,3),过点P作PM⊥x轴于M,假设点Q在反比例函数图象上,并且S△QOM=6,那么Q点坐标为______.
11.一根竿子高,影长1m,同一时刻,某塔影长是20m,那么塔的高度是______m.
二、选择题
12.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )
A.先变短后变长B.先变长后变短C.逐渐变短D.逐渐变长
13.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的选项是( )
拓展、探究、思考
15.如图,将图中扇形BOC局部剪掉,用剩余局部围成一个几何体的侧面,使AB、DC重合,那么所围成的几何体的俯视图是( )

人教版九年级下《第29章投影与视图》单元测试题含答案解析

人教版九年级下《第29章投影与视图》单元测试题含答案解析

春人教版九年级数学下册第29章投影与视图单元测试题一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定6.如图所示的四棱柱的主视图为()A.B.C.D.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.从正面看、从上面看、从左面看都是正方形的几何体是.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的;(2)这个几何体最多由个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.春人教版九年级数学下册第29章投影与视图单元测试题参考答案与试题解析一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.6.如图所示的四棱柱的主视图为()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可得到答案.【解答】解:如图,左视图如下:故选:D.【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【分析】根据平行投影,篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,根据等腰直角三角形的性质得矩形的宽等于篮板宽,为1.2m,然后根据矩形得面积公式求解.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.太阳光线是平行光线.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为(60+75π)cm2.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.【点评】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放1个小正方体.【分析】根据主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层是左边一个小正方形,中间一个小正方形,第三层是左边一个小正方形,俯视图是第一层三个小正方形,第二层三个小正方形,左视图是第一层两个小正方形,第二层两个小正方形,第三层左边一个小正方形,不改变三视图,中间第二层加一个,故答案为:1.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,∴组成这个几何体的小正方体的个数可能是4个或5个,故答案为:4或5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.【分析】根据三视图判断出该几何体的形状,再求出侧面积即可得出答案.【解答】解:根据三视图可得该几何体是一个三棱柱,侧面积为4×3×6=72.【点评】此题考查了由三视图判断几何体,用到的知识点是长方形的面积,同时也体现了对空间想象能力方面的考查.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【解答】解:如图所示:.【点评】此题考查了作图﹣三视图,由三视图判断几何体,正确想象出立体图形的形状是解题关键.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的甲和乙;(2)这个几何体最多由9个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.【分析】(1)由主视图和左视图的定义求解可得;(2)构成几何体的正方体个数最少时,其正方体的构成是在乙的基础上左数第1列前面再添加1个正方形即可得;(3)正方体个数最少时如图甲,据此作出俯视图即可得.【解答】解:(1)由主视图和左视图知,这个几何体可以是图2甲、乙、丙中的甲和乙,故答案为:甲和乙;(2)这个几何体最多可以由9个小正方体组成,故答案为:9;(3)如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.【分析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.【分析】(1)观察表格数据不难发现,每增加一个碟子高度增加1.5cm,然后写出即可;(2)根据三视图判断出碟子的个数为12个,然后代入(1)中算式计算即可得解.【解答】解:(1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x﹣1)=1.5x+0.5;(2)由图可知,共有3摞,左前一摞有4个,左后一摞有5个,右边前面一摞有3个,共有:3+4+5=12个,叠成一摞后的高度=1.5×12+0.5=18.5cm.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).【点评】本题考查了简单组合体的三视图以及几何体的表面积,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.。

人教版九年级下册数学第29章投影与视图单元检测试卷含答案

人教版九年级下册数学第29章投影与视图单元检测试卷含答案

人教版九年级下册数学第29章投影与视图单元检测试卷含答案第29章投影与视图单元检测一、选择题1.如图所示的几何体的主视图是()A. B. C. D.2.人离窗子越远,向外眺望时此人的盲区是( )A. 变小B. 变大C. 不变D. 以上都有可能3.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.4.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子( )A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短5.如图是某几何体的三视图,则该几何体是( )A. 正方体B. 圆锥体C. 圆柱体D. 球体6.电影院呈阶梯或下坡形状的主要原因是( )A. 为了美观B. 减小盲区C. 增大盲区D. 盲区不变7.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是( )A. B.C. D.8.下列几何体中,主视图和俯视图都为矩形的是( )A. B. C. D.9.下列投影中,是平行投影的是( )A. B.C. D.10.下面属于中心投影的是( )A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出二、填空题(本大题共5小题,共15.0分)11.如图所示.该几何体的俯视图是A.B.C.D.12.当人走在路上,后面的建筑物好像“沉”到前面的建筑物的后面,这是因为______ .13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______ .14.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是143cm,则排球的直径是______ cm.15.如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而______ (填“变大”、“变小”或“不变”).三、解答题16.如图,小区管理者打算在广场的地面上安装一盏路灯(路灯高度忽略不计).小明此刻正在某建筑物的B处向下看,请问:此路灯安在什么位置,小明在B处看不到?请把这段范围用线段表示出来.17.由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.18.如图,树、红旗、人在同一直线上,已知人的影子为AB,树的影子为CD,确定光源的位置并画出旗杆的影子.19.同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.20.由若干个小正方体构成的几何体的主视图和左视图都是如图所示,则该几何体最多有______ 个小正方体,最少有______ 个小正方体.【答案】1. D2. B3. B4. A5. C6. B7. A8. B9. B10. B11. B12. 到了自己的盲区的范围内13. 左视图14. 2115. 变小16. 解:如图所示:线段BE以下为盲区,此路灯安在BE下面,小明在B处看不到.17. 解:如图所示:.18. 解:如图所示是灯光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过人的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置;然后再过旗杆的顶端连接光源的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子.的顶端和它影子的顶端作直线,会发现两直线交于一点A,再过A、B画直线可得另一根木棒的影子.20. 10;4。

人教版九年级下《第29章投影与视图》单元检测试卷含答案

人教版九年级下《第29章投影与视图》单元检测试卷含答案

第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C. D.2.下列图形是正方体表面积展开图的是()A. B. C. D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.下列立体图形中,俯视图是正方形的是()A. B. C. D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。

人教版九年级数学下册《第二十九章投影与视图》单元检测卷及答案

人教版九年级数学下册《第二十九章投影与视图》单元检测卷及答案

人教版九年级数学下册《第二十九章投影与视图》单元检测卷及答案【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A.物体在太阳光下产生的投影是物体的正投影B.正投影一定是平行投影C.物体在灯光下产生的投影是物体的正投影D.正投影可能是中心投影2.由大小相同的正方体搭成的几何体如图所示,其左视图是( )A. B. C. D.3.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是( )A.越来越小B.越来越大C.大小不变D.不能确定4.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A. B.C. D.5.如图,这是由两个完全相同的小正方体与一个长方体搭成的几何体,则它的俯视图为( )A. B.C. D.6.如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是( )A.①②③④⑤B.②④①③⑤C.⑤④①③②D.⑤③①④②7.如图为某几何体的三种视图,这个几何体可以是( )A. B. C. D.a的小正方体摆放成如图的形状,则这个图形的表面积是( )8.将20个棱长为cmA.22100cm a B.2260cm a C.2230cm a D.2216cm a9.一个由若干个大小相同的小正方体搭成的几何体,它的主视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少是( )A.6B.5C.4D.310.已知某几何体的三视图如图所示,则该几何体的体积是( )A.233B.232π3+C.232πD.23π二、填空题(每小题4分,共20分)11.早在多年前的宋朝,手影就已经作为民间一种有趣的游戏而存在.诗人释惠明在《手影戏》中写到:“三尺生绡作戏台,全凭十指送诙谐.有时明月灯窗下,一笑还从掌握来”.手影戏全凭手影艺人的十指借光弄影,表演各色人物、花草虫鱼、飞禽走兽甚至是寓言故事.如图,手影戏中的手影属于____________(填“平行投影”或“中心投影”).100012.如图是某几何体的三视图,该几何体是_____.13.一根长为m的木棒在平行光线上形成的正投影为3,则m的取值范围为______.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个+=_____.小正方体组成,m n15.如图所示是某几何体的三视图,根据图中数据计算,这个几何体的侧面积为_______.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)如图,正三棱柱的面EFDC平行于投影面P,且2===,AB=6.AE EF AF(1)三棱柱在投影平面P 上的正投影的图形是_________. A.一条线段 B.矩形 C.平行四边形 D.等腰梯形(2)求正投影的面积.17.(8分)(1)画出下列几何体的三种视图.(2)若小立方体的边长为2cm ,试求露出部分(含底面)的几何体的面积.18.(10分)用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小立方块的个数.试回答下列问题:(1)a ,b ,c 各表示几?(2)这个几何体最少由几个小立方块搭成?最多呢?(3)当1d e ==,2f =时,画出这个几何体的左视图.19.(10分)小红想利用阳光下的影长测量学校旗杆AB 的高度,如图,他在某一时刻在地面上竖直立一个2m 长的标杆CD ,测得其影长0.4m DE =.(1)请在图中画出此时旗杆AB 在阳光下的投影BF ;(2)如果 1.8m BF =,求旗杆AB 的高.20.(12分)如图,路灯下竖立的一根木杆(用线段AB 表示)的影子BC ,小明(用线段DE 表示)的影子是EF .(1)请在图中画出路灯的位置(用点P 表示);(2)若此路灯距地面高8米,小红的身高1.6米在距离灯的底部左侧6米N 处,此时小红沿NM 方向向左直走,求当小红的影长是5米时,她所走的路程.21.(12分)在一节数学课上,小红画出了某四棱柱的三视图如图所示,其中主视图和左视图为矩形,俯视图为等腰梯形ABCD ,已知该四棱柱的侧面积为(232162cm +.(1)三视图中,有一图未画完,请在图中补全;(2)根据图中给出的数据,俯视图中AB 的长度为________cm ;(3)左视图中矩形的面积为________2cm ;(4)这个四棱柱的体积为________3cm .参考答案及解析1.答案:B解析:A.物体在太阳光下产生的投影不一定是物体的正投影,错误,不合题意;B.正投影一定是平行投影,正确,符合题意;C.物体在灯光下产生的投影不一定是物体的正投影,错误,不合题意;D.正投影是平行投影,错误,不合题意.故选:B.2.答案:B解析:左视图如图:故选B.3.答案:A解析:当把球向下平移时,圆形阴影的大小的变化情况是:越来越小故选:A.4.答案:D解析:A.影子的方向不相同,故本选项错误;B.影子的方向不相同,故本选项错误;C.相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D.影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;故选:D.5.答案:C解析:从上面看得该几何体的俯视图是:故选:C.6.答案:B解析:一天中太阳位置的变化规律是:从东到西.太阳的高度变化规律是:低→高→低.影子位置的变化规律是:从西到东,影子的长短变化规律是:长→短→长.根据影子变化的特点,按时间顺序给这五张照片排序是②④①③⑤.故选:B.7.答案:A解析:根据几何体的三视图,只有A选项符合题意;故选:A. 8.答案:B解析:从上面看,露在外面的小正方体的面一共有10个从下面看露在外面的小正方体的面一共有10个从左面看,露在外面的小正方体的面一共有10个从右面看,露在外面的小正方体的面一共有10个从正面看,露在外面的小正方体的面一共有10个从后面看,露在外面的小正方体的面一共有10个∴该几何体露在外面的面一共有60个小立方体的棱长为cm a∴这个几何体的表面积为26060cm a a a ⋅⋅=故选:B.9.答案:B解析:根据左视图和主视图,这个几何体的底层最少有1113++=个小正方体第二层最少有1个小正方体因此组成这个几何体的小正方体最少有314+=个.故选B.10.答案:D解析:由三视图知该几何体是三棱柱与半圆柱的组合体,且三棱柱的底面是边长为2的正三角形,三棱柱的高为2;半圆柱的底面半径为1,高为2该几何体的体积为211232π1223π22+⨯⨯⨯=.故选D.11.答案:中心投影解析:由图像可得手影戏中的手影属于中心投影故答案为:中心投影.12.答案:圆柱解析:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.故答案为:圆柱.13.答案:3m ≥解析:当木棒与光线平行时,正投影为一条线段,长度为3,此时3m =;当木棒与光线不平行时,正投影为一条线段,长度为3,此时3m >;故答案为: 3.m ≥14.答案:16解析:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体4329m =++= 4217n =++=所以9716m n +=+=.故答案为:16.15.答案:12π解析:根据该几何体的三视图得:这个几何体为圆锥 根据题意得:该圆锥的侧长为()22442+=62⎛⎫ ⎪⎝⎭ 所以这个几何体的侧面积为46=122ππ⨯⨯. 故答案为:12π16.答案:(1)B(2)12解析:(1)B(2)正投影的面积为2612EFDC S =⨯=矩形.17.答案:(1)见详解,(2)2112cm解析:(1)三视图如下 (2)该几何体的表面积为()22262+42+42112cm ⨯⨯⨯⨯=18.答案:(1)3,1,1(2)9,11(3)见解析解析:(1)3a = 1b = 1c =.(2)这个几何体最少由4239++=(个)小立方块搭成,最多由62311++=(个)小立方块搭成.(3)左视图如图所示.19.答案:(1)见解析(2)旗杆AB 的高为9m解析:(1)连接CE ,过A 点作//AF CE 交BD 于F ,则BF 为所求,如图.(2)//AF CE∴AFB CED ∠=∠而90ABF CDE ∠=∠=︒∴ABF CDE ∽△△ ∴AB BF CD DE =,即 1.820.4AB =∴9m AB =.答:旗杆AB 的高为9m .20.答案:(1)见解析(2)14米解析:(1)如图,点P 即为所求;(2)如图,过点P 作PH CM ⊥于点H ,设当小红的影长是5米时,到达点M ',KM '表示小红的身高,SM '表示此时的影长,则 1.6KM '=米,5SM '=米//KM PH ' ∴SKM SPH '∽△△∴KM SM PH SH ''= ∴1.6585HM ='+∴20HM '=米∴20614NM '=-=米即当小红的影长是5米时,她所走的路程14米.21.答案:(1)见解析(2)2(3)8(4)32解析:(1)BC 所在的面在前,AD 所在的面在后∴主视图中应补充两条虚线∴补充完整如图所示:(2)俯视图为等腰梯形ABCDAB CD ∴=该四棱柱的侧面积为(232162cm +42446432162AB CD ∴+⨯++⨯=+22cm AB CD ∴==故答案为:2;(3)如图,作AE BC ⊥于E ,DF BC ⊥于F俯视图为等腰梯形ABCDAB CD ∴= //AD BCAE BC ⊥ DF BC ⊥90AEF DFE AEB DFC ∴∠=∠=∠=∠=︒ //AD BC90EAD ∴∠=︒∴四边形ADFE 是矩形2cm EF AD ∴== AE DF =()Rt Rt HL ABE DCF ∴≌△△BE CF ∴=6cm BE EF CF BC ++==622cm 2BE CF -∴===()22222222cm AE DF AB BE ∴==-=-= ∴左视图中矩形的面积为:2248cm ⨯= 故答案为:8; (4)由题意得:这个四棱柱的体积为()31262432cm 2+⨯⨯= 故答案为:32.。

人教版九年级下《第二十九章投影与视图》单元测试题(含答案).docx

人教版九年级下《第二十九章投影与视图》单元测试题(含答案).docx

第二十九章投影与视图一、选择题(本大题共7小题,每小题5分,共35分)1.下列结论中正确的有()① 同一地点、同一时刻,不同物体在阳光照射下,影子的方向是相同的; ② 不同物体在任何光线照射下影子的方向都是相同的; ③ 同一物体在路灯照射下,影子的方向与路灯的位置有关; ④ 物体在光线照射下,影子的长短仅与物体的长短有关.如图29-Z-1是某零件的直观图,则它的主视图为()图 29-Z-1如图29-Z-3是水平放置的圆柱形物体,物体中间有一根细木棒,则此几何体的左视图是()图 29-Z-45. 一个正方体被截去四个角后得到一个几何体(如图29-Z-5),它的俯视图是A. 1个B. 2个C ・3个D. 4个2. 圆形物体在阳光下的投影不可能是() A. 圆形B.线段C.矩形D.椭圆3. B C 图 29-Z-24. 正面AD止面图 29-Z-3ABCD6. 由一些大小相同的小正方体组成的几何体的三视图如图29-Z-7所示,那么组成这个几何体的小正方体有(左视图图 29-Z-7A ・4个 B. 5个 C. 6个 D. 7个7. 一个几何体的三视图如图29-Z-8所示,则这个几何体的侧面积为()图 29-Z-8 A • 2兀 cnT B • 4兀 cnT C. 8兀 cm 2 D• I671 cm 2二、填空题(本大题共6小题,每小题5分,共30分)8. 写出一个在三视图中俯视图与主视图完全相同的儿何体: _________ ・ 9. 如图29-Z-9是由四个小正方体组成的几何体,若每个小正方体的棱长都是1,则该几何体的俯视图的面积是A 图 29-Z-5图 29-Z-6D主视图 俯视图图29-Z-910. 一个几何体的三视图如图29-Z-10所示(其中标注的a, b, C 为相应的边长),则这个几何体的体积是 ________ •图 29-Z-1011. 已知小明同学身高1.5 m,经太阳光照射,在地上的影长为2 m,若此时测得一座塔在地上的影长为60 m,则塔高为 _________ m.12. 已知某正六棱柱的主视图如图29-Z-11所示,则该正六棱柱的表面积为60 f―> 1010图 29-Z-1113. 在桌面上摆放着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图29-Z-12所示,设组成这个几何体的小正方体的个数为弘则n 的最小值为三、解答题(本大题共3小题,共35分)14. (9分)画出如图29—Z —13所示几何体的三视图.图 29-Z-1315. (12分)如图29-Z-14,已知线段AB=2cm,投影面为P,太阳光线与投影面垂直.(1)当AB 垂直于投影面P 时(如图①),请画出线段AB 的投影;b主视图图 29-Z-12(2)当AB平行于投影面P吋(如图②),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂育于投影面P的平面内逆时针旋转30。

第29章 投影与视图 单元测试卷-2022-2023学年人教版九年级数学下册

第29章 投影与视图 单元测试卷-2022-2023学年人教版九年级数学下册

第29章投影与视图单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共24分。

在每小题列出的选项中,选出符合题目的一项)1. 如图是两个等直径圆柱构成的“T”形管道,从左边看到的它的形状图是( )A. B. C. D.2. 如图是从三个方向看一个几何体所得到的形状图,则这个几何体是( )A. B. C. D.3. 某几何体的三视图如图所示,该几何体是( )A. 三棱柱B. 正方体C. 圆锥D. 圆柱4. 某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是( )A. 青B. 来C. 斗D. 奋5. 如图是某几何体的三视图,该几何体是( )A. 圆柱B. 五棱柱C. 长方体D. 五棱锥6. 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是( )A. 主视图相同B. 左视图相同C. 俯视图相同D. 三种视图都不相同7. 如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( )A. B. C. D.8. 如图为一个用正方体积木搭成的几何体,从正面、左面、上面看该几何体的形状图如图,从上面看的形状图中方格上的数字表示该位置上积木累积的个数,则a+b+c+d的最大值为( )A. 12B. 13C. 14D. 15二、填空题(本大题共8小题,共24分)9. 如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH 与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是(用“=”“>”或“<”连接).10. 如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体的表面积为.11. 如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为.12. 如图是某几何体的三视图及相关数据,则该几何体的侧面积是.13. 如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m.已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.14. 小诺同学想测量出如图所示的电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处竖立一根标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E,C,A在同一条直线上).量得ED=2m,DB=4m,CD=1.5m,则电线杆AB的高度为m.15. 如图是一个多面体的表面展开图,如果向里折后,面F在前面,从左面看是面B,那么从上面看是面(填字母).16. 如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD=13m,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.三、解答题(本大题共9小题,共72分。

人教版九年级下册数学 第29章 投影与视图 单元检测

人教版九年级下册数学 第29章 投影与视图 单元检测

人教版九年级下册数学第29章投影与视图单元检测一、选择题1.如图所示的几何体的主视图是A. B. C. D.2.人离窗子越远,向外眺望时此人的盲区是A. 变小B. 变大C. 不变D. 以上都有可能3.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是A. B. C. D.4.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短5.如图是某几何体的三视图,则该几何体是A. 正方体B. 圆锥体C. 圆柱体D. 球体6.电影院呈阶梯或下坡形状的主要原因是A. 为了美观B. 减小盲区C. 增大盲区D. 盲区不变7.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是A. B.C. D.8.下列几何体中,主视图和俯视图都为矩形的是A. B. C. D.9.下列投影中,是平行投影的是A. B.C. D.10.下面属于中心投影的是A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出二、填空题(本大题共5小题,共15.0分)11.如图所示该几何体的俯视图是12.当人走在路上,后面的建筑物好像“沉”到前面的建筑物的后面,这是因为______ .13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______ .14.如图,太阳光线与地面成的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是______cm.15.如图,地面A处有一支燃烧的蜡烛长度不计,一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而______ 填“变大”、“变小”或“不变”.三、解答题16.如图,小区管理者打算在广场的地面上安装一盏路灯路灯高度忽略不计小明此刻正在某建筑物的B处向下看,请问:此路灯安在什么位置,小明在B处看不到?请把这段范围用线段表示出来.17.由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.18.如图,树、红旗、人在同一直线上,已知人的影子为AB,树的影子为CD,确定光源的位置并画出旗杆的影子.19.同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.几何体最多有______ 个小正方体,最少有______ 个小正方体.【答案】1. D2. B3. B4. A5. C6. B7. A8. B9. B10. B11. B12. 到了自己的盲区的范围内13. 左视图14. 2115. 变小16. 解:如图所示:线段BE以下为盲区,此路灯安在BE下面,小明在B处看不到.17. 解:如图所示:.18. 解:如图所示是灯光的光线原因是过一棵树的顶端及其影子的顶端作一条直线,再过人的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置;然后再过旗杆的顶端连接光源的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子.19. 解:如图所示:分别过木桩的顶端和它影子的顶端作直线,会发现两直线交于一点A,再过A、B画直线可得另一根木棒的影子.20. 10;4人教版九年级数学下册复习_第29章_投影与视图_单元测试卷(有答案)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 小亮在上午时、时、时、时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午时B.上午时C.上午时D.上午时2. 晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长B.变短C.先变长后变短D.先变短后变长3. 人离窗子越远,向外眺望时此人的盲区是()A.变大B.变小C.不变D.无法确定4. 下列投影中属于中心投影的是()A.阳光下跑动的运动员的影子B.阳光下木杆的影子C.阳光下汽车的影子D.路灯下行人的影子5. 为了看到柜顶上的物品,我们常常向后退几步或踮起脚,这其中的道理是()A.增大柜顶的盲区B.减小柜顶的盲区C.增高视点D.缩短视线6. 下列事例中,属于减少盲区的有()①站在阳台上看地面,向前走几步;②将眼前的纸片靠近眼睛;③将胡同的出口修成梯形状;④前方有看不见的地方,用望远镜看.A.个B.个C.个D.个7. 如图,模块①由个棱长为的小正方体构成,模块②-⑥均由个棱长为的小正方体构成.现在从模块②-⑥中选出三个模块放到模块①上,与模块①组成一个棱长为的大正方体.下列四个方案中,符合上述要求的是()A.模块②,④,⑤B.模块③,④,⑥C.模块②,⑤,⑥D.模块③,⑤,⑥8. 如图是由棱长为的正方体搭成的积木三视图,则图中棱长为的正方体的个数是()A.个B.个C.个D.个9. 在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.箱B.箱C.箱D.箱10. 某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,是由小立方块搭成几何体的俯视图,上面的数字表示,该位置小立方块的个数画出主视图:________,左视图:________.12. 如图,迎宾公园的喷水池边上有半圆形的石头(半径为)作为装饰,其中一块石头正前方处有一彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为.如果同一时刻,一直立的杆子的影长为,则灯柱的高________.13. 如图所示,这是一个由小立方块塔成的几何体的俯视图,图中的数字表示在该位置的小立方块的个数,请你画出它的主视图和左视图.主视图________ 左视图________.14. 观察下列几何体,主视图、左视图和俯视图都是矩形的是________.15. 太阳光线可以看成________,像这样的光线所形成的投影称为________.16. 太阳光所形成的投影是________投影,皮影戏中的皮影是由________投影得到的.17. 如图,小军、小珠之间的距离为,他们在同一盏路灯下的影长分别为,,已知小军、小珠的身高分别为,,则路灯的高为________.18. 轮船及汽车的驾驶室设在前面是为了让驾驶员的盲区足够________.19. 身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯光较________.20. 如图,是一个长方体的三视图(单位:),这个长方形的体积是________.三、解答题(本题共计7 小题,共计60分,)21. (6分)下面几何体的三种视图有无错误?如果有,请改正.22. (9分)画出如图所示的几何体的主视图、左视图、俯视图:23. (9分)如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.24. (9分)一个物体的主视图和俯视图如图所示,请根据你对这个物体的想象,画出它的一个左视图.25. (9分)如图,是由几个小立方块所搭几何体的从上面看的图形,图中数字表示所在位置小立方块的个数,请画出这个几何体的从正面看和从左面看的图形.26. (9分)如图,已知一个几何体的三视图和有关的尺寸如图所示,请写出该几何体的形状,并根据图中所给的数据求出表面积.27.(9分) 在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有________个正方体只有一个面是黄色,有________个正方体只有两个面是黄色,有________个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?参考答案与试题解析人教版九年级数学下册复习第29章投影与视图单元测试卷一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】D【考点】平行投影【解析】根据太阳光线与地平面的夹角的大小变化来判断向日葵影子的长度的大小.【解答】解:在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午时,向日葵的影子最长.故选.2.【答案】D【考点】中心投影【解析】由题意易得,小华离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.【解答】解:因为小华出去散步,在经过一盏路灯这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选.3.【答案】A【考点】视点、视角和盲区【解析】根据视角与盲区的关系来判断.【解答】解:如图:为窗子,,过的直线,通过想象我们可以知道,不管在哪个区域,离窗子越远,视角就会越小,盲区就会变大.故选:.4.【答案】D【考点】中心投影【解析】根据中心投影的性质,找到是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有选项得到的投影为中心投影.故选:.5.【答案】B【考点】视点、视角和盲区【解析】根据实际生活为了看到柜顶上的物品,我们常常向后退几步或踮起脚,实际就是减小盲区,即可得出答案.【解答】解:∵为了看到柜顶上的物品,我们常常向后退几步或踮起脚,∴这其中的道理是:减小柜顶的盲区.故选:.6.【答案】B【考点】视点、视角和盲区【解析】视线到达不了的区域为盲区,仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小,由此可判断出答案.【解答】解:①站在阳台上看地面,向前走几步,视野扩大,减小了盲区,故正确;②将眼前的纸片靠近眼睛,眼睛的视野变小,增大了盲区,故错误;③将胡同的出口修成梯形状,视野扩大,减小了盲区,故正确;④前方有看不见的地方,用望远镜看,视野范围没变化,盲区没有减小,故错误.综上可得①③正确.故选.7.【答案】C【考点】简单组合体的三视图【解析】观察模块①可知,模块②补模块①上面的左边,模块③补模块①上面的右上角,模块⑥补模块①上面的右下角能够成为一个棱长为的大正方体.【解答】解:由图形可知模块②补模块①上面的左边,模块③补模块①上面的右上角,模块⑥补模块①上面的右下角,使得模块①成为一个棱长为的大正方体.故能够完成任务的为模块②,⑤,⑥.故选.8.【答案】C【考点】由三视图判断几何体【解析】易得这个几何体共有层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有个正方体,第二层有个正方体,那么共有个正方体组成.故选.9.【答案】B【考点】由三视图判断几何体【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题意知,第二行正方体的个数从左往右依次为:,,;第一行第一列有个正方体,共有个正方体.故选.10.【答案】B【考点】作图-三视图【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:.二、填空题(本题共计10 小题,每题3 分,共计30分)11.【答案】,【考点】作图-三视图由三视图判断几何体【解析】由已知条件可知,主视图有列,每列小正方数形数目分别为,,;左视图有列,每列小正方形数目分别为,.据此可画出图形.【解答】解:如图所示:12.【答案】【考点】中心投影【解析】如图,,,的弧长为,先利用弧长公式计算出,则,作于,则,,接着利用相似比得到,解得,然后计算即可.【解答】解:如图,,,的弧长为,设,则,解得,即,∴,作于,则,,∵同一时刻,一直立的杆子的影长为,∴,∴,∴,即灯柱的高为.故答案为.13.【答案】,【考点】作图-三视图由三视图判断几何体【解析】利用俯视图结合小立方块的个数分别得出主视图与左视图.【解答】解:如图所示:.14.【答案】【考点】简单几何体的三视图【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:、主视图为矩形,俯视图为圆,错误;、主视图为矩形,三视图为矩形,正确;、主视图为等腰梯形,俯视图为圆环,错误;、主视图为三角形,俯视图为有对角线的矩形,错误.故答案为.15.【答案】平行光线,平行投影【考点】平行投影【解析】根据平行投影的定义填空即可.【解答】解:平行光线;平行投影.16.【答案】平行,中心【考点】平行投影中心投影【解析】太阳光是平行光线所以在地面上的投影是平行投影,皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【解答】解:太阳光是平行光线所以在地面上的投影是平行投影,皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.故答案为:平行,中心.17.【答案】中心投影【解析】根据,得到,,根据相似三角形的性质可知,,即可得到结论.【解答】解:如图,∵,∴,,∴,,即,,解得:,答:路灯的高为.18.【答案】小【考点】视点、视角和盲区【解析】“轮船及汽车的驾驶室设在前面”是为了增加驾驶员的视角,减少盲区,从而更有利于驾驶;在高处俯瞰时,视角会增大,而盲区相应减小,故“站得高,看得远”也是为了增大视角,减少盲区.【解答】解:“轮船及汽车的驾驶室设在前面”这与“站得高,看得远”从数学原理上来说是为了增大视角,减小盲区,故答案为:小.19.【答案】远中心投影【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.【解答】解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.所以小明离灯光较远.20.【答案】【考点】由三视图判断几何体【解析】根据三视图我们可以得出这个几何体应该是个长方体,它的体积应该是.【解答】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为.答:这个长方体的体积是.故答案为:.三、解答题(本题共计7 小题,共计60分)21.【答案】解:主视图对,左视图对,俯视图错,中间应画一条虚线,如图:.【考点】简单组合体的三视图【解析】根据从正面看得到的图形是主视图,从左面看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:主视图对,左视图对,俯视图错,中间应画一条虚线,.22.【答案】解:作图如下:【考点】简单组合体的三视图【解析】主视图有列,每列小正方形数目分别为,,;左视图有列,每列小正方形数目分别为,,;俯视图,列,每列小正方形数目分别为,,.【解答】解:作图如下:23.【答案】解:如图所示:【考点】作图-三视图由三视图判断几何体【解析】由已知条件可知,主视图有列,每列小正方数形数目分别为,,;左视图有列,每列小正方形数目分别为,.据此可画出图形.【解答】解:如图所示:24.【答案】解:左视图如图所示:(答案不唯一)【考点】作图-三视图由三视图判断几何体【解析】本题有多种情况;注意“长对正,高平齐,宽相等”的基本原则.【解答】解:左视图如图所示:(答案不唯一)25.【答案】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图左边个,右边个;左视图左边个,右边个.【考点】作图-三视图由三视图判断几何体【解析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【解答】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图左边个,右边个;左视图左边个,右边个.26.【答案】解:根据三视图可得:这个几何体是三棱柱,表面积为:.【考点】由三视图判断几何体【解析】根据三视图得出几何体的形状,再得出各边的长度,最后根据几何体的表面积公式进行计算即可.【解答】解:根据三视图可得:这个几何体是三棱柱,表面积为:.27.【答案】解:(1)如图所示:,,(3)最多可以再添加个小正方体.【考点】简单组合体的三视图【解析】(1)由已知条件可知,主视图有列,每列小正方数形数目分别为,,;左视图有列,每列小正方形数目分别为,,;俯视图有列,每列小正方数形数目分别为,,.据此可画出图形;(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个;有个面是黄色的应是第一列最底层最后面那个和第二列最后面那个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个;(3)保持俯视图和左视图不变,可往第二列前面的几何体上放一个小正方体,后面的几何体上放个小正方体.【解答】解:(1)如图所示:(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个,共个;有个面是黄色的应是第一列最底层最后面那个和第二列最后面那个,共个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共个;(3)最多可以再添加个小正方体.人教版九年级数学下册第二十九章 投影与视图单元测试卷一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分. 1. 如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )A .B .C .D .2. 如图的立体图形的左视图可能是( )BCD .3.如图是由5个大小相同的正方体组成的几何体,它的主视图是( )A .B .C .D .4. 如图的几何体的三视图是( )B.5.下列立体图形中,俯视图是正方形的是( )A .B .C .D .6.如图,从左面观察这个立体图形,能得到的平面图形是( )A .B .C .D .7.如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )8.某几何体的三视图如图所示,则这个几何体是( )A.圆柱B.正方体C.球D.圆锥9.如图所示的支架是由两个长方形构成的组合体,则它的主视图是()B C D.10.、如图是某一几何体的三视图,则该几何体是()11.如图是由4个大小相同的正方体搭成的几何体,其俯视图是().12.如图几何体的俯视图是()B13.如图的罐头的俯视图大致是().14.如图是某个几何体的三视图,则该几何体的形状是()15.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()C D.16、左下图是由3个完全相同的小正方体组成的立体图形,它的主视图是()DACB17.一个几何体的三视图如图所示,那么这个几何体是【】18. 如图,所给三视图的几何体是()(第1题图)19. 下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()B C20. 一个几何体的三视图如图所示,则该几何体可能是()B C D.21.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()22.甲是某零件的直观图,则它的主视图为()B C D.23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.24.一个圆锥的三视图如图所示,则此圆锥的底面积为()A.30πcm2B.25πcm2C.50πcm2D.100πcm2第Ⅱ卷(非选择题共60分)二、填空题:本大题共7小题,其中16-22题每小题5分,共35分.只要求填写最后结果.1.写出一个在三视图中俯视图与主视图完全相同的几何体.2.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是..3. 如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18cm3.(第1题图)4.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.5.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为__▲__cm2.(结果可保留根号)6如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为______cm2参考答案:数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1. 如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2. 如图的立体图形的左视图可能是()B C D.3. 如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:从正面看,第一层是两个正方形,第二层左边是一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.如图的几何体的三视图是()B.5.下列立体图形中,俯视图是正方形的是()A.B.C.D.考点:简单几何体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解;A、的俯视图是正方形,故A正确;B、D的俯视图是圆,故A、D错误;C、的俯视图是三角形,故C错误;故选:A.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选:A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.7.如图是由四个相同的小正方体组成的立体图形,它的俯视图为()8.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.9.如图所示的支架是由两个长方形构成的组合体,则它的主视图是()B C D.解:从几何体的正面看可得此几何体的主视图是,10.如图是某一几何体的三视图,则该几何体是()11.如图是由4个大小相同的正方体搭成的几何体,其俯视图是().12. 如图几何体的俯视图是()B13.如图的罐头的俯视图大致是().14.如图是某个几何体的三视图,则该几何体的形状是()。

第29章 投影与视图 2022-2023学年人教版数学九年级下册检测题

第29章 投影与视图 2022-2023学年人教版数学九年级下册检测题

第29章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不可能是( B )A.圆B.三角形C.线段D.椭圆2.(2022·海南)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是( C )3.(2022·十堰)下列几何体中,主视图与俯视图的形状不一样的几何体是( C )4.(2022·温州改编)某物体如图所示,它的左视图是( A )5.(呼和浩特中考)如图所示的几何体,其俯视图是( B )6.(2022·黑龙江)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是( A )7.(2021·泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是( B )8.(雅安中考)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为( B )A.4 B.5 C.6 D.7第8题图第9题图第10题图9.(宁夏中考)如图②是图①长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=( A )A.a2+a B.2a2C.a2+2a+1 D.2a2+a10.(菏泽中考)如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为( B )A.12πB.18πC.24πD.30π二、填空题(每小题3分,共15分)11.如图是两棵小树在同一时刻的影子,可以断定这是__中心__投影,而不是__平行__投影.第11题图第12题图第13题图第14题图12.如图,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面上同一点.此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高度为__12__m.13.如图是由若干个大小相同的小正方体组成的几何体,那么其三种视图中面积最小的是__左视图__.14.(齐齐哈尔中考)如图是一个几何体的三视图,依据图中给出的数据,计算出这个几何体的侧面积是__65π__.15.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要__19__个小正方体,王亮所搭几何体的表面积为__48__.三、解答题(共75分)16.(8分)如图,将第一行的四个物体与第二行其相应的俯视图连接起来.解:①-c,②-a,③-b,④-d17.(9分)画出下面图形的三视图:解:如图:18.(9分)如图,一个零件形如一个圆柱体削去底面圆的四分之一部分的柱体,底面圆的半径为2 cm.(1)请画出该零件的三视图;(2)若用该零件的俯视图围成一个圆锥,求这个圆锥的高.解:(1)该几何体的三视图如图:(2)俯视图为扇形,其弧长为270π×2180 =3π(cm),设圆锥的底面半径为r cm ,则有2πr =3π,解得r =32cm ,所以圆锥的高为22-(32)2 =72(cm)19.(9分)根据图中的视图,求所对应的物体的体积.(单位:mm)解:由三视图知:该几何体是两个圆柱叠放在一起,上面圆柱的底面直径为8,高为4,下面圆柱的底面直径为16,高为16,故体积为π(16÷2)2×16+π(8÷2)2×4=1088π(mm 3)20.(9分)如图,不透明圆锥体DEC 放在地面上,在A 处灯光照射下形成影子,设BP 过底面圆的圆心,已知圆锥体的高为23 m ,底面半径为2 m ,BE =4 m.(1)求∠B 的度数;(2)若∠ACP =2∠B ,求光源A 距地面的高度.(答案用含根号的式子表示)解:(1)设DF 为圆锥DEC 的高,交BC 于点F .由已知得BF =BE +EF =6 m ,DF =23 m ,∴tan B =DF BF =236 =33 ,∴∠B =30° (2)过点A 作AH ⊥BP 于点H ,∵∠ACP =2∠B=60°,∴∠BAC =30°,∴AC =BC =8 m ,在Rt △ACH 中,AH =AC ·sin ∠ACP =8×32=43 (m),∴光源A 距地面的高度为43 m21.(10分)如图所示,有4张除了正面图案不同,其余都相同的图片.(1)以上四张图片所示的立体图形中,主视图是矩形的有________;(填字母序号) (2)将这四张图片背面朝上混匀,从中随机抽出一张后放回,混匀后再随机抽出一张.求两次抽出的图片所示的立体图形中,主视图都是矩形的概率.解:(1)B ,D (2)列表可得第二张 第一张A B C D A (A ,A ) (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,B ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,C ) (C ,D ) D(D ,A )(D ,B )(D ,C )(D ,D )由表可知,共有16种等可能结果,其中两次抽出的图片所示立体图形的主视图都是矩形的有4种,分别是(B ,B ),(B ,D ),(D ,B ),(D ,D ),所以两次抽出的图片所示的立体图形的主视图都是矩形的概率为416 =1422.(10分)将一直径为17 cm 的圆形纸片(如图①)剪成如图②形状的纸片,再将纸片沿虚线折叠得到正方体(如图③)形状的纸盒,则这样的纸盒体积最大为多少?解:如图,设小正方形的边长为2x cm ,则AB =4x cm ,OA =172cm ,在Rt △OAB 中,有x2+(4x)2=(172)2,∴x=172,∴小正方形的边长最大为17cm,则纸盒体积最大为(17)3=1717(cm3)23.(11分)一天晚上,李明和张龙利用灯光下的影长来测量路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯D的高度.(结果精确到0.1 m)解:设CD长为x m.由题意得AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴∠MEA=45°,∴AM∥CD,BN∥CD,EC=CD=x,∴△ABN∽△ACD,∴BNCD=ABAC,即1.75x=1.25x-1.75,解得x=6.125≈6.1,则路灯D的高度约为6.1 m。

人教版九年级数学下册第二十九章《投影与视图》单元测试题(含答案)

人教版九年级数学下册第二十九章《投影与视图》单元测试题(含答案)

人教版九年级数学下册第二十九章《投影与视图》单元测试题一、选择题(本大题共9小题,每小题4分,共36分)1.下列物体的光线所形成的投影是平行投影的是()A.台灯B.手电筒C.太阳D.路灯2.正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形3.下列立体图形中,俯视图不是圆的是()图14.如图2所示的几何体的左视图为()图2图35.图4是水平放置的圆柱形物体,物体中间有一根细木棒,则此几何体的左视图是()图4图56.图6是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,下列关于新几何体的三视图描述正确的是()图6A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变7. 图7②是图①中长方体的三视图,若用S表示面积,且S主=x2+2x,S左=x2+x,则S 俯为()图7A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x8.由一些大小相同的小正方体组成的几何体的三视图如图8所示,那么组成这个几何体的小正方体有()图8A.4个B.5个C.6个D.7个9.一个几何体的三视图如图9所示,则这个几何体的侧面积为()图9A.2π cm2B.4π cm2C.8π cm2D.16π cm2二、填空题(本大题共8小题,每小题4分,共32分)10.广场上一个大型艺术字板块在地上的投影如图10所示,则该投影属于________(填写“平行投影”或“中心投影”).图1011.写出一个在三视图中俯视图与主视图完全相同的几何体:________.12.图11是由四个相同的小正方体组成的几何体,若每个小正方体的棱长都是1,则该几何体的俯视图的面积是________.图1113.一个几何体的三视图如图12所示(其中标注的a,b,c为相应的边长),则这个几何体的体积是________.图1214.已知小明同学身高1.5 m,经太阳光照射,在地上的影长为2 m,若此时测得一座塔在地上的影长为60 m,则塔高为________m.15.已知某正六棱柱的主视图如图13所示,则该正六棱柱的表面积为______________.图1316.图14是由若干个相同的小正方体搭成的几何体的主视图和俯视图,则所需的小正方体的个数最少是________.图1417.如图15,小超想要测量窗外的路灯PH的高度.星期天晚上,他发现灯光透过窗户照射在房间的地板上,窗户的最高点C落在地板上的B处、窗户的最低点D落在地板上的A 处,小超测得窗户距地面的高度QD=1 m,窗高CD=1.5 m,并测得AQ=1 m,AB=2 m.则窗外的路灯PH的高度为________.图15三、解答题(本大题共3小题,共32分)18.(9分)画出如图16所示几何体的三视图.图1619.(10分)图17所示是某几何体的展开图.(1)这个几何体的名称是________;(2)画出这个几何体的三视图;(3)求这个几何体的体积(π取3.14).图1720.(13分)如图18,在同一时间,身高为1.6 m的小明(AB)在路灯下的影子BC长是3 m,而小颖(EH)刚好在路灯灯泡的正下方点H处,并测得HB=6 m.(1)在图中画出路灯灯泡所在的位置G,并求路灯灯泡的垂直高度GH;(2)如果小明沿线段BH向小颖(点H)走去,当小明走到BH的中点B1处时,画出小明的影子B1C1,并求出B1C1的长.图18参考答案1.C 2.D 3.C 4.D 5.B6.A 7.A8.C9.B 10.平行投影11.球(答案不唯一)12.313.abc14.4515.7200+1200 316.517.10 m18.解:几何体的三视图如图所示.19.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为π×52×20=500π≈1570.20.解:(1)路灯灯泡所在的位置G如图所示.∵AB∥GH,∴△ABC∽△GHC,∴ABGH=BCHC,即1.6GH=36+3,解得GH=4.8(m).即路灯灯泡的垂直高度GH是4.8 m.(2)小明的影子B 1C 1如图所示. ∵A 1B 1∥GH , ∴△A 1B 1C 1∽△GHC 1, ∴A 1B 1GH =B 1C 1HC 1. 设B 1C 1的长为x m ,则1.64.8=xx +3,解得x =1.5.经检验,x =1.5是原方程的解,且符合题意.即B 1C 1的长为1.5 m.。

人教版九年级数学下册_第29章_投影与视图_单元检测试卷【有答案】

人教版九年级数学下册_第29章_投影与视图_单元检测试卷【有答案】

人教版九年级数学下册_第29章_投影与视图_单元检测试卷【有答案】一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 1.下列投影一定不会改变的形状和大小的是( )A.中心投影B.平行投影C.正投影D.当平行投影面时的平行投影2.某物体的三视图是如图所示的三个图形,那么该物体形状是( )A.圆锥B.圆柱C.三棱锥D.三棱柱 3.如图,是由相同的小正方体组成的立体图形,它的左视图是( )A.B.C.D.4.如图所示,灯在距地面米的处,现有一木棒米长,当处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( )A.先变长,后变短B.先变短,后变长C.不变D.先变长,再不变,后变短5.某同学画出了如图所示的几何体的三种视图,其中正确的是( )A.①②B.①③C.②③D.②6.如图所示的几何体,如果从正面观察它,得到的平面图形是( )A.B.C.D.7.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离( ) A.始终不变 B.越来越远 C.时近时远 D.越来越近 8.如图的主视图是( )A.B.C.D.9.如图是几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有( )A.个B.个C.个D.个10.由个大小相同的小正方体组成的几何体,如下图所示.其俯视图是( )A.B.C.D.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.如图,组成这个几何体的小正方体的块数为,则的所有可能值为________.12.如图,在一间黑屋子里用一盏白炽灯按如图所示的方式照球、圆柱和圆锥,它们在地面上的阴影形状分别是________,________,________.(文字回答即可)13.身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯光较________.14.如图,三角尺在灯泡的照射下在墙上形成影子,现测得,,则这个三角尺的面积与它在墙上所形成影子图形的面积之比是________.15.三棱柱的三视图如图所示,在中,,,,则的长为________.16.如图中,现将绕旋转一周,所得几何体的主视图是图中的________.17.桌上放着一个圆锥和一个正方体,请说出下面三幅图形分别是从哪个方向看到的________.18.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.19.如图所示,在房子的屋檐处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在________.20.如图是六个棱长为的立方块组成的一个几何体,其俯视图的面积是________.三、解答题(共6 小题,每小题10 分,共60 分)21.一个几何体由几个大小相同的小立方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请你画出从正面、左面看到的这个几何体的形状图.22.如图所示是由几个小正方块所组成的几何体俯视图,小正方形中的数字表示在该位置小正方块的个数,请你画出这个几何体的正视图和左视图.23.有一个正方体,在它的各个面上分别标上数字、、、、、.小明、小刚、小红三人从不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的数字对面各是什么数字?24.如图是由几个小立方体所搭几何的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的主视图、左视图.25.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成角,房屋向南的窗户高米,现要在窗子外面的上方安装一个水平遮阳蓬(如图所示).当遮阳蓬的宽度在什么范围时,太阳光线能射入室内?当遮阳蓬的宽度在什么范围时,太阳光线不能射入室内?26.李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度,,(点、、在同一直线上).已知李航的身高是,请你帮李航求出楼高.答案1.D2.A3.B4.A5.B6.C7.D8.B9.B10.B11.,,,12.椭圆圆三角形13.远14.15.16.17.正面,左面,上面18.左面上面前面19.所在的区域20.21.解:作图如下:22.解:如图所示:23.解:从个小立方体上的数可知,与写有数字的面相邻的面上数字是,,,,所以数字面对数字面,同理,立方体面上数字对.故立方体面上数字对.24.解:如图所示主视图和左视图:.25.解:在组成是的直角三角形.∴(米).当遮阳蓬的宽度小于等于米时,太阳光线能射入室内;当遮阳蓬的宽度大于米时,太阳光线不能射入室内.26.楼高为米.人教版九年级下册数学第29章投影与视图单元检测一、选择题1.如图所示的几何体的主视图是A. B. C. D.2.人离窗子越远,向外眺望时此人的盲区是A. 变小B. 变大C. 不变D. 以上都有可能3.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是A. B. C. D.4.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短5.如图是某几何体的三视图,则该几何体是A. 正方体B. 圆锥体C. 圆柱体D. 球体6.电影院呈阶梯或下坡形状的主要原因是A. 为了美观B. 减小盲区C. 增大盲区D. 盲区不变7.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是A. B.C. D.8.下列几何体中,主视图和俯视图都为矩形的是A. B. C. D.9.下列投影中,是平行投影的是A. B.C. D.10.下面属于中心投影的是A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出二、填空题(本大题共5小题,共15.0分)11.如图所示该几何体的俯视图是12.当人走在路上,后面的建筑物好像“沉”到前面的建筑物的后面,这是因为______ .13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______ .14.如图,太阳光线与地面成的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是______cm.15.如图,地面A处有一支燃烧的蜡烛长度不计,一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而______ 填“变大”、“变小”或“不变”.三、解答题16.如图,小区管理者打算在广场的地面上安装一盏路灯路灯高度忽略不计小明此刻正在某建筑物的B处向下看,请问:此路灯安在什么位置,小明在B处看不到?请把这段范围用线段表示出来.17.由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.18.如图,树、红旗、人在同一直线上,已知人的影子为AB,树的影子为CD,确定光源的位置并画出旗杆的影子.19.同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.几何体最多有______ 个小正方体,最少有______ 个小正方体.【答案】1. D2. B3. B4. A5. C6. B7. A8. B9. B10. B11. B12. 到了自己的盲区的范围内13. 左视图14. 2115. 变小16. 解:如图所示:线段BE以下为盲区,此路灯安在BE下面,小明在B处看不到.17. 解:如图所示:.18. 解:如图所示是灯光的光线原因是过一棵树的顶端及其影子的顶端作一条直线,再过人的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置;然后再过旗杆的顶端连接光源的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子.19. 解:如图所示:分别过木桩的顶端和它影子的顶端作直线,会发现两直线交于一点A,再过A、B画直线可得另一根木棒的影子.20. 10;4人教版九年级下册数学第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C. D.2.下列图形是正方体表面积展开图的是()A. B. C. D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.下列立体图形中,俯视图是正方形的是()A. B. C. D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。

人教版九年级下册《第29章投影与视图》单元测试卷含参考答案

人教版九年级下册《第29章投影与视图》单元测试卷含参考答案

人教版九年级数学下册 第29章 投影与视图 单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 在阳光下摆弄一个矩形,它的影子不可能是( ) A.线段 B.矩形 C.等腰梯形 D.平行四边形2. 如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子( )A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短3. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A.小明的影子比小强的影子长B.小明的影子比小强的影子短 C.小明的影子和小强的影子一样长D.无法判断谁的影子长4. 电影院座位号呈阶梯状或下坡状的原因是( ) A.减小盲区 B.增大盲区 C.盲区不变 D.为了美观5. 由几个相同的小立方块组成一个立体图形,如图是从不同方向看到它的图形,小立方块的个数是( )A.3个B.4个C.5个D.6个6. 如图是某几何体的三视图及相关数据,则判断正确的是( )A.a 2+b 2=c 2B.a 2+b 2=4c 2C.a 2+c 2=b 2D.a 2+4c 2=b 2 7. 下面四个立体图形中,三视图完全相同的是( ) A.B.C.D.8. 电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观 B.减小盲区 C.增大盲区 D.盲区不变9. 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )A.B.C.D.10. 桌面上放置的几何体中,主视图与左视图可能不同的是( ) A.圆柱 B.正方体 C.球 D.直立圆锥 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分) 11. 如图,一几何体的三视图如右:那么这个几何体是________.12. 由6个大小相同的正方体搭成的几何体如图所示,则它的三种视图中,面积最大的是________(A 、主视图 B 、左视图 C 、俯视图)13. 在①长方体、②球、③圆锥、④圆柱、⑤正方体、⑥三棱柱这六种几何体中,其主视图、左视图、俯视图都完全相同的是________(填上序号即可). 14. ________是画三视图必须遵循的法则.15. 如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是________.16. 请将六棱柱的三视图名称依次填在横线上________.17. 如图,一位同学身高1.6米,晚上站在路灯下,他在地面上的影长是2米,若他沿着影长的方向移动2米站立时,影长增加了0.5米,则路灯的高度是________米.18. 学校的阶梯教室做成阶梯形的原因是________.19. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.20. 由视点发出的线称为________,看不到的地方称为________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 请你画出如图几何体的三视图.22. 画出此实物图的三种视图.三种视图.23. 5个棱长为1的正方体组成如图所示的几何体,画出该几何体的主视图和左视图.24. 从三个方向看某一几何体,得到图形如图所示,请描述这个几何体是由几个正方体怎样摆放而成的.25. 由一些大小相同的小正方形搭成的几何体的俯视图,如图所示,其中正方形中的数字表示该位置上的小正方形的个数,请画出该几何体的主视图和左视图.26. 如图所示,观察左图,并在右边的三视图中标出几何体中的相应字母的位置.答案1. C2. A3. D4. A5. B6. C7. B8. B9. B10. A11. 空心圆柱12. C13. ②⑤14. 长对正,高平齐,宽相等15. 5或6或7或8或9或1016. 主视图,俯视图,左视图 17. 818. 减少学生的盲区(看不见的地方),使得每人都能看到黑板 19. 从不同的角度看得到的视图不同 20. 视线盲区21. 解:如图所示:22. 解:23. 解:所画图形如下所示:24. 解:由三个方向看到的图形可以描述这个几何体:下层是由四个小正方体按正方形摆放,上层由一个小正方体摆放在正中央. 25. 解:如图所示:26. 解:根据题意如图:。

最新(人教版)数学九年级下册《第二十九章投影与视图》单元检测卷(含答案)

最新(人教版)数学九年级下册《第二十九章投影与视图》单元检测卷(含答案)

人教版数学九年级下册第二十九章投影与视图单元检测卷一、选择题1.平行投影中的光线是( A )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的2.当棱长为20 cm的正方体的某个面平行于投影面时,这个面的正投影的面积为( C ) A.20 cm2 B.300 cm2 C.400 cm2 D.600 cm23.2018·安徽一个由圆柱和圆锥组成的几何体如图K-25-2所示水平放置,其主视图为( A )图K-25-34.由若干个相同的小正方体组合而成的一个几何体的三视图如图K-26-10所示,则组成这个几何体的小正方体的个数是( A )图K-26-10A .4B .5C .6D .95.如图K -27-8是一个包装纸盒的三视图(单位:cm),则制作一个这样的纸盒所需纸板的面积是( C )图K -27-8A .300()1+3cm 2B .300⎝ ⎛⎭⎪⎫1+32cm 2C .300(2+3)cm 2D .300⎝⎛⎭⎪⎫2+32cm 26.2018·宜宾一个立体图形的三视图如图K -26-1所示,则该立体图形是( A )图K -26-1A .圆柱B .圆锥C .长方体D .球7.如图K -23-1是在北半球一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是( C )图K-23-1A.(3)(1)(4)(2) B.(3)(2)(1)(4)C.(3)(4)(1)(2) D.(2)(4)(1)(3)8.2017·益阳如图K-25-11,空心卷筒纸的高度为12 cm,外径(直径)为10 cm,内径为4 cm,在比例尺为1∶4的三视图中,其主视图的面积是( D )图K-25-11A.21π4cm2 B.21π16cm2C.30 cm2 D.7.5 cm29.2017·凉山如图K-26-14是一个几何体的三视图,则该几何体的侧面积是( B )图K-26-14A.213π B.10π C.20π D.413π10.将如图K-25-14所示放置的一个Rt△ABC(∠C=90°)绕斜边AB所在直线旋转一周,所得到的几何体的主视图是图K-25-15中的( B )图K-25-14图K-25-15二、填空题11.如图K-23-3,三角尺与其在灯光照射下的中心投影构成位似图形,相似比为2∶5,且三角尺的一边长为8 cm,则投影三角形中该边的对应边长为________.图K-23-3[答案]20 cm12.如图K-25-16是由6个棱长均为1的小正方体组成的几何体,它的主视图的面积为________.图K-25-16[答案] 513.如图K-25-17,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是________.图K-25-17[答案]18 cm214.2017·滨州如图K-26-16,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体的表面积为________.图K-26-16[答案] 15π+1215.如图K-26-17是一个长方体的主视图与俯视图,由图示数据(单位:cm)可以得出该长方体的体积是__________cm3.图K-26-17[答案]18三、解答题16.如图K-23-5,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻AB在太阳光下的投影BC=3 m.(1)请你在图中画出此时DE在太阳光下的投影;(2)在测量AB的投影时,同时测量出DE在太阳光下的投影长为6 m,请你计算DE的长.图K-23-5解:(1)∵太阳光线是平行光线,∴只需连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE在太阳光下的投影(如图所示).(2)∵AC∥DF,∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴ABDE=BCEF,即5DE=36,∴DE=10(m).17.一张面积为100 cm2的正方形纸片,其正投影的面积可能是100 cm2吗?可能是80 cm2吗?可能是120 cm2吗?试确定这张正方形纸片的正投影面积的取值范围.解:其正投影的面积可能是100 cm2.其正投影的面积可能是80 cm2,不可能是120 cm2.这张正方形纸片的正投影的面积S的取值范围为0 cm2≤S≤100 cm2.18.如图K-25-21是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保证这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?图K-25-21 图K-25-22解:(1)这个几何体的左视图和俯视图如图所示:(2)在第二层第二列的第一行和第二行各加1个,第三层第二列的第一行加1个,第三层第三列的第一行加1个,2+1+1=4(个).故最多可再添加4个小正方体.19.如图K-26-21是由两个长方体组合而成的一个立体图形的三视图(单位:mm),根据图中所标尺寸,解答下列问题.(1)画出这个立体图形的草图;(2)求这个立体图形的表面积.图K-26-21解:(1)立体图形如图所示.(2)表面积S=2×(2×6+2×8+6×8)+2×(2×4+4×4)=200(mm2).20.如图K-27-14是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据图中所标数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体的点B出发,沿表面爬到AC的中点D处,请求出蚂蚁爬行的最短路程.图K-27-14解:(1)圆锥.(2)由三视图知该圆锥的底面直径为4 cm,母线长为6 cm,∴圆锥的侧面积S侧=12×4π×6=12π(cm2),底面圆的面积为π×(42)2=4π(cm2),故该几何体的表面积为12π+4π=16π(cm2).(3)由圆锥母线长为6 cm,底面圆半径为2 cm,可得此圆锥侧面展开图(扇形)的圆心角为120°,半径为6 cm,如图,连接AB′,B′C,B′D,则∠B′AC=60°,∴△AB′C为等边三角形,B′D的长为蚂蚁所爬行的最短路程.∵D为AC的中点,∴B′D⊥AC,∴B′D=AB′2-AD2=62-32=3 3(cm),即蚂蚁爬行的最短路程为3 3 cm.。

人教版九年级下《第29章投影与视图》单元检测试题(有答案)

人教版九年级下《第29章投影与视图》单元检测试题(有答案)

人教版九年级下学期第二十九章投影与视图单元检测试题姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.如图所示的几何体,它的左视图正确的是()A. B. C. D.2.如图,是一个几何体的表面展开图,则该几何体是()A. 正方体B. 长方体C. 三棱柱D. 四棱锥3.下面由8个完全相同的小正方体组成的几何体从正面看是()A. B. C. D.4.如图是两个等直径圆柱构成的“T”形管道,其左视图是()A. B. C. D.5.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三视图中面积最小的是( )A. 主视图B. 左视图C. 俯视图D. 三种一样6.一个几何体的主视图和俯视图如图所示,那么它的左视图可能是()A. B. C. D.7.用4个小立方块搭成如图所示的几何体,该几何体的左视图是()A. B. C. D.8.如下图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和五边形,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图是()A. B. C. D.9.某三棱锥的三视图如图所示,该三棱锥的体积是()A. B. 4 C. 2 D.10.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A. B. C. D.二、填空题(共7题;共21分)11.若圆柱的底面圆半径为3cm,高为5cm,则该圆柱的侧面展开图的面积为________cm2.12.下图右边是一个三棱柱,它的正投影是下图中的________(填序号).13.如图是由若干个大小相同的小正方体摆成的几何体.那么,其三种视图中,面积最小的是________.14.人在灯光下走动,当人远离灯光时,其影子的长度将________ .15.课桌上按照图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),后图描绘的是他在不同时刻看到的情况,请把这些图片按照看到的先后顺序进行排序,正确的顺序是________.16.圆锥的侧面展开图是________ ,圆柱的侧面展开图是________ .17.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共6题;共46分)18.连一连:请在第二行图形中找到与第一行几何体相对应的表面展开图,并分别用连接线连起来.19.如图是用5个棱长为1厘米的小立方块搭成的几何体,请画出从正面、左面、上面看得到的图形.20.如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度.21.如图所示是一个纸杯,它的母线延长后形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯开口圆的直径为6cm,下底面直径为4cm,母线长EF=9cm,求扇形OAB的圆心角及这个纸杯的表面积.(结果保留根号和π)22.用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?23.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH.四、综合题(共2题;共23分)24.如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ 上.(1)请你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=5米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.25.如图所示为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10cm,正三角形的边长为4cm,求这个几何体的侧面积.答案解析部分一、单选题1.B2.C3.D4.B5.B6.B7.A8.C9.B 10.B二、填空题11.30π12.② 13.左视图14.变长15.乙甲丙丁16.扇形;长方形17.54三、解答题18.解:如图所示:19.20.解:将曲面沿AB展开,如图所示,过C作CE⊥AB于E,在Rt△CEF中,∠CEF=90°,EF=18﹣1﹣1=16(cm),CE= ×60=30(cm),由勾股定理,得CF= =34(cm).答:蜘蛛所走的最短路线是34cm.21.解:由题意可知:=6πcm,=4π,设∠AOB=n,AO=R,则CO=R﹣9,由弧长公式得:l= ,∴,解得:n=40,R=27,故扇形OAB的圆心角是40度.∵R=27,R﹣9=18,= ×4π×18=36π(cm2),∴S扇形OCDS扇形OAB= ×6π×27=81π(cm2),纸杯侧面积=S扇形OAB﹣S扇形OCD=81π﹣36π=45π(cm2),纸杯底面积=π•22=4π(cm2)纸杯表面积=45π+4π=49π(cm2).22.31.4÷3.14=10cm10÷2=5cm3.14×5×5=78.5平方厘米答:两个底面圆的面积是78.5平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《视图与投影》单元测试题
一、细心填一填(每题 3分,共36分)
1 •举两个俯视图为圆的几何体的例子 ______ , _。

2 •如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称
4. 一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有
5. ____________________________________ 当你走向路灯时,你的影子在你的 ,并且影子越来越 ___________________________________ 。

6. 小明希望测量出电线杆 AB 的高度,于是在阳光明媚的一天, 他在电线杆旁的点 D 处立一 标杆CD 使标杆的影子 DE 与电线杆的影子 BE 部分重叠(即点 E 、C 、A 在一直线上),量得 ED= 2 米,DB= 4 米,CD= 1.5 米,则电线杆 AB y= ___________
7. 小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说: “广场上的大灯泡一定位于两人 _____________________ ” ;
3. 请将六棱柱的三视图名称填在相应的横线上
■( 人」 从正国看
喜9
主视图 主 视 图
左 视 图
左视图
&皮影戏中的皮影是由 __________ 投影得到的• 9.下列个物体中:
⑴ ⑵ ⑶ (4)
是一样物体的是 _______________ (填相同图形的序号)
10 •如图所示,在房子外的屋檐 E 处安有一台监视器,房子前有一面落地的广告牌,已知房 子上的监视器高3m 广告牌高为1.5m ,广告牌距离房子 5m,则盲区的长度为 ________________
观线
门』
□口
11. 一个画家由14个边长为1m 的正方形,他在地面上把他们摆成如图的形式, 然后把露出
表面的部分都涂上颜色,那么被涂上颜色的总面积为 _______________
左視图
14.在同一时刻,阳光下,身高 1.6m 的小强的影长是1.2m ,旗杆的影长是15m 则旗杆高 为 (

其主视图和左视图如图所示, 这个几
二、精心选一选(每题 2分,共24分)
13
•小明从正面观察下图所示的两个物体,看到的是
A 、 16m
B 18m C
20m D 22m
12.桌上摆着一个由若干个相同正方体组成的几何体, 何体最多可以由
A

)
D
A. B . C
18. 在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的 相对位置是(

A 、两根都垂直于地面
B 、两根平行斜插在地上
C 、两根竿子不平行 D
、一根倒在地上
19.
正方形在太阳光的投影下得到的几何图形一定是(

A 、正方形
B 、平行四边形
C 、矩形
D 、菱形 20. 同一灯光下两个物体的影子可以是( )
A 、同一方向
B 、不同方向
C 、相反方向
D 、以上都有可能
21. 棱长是1 cm 的小立方体组成如图所示的几何体,那么 这个几何体的表面积是(
) 2 2 2 2
A 、36 cm
B 、33 cm
C 、30 cm
D 、27 cm
22. 下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是
15.如果用□表示1个立方体,用_表示两个立方体叠加,用■表示二个立方体叠加,那么 下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是(
# * #
A
16.
当你乘车沿一条平坦的大道向前行驶时, 你会发现,
到了位于它们前面那些矮一些的建筑物后面去了。

这是因为 A 、汽车开的很快 B 、盲区减小
C 、盲区增大 D
17. “圆柱与球的组合体”如右图所示,则它的三视图是
前方那些高一些的建筑物好像 ( )
、无法确定
“沉”
(第 5题)
俯视图

俯视图
23. 若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是()
A 、2
B 、3
C 、4
D 、5
24. 下面是一天中四个不同时刻两个建筑物的影子:
将它们按时间先后顺序进行排列,正确的是 【

A 、③④②①
B 、②④③①
C 、③④①②
D 、③①②④
三、耐心解一解(共 40分)
25. (4分)确定图中路灯灯泡的位置,并画出小赵在灯光下的影子;
26. (
6分)画出下面实物的三视图:
I

③雨
④南

27. (6分)我们坐公共汽车下车后,不要从车前车后猛跑,为什
么?
28. (8分)已知,如图,AB和DE是直立在地面上的两根立柱
下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影;
2)在测量AB的投影时,同时测量出DE在阳光下的投影长为
29、(8分)要测量旗杆高CD,在B处立标杆AB= 2.5cm,人在杆
顶C在一条直线上。

已知BD= 3.6m, FB= 2.2m, EF= 1.5m。

.AB=5m,某一时刻AB在阳光
6m,请你计算
DE的长.
F处。

眼睛E、标杆顶A、旗
求旗杆的高度。

30. (8分)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:
根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB 8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A 再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB的高度.(精确到0.1米)
参考答案:
1.圆柱、圆2 .圆锥3 .俯视图主视图左视图4 . 12 5 .后面短6 . 4.5米
7.中间8 .灯光9 . (1) (3) 10 .5m 11 . 33m212 .13 13 . C 14 . C 15 . B 16 . C 17. A 18 . C 19 . B 20 . D 21 . A 22 . A 23 . B 24 . C
25 .
灯泡
小赵
26 . 略
27 .因为汽车司机的视线在车前车后有看不见的地方,即盲区。

汽车前进或倒退时,在车前或车后走很容易出危险。

28 .作法:连结AC ,过D作DF // AC交地面于点F,则EF就是DE在阳光下的投影利用相似三角形易得DE的长为10m。

29 .解:过E作EH// FD分别交AB CD于G H=
因为EF// AB// CD,所以EF= GB= HD
所以AG= AB- GB= AB- EF= 2.5 — 1.5 = 1m
EG= FB= 2.2m, GH= BD= 3.6m
CHk CD- 1.5m
又因为少=旦,所以CD 1.5竺
AG EG 1 2.2
3 3
所以CD= 42 m即旗杆的高4丄m
22 22
30.由题意知 / CED Z AEB / CDE/ ABE=Rt/,
CD DE AB
BE
1.6 AB
2.7 8.7
• AB^ 5.2 米。

相关文档
最新文档